InlineCost.cpp revision 13086a658ae06046ded902229f9918b8bad505bd
1//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inline cost analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "inline-cost"
15#include "llvm/Analysis/InlineCost.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/IR/CallingConv.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/InstVisitor.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/raw_ostream.h"
34
35using namespace llvm;
36
37STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
38
39namespace {
40
41class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
42  typedef InstVisitor<CallAnalyzer, bool> Base;
43  friend class InstVisitor<CallAnalyzer, bool>;
44
45  // DataLayout if available, or null.
46  const DataLayout *const TD;
47
48  /// The TargetTransformInfo available for this compilation.
49  const TargetTransformInfo &TTI;
50
51  // The called function.
52  Function &F;
53
54  int Threshold;
55  int Cost;
56
57  bool IsCallerRecursive;
58  bool IsRecursiveCall;
59  bool ExposesReturnsTwice;
60  bool HasDynamicAlloca;
61  bool ContainsNoDuplicateCall;
62
63  /// Number of bytes allocated statically by the callee.
64  uint64_t AllocatedSize;
65  unsigned NumInstructions, NumVectorInstructions;
66  int FiftyPercentVectorBonus, TenPercentVectorBonus;
67  int VectorBonus;
68
69  // While we walk the potentially-inlined instructions, we build up and
70  // maintain a mapping of simplified values specific to this callsite. The
71  // idea is to propagate any special information we have about arguments to
72  // this call through the inlinable section of the function, and account for
73  // likely simplifications post-inlining. The most important aspect we track
74  // is CFG altering simplifications -- when we prove a basic block dead, that
75  // can cause dramatic shifts in the cost of inlining a function.
76  DenseMap<Value *, Constant *> SimplifiedValues;
77
78  // Keep track of the values which map back (through function arguments) to
79  // allocas on the caller stack which could be simplified through SROA.
80  DenseMap<Value *, Value *> SROAArgValues;
81
82  // The mapping of caller Alloca values to their accumulated cost savings. If
83  // we have to disable SROA for one of the allocas, this tells us how much
84  // cost must be added.
85  DenseMap<Value *, int> SROAArgCosts;
86
87  // Keep track of values which map to a pointer base and constant offset.
88  DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
89
90  // Custom simplification helper routines.
91  bool isAllocaDerivedArg(Value *V);
92  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
93                            DenseMap<Value *, int>::iterator &CostIt);
94  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
95  void disableSROA(Value *V);
96  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
97                          int InstructionCost);
98  bool handleSROACandidate(bool IsSROAValid,
99                           DenseMap<Value *, int>::iterator CostIt,
100                           int InstructionCost);
101  bool isGEPOffsetConstant(GetElementPtrInst &GEP);
102  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
103  bool simplifyCallSite(Function *F, CallSite CS);
104  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
105
106  // Custom analysis routines.
107  bool analyzeBlock(BasicBlock *BB);
108
109  // Disable several entry points to the visitor so we don't accidentally use
110  // them by declaring but not defining them here.
111  void visit(Module *);     void visit(Module &);
112  void visit(Function *);   void visit(Function &);
113  void visit(BasicBlock *); void visit(BasicBlock &);
114
115  // Provide base case for our instruction visit.
116  bool visitInstruction(Instruction &I);
117
118  // Our visit overrides.
119  bool visitAlloca(AllocaInst &I);
120  bool visitPHI(PHINode &I);
121  bool visitGetElementPtr(GetElementPtrInst &I);
122  bool visitBitCast(BitCastInst &I);
123  bool visitPtrToInt(PtrToIntInst &I);
124  bool visitIntToPtr(IntToPtrInst &I);
125  bool visitCastInst(CastInst &I);
126  bool visitUnaryInstruction(UnaryInstruction &I);
127  bool visitICmp(ICmpInst &I);
128  bool visitSub(BinaryOperator &I);
129  bool visitBinaryOperator(BinaryOperator &I);
130  bool visitLoad(LoadInst &I);
131  bool visitStore(StoreInst &I);
132  bool visitExtractValue(ExtractValueInst &I);
133  bool visitInsertValue(InsertValueInst &I);
134  bool visitCallSite(CallSite CS);
135
136public:
137  CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
138               Function &Callee, int Threshold)
139      : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
140        IsCallerRecursive(false), IsRecursiveCall(false),
141        ExposesReturnsTwice(false), HasDynamicAlloca(false),
142        ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
143        NumVectorInstructions(0), FiftyPercentVectorBonus(0),
144        TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
145        NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
146        NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
147        SROACostSavings(0), SROACostSavingsLost(0) {}
148
149  bool analyzeCall(CallSite CS);
150
151  int getThreshold() { return Threshold; }
152  int getCost() { return Cost; }
153
154  // Keep a bunch of stats about the cost savings found so we can print them
155  // out when debugging.
156  unsigned NumConstantArgs;
157  unsigned NumConstantOffsetPtrArgs;
158  unsigned NumAllocaArgs;
159  unsigned NumConstantPtrCmps;
160  unsigned NumConstantPtrDiffs;
161  unsigned NumInstructionsSimplified;
162  unsigned SROACostSavings;
163  unsigned SROACostSavingsLost;
164
165  void dump();
166};
167
168} // namespace
169
170/// \brief Test whether the given value is an Alloca-derived function argument.
171bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
172  return SROAArgValues.count(V);
173}
174
175/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
176/// Returns false if V does not map to a SROA-candidate.
177bool CallAnalyzer::lookupSROAArgAndCost(
178    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
179  if (SROAArgValues.empty() || SROAArgCosts.empty())
180    return false;
181
182  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
183  if (ArgIt == SROAArgValues.end())
184    return false;
185
186  Arg = ArgIt->second;
187  CostIt = SROAArgCosts.find(Arg);
188  return CostIt != SROAArgCosts.end();
189}
190
191/// \brief Disable SROA for the candidate marked by this cost iterator.
192///
193/// This marks the candidate as no longer viable for SROA, and adds the cost
194/// savings associated with it back into the inline cost measurement.
195void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
196  // If we're no longer able to perform SROA we need to undo its cost savings
197  // and prevent subsequent analysis.
198  Cost += CostIt->second;
199  SROACostSavings -= CostIt->second;
200  SROACostSavingsLost += CostIt->second;
201  SROAArgCosts.erase(CostIt);
202}
203
204/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
205void CallAnalyzer::disableSROA(Value *V) {
206  Value *SROAArg;
207  DenseMap<Value *, int>::iterator CostIt;
208  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
209    disableSROA(CostIt);
210}
211
212/// \brief Accumulate the given cost for a particular SROA candidate.
213void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
214                                      int InstructionCost) {
215  CostIt->second += InstructionCost;
216  SROACostSavings += InstructionCost;
217}
218
219/// \brief Helper for the common pattern of handling a SROA candidate.
220/// Either accumulates the cost savings if the SROA remains valid, or disables
221/// SROA for the candidate.
222bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
223                                       DenseMap<Value *, int>::iterator CostIt,
224                                       int InstructionCost) {
225  if (IsSROAValid) {
226    accumulateSROACost(CostIt, InstructionCost);
227    return true;
228  }
229
230  disableSROA(CostIt);
231  return false;
232}
233
234/// \brief Check whether a GEP's indices are all constant.
235///
236/// Respects any simplified values known during the analysis of this callsite.
237bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
238  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
239    if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
240      return false;
241
242  return true;
243}
244
245/// \brief Accumulate a constant GEP offset into an APInt if possible.
246///
247/// Returns false if unable to compute the offset for any reason. Respects any
248/// simplified values known during the analysis of this callsite.
249bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
250  if (!TD)
251    return false;
252
253  unsigned IntPtrWidth = TD->getPointerSizeInBits();
254  assert(IntPtrWidth == Offset.getBitWidth());
255
256  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
257       GTI != GTE; ++GTI) {
258    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
259    if (!OpC)
260      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
261        OpC = dyn_cast<ConstantInt>(SimpleOp);
262    if (!OpC)
263      return false;
264    if (OpC->isZero()) continue;
265
266    // Handle a struct index, which adds its field offset to the pointer.
267    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
268      unsigned ElementIdx = OpC->getZExtValue();
269      const StructLayout *SL = TD->getStructLayout(STy);
270      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
271      continue;
272    }
273
274    APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
275    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
276  }
277  return true;
278}
279
280bool CallAnalyzer::visitAlloca(AllocaInst &I) {
281  // FIXME: Check whether inlining will turn a dynamic alloca into a static
282  // alloca, and handle that case.
283
284  // Accumulate the allocated size.
285  if (I.isStaticAlloca()) {
286    Type *Ty = I.getAllocatedType();
287    AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
288                      Ty->getPrimitiveSizeInBits());
289  }
290
291  // We will happily inline static alloca instructions.
292  if (I.isStaticAlloca())
293    return Base::visitAlloca(I);
294
295  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
296  // a variety of reasons, and so we would like to not inline them into
297  // functions which don't currently have a dynamic alloca. This simply
298  // disables inlining altogether in the presence of a dynamic alloca.
299  HasDynamicAlloca = true;
300  return false;
301}
302
303bool CallAnalyzer::visitPHI(PHINode &I) {
304  // FIXME: We should potentially be tracking values through phi nodes,
305  // especially when they collapse to a single value due to deleted CFG edges
306  // during inlining.
307
308  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
309  // though we don't want to propagate it's bonuses. The idea is to disable
310  // SROA if it *might* be used in an inappropriate manner.
311
312  // Phi nodes are always zero-cost.
313  return true;
314}
315
316bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
317  Value *SROAArg;
318  DenseMap<Value *, int>::iterator CostIt;
319  bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
320                                            SROAArg, CostIt);
321
322  // Try to fold GEPs of constant-offset call site argument pointers. This
323  // requires target data and inbounds GEPs.
324  if (TD && I.isInBounds()) {
325    // Check if we have a base + offset for the pointer.
326    Value *Ptr = I.getPointerOperand();
327    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
328    if (BaseAndOffset.first) {
329      // Check if the offset of this GEP is constant, and if so accumulate it
330      // into Offset.
331      if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
332        // Non-constant GEPs aren't folded, and disable SROA.
333        if (SROACandidate)
334          disableSROA(CostIt);
335        return false;
336      }
337
338      // Add the result as a new mapping to Base + Offset.
339      ConstantOffsetPtrs[&I] = BaseAndOffset;
340
341      // Also handle SROA candidates here, we already know that the GEP is
342      // all-constant indexed.
343      if (SROACandidate)
344        SROAArgValues[&I] = SROAArg;
345
346      return true;
347    }
348  }
349
350  if (isGEPOffsetConstant(I)) {
351    if (SROACandidate)
352      SROAArgValues[&I] = SROAArg;
353
354    // Constant GEPs are modeled as free.
355    return true;
356  }
357
358  // Variable GEPs will require math and will disable SROA.
359  if (SROACandidate)
360    disableSROA(CostIt);
361  return false;
362}
363
364bool CallAnalyzer::visitBitCast(BitCastInst &I) {
365  // Propagate constants through bitcasts.
366  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
367  if (!COp)
368    COp = SimplifiedValues.lookup(I.getOperand(0));
369  if (COp)
370    if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
371      SimplifiedValues[&I] = C;
372      return true;
373    }
374
375  // Track base/offsets through casts
376  std::pair<Value *, APInt> BaseAndOffset
377    = ConstantOffsetPtrs.lookup(I.getOperand(0));
378  // Casts don't change the offset, just wrap it up.
379  if (BaseAndOffset.first)
380    ConstantOffsetPtrs[&I] = BaseAndOffset;
381
382  // Also look for SROA candidates here.
383  Value *SROAArg;
384  DenseMap<Value *, int>::iterator CostIt;
385  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
386    SROAArgValues[&I] = SROAArg;
387
388  // Bitcasts are always zero cost.
389  return true;
390}
391
392bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
393  // Propagate constants through ptrtoint.
394  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
395  if (!COp)
396    COp = SimplifiedValues.lookup(I.getOperand(0));
397  if (COp)
398    if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
399      SimplifiedValues[&I] = C;
400      return true;
401    }
402
403  // Track base/offset pairs when converted to a plain integer provided the
404  // integer is large enough to represent the pointer.
405  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
406  if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
407    std::pair<Value *, APInt> BaseAndOffset
408      = ConstantOffsetPtrs.lookup(I.getOperand(0));
409    if (BaseAndOffset.first)
410      ConstantOffsetPtrs[&I] = BaseAndOffset;
411  }
412
413  // This is really weird. Technically, ptrtoint will disable SROA. However,
414  // unless that ptrtoint is *used* somewhere in the live basic blocks after
415  // inlining, it will be nuked, and SROA should proceed. All of the uses which
416  // would block SROA would also block SROA if applied directly to a pointer,
417  // and so we can just add the integer in here. The only places where SROA is
418  // preserved either cannot fire on an integer, or won't in-and-of themselves
419  // disable SROA (ext) w/o some later use that we would see and disable.
420  Value *SROAArg;
421  DenseMap<Value *, int>::iterator CostIt;
422  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
423    SROAArgValues[&I] = SROAArg;
424
425  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
426}
427
428bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
429  // Propagate constants through ptrtoint.
430  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
431  if (!COp)
432    COp = SimplifiedValues.lookup(I.getOperand(0));
433  if (COp)
434    if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
435      SimplifiedValues[&I] = C;
436      return true;
437    }
438
439  // Track base/offset pairs when round-tripped through a pointer without
440  // modifications provided the integer is not too large.
441  Value *Op = I.getOperand(0);
442  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
443  if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
444    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
445    if (BaseAndOffset.first)
446      ConstantOffsetPtrs[&I] = BaseAndOffset;
447  }
448
449  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
450  Value *SROAArg;
451  DenseMap<Value *, int>::iterator CostIt;
452  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
453    SROAArgValues[&I] = SROAArg;
454
455  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
456}
457
458bool CallAnalyzer::visitCastInst(CastInst &I) {
459  // Propagate constants through ptrtoint.
460  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
461  if (!COp)
462    COp = SimplifiedValues.lookup(I.getOperand(0));
463  if (COp)
464    if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
465      SimplifiedValues[&I] = C;
466      return true;
467    }
468
469  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
470  disableSROA(I.getOperand(0));
471
472  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
473}
474
475bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
476  Value *Operand = I.getOperand(0);
477  Constant *Ops[1] = { dyn_cast<Constant>(Operand) };
478  if (Ops[0] || (Ops[0] = SimplifiedValues.lookup(Operand)))
479    if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
480                                               Ops, TD)) {
481      SimplifiedValues[&I] = C;
482      return true;
483    }
484
485  // Disable any SROA on the argument to arbitrary unary operators.
486  disableSROA(Operand);
487
488  return false;
489}
490
491bool CallAnalyzer::visitICmp(ICmpInst &I) {
492  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
493  // First try to handle simplified comparisons.
494  if (!isa<Constant>(LHS))
495    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
496      LHS = SimpleLHS;
497  if (!isa<Constant>(RHS))
498    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
499      RHS = SimpleRHS;
500  if (Constant *CLHS = dyn_cast<Constant>(LHS))
501    if (Constant *CRHS = dyn_cast<Constant>(RHS))
502      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
503        SimplifiedValues[&I] = C;
504        return true;
505      }
506
507  // Otherwise look for a comparison between constant offset pointers with
508  // a common base.
509  Value *LHSBase, *RHSBase;
510  APInt LHSOffset, RHSOffset;
511  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
512  if (LHSBase) {
513    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
514    if (RHSBase && LHSBase == RHSBase) {
515      // We have common bases, fold the icmp to a constant based on the
516      // offsets.
517      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
518      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
519      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
520        SimplifiedValues[&I] = C;
521        ++NumConstantPtrCmps;
522        return true;
523      }
524    }
525  }
526
527  // If the comparison is an equality comparison with null, we can simplify it
528  // for any alloca-derived argument.
529  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
530    if (isAllocaDerivedArg(I.getOperand(0))) {
531      // We can actually predict the result of comparisons between an
532      // alloca-derived value and null. Note that this fires regardless of
533      // SROA firing.
534      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
535      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
536                                        : ConstantInt::getFalse(I.getType());
537      return true;
538    }
539
540  // Finally check for SROA candidates in comparisons.
541  Value *SROAArg;
542  DenseMap<Value *, int>::iterator CostIt;
543  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
544    if (isa<ConstantPointerNull>(I.getOperand(1))) {
545      accumulateSROACost(CostIt, InlineConstants::InstrCost);
546      return true;
547    }
548
549    disableSROA(CostIt);
550  }
551
552  return false;
553}
554
555bool CallAnalyzer::visitSub(BinaryOperator &I) {
556  // Try to handle a special case: we can fold computing the difference of two
557  // constant-related pointers.
558  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
559  Value *LHSBase, *RHSBase;
560  APInt LHSOffset, RHSOffset;
561  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
562  if (LHSBase) {
563    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
564    if (RHSBase && LHSBase == RHSBase) {
565      // We have common bases, fold the subtract to a constant based on the
566      // offsets.
567      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
568      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
569      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
570        SimplifiedValues[&I] = C;
571        ++NumConstantPtrDiffs;
572        return true;
573      }
574    }
575  }
576
577  // Otherwise, fall back to the generic logic for simplifying and handling
578  // instructions.
579  return Base::visitSub(I);
580}
581
582bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
583  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
584  if (!isa<Constant>(LHS))
585    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
586      LHS = SimpleLHS;
587  if (!isa<Constant>(RHS))
588    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
589      RHS = SimpleRHS;
590  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
591  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
592    SimplifiedValues[&I] = C;
593    return true;
594  }
595
596  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
597  disableSROA(LHS);
598  disableSROA(RHS);
599
600  return false;
601}
602
603bool CallAnalyzer::visitLoad(LoadInst &I) {
604  Value *SROAArg;
605  DenseMap<Value *, int>::iterator CostIt;
606  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
607    if (I.isSimple()) {
608      accumulateSROACost(CostIt, InlineConstants::InstrCost);
609      return true;
610    }
611
612    disableSROA(CostIt);
613  }
614
615  return false;
616}
617
618bool CallAnalyzer::visitStore(StoreInst &I) {
619  Value *SROAArg;
620  DenseMap<Value *, int>::iterator CostIt;
621  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
622    if (I.isSimple()) {
623      accumulateSROACost(CostIt, InlineConstants::InstrCost);
624      return true;
625    }
626
627    disableSROA(CostIt);
628  }
629
630  return false;
631}
632
633bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
634  // Constant folding for extract value is trivial.
635  Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
636  if (!C)
637    C = SimplifiedValues.lookup(I.getAggregateOperand());
638  if (C) {
639    SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
640    return true;
641  }
642
643  // SROA can look through these but give them a cost.
644  return false;
645}
646
647bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
648  // Constant folding for insert value is trivial.
649  Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
650  if (!AggC)
651    AggC = SimplifiedValues.lookup(I.getAggregateOperand());
652  Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
653  if (!InsertedC)
654    InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
655  if (AggC && InsertedC) {
656    SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
657                                                        I.getIndices());
658    return true;
659  }
660
661  // SROA can look through these but give them a cost.
662  return false;
663}
664
665/// \brief Try to simplify a call site.
666///
667/// Takes a concrete function and callsite and tries to actually simplify it by
668/// analyzing the arguments and call itself with instsimplify. Returns true if
669/// it has simplified the callsite to some other entity (a constant), making it
670/// free.
671bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
672  // FIXME: Using the instsimplify logic directly for this is inefficient
673  // because we have to continually rebuild the argument list even when no
674  // simplifications can be performed. Until that is fixed with remapping
675  // inside of instsimplify, directly constant fold calls here.
676  if (!canConstantFoldCallTo(F))
677    return false;
678
679  // Try to re-map the arguments to constants.
680  SmallVector<Constant *, 4> ConstantArgs;
681  ConstantArgs.reserve(CS.arg_size());
682  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
683       I != E; ++I) {
684    Constant *C = dyn_cast<Constant>(*I);
685    if (!C)
686      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
687    if (!C)
688      return false; // This argument doesn't map to a constant.
689
690    ConstantArgs.push_back(C);
691  }
692  if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
693    SimplifiedValues[CS.getInstruction()] = C;
694    return true;
695  }
696
697  return false;
698}
699
700bool CallAnalyzer::visitCallSite(CallSite CS) {
701  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
702      !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
703                                      Attribute::ReturnsTwice)) {
704    // This aborts the entire analysis.
705    ExposesReturnsTwice = true;
706    return false;
707  }
708  if (CS.isCall() &&
709      cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
710    ContainsNoDuplicateCall = true;
711
712  if (Function *F = CS.getCalledFunction()) {
713    // When we have a concrete function, first try to simplify it directly.
714    if (simplifyCallSite(F, CS))
715      return true;
716
717    // Next check if it is an intrinsic we know about.
718    // FIXME: Lift this into part of the InstVisitor.
719    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
720      switch (II->getIntrinsicID()) {
721      default:
722        return Base::visitCallSite(CS);
723
724      case Intrinsic::memset:
725      case Intrinsic::memcpy:
726      case Intrinsic::memmove:
727        // SROA can usually chew through these intrinsics, but they aren't free.
728        return false;
729      }
730    }
731
732    if (F == CS.getInstruction()->getParent()->getParent()) {
733      // This flag will fully abort the analysis, so don't bother with anything
734      // else.
735      IsRecursiveCall = true;
736      return false;
737    }
738
739    if (TTI.isLoweredToCall(F)) {
740      // We account for the average 1 instruction per call argument setup
741      // here.
742      Cost += CS.arg_size() * InlineConstants::InstrCost;
743
744      // Everything other than inline ASM will also have a significant cost
745      // merely from making the call.
746      if (!isa<InlineAsm>(CS.getCalledValue()))
747        Cost += InlineConstants::CallPenalty;
748    }
749
750    return Base::visitCallSite(CS);
751  }
752
753  // Otherwise we're in a very special case -- an indirect function call. See
754  // if we can be particularly clever about this.
755  Value *Callee = CS.getCalledValue();
756
757  // First, pay the price of the argument setup. We account for the average
758  // 1 instruction per call argument setup here.
759  Cost += CS.arg_size() * InlineConstants::InstrCost;
760
761  // Next, check if this happens to be an indirect function call to a known
762  // function in this inline context. If not, we've done all we can.
763  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
764  if (!F)
765    return Base::visitCallSite(CS);
766
767  // If we have a constant that we are calling as a function, we can peer
768  // through it and see the function target. This happens not infrequently
769  // during devirtualization and so we want to give it a hefty bonus for
770  // inlining, but cap that bonus in the event that inlining wouldn't pan
771  // out. Pretend to inline the function, with a custom threshold.
772  CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
773  if (CA.analyzeCall(CS)) {
774    // We were able to inline the indirect call! Subtract the cost from the
775    // bonus we want to apply, but don't go below zero.
776    Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
777  }
778
779  return Base::visitCallSite(CS);
780}
781
782bool CallAnalyzer::visitInstruction(Instruction &I) {
783  // Some instructions are free. All of the free intrinsics can also be
784  // handled by SROA, etc.
785  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
786    return true;
787
788  // We found something we don't understand or can't handle. Mark any SROA-able
789  // values in the operand list as no longer viable.
790  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
791    disableSROA(*OI);
792
793  return false;
794}
795
796
797/// \brief Analyze a basic block for its contribution to the inline cost.
798///
799/// This method walks the analyzer over every instruction in the given basic
800/// block and accounts for their cost during inlining at this callsite. It
801/// aborts early if the threshold has been exceeded or an impossible to inline
802/// construct has been detected. It returns false if inlining is no longer
803/// viable, and true if inlining remains viable.
804bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
805  for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
806       I != E; ++I) {
807    ++NumInstructions;
808    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
809      ++NumVectorInstructions;
810
811    // If the instruction simplified to a constant, there is no cost to this
812    // instruction. Visit the instructions using our InstVisitor to account for
813    // all of the per-instruction logic. The visit tree returns true if we
814    // consumed the instruction in any way, and false if the instruction's base
815    // cost should count against inlining.
816    if (Base::visit(I))
817      ++NumInstructionsSimplified;
818    else
819      Cost += InlineConstants::InstrCost;
820
821    // If the visit this instruction detected an uninlinable pattern, abort.
822    if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
823      return false;
824
825    // If the caller is a recursive function then we don't want to inline
826    // functions which allocate a lot of stack space because it would increase
827    // the caller stack usage dramatically.
828    if (IsCallerRecursive &&
829        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
830      return false;
831
832    if (NumVectorInstructions > NumInstructions/2)
833      VectorBonus = FiftyPercentVectorBonus;
834    else if (NumVectorInstructions > NumInstructions/10)
835      VectorBonus = TenPercentVectorBonus;
836    else
837      VectorBonus = 0;
838
839    // Check if we've past the threshold so we don't spin in huge basic
840    // blocks that will never inline.
841    if (Cost > (Threshold + VectorBonus))
842      return false;
843  }
844
845  return true;
846}
847
848/// \brief Compute the base pointer and cumulative constant offsets for V.
849///
850/// This strips all constant offsets off of V, leaving it the base pointer, and
851/// accumulates the total constant offset applied in the returned constant. It
852/// returns 0 if V is not a pointer, and returns the constant '0' if there are
853/// no constant offsets applied.
854ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
855  if (!TD || !V->getType()->isPointerTy())
856    return 0;
857
858  unsigned IntPtrWidth = TD->getPointerSizeInBits();
859  APInt Offset = APInt::getNullValue(IntPtrWidth);
860
861  // Even though we don't look through PHI nodes, we could be called on an
862  // instruction in an unreachable block, which may be on a cycle.
863  SmallPtrSet<Value *, 4> Visited;
864  Visited.insert(V);
865  do {
866    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
867      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
868        return 0;
869      V = GEP->getPointerOperand();
870    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
871      V = cast<Operator>(V)->getOperand(0);
872    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
873      if (GA->mayBeOverridden())
874        break;
875      V = GA->getAliasee();
876    } else {
877      break;
878    }
879    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
880  } while (Visited.insert(V));
881
882  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
883  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
884}
885
886/// \brief Analyze a call site for potential inlining.
887///
888/// Returns true if inlining this call is viable, and false if it is not
889/// viable. It computes the cost and adjusts the threshold based on numerous
890/// factors and heuristics. If this method returns false but the computed cost
891/// is below the computed threshold, then inlining was forcibly disabled by
892/// some artifact of the routine.
893bool CallAnalyzer::analyzeCall(CallSite CS) {
894  ++NumCallsAnalyzed;
895
896  // Track whether the post-inlining function would have more than one basic
897  // block. A single basic block is often intended for inlining. Balloon the
898  // threshold by 50% until we pass the single-BB phase.
899  bool SingleBB = true;
900  int SingleBBBonus = Threshold / 2;
901  Threshold += SingleBBBonus;
902
903  // Perform some tweaks to the cost and threshold based on the direct
904  // callsite information.
905
906  // We want to more aggressively inline vector-dense kernels, so up the
907  // threshold, and we'll lower it if the % of vector instructions gets too
908  // low.
909  assert(NumInstructions == 0);
910  assert(NumVectorInstructions == 0);
911  FiftyPercentVectorBonus = Threshold;
912  TenPercentVectorBonus = Threshold / 2;
913
914  // Give out bonuses per argument, as the instructions setting them up will
915  // be gone after inlining.
916  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
917    if (TD && CS.isByValArgument(I)) {
918      // We approximate the number of loads and stores needed by dividing the
919      // size of the byval type by the target's pointer size.
920      PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
921      unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
922      unsigned PointerSize = TD->getPointerSizeInBits();
923      // Ceiling division.
924      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
925
926      // If it generates more than 8 stores it is likely to be expanded as an
927      // inline memcpy so we take that as an upper bound. Otherwise we assume
928      // one load and one store per word copied.
929      // FIXME: The maxStoresPerMemcpy setting from the target should be used
930      // here instead of a magic number of 8, but it's not available via
931      // DataLayout.
932      NumStores = std::min(NumStores, 8U);
933
934      Cost -= 2 * NumStores * InlineConstants::InstrCost;
935    } else {
936      // For non-byval arguments subtract off one instruction per call
937      // argument.
938      Cost -= InlineConstants::InstrCost;
939    }
940  }
941
942  // If there is only one call of the function, and it has internal linkage,
943  // the cost of inlining it drops dramatically.
944  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
945    &F == CS.getCalledFunction();
946  if (OnlyOneCallAndLocalLinkage)
947    Cost += InlineConstants::LastCallToStaticBonus;
948
949  // If the instruction after the call, or if the normal destination of the
950  // invoke is an unreachable instruction, the function is noreturn. As such,
951  // there is little point in inlining this unless there is literally zero
952  // cost.
953  Instruction *Instr = CS.getInstruction();
954  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
955    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
956      Threshold = 1;
957  } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
958    Threshold = 1;
959
960  // If this function uses the coldcc calling convention, prefer not to inline
961  // it.
962  if (F.getCallingConv() == CallingConv::Cold)
963    Cost += InlineConstants::ColdccPenalty;
964
965  // Check if we're done. This can happen due to bonuses and penalties.
966  if (Cost > Threshold)
967    return false;
968
969  if (F.empty())
970    return true;
971
972  Function *Caller = CS.getInstruction()->getParent()->getParent();
973  // Check if the caller function is recursive itself.
974  for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
975       U != E; ++U) {
976    CallSite Site(cast<Value>(*U));
977    if (!Site)
978      continue;
979    Instruction *I = Site.getInstruction();
980    if (I->getParent()->getParent() == Caller) {
981      IsCallerRecursive = true;
982      break;
983    }
984  }
985
986  // Track whether we've seen a return instruction. The first return
987  // instruction is free, as at least one will usually disappear in inlining.
988  bool HasReturn = false;
989
990  // Populate our simplified values by mapping from function arguments to call
991  // arguments with known important simplifications.
992  CallSite::arg_iterator CAI = CS.arg_begin();
993  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
994       FAI != FAE; ++FAI, ++CAI) {
995    assert(CAI != CS.arg_end());
996    if (Constant *C = dyn_cast<Constant>(CAI))
997      SimplifiedValues[FAI] = C;
998
999    Value *PtrArg = *CAI;
1000    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1001      ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
1002
1003      // We can SROA any pointer arguments derived from alloca instructions.
1004      if (isa<AllocaInst>(PtrArg)) {
1005        SROAArgValues[FAI] = PtrArg;
1006        SROAArgCosts[PtrArg] = 0;
1007      }
1008    }
1009  }
1010  NumConstantArgs = SimplifiedValues.size();
1011  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1012  NumAllocaArgs = SROAArgValues.size();
1013
1014  // The worklist of live basic blocks in the callee *after* inlining. We avoid
1015  // adding basic blocks of the callee which can be proven to be dead for this
1016  // particular call site in order to get more accurate cost estimates. This
1017  // requires a somewhat heavyweight iteration pattern: we need to walk the
1018  // basic blocks in a breadth-first order as we insert live successors. To
1019  // accomplish this, prioritizing for small iterations because we exit after
1020  // crossing our threshold, we use a small-size optimized SetVector.
1021  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1022                                  SmallPtrSet<BasicBlock *, 16> > BBSetVector;
1023  BBSetVector BBWorklist;
1024  BBWorklist.insert(&F.getEntryBlock());
1025  // Note that we *must not* cache the size, this loop grows the worklist.
1026  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1027    // Bail out the moment we cross the threshold. This means we'll under-count
1028    // the cost, but only when undercounting doesn't matter.
1029    if (Cost > (Threshold + VectorBonus))
1030      break;
1031
1032    BasicBlock *BB = BBWorklist[Idx];
1033    if (BB->empty())
1034      continue;
1035
1036    // Handle the terminator cost here where we can track returns and other
1037    // function-wide constructs.
1038    TerminatorInst *TI = BB->getTerminator();
1039
1040    // We never want to inline functions that contain an indirectbr.  This is
1041    // incorrect because all the blockaddress's (in static global initializers
1042    // for example) would be referring to the original function, and this
1043    // indirect jump would jump from the inlined copy of the function into the
1044    // original function which is extremely undefined behavior.
1045    // FIXME: This logic isn't really right; we can safely inline functions
1046    // with indirectbr's as long as no other function or global references the
1047    // blockaddress of a block within the current function.  And as a QOI issue,
1048    // if someone is using a blockaddress without an indirectbr, and that
1049    // reference somehow ends up in another function or global, we probably
1050    // don't want to inline this function.
1051    if (isa<IndirectBrInst>(TI))
1052      return false;
1053
1054    if (!HasReturn && isa<ReturnInst>(TI))
1055      HasReturn = true;
1056    else
1057      Cost += InlineConstants::InstrCost;
1058
1059    // Analyze the cost of this block. If we blow through the threshold, this
1060    // returns false, and we can bail on out.
1061    if (!analyzeBlock(BB)) {
1062      if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
1063        return false;
1064
1065      // If the caller is a recursive function then we don't want to inline
1066      // functions which allocate a lot of stack space because it would increase
1067      // the caller stack usage dramatically.
1068      if (IsCallerRecursive &&
1069          AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
1070        return false;
1071
1072      break;
1073    }
1074
1075    // Add in the live successors by first checking whether we have terminator
1076    // that may be simplified based on the values simplified by this call.
1077    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078      if (BI->isConditional()) {
1079        Value *Cond = BI->getCondition();
1080        if (ConstantInt *SimpleCond
1081              = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1082          BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
1083          continue;
1084        }
1085      }
1086    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1087      Value *Cond = SI->getCondition();
1088      if (ConstantInt *SimpleCond
1089            = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1090        BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
1091        continue;
1092      }
1093    }
1094
1095    // If we're unable to select a particular successor, just count all of
1096    // them.
1097    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1098         ++TIdx)
1099      BBWorklist.insert(TI->getSuccessor(TIdx));
1100
1101    // If we had any successors at this point, than post-inlining is likely to
1102    // have them as well. Note that we assume any basic blocks which existed
1103    // due to branches or switches which folded above will also fold after
1104    // inlining.
1105    if (SingleBB && TI->getNumSuccessors() > 1) {
1106      // Take off the bonus we applied to the threshold.
1107      Threshold -= SingleBBBonus;
1108      SingleBB = false;
1109    }
1110  }
1111
1112  // If this is a noduplicate call, we can still inline as long as
1113  // inlining this would cause the removal of the caller (so the instruction
1114  // is not actually duplicated, just moved).
1115  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1116    return false;
1117
1118  Threshold += VectorBonus;
1119
1120  return Cost < Threshold;
1121}
1122
1123#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1124/// \brief Dump stats about this call's analysis.
1125void CallAnalyzer::dump() {
1126#define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
1127  DEBUG_PRINT_STAT(NumConstantArgs);
1128  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1129  DEBUG_PRINT_STAT(NumAllocaArgs);
1130  DEBUG_PRINT_STAT(NumConstantPtrCmps);
1131  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1132  DEBUG_PRINT_STAT(NumInstructionsSimplified);
1133  DEBUG_PRINT_STAT(SROACostSavings);
1134  DEBUG_PRINT_STAT(SROACostSavingsLost);
1135  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1136#undef DEBUG_PRINT_STAT
1137}
1138#endif
1139
1140INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1141                      true, true)
1142INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
1143INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1144                    true, true)
1145
1146char InlineCostAnalysis::ID = 0;
1147
1148InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
1149
1150InlineCostAnalysis::~InlineCostAnalysis() {}
1151
1152void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1153  AU.setPreservesAll();
1154  AU.addRequired<TargetTransformInfo>();
1155  CallGraphSCCPass::getAnalysisUsage(AU);
1156}
1157
1158bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
1159  TD = getAnalysisIfAvailable<DataLayout>();
1160  TTI = &getAnalysis<TargetTransformInfo>();
1161  return false;
1162}
1163
1164InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
1165  return getInlineCost(CS, CS.getCalledFunction(), Threshold);
1166}
1167
1168InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
1169                                             int Threshold) {
1170  // Cannot inline indirect calls.
1171  if (!Callee)
1172    return llvm::InlineCost::getNever();
1173
1174  // Calls to functions with always-inline attributes should be inlined
1175  // whenever possible.
1176  if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1177                                           Attribute::AlwaysInline)) {
1178    if (isInlineViable(*Callee))
1179      return llvm::InlineCost::getAlways();
1180    return llvm::InlineCost::getNever();
1181  }
1182
1183  // Don't inline functions which can be redefined at link-time to mean
1184  // something else.  Don't inline functions marked noinline or call sites
1185  // marked noinline.
1186  if (Callee->mayBeOverridden() ||
1187      Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1188                                           Attribute::NoInline) ||
1189      CS.isNoInline())
1190    return llvm::InlineCost::getNever();
1191
1192  DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
1193        << "...\n");
1194
1195  CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
1196  bool ShouldInline = CA.analyzeCall(CS);
1197
1198  DEBUG(CA.dump());
1199
1200  // Check if there was a reason to force inlining or no inlining.
1201  if (!ShouldInline && CA.getCost() < CA.getThreshold())
1202    return InlineCost::getNever();
1203  if (ShouldInline && CA.getCost() >= CA.getThreshold())
1204    return InlineCost::getAlways();
1205
1206  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
1207}
1208
1209bool InlineCostAnalysis::isInlineViable(Function &F) {
1210  bool ReturnsTwice =
1211    F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1212                                   Attribute::ReturnsTwice);
1213  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1214    // Disallow inlining of functions which contain an indirect branch.
1215    if (isa<IndirectBrInst>(BI->getTerminator()))
1216      return false;
1217
1218    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
1219         ++II) {
1220      CallSite CS(II);
1221      if (!CS)
1222        continue;
1223
1224      // Disallow recursive calls.
1225      if (&F == CS.getCalledFunction())
1226        return false;
1227
1228      // Disallow calls which expose returns-twice to a function not previously
1229      // attributed as such.
1230      if (!ReturnsTwice && CS.isCall() &&
1231          cast<CallInst>(CS.getInstruction())->canReturnTwice())
1232        return false;
1233    }
1234  }
1235
1236  return true;
1237}
1238