InlineCost.cpp revision fe45fd084db872f9c7106c26e52c1cc8c9cba3a5
1//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inline cost analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "inline-cost"
15#include "llvm/Analysis/InlineCost.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/IR/CallingConv.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/InstVisitor.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/raw_ostream.h"
34
35using namespace llvm;
36
37STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
38
39namespace {
40
41class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
42  typedef InstVisitor<CallAnalyzer, bool> Base;
43  friend class InstVisitor<CallAnalyzer, bool>;
44
45  // DataLayout if available, or null.
46  const DataLayout *const TD;
47
48  /// The TargetTransformInfo available for this compilation.
49  const TargetTransformInfo &TTI;
50
51  // The called function.
52  Function &F;
53
54  int Threshold;
55  int Cost;
56
57  bool IsCallerRecursive;
58  bool IsRecursiveCall;
59  bool ExposesReturnsTwice;
60  bool HasDynamicAlloca;
61  bool ContainsNoDuplicateCall;
62
63  /// Number of bytes allocated statically by the callee.
64  uint64_t AllocatedSize;
65  unsigned NumInstructions, NumVectorInstructions;
66  int FiftyPercentVectorBonus, TenPercentVectorBonus;
67  int VectorBonus;
68
69  // While we walk the potentially-inlined instructions, we build up and
70  // maintain a mapping of simplified values specific to this callsite. The
71  // idea is to propagate any special information we have about arguments to
72  // this call through the inlinable section of the function, and account for
73  // likely simplifications post-inlining. The most important aspect we track
74  // is CFG altering simplifications -- when we prove a basic block dead, that
75  // can cause dramatic shifts in the cost of inlining a function.
76  DenseMap<Value *, Constant *> SimplifiedValues;
77
78  // Keep track of the values which map back (through function arguments) to
79  // allocas on the caller stack which could be simplified through SROA.
80  DenseMap<Value *, Value *> SROAArgValues;
81
82  // The mapping of caller Alloca values to their accumulated cost savings. If
83  // we have to disable SROA for one of the allocas, this tells us how much
84  // cost must be added.
85  DenseMap<Value *, int> SROAArgCosts;
86
87  // Keep track of values which map to a pointer base and constant offset.
88  DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
89
90  // Custom simplification helper routines.
91  bool isAllocaDerivedArg(Value *V);
92  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
93                            DenseMap<Value *, int>::iterator &CostIt);
94  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
95  void disableSROA(Value *V);
96  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
97                          int InstructionCost);
98  bool handleSROACandidate(bool IsSROAValid,
99                           DenseMap<Value *, int>::iterator CostIt,
100                           int InstructionCost);
101  bool isGEPOffsetConstant(GetElementPtrInst &GEP);
102  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
103  bool simplifyCallSite(Function *F, CallSite CS);
104  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
105
106  // Custom analysis routines.
107  bool analyzeBlock(BasicBlock *BB);
108
109  // Disable several entry points to the visitor so we don't accidentally use
110  // them by declaring but not defining them here.
111  void visit(Module *);     void visit(Module &);
112  void visit(Function *);   void visit(Function &);
113  void visit(BasicBlock *); void visit(BasicBlock &);
114
115  // Provide base case for our instruction visit.
116  bool visitInstruction(Instruction &I);
117
118  // Our visit overrides.
119  bool visitAlloca(AllocaInst &I);
120  bool visitPHI(PHINode &I);
121  bool visitGetElementPtr(GetElementPtrInst &I);
122  bool visitBitCast(BitCastInst &I);
123  bool visitPtrToInt(PtrToIntInst &I);
124  bool visitIntToPtr(IntToPtrInst &I);
125  bool visitCastInst(CastInst &I);
126  bool visitUnaryInstruction(UnaryInstruction &I);
127  bool visitCmpInst(CmpInst &I);
128  bool visitSub(BinaryOperator &I);
129  bool visitBinaryOperator(BinaryOperator &I);
130  bool visitLoad(LoadInst &I);
131  bool visitStore(StoreInst &I);
132  bool visitExtractValue(ExtractValueInst &I);
133  bool visitInsertValue(InsertValueInst &I);
134  bool visitCallSite(CallSite CS);
135
136public:
137  CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
138               Function &Callee, int Threshold)
139      : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
140        IsCallerRecursive(false), IsRecursiveCall(false),
141        ExposesReturnsTwice(false), HasDynamicAlloca(false),
142        ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
143        NumVectorInstructions(0), FiftyPercentVectorBonus(0),
144        TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
145        NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
146        NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
147        SROACostSavings(0), SROACostSavingsLost(0) {}
148
149  bool analyzeCall(CallSite CS);
150
151  int getThreshold() { return Threshold; }
152  int getCost() { return Cost; }
153
154  // Keep a bunch of stats about the cost savings found so we can print them
155  // out when debugging.
156  unsigned NumConstantArgs;
157  unsigned NumConstantOffsetPtrArgs;
158  unsigned NumAllocaArgs;
159  unsigned NumConstantPtrCmps;
160  unsigned NumConstantPtrDiffs;
161  unsigned NumInstructionsSimplified;
162  unsigned SROACostSavings;
163  unsigned SROACostSavingsLost;
164
165  void dump();
166};
167
168} // namespace
169
170/// \brief Test whether the given value is an Alloca-derived function argument.
171bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
172  return SROAArgValues.count(V);
173}
174
175/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
176/// Returns false if V does not map to a SROA-candidate.
177bool CallAnalyzer::lookupSROAArgAndCost(
178    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
179  if (SROAArgValues.empty() || SROAArgCosts.empty())
180    return false;
181
182  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
183  if (ArgIt == SROAArgValues.end())
184    return false;
185
186  Arg = ArgIt->second;
187  CostIt = SROAArgCosts.find(Arg);
188  return CostIt != SROAArgCosts.end();
189}
190
191/// \brief Disable SROA for the candidate marked by this cost iterator.
192///
193/// This marks the candidate as no longer viable for SROA, and adds the cost
194/// savings associated with it back into the inline cost measurement.
195void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
196  // If we're no longer able to perform SROA we need to undo its cost savings
197  // and prevent subsequent analysis.
198  Cost += CostIt->second;
199  SROACostSavings -= CostIt->second;
200  SROACostSavingsLost += CostIt->second;
201  SROAArgCosts.erase(CostIt);
202}
203
204/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
205void CallAnalyzer::disableSROA(Value *V) {
206  Value *SROAArg;
207  DenseMap<Value *, int>::iterator CostIt;
208  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
209    disableSROA(CostIt);
210}
211
212/// \brief Accumulate the given cost for a particular SROA candidate.
213void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
214                                      int InstructionCost) {
215  CostIt->second += InstructionCost;
216  SROACostSavings += InstructionCost;
217}
218
219/// \brief Helper for the common pattern of handling a SROA candidate.
220/// Either accumulates the cost savings if the SROA remains valid, or disables
221/// SROA for the candidate.
222bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
223                                       DenseMap<Value *, int>::iterator CostIt,
224                                       int InstructionCost) {
225  if (IsSROAValid) {
226    accumulateSROACost(CostIt, InstructionCost);
227    return true;
228  }
229
230  disableSROA(CostIt);
231  return false;
232}
233
234/// \brief Check whether a GEP's indices are all constant.
235///
236/// Respects any simplified values known during the analysis of this callsite.
237bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
238  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
239    if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
240      return false;
241
242  return true;
243}
244
245/// \brief Accumulate a constant GEP offset into an APInt if possible.
246///
247/// Returns false if unable to compute the offset for any reason. Respects any
248/// simplified values known during the analysis of this callsite.
249bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
250  if (!TD)
251    return false;
252
253  unsigned IntPtrWidth = TD->getPointerSizeInBits();
254  assert(IntPtrWidth == Offset.getBitWidth());
255
256  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
257       GTI != GTE; ++GTI) {
258    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
259    if (!OpC)
260      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
261        OpC = dyn_cast<ConstantInt>(SimpleOp);
262    if (!OpC)
263      return false;
264    if (OpC->isZero()) continue;
265
266    // Handle a struct index, which adds its field offset to the pointer.
267    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
268      unsigned ElementIdx = OpC->getZExtValue();
269      const StructLayout *SL = TD->getStructLayout(STy);
270      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
271      continue;
272    }
273
274    APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
275    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
276  }
277  return true;
278}
279
280bool CallAnalyzer::visitAlloca(AllocaInst &I) {
281  // FIXME: Check whether inlining will turn a dynamic alloca into a static
282  // alloca, and handle that case.
283
284  // Accumulate the allocated size.
285  if (I.isStaticAlloca()) {
286    Type *Ty = I.getAllocatedType();
287    AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
288                      Ty->getPrimitiveSizeInBits());
289  }
290
291  // We will happily inline static alloca instructions.
292  if (I.isStaticAlloca())
293    return Base::visitAlloca(I);
294
295  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
296  // a variety of reasons, and so we would like to not inline them into
297  // functions which don't currently have a dynamic alloca. This simply
298  // disables inlining altogether in the presence of a dynamic alloca.
299  HasDynamicAlloca = true;
300  return false;
301}
302
303bool CallAnalyzer::visitPHI(PHINode &I) {
304  // FIXME: We should potentially be tracking values through phi nodes,
305  // especially when they collapse to a single value due to deleted CFG edges
306  // during inlining.
307
308  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
309  // though we don't want to propagate it's bonuses. The idea is to disable
310  // SROA if it *might* be used in an inappropriate manner.
311
312  // Phi nodes are always zero-cost.
313  return true;
314}
315
316bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
317  Value *SROAArg;
318  DenseMap<Value *, int>::iterator CostIt;
319  bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
320                                            SROAArg, CostIt);
321
322  // Try to fold GEPs of constant-offset call site argument pointers. This
323  // requires target data and inbounds GEPs.
324  if (TD && I.isInBounds()) {
325    // Check if we have a base + offset for the pointer.
326    Value *Ptr = I.getPointerOperand();
327    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
328    if (BaseAndOffset.first) {
329      // Check if the offset of this GEP is constant, and if so accumulate it
330      // into Offset.
331      if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
332        // Non-constant GEPs aren't folded, and disable SROA.
333        if (SROACandidate)
334          disableSROA(CostIt);
335        return false;
336      }
337
338      // Add the result as a new mapping to Base + Offset.
339      ConstantOffsetPtrs[&I] = BaseAndOffset;
340
341      // Also handle SROA candidates here, we already know that the GEP is
342      // all-constant indexed.
343      if (SROACandidate)
344        SROAArgValues[&I] = SROAArg;
345
346      return true;
347    }
348  }
349
350  if (isGEPOffsetConstant(I)) {
351    if (SROACandidate)
352      SROAArgValues[&I] = SROAArg;
353
354    // Constant GEPs are modeled as free.
355    return true;
356  }
357
358  // Variable GEPs will require math and will disable SROA.
359  if (SROACandidate)
360    disableSROA(CostIt);
361  return false;
362}
363
364bool CallAnalyzer::visitBitCast(BitCastInst &I) {
365  // Propagate constants through bitcasts.
366  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
367  if (!COp)
368    COp = SimplifiedValues.lookup(I.getOperand(0));
369  if (COp)
370    if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
371      SimplifiedValues[&I] = C;
372      return true;
373    }
374
375  // Track base/offsets through casts
376  std::pair<Value *, APInt> BaseAndOffset
377    = ConstantOffsetPtrs.lookup(I.getOperand(0));
378  // Casts don't change the offset, just wrap it up.
379  if (BaseAndOffset.first)
380    ConstantOffsetPtrs[&I] = BaseAndOffset;
381
382  // Also look for SROA candidates here.
383  Value *SROAArg;
384  DenseMap<Value *, int>::iterator CostIt;
385  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
386    SROAArgValues[&I] = SROAArg;
387
388  // Bitcasts are always zero cost.
389  return true;
390}
391
392bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
393  // Propagate constants through ptrtoint.
394  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
395  if (!COp)
396    COp = SimplifiedValues.lookup(I.getOperand(0));
397  if (COp)
398    if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
399      SimplifiedValues[&I] = C;
400      return true;
401    }
402
403  // Track base/offset pairs when converted to a plain integer provided the
404  // integer is large enough to represent the pointer.
405  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
406  if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
407    std::pair<Value *, APInt> BaseAndOffset
408      = ConstantOffsetPtrs.lookup(I.getOperand(0));
409    if (BaseAndOffset.first)
410      ConstantOffsetPtrs[&I] = BaseAndOffset;
411  }
412
413  // This is really weird. Technically, ptrtoint will disable SROA. However,
414  // unless that ptrtoint is *used* somewhere in the live basic blocks after
415  // inlining, it will be nuked, and SROA should proceed. All of the uses which
416  // would block SROA would also block SROA if applied directly to a pointer,
417  // and so we can just add the integer in here. The only places where SROA is
418  // preserved either cannot fire on an integer, or won't in-and-of themselves
419  // disable SROA (ext) w/o some later use that we would see and disable.
420  Value *SROAArg;
421  DenseMap<Value *, int>::iterator CostIt;
422  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
423    SROAArgValues[&I] = SROAArg;
424
425  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
426}
427
428bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
429  // Propagate constants through ptrtoint.
430  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
431  if (!COp)
432    COp = SimplifiedValues.lookup(I.getOperand(0));
433  if (COp)
434    if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
435      SimplifiedValues[&I] = C;
436      return true;
437    }
438
439  // Track base/offset pairs when round-tripped through a pointer without
440  // modifications provided the integer is not too large.
441  Value *Op = I.getOperand(0);
442  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
443  if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
444    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
445    if (BaseAndOffset.first)
446      ConstantOffsetPtrs[&I] = BaseAndOffset;
447  }
448
449  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
450  Value *SROAArg;
451  DenseMap<Value *, int>::iterator CostIt;
452  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
453    SROAArgValues[&I] = SROAArg;
454
455  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
456}
457
458bool CallAnalyzer::visitCastInst(CastInst &I) {
459  // Propagate constants through ptrtoint.
460  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
461  if (!COp)
462    COp = SimplifiedValues.lookup(I.getOperand(0));
463  if (COp)
464    if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
465      SimplifiedValues[&I] = C;
466      return true;
467    }
468
469  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
470  disableSROA(I.getOperand(0));
471
472  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
473}
474
475bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
476  Value *Operand = I.getOperand(0);
477  Constant *COp = dyn_cast<Constant>(Operand);
478  if (!COp)
479    COp = SimplifiedValues.lookup(Operand);
480  if (COp)
481    if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
482                                               COp, TD)) {
483      SimplifiedValues[&I] = C;
484      return true;
485    }
486
487  // Disable any SROA on the argument to arbitrary unary operators.
488  disableSROA(Operand);
489
490  return false;
491}
492
493bool CallAnalyzer::visitCmpInst(CmpInst &I) {
494  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
495  // First try to handle simplified comparisons.
496  if (!isa<Constant>(LHS))
497    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
498      LHS = SimpleLHS;
499  if (!isa<Constant>(RHS))
500    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
501      RHS = SimpleRHS;
502  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
503    if (Constant *CRHS = dyn_cast<Constant>(RHS))
504      if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
505        SimplifiedValues[&I] = C;
506        return true;
507      }
508  }
509
510  if (I.getOpcode() == Instruction::FCmp)
511    return false;
512
513  // Otherwise look for a comparison between constant offset pointers with
514  // a common base.
515  Value *LHSBase, *RHSBase;
516  APInt LHSOffset, RHSOffset;
517  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
518  if (LHSBase) {
519    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
520    if (RHSBase && LHSBase == RHSBase) {
521      // We have common bases, fold the icmp to a constant based on the
522      // offsets.
523      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
524      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
525      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
526        SimplifiedValues[&I] = C;
527        ++NumConstantPtrCmps;
528        return true;
529      }
530    }
531  }
532
533  // If the comparison is an equality comparison with null, we can simplify it
534  // for any alloca-derived argument.
535  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
536    if (isAllocaDerivedArg(I.getOperand(0))) {
537      // We can actually predict the result of comparisons between an
538      // alloca-derived value and null. Note that this fires regardless of
539      // SROA firing.
540      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
541      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
542                                        : ConstantInt::getFalse(I.getType());
543      return true;
544    }
545
546  // Finally check for SROA candidates in comparisons.
547  Value *SROAArg;
548  DenseMap<Value *, int>::iterator CostIt;
549  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
550    if (isa<ConstantPointerNull>(I.getOperand(1))) {
551      accumulateSROACost(CostIt, InlineConstants::InstrCost);
552      return true;
553    }
554
555    disableSROA(CostIt);
556  }
557
558  return false;
559}
560
561bool CallAnalyzer::visitSub(BinaryOperator &I) {
562  // Try to handle a special case: we can fold computing the difference of two
563  // constant-related pointers.
564  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
565  Value *LHSBase, *RHSBase;
566  APInt LHSOffset, RHSOffset;
567  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
568  if (LHSBase) {
569    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
570    if (RHSBase && LHSBase == RHSBase) {
571      // We have common bases, fold the subtract to a constant based on the
572      // offsets.
573      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
574      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
575      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
576        SimplifiedValues[&I] = C;
577        ++NumConstantPtrDiffs;
578        return true;
579      }
580    }
581  }
582
583  // Otherwise, fall back to the generic logic for simplifying and handling
584  // instructions.
585  return Base::visitSub(I);
586}
587
588bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
589  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
590  if (!isa<Constant>(LHS))
591    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
592      LHS = SimpleLHS;
593  if (!isa<Constant>(RHS))
594    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
595      RHS = SimpleRHS;
596  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
597  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
598    SimplifiedValues[&I] = C;
599    return true;
600  }
601
602  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
603  disableSROA(LHS);
604  disableSROA(RHS);
605
606  return false;
607}
608
609bool CallAnalyzer::visitLoad(LoadInst &I) {
610  Value *SROAArg;
611  DenseMap<Value *, int>::iterator CostIt;
612  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
613    if (I.isSimple()) {
614      accumulateSROACost(CostIt, InlineConstants::InstrCost);
615      return true;
616    }
617
618    disableSROA(CostIt);
619  }
620
621  return false;
622}
623
624bool CallAnalyzer::visitStore(StoreInst &I) {
625  Value *SROAArg;
626  DenseMap<Value *, int>::iterator CostIt;
627  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
628    if (I.isSimple()) {
629      accumulateSROACost(CostIt, InlineConstants::InstrCost);
630      return true;
631    }
632
633    disableSROA(CostIt);
634  }
635
636  return false;
637}
638
639bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
640  // Constant folding for extract value is trivial.
641  Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
642  if (!C)
643    C = SimplifiedValues.lookup(I.getAggregateOperand());
644  if (C) {
645    SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
646    return true;
647  }
648
649  // SROA can look through these but give them a cost.
650  return false;
651}
652
653bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
654  // Constant folding for insert value is trivial.
655  Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
656  if (!AggC)
657    AggC = SimplifiedValues.lookup(I.getAggregateOperand());
658  Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
659  if (!InsertedC)
660    InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
661  if (AggC && InsertedC) {
662    SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
663                                                        I.getIndices());
664    return true;
665  }
666
667  // SROA can look through these but give them a cost.
668  return false;
669}
670
671/// \brief Try to simplify a call site.
672///
673/// Takes a concrete function and callsite and tries to actually simplify it by
674/// analyzing the arguments and call itself with instsimplify. Returns true if
675/// it has simplified the callsite to some other entity (a constant), making it
676/// free.
677bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
678  // FIXME: Using the instsimplify logic directly for this is inefficient
679  // because we have to continually rebuild the argument list even when no
680  // simplifications can be performed. Until that is fixed with remapping
681  // inside of instsimplify, directly constant fold calls here.
682  if (!canConstantFoldCallTo(F))
683    return false;
684
685  // Try to re-map the arguments to constants.
686  SmallVector<Constant *, 4> ConstantArgs;
687  ConstantArgs.reserve(CS.arg_size());
688  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
689       I != E; ++I) {
690    Constant *C = dyn_cast<Constant>(*I);
691    if (!C)
692      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
693    if (!C)
694      return false; // This argument doesn't map to a constant.
695
696    ConstantArgs.push_back(C);
697  }
698  if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
699    SimplifiedValues[CS.getInstruction()] = C;
700    return true;
701  }
702
703  return false;
704}
705
706bool CallAnalyzer::visitCallSite(CallSite CS) {
707  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
708      !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
709                                      Attribute::ReturnsTwice)) {
710    // This aborts the entire analysis.
711    ExposesReturnsTwice = true;
712    return false;
713  }
714  if (CS.isCall() &&
715      cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
716    ContainsNoDuplicateCall = true;
717
718  if (Function *F = CS.getCalledFunction()) {
719    // When we have a concrete function, first try to simplify it directly.
720    if (simplifyCallSite(F, CS))
721      return true;
722
723    // Next check if it is an intrinsic we know about.
724    // FIXME: Lift this into part of the InstVisitor.
725    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
726      switch (II->getIntrinsicID()) {
727      default:
728        return Base::visitCallSite(CS);
729
730      case Intrinsic::memset:
731      case Intrinsic::memcpy:
732      case Intrinsic::memmove:
733        // SROA can usually chew through these intrinsics, but they aren't free.
734        return false;
735      }
736    }
737
738    if (F == CS.getInstruction()->getParent()->getParent()) {
739      // This flag will fully abort the analysis, so don't bother with anything
740      // else.
741      IsRecursiveCall = true;
742      return false;
743    }
744
745    if (TTI.isLoweredToCall(F)) {
746      // We account for the average 1 instruction per call argument setup
747      // here.
748      Cost += CS.arg_size() * InlineConstants::InstrCost;
749
750      // Everything other than inline ASM will also have a significant cost
751      // merely from making the call.
752      if (!isa<InlineAsm>(CS.getCalledValue()))
753        Cost += InlineConstants::CallPenalty;
754    }
755
756    return Base::visitCallSite(CS);
757  }
758
759  // Otherwise we're in a very special case -- an indirect function call. See
760  // if we can be particularly clever about this.
761  Value *Callee = CS.getCalledValue();
762
763  // First, pay the price of the argument setup. We account for the average
764  // 1 instruction per call argument setup here.
765  Cost += CS.arg_size() * InlineConstants::InstrCost;
766
767  // Next, check if this happens to be an indirect function call to a known
768  // function in this inline context. If not, we've done all we can.
769  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
770  if (!F)
771    return Base::visitCallSite(CS);
772
773  // If we have a constant that we are calling as a function, we can peer
774  // through it and see the function target. This happens not infrequently
775  // during devirtualization and so we want to give it a hefty bonus for
776  // inlining, but cap that bonus in the event that inlining wouldn't pan
777  // out. Pretend to inline the function, with a custom threshold.
778  CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
779  if (CA.analyzeCall(CS)) {
780    // We were able to inline the indirect call! Subtract the cost from the
781    // bonus we want to apply, but don't go below zero.
782    Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
783  }
784
785  return Base::visitCallSite(CS);
786}
787
788bool CallAnalyzer::visitInstruction(Instruction &I) {
789  // Some instructions are free. All of the free intrinsics can also be
790  // handled by SROA, etc.
791  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
792    return true;
793
794  // We found something we don't understand or can't handle. Mark any SROA-able
795  // values in the operand list as no longer viable.
796  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
797    disableSROA(*OI);
798
799  return false;
800}
801
802
803/// \brief Analyze a basic block for its contribution to the inline cost.
804///
805/// This method walks the analyzer over every instruction in the given basic
806/// block and accounts for their cost during inlining at this callsite. It
807/// aborts early if the threshold has been exceeded or an impossible to inline
808/// construct has been detected. It returns false if inlining is no longer
809/// viable, and true if inlining remains viable.
810bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
811  for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
812       I != E; ++I) {
813    ++NumInstructions;
814    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
815      ++NumVectorInstructions;
816
817    // If the instruction simplified to a constant, there is no cost to this
818    // instruction. Visit the instructions using our InstVisitor to account for
819    // all of the per-instruction logic. The visit tree returns true if we
820    // consumed the instruction in any way, and false if the instruction's base
821    // cost should count against inlining.
822    if (Base::visit(I))
823      ++NumInstructionsSimplified;
824    else
825      Cost += InlineConstants::InstrCost;
826
827    // If the visit this instruction detected an uninlinable pattern, abort.
828    if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
829      return false;
830
831    // If the caller is a recursive function then we don't want to inline
832    // functions which allocate a lot of stack space because it would increase
833    // the caller stack usage dramatically.
834    if (IsCallerRecursive &&
835        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
836      return false;
837
838    if (NumVectorInstructions > NumInstructions/2)
839      VectorBonus = FiftyPercentVectorBonus;
840    else if (NumVectorInstructions > NumInstructions/10)
841      VectorBonus = TenPercentVectorBonus;
842    else
843      VectorBonus = 0;
844
845    // Check if we've past the threshold so we don't spin in huge basic
846    // blocks that will never inline.
847    if (Cost > (Threshold + VectorBonus))
848      return false;
849  }
850
851  return true;
852}
853
854/// \brief Compute the base pointer and cumulative constant offsets for V.
855///
856/// This strips all constant offsets off of V, leaving it the base pointer, and
857/// accumulates the total constant offset applied in the returned constant. It
858/// returns 0 if V is not a pointer, and returns the constant '0' if there are
859/// no constant offsets applied.
860ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
861  if (!TD || !V->getType()->isPointerTy())
862    return 0;
863
864  unsigned IntPtrWidth = TD->getPointerSizeInBits();
865  APInt Offset = APInt::getNullValue(IntPtrWidth);
866
867  // Even though we don't look through PHI nodes, we could be called on an
868  // instruction in an unreachable block, which may be on a cycle.
869  SmallPtrSet<Value *, 4> Visited;
870  Visited.insert(V);
871  do {
872    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
873      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
874        return 0;
875      V = GEP->getPointerOperand();
876    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
877      V = cast<Operator>(V)->getOperand(0);
878    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
879      if (GA->mayBeOverridden())
880        break;
881      V = GA->getAliasee();
882    } else {
883      break;
884    }
885    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
886  } while (Visited.insert(V));
887
888  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
889  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
890}
891
892/// \brief Analyze a call site for potential inlining.
893///
894/// Returns true if inlining this call is viable, and false if it is not
895/// viable. It computes the cost and adjusts the threshold based on numerous
896/// factors and heuristics. If this method returns false but the computed cost
897/// is below the computed threshold, then inlining was forcibly disabled by
898/// some artifact of the routine.
899bool CallAnalyzer::analyzeCall(CallSite CS) {
900  ++NumCallsAnalyzed;
901
902  // Track whether the post-inlining function would have more than one basic
903  // block. A single basic block is often intended for inlining. Balloon the
904  // threshold by 50% until we pass the single-BB phase.
905  bool SingleBB = true;
906  int SingleBBBonus = Threshold / 2;
907  Threshold += SingleBBBonus;
908
909  // Perform some tweaks to the cost and threshold based on the direct
910  // callsite information.
911
912  // We want to more aggressively inline vector-dense kernels, so up the
913  // threshold, and we'll lower it if the % of vector instructions gets too
914  // low.
915  assert(NumInstructions == 0);
916  assert(NumVectorInstructions == 0);
917  FiftyPercentVectorBonus = Threshold;
918  TenPercentVectorBonus = Threshold / 2;
919
920  // Give out bonuses per argument, as the instructions setting them up will
921  // be gone after inlining.
922  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
923    if (TD && CS.isByValArgument(I)) {
924      // We approximate the number of loads and stores needed by dividing the
925      // size of the byval type by the target's pointer size.
926      PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
927      unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
928      unsigned PointerSize = TD->getPointerSizeInBits();
929      // Ceiling division.
930      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
931
932      // If it generates more than 8 stores it is likely to be expanded as an
933      // inline memcpy so we take that as an upper bound. Otherwise we assume
934      // one load and one store per word copied.
935      // FIXME: The maxStoresPerMemcpy setting from the target should be used
936      // here instead of a magic number of 8, but it's not available via
937      // DataLayout.
938      NumStores = std::min(NumStores, 8U);
939
940      Cost -= 2 * NumStores * InlineConstants::InstrCost;
941    } else {
942      // For non-byval arguments subtract off one instruction per call
943      // argument.
944      Cost -= InlineConstants::InstrCost;
945    }
946  }
947
948  // If there is only one call of the function, and it has internal linkage,
949  // the cost of inlining it drops dramatically.
950  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
951    &F == CS.getCalledFunction();
952  if (OnlyOneCallAndLocalLinkage)
953    Cost += InlineConstants::LastCallToStaticBonus;
954
955  // If the instruction after the call, or if the normal destination of the
956  // invoke is an unreachable instruction, the function is noreturn. As such,
957  // there is little point in inlining this unless there is literally zero
958  // cost.
959  Instruction *Instr = CS.getInstruction();
960  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
961    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
962      Threshold = 1;
963  } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
964    Threshold = 1;
965
966  // If this function uses the coldcc calling convention, prefer not to inline
967  // it.
968  if (F.getCallingConv() == CallingConv::Cold)
969    Cost += InlineConstants::ColdccPenalty;
970
971  // Check if we're done. This can happen due to bonuses and penalties.
972  if (Cost > Threshold)
973    return false;
974
975  if (F.empty())
976    return true;
977
978  Function *Caller = CS.getInstruction()->getParent()->getParent();
979  // Check if the caller function is recursive itself.
980  for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
981       U != E; ++U) {
982    CallSite Site(cast<Value>(*U));
983    if (!Site)
984      continue;
985    Instruction *I = Site.getInstruction();
986    if (I->getParent()->getParent() == Caller) {
987      IsCallerRecursive = true;
988      break;
989    }
990  }
991
992  // Track whether we've seen a return instruction. The first return
993  // instruction is free, as at least one will usually disappear in inlining.
994  bool HasReturn = false;
995
996  // Populate our simplified values by mapping from function arguments to call
997  // arguments with known important simplifications.
998  CallSite::arg_iterator CAI = CS.arg_begin();
999  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1000       FAI != FAE; ++FAI, ++CAI) {
1001    assert(CAI != CS.arg_end());
1002    if (Constant *C = dyn_cast<Constant>(CAI))
1003      SimplifiedValues[FAI] = C;
1004
1005    Value *PtrArg = *CAI;
1006    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1007      ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
1008
1009      // We can SROA any pointer arguments derived from alloca instructions.
1010      if (isa<AllocaInst>(PtrArg)) {
1011        SROAArgValues[FAI] = PtrArg;
1012        SROAArgCosts[PtrArg] = 0;
1013      }
1014    }
1015  }
1016  NumConstantArgs = SimplifiedValues.size();
1017  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1018  NumAllocaArgs = SROAArgValues.size();
1019
1020  // The worklist of live basic blocks in the callee *after* inlining. We avoid
1021  // adding basic blocks of the callee which can be proven to be dead for this
1022  // particular call site in order to get more accurate cost estimates. This
1023  // requires a somewhat heavyweight iteration pattern: we need to walk the
1024  // basic blocks in a breadth-first order as we insert live successors. To
1025  // accomplish this, prioritizing for small iterations because we exit after
1026  // crossing our threshold, we use a small-size optimized SetVector.
1027  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1028                                  SmallPtrSet<BasicBlock *, 16> > BBSetVector;
1029  BBSetVector BBWorklist;
1030  BBWorklist.insert(&F.getEntryBlock());
1031  // Note that we *must not* cache the size, this loop grows the worklist.
1032  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1033    // Bail out the moment we cross the threshold. This means we'll under-count
1034    // the cost, but only when undercounting doesn't matter.
1035    if (Cost > (Threshold + VectorBonus))
1036      break;
1037
1038    BasicBlock *BB = BBWorklist[Idx];
1039    if (BB->empty())
1040      continue;
1041
1042    // Handle the terminator cost here where we can track returns and other
1043    // function-wide constructs.
1044    TerminatorInst *TI = BB->getTerminator();
1045
1046    // We never want to inline functions that contain an indirectbr.  This is
1047    // incorrect because all the blockaddress's (in static global initializers
1048    // for example) would be referring to the original function, and this
1049    // indirect jump would jump from the inlined copy of the function into the
1050    // original function which is extremely undefined behavior.
1051    // FIXME: This logic isn't really right; we can safely inline functions
1052    // with indirectbr's as long as no other function or global references the
1053    // blockaddress of a block within the current function.  And as a QOI issue,
1054    // if someone is using a blockaddress without an indirectbr, and that
1055    // reference somehow ends up in another function or global, we probably
1056    // don't want to inline this function.
1057    if (isa<IndirectBrInst>(TI))
1058      return false;
1059
1060    if (!HasReturn && isa<ReturnInst>(TI))
1061      HasReturn = true;
1062    else
1063      Cost += InlineConstants::InstrCost;
1064
1065    // Analyze the cost of this block. If we blow through the threshold, this
1066    // returns false, and we can bail on out.
1067    if (!analyzeBlock(BB)) {
1068      if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
1069        return false;
1070
1071      // If the caller is a recursive function then we don't want to inline
1072      // functions which allocate a lot of stack space because it would increase
1073      // the caller stack usage dramatically.
1074      if (IsCallerRecursive &&
1075          AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
1076        return false;
1077
1078      break;
1079    }
1080
1081    // Add in the live successors by first checking whether we have terminator
1082    // that may be simplified based on the values simplified by this call.
1083    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1084      if (BI->isConditional()) {
1085        Value *Cond = BI->getCondition();
1086        if (ConstantInt *SimpleCond
1087              = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1088          BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
1089          continue;
1090        }
1091      }
1092    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1093      Value *Cond = SI->getCondition();
1094      if (ConstantInt *SimpleCond
1095            = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1096        BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
1097        continue;
1098      }
1099    }
1100
1101    // If we're unable to select a particular successor, just count all of
1102    // them.
1103    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1104         ++TIdx)
1105      BBWorklist.insert(TI->getSuccessor(TIdx));
1106
1107    // If we had any successors at this point, than post-inlining is likely to
1108    // have them as well. Note that we assume any basic blocks which existed
1109    // due to branches or switches which folded above will also fold after
1110    // inlining.
1111    if (SingleBB && TI->getNumSuccessors() > 1) {
1112      // Take off the bonus we applied to the threshold.
1113      Threshold -= SingleBBBonus;
1114      SingleBB = false;
1115    }
1116  }
1117
1118  // If this is a noduplicate call, we can still inline as long as
1119  // inlining this would cause the removal of the caller (so the instruction
1120  // is not actually duplicated, just moved).
1121  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1122    return false;
1123
1124  Threshold += VectorBonus;
1125
1126  return Cost < Threshold;
1127}
1128
1129#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1130/// \brief Dump stats about this call's analysis.
1131void CallAnalyzer::dump() {
1132#define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
1133  DEBUG_PRINT_STAT(NumConstantArgs);
1134  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1135  DEBUG_PRINT_STAT(NumAllocaArgs);
1136  DEBUG_PRINT_STAT(NumConstantPtrCmps);
1137  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1138  DEBUG_PRINT_STAT(NumInstructionsSimplified);
1139  DEBUG_PRINT_STAT(SROACostSavings);
1140  DEBUG_PRINT_STAT(SROACostSavingsLost);
1141  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1142#undef DEBUG_PRINT_STAT
1143}
1144#endif
1145
1146INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1147                      true, true)
1148INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
1149INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1150                    true, true)
1151
1152char InlineCostAnalysis::ID = 0;
1153
1154InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
1155
1156InlineCostAnalysis::~InlineCostAnalysis() {}
1157
1158void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1159  AU.setPreservesAll();
1160  AU.addRequired<TargetTransformInfo>();
1161  CallGraphSCCPass::getAnalysisUsage(AU);
1162}
1163
1164bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
1165  TD = getAnalysisIfAvailable<DataLayout>();
1166  TTI = &getAnalysis<TargetTransformInfo>();
1167  return false;
1168}
1169
1170InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
1171  return getInlineCost(CS, CS.getCalledFunction(), Threshold);
1172}
1173
1174/// \brief Test that two functions either have or have not the given attribute
1175///        at the same time.
1176static bool attributeMatches(Function *F1, Function *F2,
1177                             Attribute::AttrKind Attr) {
1178  return F1->hasFnAttribute(Attr) == F2->hasFnAttribute(Attr);
1179}
1180
1181/// \brief Test that there are no attribute conflicts between Caller and Callee
1182///        that prevent inlining.
1183static bool functionsHaveCompatibleAttributes(Function *Caller,
1184                                              Function *Callee) {
1185  return attributeMatches(Caller, Callee, Attribute::SanitizeAddress) &&
1186         attributeMatches(Caller, Callee, Attribute::SanitizeMemory) &&
1187         attributeMatches(Caller, Callee, Attribute::SanitizeThread);
1188}
1189
1190InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
1191                                             int Threshold) {
1192  // Cannot inline indirect calls.
1193  if (!Callee)
1194    return llvm::InlineCost::getNever();
1195
1196  // Calls to functions with always-inline attributes should be inlined
1197  // whenever possible.
1198  if (Callee->hasFnAttribute(Attribute::AlwaysInline)) {
1199    if (isInlineViable(*Callee))
1200      return llvm::InlineCost::getAlways();
1201    return llvm::InlineCost::getNever();
1202  }
1203
1204  // Never inline functions with conflicting attributes (unless callee has
1205  // always-inline attribute).
1206  if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee))
1207    return llvm::InlineCost::getNever();
1208
1209  // Don't inline this call if the caller has the optnone attribute.
1210  if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone))
1211    return llvm::InlineCost::getNever();
1212
1213  // Don't inline functions which can be redefined at link-time to mean
1214  // something else.  Don't inline functions marked noinline or call sites
1215  // marked noinline.
1216  if (Callee->mayBeOverridden() ||
1217      Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline())
1218    return llvm::InlineCost::getNever();
1219
1220  DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
1221        << "...\n");
1222
1223  CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
1224  bool ShouldInline = CA.analyzeCall(CS);
1225
1226  DEBUG(CA.dump());
1227
1228  // Check if there was a reason to force inlining or no inlining.
1229  if (!ShouldInline && CA.getCost() < CA.getThreshold())
1230    return InlineCost::getNever();
1231  if (ShouldInline && CA.getCost() >= CA.getThreshold())
1232    return InlineCost::getAlways();
1233
1234  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
1235}
1236
1237bool InlineCostAnalysis::isInlineViable(Function &F) {
1238  bool ReturnsTwice =
1239    F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1240                                   Attribute::ReturnsTwice);
1241  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1242    // Disallow inlining of functions which contain an indirect branch.
1243    if (isa<IndirectBrInst>(BI->getTerminator()))
1244      return false;
1245
1246    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
1247         ++II) {
1248      CallSite CS(II);
1249      if (!CS)
1250        continue;
1251
1252      // Disallow recursive calls.
1253      if (&F == CS.getCalledFunction())
1254        return false;
1255
1256      // Disallow calls which expose returns-twice to a function not previously
1257      // attributed as such.
1258      if (!ReturnsTwice && CS.isCall() &&
1259          cast<CallInst>(CS.getInstruction())->canReturnTwice())
1260        return false;
1261    }
1262  }
1263
1264  return true;
1265}
1266