ScalarEvolution.cpp revision 081c34b725980f995be9080eaec24cd3dfaaf065
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
107                "Scalar Evolution Analysis", false, true)
108INITIALIZE_PASS_DEPENDENCY(LoopInfo)
109INITIALIZE_PASS_DEPENDENCY(DominatorTree)
110INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
111                "Scalar Evolution Analysis", false, true)
112char ScalarEvolution::ID = 0;
113
114//===----------------------------------------------------------------------===//
115//                           SCEV class definitions
116//===----------------------------------------------------------------------===//
117
118//===----------------------------------------------------------------------===//
119// Implementation of the SCEV class.
120//
121
122SCEV::~SCEV() {}
123
124void SCEV::dump() const {
125  print(dbgs());
126  dbgs() << '\n';
127}
128
129bool SCEV::isZero() const {
130  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131    return SC->getValue()->isZero();
132  return false;
133}
134
135bool SCEV::isOne() const {
136  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137    return SC->getValue()->isOne();
138  return false;
139}
140
141bool SCEV::isAllOnesValue() const {
142  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
143    return SC->getValue()->isAllOnesValue();
144  return false;
145}
146
147SCEVCouldNotCompute::SCEVCouldNotCompute() :
148  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
149
150bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
151  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
152  return false;
153}
154
155const Type *SCEVCouldNotCompute::getType() const {
156  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
157  return 0;
158}
159
160bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
161  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
162  return false;
163}
164
165bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
166  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
167  return false;
168}
169
170void SCEVCouldNotCompute::print(raw_ostream &OS) const {
171  OS << "***COULDNOTCOMPUTE***";
172}
173
174bool SCEVCouldNotCompute::classof(const SCEV *S) {
175  return S->getSCEVType() == scCouldNotCompute;
176}
177
178const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
179  FoldingSetNodeID ID;
180  ID.AddInteger(scConstant);
181  ID.AddPointer(V);
182  void *IP = 0;
183  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
184  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
185  UniqueSCEVs.InsertNode(S, IP);
186  return S;
187}
188
189const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
190  return getConstant(ConstantInt::get(getContext(), Val));
191}
192
193const SCEV *
194ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
195  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
196  return getConstant(ConstantInt::get(ITy, V, isSigned));
197}
198
199const Type *SCEVConstant::getType() const { return V->getType(); }
200
201void SCEVConstant::print(raw_ostream &OS) const {
202  WriteAsOperand(OS, V, false);
203}
204
205SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
206                           unsigned SCEVTy, const SCEV *op, const Type *ty)
207  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
208
209bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->dominates(BB, DT);
211}
212
213bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
214  return Op->properlyDominates(BB, DT);
215}
216
217SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
218                                   const SCEV *op, const Type *ty)
219  : SCEVCastExpr(ID, scTruncate, op, ty) {
220  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
221         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
222         "Cannot truncate non-integer value!");
223}
224
225void SCEVTruncateExpr::print(raw_ostream &OS) const {
226  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
227}
228
229SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
230                                       const SCEV *op, const Type *ty)
231  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
232  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
233         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
234         "Cannot zero extend non-integer value!");
235}
236
237void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
238  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
239}
240
241SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
242                                       const SCEV *op, const Type *ty)
243  : SCEVCastExpr(ID, scSignExtend, op, ty) {
244  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
245         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
246         "Cannot sign extend non-integer value!");
247}
248
249void SCEVSignExtendExpr::print(raw_ostream &OS) const {
250  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
251}
252
253void SCEVCommutativeExpr::print(raw_ostream &OS) const {
254  const char *OpStr = getOperationStr();
255  OS << "(";
256  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
257    OS << **I;
258    if (llvm::next(I) != E)
259      OS << OpStr;
260  }
261  OS << ")";
262}
263
264bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
265  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
266    if (!(*I)->dominates(BB, DT))
267      return false;
268  return true;
269}
270
271bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
272  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
273    if (!(*I)->properlyDominates(BB, DT))
274      return false;
275  return true;
276}
277
278bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
279  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
280    if (!(*I)->isLoopInvariant(L))
281      return false;
282  return true;
283}
284
285// hasComputableLoopEvolution - N-ary expressions have computable loop
286// evolutions iff they have at least one operand that varies with the loop,
287// but that all varying operands are computable.
288bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
289  bool HasVarying = false;
290  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
291    const SCEV *S = *I;
292    if (!S->isLoopInvariant(L)) {
293      if (S->hasComputableLoopEvolution(L))
294        HasVarying = true;
295      else
296        return false;
297    }
298  }
299  return HasVarying;
300}
301
302bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
303  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
304    const SCEV *S = *I;
305    if (O == S || S->hasOperand(O))
306      return true;
307  }
308  return false;
309}
310
311bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
312  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
313}
314
315bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
316  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
317}
318
319void SCEVUDivExpr::print(raw_ostream &OS) const {
320  OS << "(" << *LHS << " /u " << *RHS << ")";
321}
322
323const Type *SCEVUDivExpr::getType() const {
324  // In most cases the types of LHS and RHS will be the same, but in some
325  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
326  // depend on the type for correctness, but handling types carefully can
327  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
328  // a pointer type than the RHS, so use the RHS' type here.
329  return RHS->getType();
330}
331
332bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
333  // Add recurrences are never invariant in the function-body (null loop).
334  if (!QueryLoop)
335    return false;
336
337  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
338  if (QueryLoop->contains(L))
339    return false;
340
341  // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
342  if (L->contains(QueryLoop))
343    return true;
344
345  // This recurrence is variant w.r.t. QueryLoop if any of its operands
346  // are variant.
347  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
348    if (!(*I)->isLoopInvariant(QueryLoop))
349      return false;
350
351  // Otherwise it's loop-invariant.
352  return true;
353}
354
355bool
356SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
357  return DT->dominates(L->getHeader(), BB) &&
358         SCEVNAryExpr::dominates(BB, DT);
359}
360
361bool
362SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
363  // This uses a "dominates" query instead of "properly dominates" query because
364  // the instruction which produces the addrec's value is a PHI, and a PHI
365  // effectively properly dominates its entire containing block.
366  return DT->dominates(L->getHeader(), BB) &&
367         SCEVNAryExpr::properlyDominates(BB, DT);
368}
369
370void SCEVAddRecExpr::print(raw_ostream &OS) const {
371  OS << "{" << *Operands[0];
372  for (unsigned i = 1, e = NumOperands; i != e; ++i)
373    OS << ",+," << *Operands[i];
374  OS << "}<";
375  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
376  OS << ">";
377}
378
379void SCEVUnknown::deleted() {
380  // Clear this SCEVUnknown from ValuesAtScopes.
381  SE->ValuesAtScopes.erase(this);
382
383  // Remove this SCEVUnknown from the uniquing map.
384  SE->UniqueSCEVs.RemoveNode(this);
385
386  // Release the value.
387  setValPtr(0);
388}
389
390void SCEVUnknown::allUsesReplacedWith(Value *New) {
391  // Clear this SCEVUnknown from ValuesAtScopes.
392  SE->ValuesAtScopes.erase(this);
393
394  // Remove this SCEVUnknown from the uniquing map.
395  SE->UniqueSCEVs.RemoveNode(this);
396
397  // Update this SCEVUnknown to point to the new value. This is needed
398  // because there may still be outstanding SCEVs which still point to
399  // this SCEVUnknown.
400  setValPtr(New);
401}
402
403bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
404  // All non-instruction values are loop invariant.  All instructions are loop
405  // invariant if they are not contained in the specified loop.
406  // Instructions are never considered invariant in the function body
407  // (null loop) because they are defined within the "loop".
408  if (Instruction *I = dyn_cast<Instruction>(getValue()))
409    return L && !L->contains(I);
410  return true;
411}
412
413bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414  if (Instruction *I = dyn_cast<Instruction>(getValue()))
415    return DT->dominates(I->getParent(), BB);
416  return true;
417}
418
419bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
420  if (Instruction *I = dyn_cast<Instruction>(getValue()))
421    return DT->properlyDominates(I->getParent(), BB);
422  return true;
423}
424
425const Type *SCEVUnknown::getType() const {
426  return getValue()->getType();
427}
428
429bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
430  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
431    if (VCE->getOpcode() == Instruction::PtrToInt)
432      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433        if (CE->getOpcode() == Instruction::GetElementPtr &&
434            CE->getOperand(0)->isNullValue() &&
435            CE->getNumOperands() == 2)
436          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
437            if (CI->isOne()) {
438              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
439                                 ->getElementType();
440              return true;
441            }
442
443  return false;
444}
445
446bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
447  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
448    if (VCE->getOpcode() == Instruction::PtrToInt)
449      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
450        if (CE->getOpcode() == Instruction::GetElementPtr &&
451            CE->getOperand(0)->isNullValue()) {
452          const Type *Ty =
453            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
454          if (const StructType *STy = dyn_cast<StructType>(Ty))
455            if (!STy->isPacked() &&
456                CE->getNumOperands() == 3 &&
457                CE->getOperand(1)->isNullValue()) {
458              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
459                if (CI->isOne() &&
460                    STy->getNumElements() == 2 &&
461                    STy->getElementType(0)->isIntegerTy(1)) {
462                  AllocTy = STy->getElementType(1);
463                  return true;
464                }
465            }
466        }
467
468  return false;
469}
470
471bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
472  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
473    if (VCE->getOpcode() == Instruction::PtrToInt)
474      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
475        if (CE->getOpcode() == Instruction::GetElementPtr &&
476            CE->getNumOperands() == 3 &&
477            CE->getOperand(0)->isNullValue() &&
478            CE->getOperand(1)->isNullValue()) {
479          const Type *Ty =
480            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
481          // Ignore vector types here so that ScalarEvolutionExpander doesn't
482          // emit getelementptrs that index into vectors.
483          if (Ty->isStructTy() || Ty->isArrayTy()) {
484            CTy = Ty;
485            FieldNo = CE->getOperand(2);
486            return true;
487          }
488        }
489
490  return false;
491}
492
493void SCEVUnknown::print(raw_ostream &OS) const {
494  const Type *AllocTy;
495  if (isSizeOf(AllocTy)) {
496    OS << "sizeof(" << *AllocTy << ")";
497    return;
498  }
499  if (isAlignOf(AllocTy)) {
500    OS << "alignof(" << *AllocTy << ")";
501    return;
502  }
503
504  const Type *CTy;
505  Constant *FieldNo;
506  if (isOffsetOf(CTy, FieldNo)) {
507    OS << "offsetof(" << *CTy << ", ";
508    WriteAsOperand(OS, FieldNo, false);
509    OS << ")";
510    return;
511  }
512
513  // Otherwise just print it normally.
514  WriteAsOperand(OS, getValue(), false);
515}
516
517//===----------------------------------------------------------------------===//
518//                               SCEV Utilities
519//===----------------------------------------------------------------------===//
520
521namespace {
522  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
523  /// than the complexity of the RHS.  This comparator is used to canonicalize
524  /// expressions.
525  class SCEVComplexityCompare {
526    const LoopInfo *const LI;
527  public:
528    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
529
530    // Return true or false if LHS is less than, or at least RHS, respectively.
531    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
532      return compare(LHS, RHS) < 0;
533    }
534
535    // Return negative, zero, or positive, if LHS is less than, equal to, or
536    // greater than RHS, respectively. A three-way result allows recursive
537    // comparisons to be more efficient.
538    int compare(const SCEV *LHS, const SCEV *RHS) const {
539      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
540      if (LHS == RHS)
541        return 0;
542
543      // Primarily, sort the SCEVs by their getSCEVType().
544      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
545      if (LType != RType)
546        return (int)LType - (int)RType;
547
548      // Aside from the getSCEVType() ordering, the particular ordering
549      // isn't very important except that it's beneficial to be consistent,
550      // so that (a + b) and (b + a) don't end up as different expressions.
551      switch (LType) {
552      case scUnknown: {
553        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
554        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
555
556        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
557        // not as complete as it could be.
558        const Value *LV = LU->getValue(), *RV = RU->getValue();
559
560        // Order pointer values after integer values. This helps SCEVExpander
561        // form GEPs.
562        bool LIsPointer = LV->getType()->isPointerTy(),
563             RIsPointer = RV->getType()->isPointerTy();
564        if (LIsPointer != RIsPointer)
565          return (int)LIsPointer - (int)RIsPointer;
566
567        // Compare getValueID values.
568        unsigned LID = LV->getValueID(),
569                 RID = RV->getValueID();
570        if (LID != RID)
571          return (int)LID - (int)RID;
572
573        // Sort arguments by their position.
574        if (const Argument *LA = dyn_cast<Argument>(LV)) {
575          const Argument *RA = cast<Argument>(RV);
576          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
577          return (int)LArgNo - (int)RArgNo;
578        }
579
580        // For instructions, compare their loop depth, and their operand
581        // count.  This is pretty loose.
582        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
583          const Instruction *RInst = cast<Instruction>(RV);
584
585          // Compare loop depths.
586          const BasicBlock *LParent = LInst->getParent(),
587                           *RParent = RInst->getParent();
588          if (LParent != RParent) {
589            unsigned LDepth = LI->getLoopDepth(LParent),
590                     RDepth = LI->getLoopDepth(RParent);
591            if (LDepth != RDepth)
592              return (int)LDepth - (int)RDepth;
593          }
594
595          // Compare the number of operands.
596          unsigned LNumOps = LInst->getNumOperands(),
597                   RNumOps = RInst->getNumOperands();
598          return (int)LNumOps - (int)RNumOps;
599        }
600
601        return 0;
602      }
603
604      case scConstant: {
605        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
606        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
607
608        // Compare constant values.
609        const APInt &LA = LC->getValue()->getValue();
610        const APInt &RA = RC->getValue()->getValue();
611        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
612        if (LBitWidth != RBitWidth)
613          return (int)LBitWidth - (int)RBitWidth;
614        return LA.ult(RA) ? -1 : 1;
615      }
616
617      case scAddRecExpr: {
618        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
619        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
620
621        // Compare addrec loop depths.
622        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
623        if (LLoop != RLoop) {
624          unsigned LDepth = LLoop->getLoopDepth(),
625                   RDepth = RLoop->getLoopDepth();
626          if (LDepth != RDepth)
627            return (int)LDepth - (int)RDepth;
628        }
629
630        // Addrec complexity grows with operand count.
631        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
632        if (LNumOps != RNumOps)
633          return (int)LNumOps - (int)RNumOps;
634
635        // Lexicographically compare.
636        for (unsigned i = 0; i != LNumOps; ++i) {
637          long X = compare(LA->getOperand(i), RA->getOperand(i));
638          if (X != 0)
639            return X;
640        }
641
642        return 0;
643      }
644
645      case scAddExpr:
646      case scMulExpr:
647      case scSMaxExpr:
648      case scUMaxExpr: {
649        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
650        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
651
652        // Lexicographically compare n-ary expressions.
653        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
654        for (unsigned i = 0; i != LNumOps; ++i) {
655          if (i >= RNumOps)
656            return 1;
657          long X = compare(LC->getOperand(i), RC->getOperand(i));
658          if (X != 0)
659            return X;
660        }
661        return (int)LNumOps - (int)RNumOps;
662      }
663
664      case scUDivExpr: {
665        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
666        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
667
668        // Lexicographically compare udiv expressions.
669        long X = compare(LC->getLHS(), RC->getLHS());
670        if (X != 0)
671          return X;
672        return compare(LC->getRHS(), RC->getRHS());
673      }
674
675      case scTruncate:
676      case scZeroExtend:
677      case scSignExtend: {
678        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
679        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
680
681        // Compare cast expressions by operand.
682        return compare(LC->getOperand(), RC->getOperand());
683      }
684
685      default:
686        break;
687      }
688
689      llvm_unreachable("Unknown SCEV kind!");
690      return 0;
691    }
692  };
693}
694
695/// GroupByComplexity - Given a list of SCEV objects, order them by their
696/// complexity, and group objects of the same complexity together by value.
697/// When this routine is finished, we know that any duplicates in the vector are
698/// consecutive and that complexity is monotonically increasing.
699///
700/// Note that we go take special precautions to ensure that we get deterministic
701/// results from this routine.  In other words, we don't want the results of
702/// this to depend on where the addresses of various SCEV objects happened to
703/// land in memory.
704///
705static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
706                              LoopInfo *LI) {
707  if (Ops.size() < 2) return;  // Noop
708  if (Ops.size() == 2) {
709    // This is the common case, which also happens to be trivially simple.
710    // Special case it.
711    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
712    if (SCEVComplexityCompare(LI)(RHS, LHS))
713      std::swap(LHS, RHS);
714    return;
715  }
716
717  // Do the rough sort by complexity.
718  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
719
720  // Now that we are sorted by complexity, group elements of the same
721  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
722  // be extremely short in practice.  Note that we take this approach because we
723  // do not want to depend on the addresses of the objects we are grouping.
724  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
725    const SCEV *S = Ops[i];
726    unsigned Complexity = S->getSCEVType();
727
728    // If there are any objects of the same complexity and same value as this
729    // one, group them.
730    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
731      if (Ops[j] == S) { // Found a duplicate.
732        // Move it to immediately after i'th element.
733        std::swap(Ops[i+1], Ops[j]);
734        ++i;   // no need to rescan it.
735        if (i == e-2) return;  // Done!
736      }
737    }
738  }
739}
740
741
742
743//===----------------------------------------------------------------------===//
744//                      Simple SCEV method implementations
745//===----------------------------------------------------------------------===//
746
747/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
748/// Assume, K > 0.
749static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
750                                       ScalarEvolution &SE,
751                                       const Type* ResultTy) {
752  // Handle the simplest case efficiently.
753  if (K == 1)
754    return SE.getTruncateOrZeroExtend(It, ResultTy);
755
756  // We are using the following formula for BC(It, K):
757  //
758  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
759  //
760  // Suppose, W is the bitwidth of the return value.  We must be prepared for
761  // overflow.  Hence, we must assure that the result of our computation is
762  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
763  // safe in modular arithmetic.
764  //
765  // However, this code doesn't use exactly that formula; the formula it uses
766  // is something like the following, where T is the number of factors of 2 in
767  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
768  // exponentiation:
769  //
770  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
771  //
772  // This formula is trivially equivalent to the previous formula.  However,
773  // this formula can be implemented much more efficiently.  The trick is that
774  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
775  // arithmetic.  To do exact division in modular arithmetic, all we have
776  // to do is multiply by the inverse.  Therefore, this step can be done at
777  // width W.
778  //
779  // The next issue is how to safely do the division by 2^T.  The way this
780  // is done is by doing the multiplication step at a width of at least W + T
781  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
782  // when we perform the division by 2^T (which is equivalent to a right shift
783  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
784  // truncated out after the division by 2^T.
785  //
786  // In comparison to just directly using the first formula, this technique
787  // is much more efficient; using the first formula requires W * K bits,
788  // but this formula less than W + K bits. Also, the first formula requires
789  // a division step, whereas this formula only requires multiplies and shifts.
790  //
791  // It doesn't matter whether the subtraction step is done in the calculation
792  // width or the input iteration count's width; if the subtraction overflows,
793  // the result must be zero anyway.  We prefer here to do it in the width of
794  // the induction variable because it helps a lot for certain cases; CodeGen
795  // isn't smart enough to ignore the overflow, which leads to much less
796  // efficient code if the width of the subtraction is wider than the native
797  // register width.
798  //
799  // (It's possible to not widen at all by pulling out factors of 2 before
800  // the multiplication; for example, K=2 can be calculated as
801  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
802  // extra arithmetic, so it's not an obvious win, and it gets
803  // much more complicated for K > 3.)
804
805  // Protection from insane SCEVs; this bound is conservative,
806  // but it probably doesn't matter.
807  if (K > 1000)
808    return SE.getCouldNotCompute();
809
810  unsigned W = SE.getTypeSizeInBits(ResultTy);
811
812  // Calculate K! / 2^T and T; we divide out the factors of two before
813  // multiplying for calculating K! / 2^T to avoid overflow.
814  // Other overflow doesn't matter because we only care about the bottom
815  // W bits of the result.
816  APInt OddFactorial(W, 1);
817  unsigned T = 1;
818  for (unsigned i = 3; i <= K; ++i) {
819    APInt Mult(W, i);
820    unsigned TwoFactors = Mult.countTrailingZeros();
821    T += TwoFactors;
822    Mult = Mult.lshr(TwoFactors);
823    OddFactorial *= Mult;
824  }
825
826  // We need at least W + T bits for the multiplication step
827  unsigned CalculationBits = W + T;
828
829  // Calculate 2^T, at width T+W.
830  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
831
832  // Calculate the multiplicative inverse of K! / 2^T;
833  // this multiplication factor will perform the exact division by
834  // K! / 2^T.
835  APInt Mod = APInt::getSignedMinValue(W+1);
836  APInt MultiplyFactor = OddFactorial.zext(W+1);
837  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
838  MultiplyFactor = MultiplyFactor.trunc(W);
839
840  // Calculate the product, at width T+W
841  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
842                                                      CalculationBits);
843  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
844  for (unsigned i = 1; i != K; ++i) {
845    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
846    Dividend = SE.getMulExpr(Dividend,
847                             SE.getTruncateOrZeroExtend(S, CalculationTy));
848  }
849
850  // Divide by 2^T
851  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
852
853  // Truncate the result, and divide by K! / 2^T.
854
855  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
856                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
857}
858
859/// evaluateAtIteration - Return the value of this chain of recurrences at
860/// the specified iteration number.  We can evaluate this recurrence by
861/// multiplying each element in the chain by the binomial coefficient
862/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
863///
864///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
865///
866/// where BC(It, k) stands for binomial coefficient.
867///
868const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
869                                                ScalarEvolution &SE) const {
870  const SCEV *Result = getStart();
871  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
872    // The computation is correct in the face of overflow provided that the
873    // multiplication is performed _after_ the evaluation of the binomial
874    // coefficient.
875    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
876    if (isa<SCEVCouldNotCompute>(Coeff))
877      return Coeff;
878
879    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
880  }
881  return Result;
882}
883
884//===----------------------------------------------------------------------===//
885//                    SCEV Expression folder implementations
886//===----------------------------------------------------------------------===//
887
888const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
889                                             const Type *Ty) {
890  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
891         "This is not a truncating conversion!");
892  assert(isSCEVable(Ty) &&
893         "This is not a conversion to a SCEVable type!");
894  Ty = getEffectiveSCEVType(Ty);
895
896  FoldingSetNodeID ID;
897  ID.AddInteger(scTruncate);
898  ID.AddPointer(Op);
899  ID.AddPointer(Ty);
900  void *IP = 0;
901  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
902
903  // Fold if the operand is constant.
904  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
905    return getConstant(
906      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
907                                               getEffectiveSCEVType(Ty))));
908
909  // trunc(trunc(x)) --> trunc(x)
910  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
911    return getTruncateExpr(ST->getOperand(), Ty);
912
913  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
914  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
915    return getTruncateOrSignExtend(SS->getOperand(), Ty);
916
917  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
918  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
919    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
920
921  // If the input value is a chrec scev, truncate the chrec's operands.
922  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
923    SmallVector<const SCEV *, 4> Operands;
924    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
925      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
926    return getAddRecExpr(Operands, AddRec->getLoop());
927  }
928
929  // As a special case, fold trunc(undef) to undef. We don't want to
930  // know too much about SCEVUnknowns, but this special case is handy
931  // and harmless.
932  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
933    if (isa<UndefValue>(U->getValue()))
934      return getSCEV(UndefValue::get(Ty));
935
936  // The cast wasn't folded; create an explicit cast node. We can reuse
937  // the existing insert position since if we get here, we won't have
938  // made any changes which would invalidate it.
939  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
940                                                 Op, Ty);
941  UniqueSCEVs.InsertNode(S, IP);
942  return S;
943}
944
945const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
946                                               const Type *Ty) {
947  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
948         "This is not an extending conversion!");
949  assert(isSCEVable(Ty) &&
950         "This is not a conversion to a SCEVable type!");
951  Ty = getEffectiveSCEVType(Ty);
952
953  // Fold if the operand is constant.
954  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
955    return getConstant(
956      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
957                                              getEffectiveSCEVType(Ty))));
958
959  // zext(zext(x)) --> zext(x)
960  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
961    return getZeroExtendExpr(SZ->getOperand(), Ty);
962
963  // Before doing any expensive analysis, check to see if we've already
964  // computed a SCEV for this Op and Ty.
965  FoldingSetNodeID ID;
966  ID.AddInteger(scZeroExtend);
967  ID.AddPointer(Op);
968  ID.AddPointer(Ty);
969  void *IP = 0;
970  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
971
972  // If the input value is a chrec scev, and we can prove that the value
973  // did not overflow the old, smaller, value, we can zero extend all of the
974  // operands (often constants).  This allows analysis of something like
975  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
976  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
977    if (AR->isAffine()) {
978      const SCEV *Start = AR->getStart();
979      const SCEV *Step = AR->getStepRecurrence(*this);
980      unsigned BitWidth = getTypeSizeInBits(AR->getType());
981      const Loop *L = AR->getLoop();
982
983      // If we have special knowledge that this addrec won't overflow,
984      // we don't need to do any further analysis.
985      if (AR->hasNoUnsignedWrap())
986        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987                             getZeroExtendExpr(Step, Ty),
988                             L);
989
990      // Check whether the backedge-taken count is SCEVCouldNotCompute.
991      // Note that this serves two purposes: It filters out loops that are
992      // simply not analyzable, and it covers the case where this code is
993      // being called from within backedge-taken count analysis, such that
994      // attempting to ask for the backedge-taken count would likely result
995      // in infinite recursion. In the later case, the analysis code will
996      // cope with a conservative value, and it will take care to purge
997      // that value once it has finished.
998      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
999      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1000        // Manually compute the final value for AR, checking for
1001        // overflow.
1002
1003        // Check whether the backedge-taken count can be losslessly casted to
1004        // the addrec's type. The count is always unsigned.
1005        const SCEV *CastedMaxBECount =
1006          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1007        const SCEV *RecastedMaxBECount =
1008          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1009        if (MaxBECount == RecastedMaxBECount) {
1010          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1011          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1012          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1013          const SCEV *Add = getAddExpr(Start, ZMul);
1014          const SCEV *OperandExtendedAdd =
1015            getAddExpr(getZeroExtendExpr(Start, WideTy),
1016                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1017                                  getZeroExtendExpr(Step, WideTy)));
1018          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1019            // Return the expression with the addrec on the outside.
1020            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1021                                 getZeroExtendExpr(Step, Ty),
1022                                 L);
1023
1024          // Similar to above, only this time treat the step value as signed.
1025          // This covers loops that count down.
1026          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1027          Add = getAddExpr(Start, SMul);
1028          OperandExtendedAdd =
1029            getAddExpr(getZeroExtendExpr(Start, WideTy),
1030                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1031                                  getSignExtendExpr(Step, WideTy)));
1032          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1033            // Return the expression with the addrec on the outside.
1034            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1035                                 getSignExtendExpr(Step, Ty),
1036                                 L);
1037        }
1038
1039        // If the backedge is guarded by a comparison with the pre-inc value
1040        // the addrec is safe. Also, if the entry is guarded by a comparison
1041        // with the start value and the backedge is guarded by a comparison
1042        // with the post-inc value, the addrec is safe.
1043        if (isKnownPositive(Step)) {
1044          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1045                                      getUnsignedRange(Step).getUnsignedMax());
1046          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1047              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1048               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1049                                           AR->getPostIncExpr(*this), N)))
1050            // Return the expression with the addrec on the outside.
1051            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1052                                 getZeroExtendExpr(Step, Ty),
1053                                 L);
1054        } else if (isKnownNegative(Step)) {
1055          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1056                                      getSignedRange(Step).getSignedMin());
1057          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1058              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1059               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1060                                           AR->getPostIncExpr(*this), N)))
1061            // Return the expression with the addrec on the outside.
1062            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1063                                 getSignExtendExpr(Step, Ty),
1064                                 L);
1065        }
1066      }
1067    }
1068
1069  // The cast wasn't folded; create an explicit cast node.
1070  // Recompute the insert position, as it may have been invalidated.
1071  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1072  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1073                                                   Op, Ty);
1074  UniqueSCEVs.InsertNode(S, IP);
1075  return S;
1076}
1077
1078const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1079                                               const Type *Ty) {
1080  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1081         "This is not an extending conversion!");
1082  assert(isSCEVable(Ty) &&
1083         "This is not a conversion to a SCEVable type!");
1084  Ty = getEffectiveSCEVType(Ty);
1085
1086  // Fold if the operand is constant.
1087  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1088    return getConstant(
1089      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1090                                              getEffectiveSCEVType(Ty))));
1091
1092  // sext(sext(x)) --> sext(x)
1093  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1094    return getSignExtendExpr(SS->getOperand(), Ty);
1095
1096  // Before doing any expensive analysis, check to see if we've already
1097  // computed a SCEV for this Op and Ty.
1098  FoldingSetNodeID ID;
1099  ID.AddInteger(scSignExtend);
1100  ID.AddPointer(Op);
1101  ID.AddPointer(Ty);
1102  void *IP = 0;
1103  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1104
1105  // If the input value is a chrec scev, and we can prove that the value
1106  // did not overflow the old, smaller, value, we can sign extend all of the
1107  // operands (often constants).  This allows analysis of something like
1108  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1109  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1110    if (AR->isAffine()) {
1111      const SCEV *Start = AR->getStart();
1112      const SCEV *Step = AR->getStepRecurrence(*this);
1113      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1114      const Loop *L = AR->getLoop();
1115
1116      // If we have special knowledge that this addrec won't overflow,
1117      // we don't need to do any further analysis.
1118      if (AR->hasNoSignedWrap())
1119        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1120                             getSignExtendExpr(Step, Ty),
1121                             L);
1122
1123      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1124      // Note that this serves two purposes: It filters out loops that are
1125      // simply not analyzable, and it covers the case where this code is
1126      // being called from within backedge-taken count analysis, such that
1127      // attempting to ask for the backedge-taken count would likely result
1128      // in infinite recursion. In the later case, the analysis code will
1129      // cope with a conservative value, and it will take care to purge
1130      // that value once it has finished.
1131      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1132      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1133        // Manually compute the final value for AR, checking for
1134        // overflow.
1135
1136        // Check whether the backedge-taken count can be losslessly casted to
1137        // the addrec's type. The count is always unsigned.
1138        const SCEV *CastedMaxBECount =
1139          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1140        const SCEV *RecastedMaxBECount =
1141          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1142        if (MaxBECount == RecastedMaxBECount) {
1143          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1144          // Check whether Start+Step*MaxBECount has no signed overflow.
1145          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1146          const SCEV *Add = getAddExpr(Start, SMul);
1147          const SCEV *OperandExtendedAdd =
1148            getAddExpr(getSignExtendExpr(Start, WideTy),
1149                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1150                                  getSignExtendExpr(Step, WideTy)));
1151          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1152            // Return the expression with the addrec on the outside.
1153            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1154                                 getSignExtendExpr(Step, Ty),
1155                                 L);
1156
1157          // Similar to above, only this time treat the step value as unsigned.
1158          // This covers loops that count up with an unsigned step.
1159          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1160          Add = getAddExpr(Start, UMul);
1161          OperandExtendedAdd =
1162            getAddExpr(getSignExtendExpr(Start, WideTy),
1163                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1164                                  getZeroExtendExpr(Step, WideTy)));
1165          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1166            // Return the expression with the addrec on the outside.
1167            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1168                                 getZeroExtendExpr(Step, Ty),
1169                                 L);
1170        }
1171
1172        // If the backedge is guarded by a comparison with the pre-inc value
1173        // the addrec is safe. Also, if the entry is guarded by a comparison
1174        // with the start value and the backedge is guarded by a comparison
1175        // with the post-inc value, the addrec is safe.
1176        if (isKnownPositive(Step)) {
1177          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1178                                      getSignedRange(Step).getSignedMax());
1179          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1180              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1181               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1182                                           AR->getPostIncExpr(*this), N)))
1183            // Return the expression with the addrec on the outside.
1184            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1185                                 getSignExtendExpr(Step, Ty),
1186                                 L);
1187        } else if (isKnownNegative(Step)) {
1188          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1189                                      getSignedRange(Step).getSignedMin());
1190          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1191              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1192               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1193                                           AR->getPostIncExpr(*this), N)))
1194            // Return the expression with the addrec on the outside.
1195            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1196                                 getSignExtendExpr(Step, Ty),
1197                                 L);
1198        }
1199      }
1200    }
1201
1202  // The cast wasn't folded; create an explicit cast node.
1203  // Recompute the insert position, as it may have been invalidated.
1204  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1205  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1206                                                   Op, Ty);
1207  UniqueSCEVs.InsertNode(S, IP);
1208  return S;
1209}
1210
1211/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1212/// unspecified bits out to the given type.
1213///
1214const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1215                                              const Type *Ty) {
1216  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1217         "This is not an extending conversion!");
1218  assert(isSCEVable(Ty) &&
1219         "This is not a conversion to a SCEVable type!");
1220  Ty = getEffectiveSCEVType(Ty);
1221
1222  // Sign-extend negative constants.
1223  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1224    if (SC->getValue()->getValue().isNegative())
1225      return getSignExtendExpr(Op, Ty);
1226
1227  // Peel off a truncate cast.
1228  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1229    const SCEV *NewOp = T->getOperand();
1230    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1231      return getAnyExtendExpr(NewOp, Ty);
1232    return getTruncateOrNoop(NewOp, Ty);
1233  }
1234
1235  // Next try a zext cast. If the cast is folded, use it.
1236  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1237  if (!isa<SCEVZeroExtendExpr>(ZExt))
1238    return ZExt;
1239
1240  // Next try a sext cast. If the cast is folded, use it.
1241  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1242  if (!isa<SCEVSignExtendExpr>(SExt))
1243    return SExt;
1244
1245  // Force the cast to be folded into the operands of an addrec.
1246  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1247    SmallVector<const SCEV *, 4> Ops;
1248    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1249         I != E; ++I)
1250      Ops.push_back(getAnyExtendExpr(*I, Ty));
1251    return getAddRecExpr(Ops, AR->getLoop());
1252  }
1253
1254  // As a special case, fold anyext(undef) to undef. We don't want to
1255  // know too much about SCEVUnknowns, but this special case is handy
1256  // and harmless.
1257  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1258    if (isa<UndefValue>(U->getValue()))
1259      return getSCEV(UndefValue::get(Ty));
1260
1261  // If the expression is obviously signed, use the sext cast value.
1262  if (isa<SCEVSMaxExpr>(Op))
1263    return SExt;
1264
1265  // Absent any other information, use the zext cast value.
1266  return ZExt;
1267}
1268
1269/// CollectAddOperandsWithScales - Process the given Ops list, which is
1270/// a list of operands to be added under the given scale, update the given
1271/// map. This is a helper function for getAddRecExpr. As an example of
1272/// what it does, given a sequence of operands that would form an add
1273/// expression like this:
1274///
1275///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1276///
1277/// where A and B are constants, update the map with these values:
1278///
1279///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1280///
1281/// and add 13 + A*B*29 to AccumulatedConstant.
1282/// This will allow getAddRecExpr to produce this:
1283///
1284///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1285///
1286/// This form often exposes folding opportunities that are hidden in
1287/// the original operand list.
1288///
1289/// Return true iff it appears that any interesting folding opportunities
1290/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1291/// the common case where no interesting opportunities are present, and
1292/// is also used as a check to avoid infinite recursion.
1293///
1294static bool
1295CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1296                             SmallVector<const SCEV *, 8> &NewOps,
1297                             APInt &AccumulatedConstant,
1298                             const SCEV *const *Ops, size_t NumOperands,
1299                             const APInt &Scale,
1300                             ScalarEvolution &SE) {
1301  bool Interesting = false;
1302
1303  // Iterate over the add operands. They are sorted, with constants first.
1304  unsigned i = 0;
1305  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1306    ++i;
1307    // Pull a buried constant out to the outside.
1308    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1309      Interesting = true;
1310    AccumulatedConstant += Scale * C->getValue()->getValue();
1311  }
1312
1313  // Next comes everything else. We're especially interested in multiplies
1314  // here, but they're in the middle, so just visit the rest with one loop.
1315  for (; i != NumOperands; ++i) {
1316    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1317    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1318      APInt NewScale =
1319        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1320      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1321        // A multiplication of a constant with another add; recurse.
1322        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1323        Interesting |=
1324          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1325                                       Add->op_begin(), Add->getNumOperands(),
1326                                       NewScale, SE);
1327      } else {
1328        // A multiplication of a constant with some other value. Update
1329        // the map.
1330        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1331        const SCEV *Key = SE.getMulExpr(MulOps);
1332        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1333          M.insert(std::make_pair(Key, NewScale));
1334        if (Pair.second) {
1335          NewOps.push_back(Pair.first->first);
1336        } else {
1337          Pair.first->second += NewScale;
1338          // The map already had an entry for this value, which may indicate
1339          // a folding opportunity.
1340          Interesting = true;
1341        }
1342      }
1343    } else {
1344      // An ordinary operand. Update the map.
1345      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1346        M.insert(std::make_pair(Ops[i], Scale));
1347      if (Pair.second) {
1348        NewOps.push_back(Pair.first->first);
1349      } else {
1350        Pair.first->second += Scale;
1351        // The map already had an entry for this value, which may indicate
1352        // a folding opportunity.
1353        Interesting = true;
1354      }
1355    }
1356  }
1357
1358  return Interesting;
1359}
1360
1361namespace {
1362  struct APIntCompare {
1363    bool operator()(const APInt &LHS, const APInt &RHS) const {
1364      return LHS.ult(RHS);
1365    }
1366  };
1367}
1368
1369/// getAddExpr - Get a canonical add expression, or something simpler if
1370/// possible.
1371const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1372                                        bool HasNUW, bool HasNSW) {
1373  assert(!Ops.empty() && "Cannot get empty add!");
1374  if (Ops.size() == 1) return Ops[0];
1375#ifndef NDEBUG
1376  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1377  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1378    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1379           "SCEVAddExpr operand types don't match!");
1380#endif
1381
1382  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1383  if (!HasNUW && HasNSW) {
1384    bool All = true;
1385    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1386         E = Ops.end(); I != E; ++I)
1387      if (!isKnownNonNegative(*I)) {
1388        All = false;
1389        break;
1390      }
1391    if (All) HasNUW = true;
1392  }
1393
1394  // Sort by complexity, this groups all similar expression types together.
1395  GroupByComplexity(Ops, LI);
1396
1397  // If there are any constants, fold them together.
1398  unsigned Idx = 0;
1399  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1400    ++Idx;
1401    assert(Idx < Ops.size());
1402    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1403      // We found two constants, fold them together!
1404      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1405                           RHSC->getValue()->getValue());
1406      if (Ops.size() == 2) return Ops[0];
1407      Ops.erase(Ops.begin()+1);  // Erase the folded element
1408      LHSC = cast<SCEVConstant>(Ops[0]);
1409    }
1410
1411    // If we are left with a constant zero being added, strip it off.
1412    if (LHSC->getValue()->isZero()) {
1413      Ops.erase(Ops.begin());
1414      --Idx;
1415    }
1416
1417    if (Ops.size() == 1) return Ops[0];
1418  }
1419
1420  // Okay, check to see if the same value occurs in the operand list more than
1421  // once.  If so, merge them together into an multiply expression.  Since we
1422  // sorted the list, these values are required to be adjacent.
1423  const Type *Ty = Ops[0]->getType();
1424  bool FoundMatch = false;
1425  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1426    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1427      // Scan ahead to count how many equal operands there are.
1428      unsigned Count = 2;
1429      while (i+Count != e && Ops[i+Count] == Ops[i])
1430        ++Count;
1431      // Merge the values into a multiply.
1432      const SCEV *Scale = getConstant(Ty, Count);
1433      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1434      if (Ops.size() == Count)
1435        return Mul;
1436      Ops[i] = Mul;
1437      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1438      --i; e -= Count - 1;
1439      FoundMatch = true;
1440    }
1441  if (FoundMatch)
1442    return getAddExpr(Ops, HasNUW, HasNSW);
1443
1444  // Check for truncates. If all the operands are truncated from the same
1445  // type, see if factoring out the truncate would permit the result to be
1446  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1447  // if the contents of the resulting outer trunc fold to something simple.
1448  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1449    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1450    const Type *DstType = Trunc->getType();
1451    const Type *SrcType = Trunc->getOperand()->getType();
1452    SmallVector<const SCEV *, 8> LargeOps;
1453    bool Ok = true;
1454    // Check all the operands to see if they can be represented in the
1455    // source type of the truncate.
1456    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1457      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1458        if (T->getOperand()->getType() != SrcType) {
1459          Ok = false;
1460          break;
1461        }
1462        LargeOps.push_back(T->getOperand());
1463      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1464        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1465      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1466        SmallVector<const SCEV *, 8> LargeMulOps;
1467        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1468          if (const SCEVTruncateExpr *T =
1469                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1470            if (T->getOperand()->getType() != SrcType) {
1471              Ok = false;
1472              break;
1473            }
1474            LargeMulOps.push_back(T->getOperand());
1475          } else if (const SCEVConstant *C =
1476                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1477            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1478          } else {
1479            Ok = false;
1480            break;
1481          }
1482        }
1483        if (Ok)
1484          LargeOps.push_back(getMulExpr(LargeMulOps));
1485      } else {
1486        Ok = false;
1487        break;
1488      }
1489    }
1490    if (Ok) {
1491      // Evaluate the expression in the larger type.
1492      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1493      // If it folds to something simple, use it. Otherwise, don't.
1494      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1495        return getTruncateExpr(Fold, DstType);
1496    }
1497  }
1498
1499  // Skip past any other cast SCEVs.
1500  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1501    ++Idx;
1502
1503  // If there are add operands they would be next.
1504  if (Idx < Ops.size()) {
1505    bool DeletedAdd = false;
1506    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1507      // If we have an add, expand the add operands onto the end of the operands
1508      // list.
1509      Ops.erase(Ops.begin()+Idx);
1510      Ops.append(Add->op_begin(), Add->op_end());
1511      DeletedAdd = true;
1512    }
1513
1514    // If we deleted at least one add, we added operands to the end of the list,
1515    // and they are not necessarily sorted.  Recurse to resort and resimplify
1516    // any operands we just acquired.
1517    if (DeletedAdd)
1518      return getAddExpr(Ops);
1519  }
1520
1521  // Skip over the add expression until we get to a multiply.
1522  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1523    ++Idx;
1524
1525  // Check to see if there are any folding opportunities present with
1526  // operands multiplied by constant values.
1527  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1528    uint64_t BitWidth = getTypeSizeInBits(Ty);
1529    DenseMap<const SCEV *, APInt> M;
1530    SmallVector<const SCEV *, 8> NewOps;
1531    APInt AccumulatedConstant(BitWidth, 0);
1532    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1533                                     Ops.data(), Ops.size(),
1534                                     APInt(BitWidth, 1), *this)) {
1535      // Some interesting folding opportunity is present, so its worthwhile to
1536      // re-generate the operands list. Group the operands by constant scale,
1537      // to avoid multiplying by the same constant scale multiple times.
1538      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1539      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1540           E = NewOps.end(); I != E; ++I)
1541        MulOpLists[M.find(*I)->second].push_back(*I);
1542      // Re-generate the operands list.
1543      Ops.clear();
1544      if (AccumulatedConstant != 0)
1545        Ops.push_back(getConstant(AccumulatedConstant));
1546      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1547           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1548        if (I->first != 0)
1549          Ops.push_back(getMulExpr(getConstant(I->first),
1550                                   getAddExpr(I->second)));
1551      if (Ops.empty())
1552        return getConstant(Ty, 0);
1553      if (Ops.size() == 1)
1554        return Ops[0];
1555      return getAddExpr(Ops);
1556    }
1557  }
1558
1559  // If we are adding something to a multiply expression, make sure the
1560  // something is not already an operand of the multiply.  If so, merge it into
1561  // the multiply.
1562  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1563    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1564    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1565      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1566      if (isa<SCEVConstant>(MulOpSCEV))
1567        continue;
1568      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1569        if (MulOpSCEV == Ops[AddOp]) {
1570          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1571          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1572          if (Mul->getNumOperands() != 2) {
1573            // If the multiply has more than two operands, we must get the
1574            // Y*Z term.
1575            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1576                                                Mul->op_begin()+MulOp);
1577            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1578            InnerMul = getMulExpr(MulOps);
1579          }
1580          const SCEV *One = getConstant(Ty, 1);
1581          const SCEV *AddOne = getAddExpr(One, InnerMul);
1582          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1583          if (Ops.size() == 2) return OuterMul;
1584          if (AddOp < Idx) {
1585            Ops.erase(Ops.begin()+AddOp);
1586            Ops.erase(Ops.begin()+Idx-1);
1587          } else {
1588            Ops.erase(Ops.begin()+Idx);
1589            Ops.erase(Ops.begin()+AddOp-1);
1590          }
1591          Ops.push_back(OuterMul);
1592          return getAddExpr(Ops);
1593        }
1594
1595      // Check this multiply against other multiplies being added together.
1596      for (unsigned OtherMulIdx = Idx+1;
1597           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1598           ++OtherMulIdx) {
1599        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1600        // If MulOp occurs in OtherMul, we can fold the two multiplies
1601        // together.
1602        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1603             OMulOp != e; ++OMulOp)
1604          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1605            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1606            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1607            if (Mul->getNumOperands() != 2) {
1608              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1609                                                  Mul->op_begin()+MulOp);
1610              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1611              InnerMul1 = getMulExpr(MulOps);
1612            }
1613            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1614            if (OtherMul->getNumOperands() != 2) {
1615              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1616                                                  OtherMul->op_begin()+OMulOp);
1617              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1618              InnerMul2 = getMulExpr(MulOps);
1619            }
1620            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1621            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1622            if (Ops.size() == 2) return OuterMul;
1623            Ops.erase(Ops.begin()+Idx);
1624            Ops.erase(Ops.begin()+OtherMulIdx-1);
1625            Ops.push_back(OuterMul);
1626            return getAddExpr(Ops);
1627          }
1628      }
1629    }
1630  }
1631
1632  // If there are any add recurrences in the operands list, see if any other
1633  // added values are loop invariant.  If so, we can fold them into the
1634  // recurrence.
1635  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1636    ++Idx;
1637
1638  // Scan over all recurrences, trying to fold loop invariants into them.
1639  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1640    // Scan all of the other operands to this add and add them to the vector if
1641    // they are loop invariant w.r.t. the recurrence.
1642    SmallVector<const SCEV *, 8> LIOps;
1643    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1644    const Loop *AddRecLoop = AddRec->getLoop();
1645    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1646      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1647        LIOps.push_back(Ops[i]);
1648        Ops.erase(Ops.begin()+i);
1649        --i; --e;
1650      }
1651
1652    // If we found some loop invariants, fold them into the recurrence.
1653    if (!LIOps.empty()) {
1654      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1655      LIOps.push_back(AddRec->getStart());
1656
1657      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1658                                             AddRec->op_end());
1659      AddRecOps[0] = getAddExpr(LIOps);
1660
1661      // Build the new addrec. Propagate the NUW and NSW flags if both the
1662      // outer add and the inner addrec are guaranteed to have no overflow.
1663      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1664                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1665                                         HasNSW && AddRec->hasNoSignedWrap());
1666
1667      // If all of the other operands were loop invariant, we are done.
1668      if (Ops.size() == 1) return NewRec;
1669
1670      // Otherwise, add the folded AddRec by the non-liv parts.
1671      for (unsigned i = 0;; ++i)
1672        if (Ops[i] == AddRec) {
1673          Ops[i] = NewRec;
1674          break;
1675        }
1676      return getAddExpr(Ops);
1677    }
1678
1679    // Okay, if there weren't any loop invariants to be folded, check to see if
1680    // there are multiple AddRec's with the same loop induction variable being
1681    // added together.  If so, we can fold them.
1682    for (unsigned OtherIdx = Idx+1;
1683         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1684         ++OtherIdx)
1685      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1686        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1687        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1688                                               AddRec->op_end());
1689        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1690             ++OtherIdx)
1691          if (const SCEVAddRecExpr *OtherAddRec =
1692                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1693            if (OtherAddRec->getLoop() == AddRecLoop) {
1694              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1695                   i != e; ++i) {
1696                if (i >= AddRecOps.size()) {
1697                  AddRecOps.append(OtherAddRec->op_begin()+i,
1698                                   OtherAddRec->op_end());
1699                  break;
1700                }
1701                AddRecOps[i] = getAddExpr(AddRecOps[i],
1702                                          OtherAddRec->getOperand(i));
1703              }
1704              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1705            }
1706        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1707        return getAddExpr(Ops);
1708      }
1709
1710    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1711    // next one.
1712  }
1713
1714  // Okay, it looks like we really DO need an add expr.  Check to see if we
1715  // already have one, otherwise create a new one.
1716  FoldingSetNodeID ID;
1717  ID.AddInteger(scAddExpr);
1718  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1719    ID.AddPointer(Ops[i]);
1720  void *IP = 0;
1721  SCEVAddExpr *S =
1722    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1723  if (!S) {
1724    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1725    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1726    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1727                                        O, Ops.size());
1728    UniqueSCEVs.InsertNode(S, IP);
1729  }
1730  if (HasNUW) S->setHasNoUnsignedWrap(true);
1731  if (HasNSW) S->setHasNoSignedWrap(true);
1732  return S;
1733}
1734
1735/// getMulExpr - Get a canonical multiply expression, or something simpler if
1736/// possible.
1737const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1738                                        bool HasNUW, bool HasNSW) {
1739  assert(!Ops.empty() && "Cannot get empty mul!");
1740  if (Ops.size() == 1) return Ops[0];
1741#ifndef NDEBUG
1742  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1743  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1744    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1745           "SCEVMulExpr operand types don't match!");
1746#endif
1747
1748  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1749  if (!HasNUW && HasNSW) {
1750    bool All = true;
1751    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1752         E = Ops.end(); I != E; ++I)
1753      if (!isKnownNonNegative(*I)) {
1754        All = false;
1755        break;
1756      }
1757    if (All) HasNUW = true;
1758  }
1759
1760  // Sort by complexity, this groups all similar expression types together.
1761  GroupByComplexity(Ops, LI);
1762
1763  // If there are any constants, fold them together.
1764  unsigned Idx = 0;
1765  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1766
1767    // C1*(C2+V) -> C1*C2 + C1*V
1768    if (Ops.size() == 2)
1769      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1770        if (Add->getNumOperands() == 2 &&
1771            isa<SCEVConstant>(Add->getOperand(0)))
1772          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1773                            getMulExpr(LHSC, Add->getOperand(1)));
1774
1775    ++Idx;
1776    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1777      // We found two constants, fold them together!
1778      ConstantInt *Fold = ConstantInt::get(getContext(),
1779                                           LHSC->getValue()->getValue() *
1780                                           RHSC->getValue()->getValue());
1781      Ops[0] = getConstant(Fold);
1782      Ops.erase(Ops.begin()+1);  // Erase the folded element
1783      if (Ops.size() == 1) return Ops[0];
1784      LHSC = cast<SCEVConstant>(Ops[0]);
1785    }
1786
1787    // If we are left with a constant one being multiplied, strip it off.
1788    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1789      Ops.erase(Ops.begin());
1790      --Idx;
1791    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1792      // If we have a multiply of zero, it will always be zero.
1793      return Ops[0];
1794    } else if (Ops[0]->isAllOnesValue()) {
1795      // If we have a mul by -1 of an add, try distributing the -1 among the
1796      // add operands.
1797      if (Ops.size() == 2)
1798        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1799          SmallVector<const SCEV *, 4> NewOps;
1800          bool AnyFolded = false;
1801          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1802               I != E; ++I) {
1803            const SCEV *Mul = getMulExpr(Ops[0], *I);
1804            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1805            NewOps.push_back(Mul);
1806          }
1807          if (AnyFolded)
1808            return getAddExpr(NewOps);
1809        }
1810    }
1811
1812    if (Ops.size() == 1)
1813      return Ops[0];
1814  }
1815
1816  // Skip over the add expression until we get to a multiply.
1817  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1818    ++Idx;
1819
1820  // If there are mul operands inline them all into this expression.
1821  if (Idx < Ops.size()) {
1822    bool DeletedMul = false;
1823    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1824      // If we have an mul, expand the mul operands onto the end of the operands
1825      // list.
1826      Ops.erase(Ops.begin()+Idx);
1827      Ops.append(Mul->op_begin(), Mul->op_end());
1828      DeletedMul = true;
1829    }
1830
1831    // If we deleted at least one mul, we added operands to the end of the list,
1832    // and they are not necessarily sorted.  Recurse to resort and resimplify
1833    // any operands we just acquired.
1834    if (DeletedMul)
1835      return getMulExpr(Ops);
1836  }
1837
1838  // If there are any add recurrences in the operands list, see if any other
1839  // added values are loop invariant.  If so, we can fold them into the
1840  // recurrence.
1841  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1842    ++Idx;
1843
1844  // Scan over all recurrences, trying to fold loop invariants into them.
1845  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1846    // Scan all of the other operands to this mul and add them to the vector if
1847    // they are loop invariant w.r.t. the recurrence.
1848    SmallVector<const SCEV *, 8> LIOps;
1849    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1850    const Loop *AddRecLoop = AddRec->getLoop();
1851    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1852      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1853        LIOps.push_back(Ops[i]);
1854        Ops.erase(Ops.begin()+i);
1855        --i; --e;
1856      }
1857
1858    // If we found some loop invariants, fold them into the recurrence.
1859    if (!LIOps.empty()) {
1860      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1861      SmallVector<const SCEV *, 4> NewOps;
1862      NewOps.reserve(AddRec->getNumOperands());
1863      const SCEV *Scale = getMulExpr(LIOps);
1864      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1865        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1866
1867      // Build the new addrec. Propagate the NUW and NSW flags if both the
1868      // outer mul and the inner addrec are guaranteed to have no overflow.
1869      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1870                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1871                                         HasNSW && AddRec->hasNoSignedWrap());
1872
1873      // If all of the other operands were loop invariant, we are done.
1874      if (Ops.size() == 1) return NewRec;
1875
1876      // Otherwise, multiply the folded AddRec by the non-liv parts.
1877      for (unsigned i = 0;; ++i)
1878        if (Ops[i] == AddRec) {
1879          Ops[i] = NewRec;
1880          break;
1881        }
1882      return getMulExpr(Ops);
1883    }
1884
1885    // Okay, if there weren't any loop invariants to be folded, check to see if
1886    // there are multiple AddRec's with the same loop induction variable being
1887    // multiplied together.  If so, we can fold them.
1888    for (unsigned OtherIdx = Idx+1;
1889         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1890         ++OtherIdx)
1891      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1892        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1893        // {A*C,+,F*D + G*B + B*D}<L>
1894        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1895             ++OtherIdx)
1896          if (const SCEVAddRecExpr *OtherAddRec =
1897                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1898            if (OtherAddRec->getLoop() == AddRecLoop) {
1899              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1900              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1901              const SCEV *B = F->getStepRecurrence(*this);
1902              const SCEV *D = G->getStepRecurrence(*this);
1903              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1904                                               getMulExpr(G, B),
1905                                               getMulExpr(B, D));
1906              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1907                                                    F->getLoop());
1908              if (Ops.size() == 2) return NewAddRec;
1909              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1910              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1911            }
1912        return getMulExpr(Ops);
1913      }
1914
1915    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1916    // next one.
1917  }
1918
1919  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1920  // already have one, otherwise create a new one.
1921  FoldingSetNodeID ID;
1922  ID.AddInteger(scMulExpr);
1923  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1924    ID.AddPointer(Ops[i]);
1925  void *IP = 0;
1926  SCEVMulExpr *S =
1927    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1928  if (!S) {
1929    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1930    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1931    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1932                                        O, Ops.size());
1933    UniqueSCEVs.InsertNode(S, IP);
1934  }
1935  if (HasNUW) S->setHasNoUnsignedWrap(true);
1936  if (HasNSW) S->setHasNoSignedWrap(true);
1937  return S;
1938}
1939
1940/// getUDivExpr - Get a canonical unsigned division expression, or something
1941/// simpler if possible.
1942const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1943                                         const SCEV *RHS) {
1944  assert(getEffectiveSCEVType(LHS->getType()) ==
1945         getEffectiveSCEVType(RHS->getType()) &&
1946         "SCEVUDivExpr operand types don't match!");
1947
1948  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1949    if (RHSC->getValue()->equalsInt(1))
1950      return LHS;                               // X udiv 1 --> x
1951    // If the denominator is zero, the result of the udiv is undefined. Don't
1952    // try to analyze it, because the resolution chosen here may differ from
1953    // the resolution chosen in other parts of the compiler.
1954    if (!RHSC->getValue()->isZero()) {
1955      // Determine if the division can be folded into the operands of
1956      // its operands.
1957      // TODO: Generalize this to non-constants by using known-bits information.
1958      const Type *Ty = LHS->getType();
1959      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1960      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1961      // For non-power-of-two values, effectively round the value up to the
1962      // nearest power of two.
1963      if (!RHSC->getValue()->getValue().isPowerOf2())
1964        ++MaxShiftAmt;
1965      const IntegerType *ExtTy =
1966        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1967      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1968      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1969        if (const SCEVConstant *Step =
1970              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1971          if (!Step->getValue()->getValue()
1972                .urem(RHSC->getValue()->getValue()) &&
1973              getZeroExtendExpr(AR, ExtTy) ==
1974              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1975                            getZeroExtendExpr(Step, ExtTy),
1976                            AR->getLoop())) {
1977            SmallVector<const SCEV *, 4> Operands;
1978            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1979              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1980            return getAddRecExpr(Operands, AR->getLoop());
1981          }
1982      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1983      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1984        SmallVector<const SCEV *, 4> Operands;
1985        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1986          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1987        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1988          // Find an operand that's safely divisible.
1989          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1990            const SCEV *Op = M->getOperand(i);
1991            const SCEV *Div = getUDivExpr(Op, RHSC);
1992            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1993              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1994                                                      M->op_end());
1995              Operands[i] = Div;
1996              return getMulExpr(Operands);
1997            }
1998          }
1999      }
2000      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2001      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2002        SmallVector<const SCEV *, 4> Operands;
2003        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2004          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2005        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2006          Operands.clear();
2007          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2008            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2009            if (isa<SCEVUDivExpr>(Op) ||
2010                getMulExpr(Op, RHS) != A->getOperand(i))
2011              break;
2012            Operands.push_back(Op);
2013          }
2014          if (Operands.size() == A->getNumOperands())
2015            return getAddExpr(Operands);
2016        }
2017      }
2018
2019      // Fold if both operands are constant.
2020      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2021        Constant *LHSCV = LHSC->getValue();
2022        Constant *RHSCV = RHSC->getValue();
2023        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2024                                                                   RHSCV)));
2025      }
2026    }
2027  }
2028
2029  FoldingSetNodeID ID;
2030  ID.AddInteger(scUDivExpr);
2031  ID.AddPointer(LHS);
2032  ID.AddPointer(RHS);
2033  void *IP = 0;
2034  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2035  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2036                                             LHS, RHS);
2037  UniqueSCEVs.InsertNode(S, IP);
2038  return S;
2039}
2040
2041
2042/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2043/// Simplify the expression as much as possible.
2044const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2045                                           const SCEV *Step, const Loop *L,
2046                                           bool HasNUW, bool HasNSW) {
2047  SmallVector<const SCEV *, 4> Operands;
2048  Operands.push_back(Start);
2049  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2050    if (StepChrec->getLoop() == L) {
2051      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2052      return getAddRecExpr(Operands, L);
2053    }
2054
2055  Operands.push_back(Step);
2056  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2057}
2058
2059/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2060/// Simplify the expression as much as possible.
2061const SCEV *
2062ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2063                               const Loop *L,
2064                               bool HasNUW, bool HasNSW) {
2065  if (Operands.size() == 1) return Operands[0];
2066#ifndef NDEBUG
2067  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2068  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2069    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2070           "SCEVAddRecExpr operand types don't match!");
2071#endif
2072
2073  if (Operands.back()->isZero()) {
2074    Operands.pop_back();
2075    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2076  }
2077
2078  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2079  // use that information to infer NUW and NSW flags. However, computing a
2080  // BE count requires calling getAddRecExpr, so we may not yet have a
2081  // meaningful BE count at this point (and if we don't, we'd be stuck
2082  // with a SCEVCouldNotCompute as the cached BE count).
2083
2084  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2085  if (!HasNUW && HasNSW) {
2086    bool All = true;
2087    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2088         E = Operands.end(); I != E; ++I)
2089      if (!isKnownNonNegative(*I)) {
2090        All = false;
2091        break;
2092      }
2093    if (All) HasNUW = true;
2094  }
2095
2096  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2097  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2098    const Loop *NestedLoop = NestedAR->getLoop();
2099    if (L->contains(NestedLoop) ?
2100        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2101        (!NestedLoop->contains(L) &&
2102         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2103      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2104                                                  NestedAR->op_end());
2105      Operands[0] = NestedAR->getStart();
2106      // AddRecs require their operands be loop-invariant with respect to their
2107      // loops. Don't perform this transformation if it would break this
2108      // requirement.
2109      bool AllInvariant = true;
2110      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2111        if (!Operands[i]->isLoopInvariant(L)) {
2112          AllInvariant = false;
2113          break;
2114        }
2115      if (AllInvariant) {
2116        NestedOperands[0] = getAddRecExpr(Operands, L);
2117        AllInvariant = true;
2118        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2119          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2120            AllInvariant = false;
2121            break;
2122          }
2123        if (AllInvariant)
2124          // Ok, both add recurrences are valid after the transformation.
2125          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2126      }
2127      // Reset Operands to its original state.
2128      Operands[0] = NestedAR;
2129    }
2130  }
2131
2132  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2133  // already have one, otherwise create a new one.
2134  FoldingSetNodeID ID;
2135  ID.AddInteger(scAddRecExpr);
2136  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2137    ID.AddPointer(Operands[i]);
2138  ID.AddPointer(L);
2139  void *IP = 0;
2140  SCEVAddRecExpr *S =
2141    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2142  if (!S) {
2143    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2144    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2145    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2146                                           O, Operands.size(), L);
2147    UniqueSCEVs.InsertNode(S, IP);
2148  }
2149  if (HasNUW) S->setHasNoUnsignedWrap(true);
2150  if (HasNSW) S->setHasNoSignedWrap(true);
2151  return S;
2152}
2153
2154const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2155                                         const SCEV *RHS) {
2156  SmallVector<const SCEV *, 2> Ops;
2157  Ops.push_back(LHS);
2158  Ops.push_back(RHS);
2159  return getSMaxExpr(Ops);
2160}
2161
2162const SCEV *
2163ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2164  assert(!Ops.empty() && "Cannot get empty smax!");
2165  if (Ops.size() == 1) return Ops[0];
2166#ifndef NDEBUG
2167  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2168  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2169    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2170           "SCEVSMaxExpr operand types don't match!");
2171#endif
2172
2173  // Sort by complexity, this groups all similar expression types together.
2174  GroupByComplexity(Ops, LI);
2175
2176  // If there are any constants, fold them together.
2177  unsigned Idx = 0;
2178  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2179    ++Idx;
2180    assert(Idx < Ops.size());
2181    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2182      // We found two constants, fold them together!
2183      ConstantInt *Fold = ConstantInt::get(getContext(),
2184                              APIntOps::smax(LHSC->getValue()->getValue(),
2185                                             RHSC->getValue()->getValue()));
2186      Ops[0] = getConstant(Fold);
2187      Ops.erase(Ops.begin()+1);  // Erase the folded element
2188      if (Ops.size() == 1) return Ops[0];
2189      LHSC = cast<SCEVConstant>(Ops[0]);
2190    }
2191
2192    // If we are left with a constant minimum-int, strip it off.
2193    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2194      Ops.erase(Ops.begin());
2195      --Idx;
2196    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2197      // If we have an smax with a constant maximum-int, it will always be
2198      // maximum-int.
2199      return Ops[0];
2200    }
2201
2202    if (Ops.size() == 1) return Ops[0];
2203  }
2204
2205  // Find the first SMax
2206  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2207    ++Idx;
2208
2209  // Check to see if one of the operands is an SMax. If so, expand its operands
2210  // onto our operand list, and recurse to simplify.
2211  if (Idx < Ops.size()) {
2212    bool DeletedSMax = false;
2213    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2214      Ops.erase(Ops.begin()+Idx);
2215      Ops.append(SMax->op_begin(), SMax->op_end());
2216      DeletedSMax = true;
2217    }
2218
2219    if (DeletedSMax)
2220      return getSMaxExpr(Ops);
2221  }
2222
2223  // Okay, check to see if the same value occurs in the operand list twice.  If
2224  // so, delete one.  Since we sorted the list, these values are required to
2225  // be adjacent.
2226  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2227    //  X smax Y smax Y  -->  X smax Y
2228    //  X smax Y         -->  X, if X is always greater than Y
2229    if (Ops[i] == Ops[i+1] ||
2230        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2231      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2232      --i; --e;
2233    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2234      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2235      --i; --e;
2236    }
2237
2238  if (Ops.size() == 1) return Ops[0];
2239
2240  assert(!Ops.empty() && "Reduced smax down to nothing!");
2241
2242  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2243  // already have one, otherwise create a new one.
2244  FoldingSetNodeID ID;
2245  ID.AddInteger(scSMaxExpr);
2246  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2247    ID.AddPointer(Ops[i]);
2248  void *IP = 0;
2249  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2250  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2251  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2252  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2253                                             O, Ops.size());
2254  UniqueSCEVs.InsertNode(S, IP);
2255  return S;
2256}
2257
2258const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2259                                         const SCEV *RHS) {
2260  SmallVector<const SCEV *, 2> Ops;
2261  Ops.push_back(LHS);
2262  Ops.push_back(RHS);
2263  return getUMaxExpr(Ops);
2264}
2265
2266const SCEV *
2267ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2268  assert(!Ops.empty() && "Cannot get empty umax!");
2269  if (Ops.size() == 1) return Ops[0];
2270#ifndef NDEBUG
2271  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2272  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2273    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2274           "SCEVUMaxExpr operand types don't match!");
2275#endif
2276
2277  // Sort by complexity, this groups all similar expression types together.
2278  GroupByComplexity(Ops, LI);
2279
2280  // If there are any constants, fold them together.
2281  unsigned Idx = 0;
2282  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2283    ++Idx;
2284    assert(Idx < Ops.size());
2285    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2286      // We found two constants, fold them together!
2287      ConstantInt *Fold = ConstantInt::get(getContext(),
2288                              APIntOps::umax(LHSC->getValue()->getValue(),
2289                                             RHSC->getValue()->getValue()));
2290      Ops[0] = getConstant(Fold);
2291      Ops.erase(Ops.begin()+1);  // Erase the folded element
2292      if (Ops.size() == 1) return Ops[0];
2293      LHSC = cast<SCEVConstant>(Ops[0]);
2294    }
2295
2296    // If we are left with a constant minimum-int, strip it off.
2297    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2298      Ops.erase(Ops.begin());
2299      --Idx;
2300    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2301      // If we have an umax with a constant maximum-int, it will always be
2302      // maximum-int.
2303      return Ops[0];
2304    }
2305
2306    if (Ops.size() == 1) return Ops[0];
2307  }
2308
2309  // Find the first UMax
2310  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2311    ++Idx;
2312
2313  // Check to see if one of the operands is a UMax. If so, expand its operands
2314  // onto our operand list, and recurse to simplify.
2315  if (Idx < Ops.size()) {
2316    bool DeletedUMax = false;
2317    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2318      Ops.erase(Ops.begin()+Idx);
2319      Ops.append(UMax->op_begin(), UMax->op_end());
2320      DeletedUMax = true;
2321    }
2322
2323    if (DeletedUMax)
2324      return getUMaxExpr(Ops);
2325  }
2326
2327  // Okay, check to see if the same value occurs in the operand list twice.  If
2328  // so, delete one.  Since we sorted the list, these values are required to
2329  // be adjacent.
2330  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2331    //  X umax Y umax Y  -->  X umax Y
2332    //  X umax Y         -->  X, if X is always greater than Y
2333    if (Ops[i] == Ops[i+1] ||
2334        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2335      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2336      --i; --e;
2337    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2338      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2339      --i; --e;
2340    }
2341
2342  if (Ops.size() == 1) return Ops[0];
2343
2344  assert(!Ops.empty() && "Reduced umax down to nothing!");
2345
2346  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2347  // already have one, otherwise create a new one.
2348  FoldingSetNodeID ID;
2349  ID.AddInteger(scUMaxExpr);
2350  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2351    ID.AddPointer(Ops[i]);
2352  void *IP = 0;
2353  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2354  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2355  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2356  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2357                                             O, Ops.size());
2358  UniqueSCEVs.InsertNode(S, IP);
2359  return S;
2360}
2361
2362const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2363                                         const SCEV *RHS) {
2364  // ~smax(~x, ~y) == smin(x, y).
2365  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2366}
2367
2368const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2369                                         const SCEV *RHS) {
2370  // ~umax(~x, ~y) == umin(x, y)
2371  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2372}
2373
2374const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2375  // If we have TargetData, we can bypass creating a target-independent
2376  // constant expression and then folding it back into a ConstantInt.
2377  // This is just a compile-time optimization.
2378  if (TD)
2379    return getConstant(TD->getIntPtrType(getContext()),
2380                       TD->getTypeAllocSize(AllocTy));
2381
2382  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2383  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2384    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2385      C = Folded;
2386  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2387  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2388}
2389
2390const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2391  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2392  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2393    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2394      C = Folded;
2395  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2396  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2397}
2398
2399const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2400                                             unsigned FieldNo) {
2401  // If we have TargetData, we can bypass creating a target-independent
2402  // constant expression and then folding it back into a ConstantInt.
2403  // This is just a compile-time optimization.
2404  if (TD)
2405    return getConstant(TD->getIntPtrType(getContext()),
2406                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2407
2408  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2409  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2410    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2411      C = Folded;
2412  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2413  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2414}
2415
2416const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2417                                             Constant *FieldNo) {
2418  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2419  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2420    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2421      C = Folded;
2422  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2423  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2424}
2425
2426const SCEV *ScalarEvolution::getUnknown(Value *V) {
2427  // Don't attempt to do anything other than create a SCEVUnknown object
2428  // here.  createSCEV only calls getUnknown after checking for all other
2429  // interesting possibilities, and any other code that calls getUnknown
2430  // is doing so in order to hide a value from SCEV canonicalization.
2431
2432  FoldingSetNodeID ID;
2433  ID.AddInteger(scUnknown);
2434  ID.AddPointer(V);
2435  void *IP = 0;
2436  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2437    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2438           "Stale SCEVUnknown in uniquing map!");
2439    return S;
2440  }
2441  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2442                                            FirstUnknown);
2443  FirstUnknown = cast<SCEVUnknown>(S);
2444  UniqueSCEVs.InsertNode(S, IP);
2445  return S;
2446}
2447
2448//===----------------------------------------------------------------------===//
2449//            Basic SCEV Analysis and PHI Idiom Recognition Code
2450//
2451
2452/// isSCEVable - Test if values of the given type are analyzable within
2453/// the SCEV framework. This primarily includes integer types, and it
2454/// can optionally include pointer types if the ScalarEvolution class
2455/// has access to target-specific information.
2456bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2457  // Integers and pointers are always SCEVable.
2458  return Ty->isIntegerTy() || Ty->isPointerTy();
2459}
2460
2461/// getTypeSizeInBits - Return the size in bits of the specified type,
2462/// for which isSCEVable must return true.
2463uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2464  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2465
2466  // If we have a TargetData, use it!
2467  if (TD)
2468    return TD->getTypeSizeInBits(Ty);
2469
2470  // Integer types have fixed sizes.
2471  if (Ty->isIntegerTy())
2472    return Ty->getPrimitiveSizeInBits();
2473
2474  // The only other support type is pointer. Without TargetData, conservatively
2475  // assume pointers are 64-bit.
2476  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2477  return 64;
2478}
2479
2480/// getEffectiveSCEVType - Return a type with the same bitwidth as
2481/// the given type and which represents how SCEV will treat the given
2482/// type, for which isSCEVable must return true. For pointer types,
2483/// this is the pointer-sized integer type.
2484const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2485  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2486
2487  if (Ty->isIntegerTy())
2488    return Ty;
2489
2490  // The only other support type is pointer.
2491  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2492  if (TD) return TD->getIntPtrType(getContext());
2493
2494  // Without TargetData, conservatively assume pointers are 64-bit.
2495  return Type::getInt64Ty(getContext());
2496}
2497
2498const SCEV *ScalarEvolution::getCouldNotCompute() {
2499  return &CouldNotCompute;
2500}
2501
2502/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2503/// expression and create a new one.
2504const SCEV *ScalarEvolution::getSCEV(Value *V) {
2505  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2506
2507  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2508  if (I != ValueExprMap.end()) return I->second;
2509  const SCEV *S = createSCEV(V);
2510
2511  // The process of creating a SCEV for V may have caused other SCEVs
2512  // to have been created, so it's necessary to insert the new entry
2513  // from scratch, rather than trying to remember the insert position
2514  // above.
2515  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2516  return S;
2517}
2518
2519/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2520///
2521const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2522  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2523    return getConstant(
2524               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2525
2526  const Type *Ty = V->getType();
2527  Ty = getEffectiveSCEVType(Ty);
2528  return getMulExpr(V,
2529                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2530}
2531
2532/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2533const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2534  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2535    return getConstant(
2536                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2537
2538  const Type *Ty = V->getType();
2539  Ty = getEffectiveSCEVType(Ty);
2540  const SCEV *AllOnes =
2541                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2542  return getMinusSCEV(AllOnes, V);
2543}
2544
2545/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2546///
2547const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2548                                          const SCEV *RHS) {
2549  // Fast path: X - X --> 0.
2550  if (LHS == RHS)
2551    return getConstant(LHS->getType(), 0);
2552
2553  // X - Y --> X + -Y
2554  return getAddExpr(LHS, getNegativeSCEV(RHS));
2555}
2556
2557/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2558/// input value to the specified type.  If the type must be extended, it is zero
2559/// extended.
2560const SCEV *
2561ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2562                                         const Type *Ty) {
2563  const Type *SrcTy = V->getType();
2564  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2565         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2566         "Cannot truncate or zero extend with non-integer arguments!");
2567  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2568    return V;  // No conversion
2569  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2570    return getTruncateExpr(V, Ty);
2571  return getZeroExtendExpr(V, Ty);
2572}
2573
2574/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2575/// input value to the specified type.  If the type must be extended, it is sign
2576/// extended.
2577const SCEV *
2578ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2579                                         const Type *Ty) {
2580  const Type *SrcTy = V->getType();
2581  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2583         "Cannot truncate or zero extend with non-integer arguments!");
2584  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2585    return V;  // No conversion
2586  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2587    return getTruncateExpr(V, Ty);
2588  return getSignExtendExpr(V, Ty);
2589}
2590
2591/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2592/// input value to the specified type.  If the type must be extended, it is zero
2593/// extended.  The conversion must not be narrowing.
2594const SCEV *
2595ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2596  const Type *SrcTy = V->getType();
2597  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2598         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2599         "Cannot noop or zero extend with non-integer arguments!");
2600  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2601         "getNoopOrZeroExtend cannot truncate!");
2602  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2603    return V;  // No conversion
2604  return getZeroExtendExpr(V, Ty);
2605}
2606
2607/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2608/// input value to the specified type.  If the type must be extended, it is sign
2609/// extended.  The conversion must not be narrowing.
2610const SCEV *
2611ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2612  const Type *SrcTy = V->getType();
2613  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2614         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2615         "Cannot noop or sign extend with non-integer arguments!");
2616  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2617         "getNoopOrSignExtend cannot truncate!");
2618  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2619    return V;  // No conversion
2620  return getSignExtendExpr(V, Ty);
2621}
2622
2623/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2624/// the input value to the specified type. If the type must be extended,
2625/// it is extended with unspecified bits. The conversion must not be
2626/// narrowing.
2627const SCEV *
2628ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2629  const Type *SrcTy = V->getType();
2630  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2631         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2632         "Cannot noop or any extend with non-integer arguments!");
2633  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2634         "getNoopOrAnyExtend cannot truncate!");
2635  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2636    return V;  // No conversion
2637  return getAnyExtendExpr(V, Ty);
2638}
2639
2640/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2641/// input value to the specified type.  The conversion must not be widening.
2642const SCEV *
2643ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2644  const Type *SrcTy = V->getType();
2645  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2646         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2647         "Cannot truncate or noop with non-integer arguments!");
2648  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2649         "getTruncateOrNoop cannot extend!");
2650  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2651    return V;  // No conversion
2652  return getTruncateExpr(V, Ty);
2653}
2654
2655/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2656/// the types using zero-extension, and then perform a umax operation
2657/// with them.
2658const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2659                                                        const SCEV *RHS) {
2660  const SCEV *PromotedLHS = LHS;
2661  const SCEV *PromotedRHS = RHS;
2662
2663  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2664    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2665  else
2666    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2667
2668  return getUMaxExpr(PromotedLHS, PromotedRHS);
2669}
2670
2671/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2672/// the types using zero-extension, and then perform a umin operation
2673/// with them.
2674const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2675                                                        const SCEV *RHS) {
2676  const SCEV *PromotedLHS = LHS;
2677  const SCEV *PromotedRHS = RHS;
2678
2679  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2680    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2681  else
2682    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2683
2684  return getUMinExpr(PromotedLHS, PromotedRHS);
2685}
2686
2687/// PushDefUseChildren - Push users of the given Instruction
2688/// onto the given Worklist.
2689static void
2690PushDefUseChildren(Instruction *I,
2691                   SmallVectorImpl<Instruction *> &Worklist) {
2692  // Push the def-use children onto the Worklist stack.
2693  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2694       UI != UE; ++UI)
2695    Worklist.push_back(cast<Instruction>(*UI));
2696}
2697
2698/// ForgetSymbolicValue - This looks up computed SCEV values for all
2699/// instructions that depend on the given instruction and removes them from
2700/// the ValueExprMapType map if they reference SymName. This is used during PHI
2701/// resolution.
2702void
2703ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2704  SmallVector<Instruction *, 16> Worklist;
2705  PushDefUseChildren(PN, Worklist);
2706
2707  SmallPtrSet<Instruction *, 8> Visited;
2708  Visited.insert(PN);
2709  while (!Worklist.empty()) {
2710    Instruction *I = Worklist.pop_back_val();
2711    if (!Visited.insert(I)) continue;
2712
2713    ValueExprMapType::iterator It =
2714      ValueExprMap.find(static_cast<Value *>(I));
2715    if (It != ValueExprMap.end()) {
2716      // Short-circuit the def-use traversal if the symbolic name
2717      // ceases to appear in expressions.
2718      if (It->second != SymName && !It->second->hasOperand(SymName))
2719        continue;
2720
2721      // SCEVUnknown for a PHI either means that it has an unrecognized
2722      // structure, it's a PHI that's in the progress of being computed
2723      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2724      // additional loop trip count information isn't going to change anything.
2725      // In the second case, createNodeForPHI will perform the necessary
2726      // updates on its own when it gets to that point. In the third, we do
2727      // want to forget the SCEVUnknown.
2728      if (!isa<PHINode>(I) ||
2729          !isa<SCEVUnknown>(It->second) ||
2730          (I != PN && It->second == SymName)) {
2731        ValuesAtScopes.erase(It->second);
2732        ValueExprMap.erase(It);
2733      }
2734    }
2735
2736    PushDefUseChildren(I, Worklist);
2737  }
2738}
2739
2740/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2741/// a loop header, making it a potential recurrence, or it doesn't.
2742///
2743const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2744  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2745    if (L->getHeader() == PN->getParent()) {
2746      // The loop may have multiple entrances or multiple exits; we can analyze
2747      // this phi as an addrec if it has a unique entry value and a unique
2748      // backedge value.
2749      Value *BEValueV = 0, *StartValueV = 0;
2750      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2751        Value *V = PN->getIncomingValue(i);
2752        if (L->contains(PN->getIncomingBlock(i))) {
2753          if (!BEValueV) {
2754            BEValueV = V;
2755          } else if (BEValueV != V) {
2756            BEValueV = 0;
2757            break;
2758          }
2759        } else if (!StartValueV) {
2760          StartValueV = V;
2761        } else if (StartValueV != V) {
2762          StartValueV = 0;
2763          break;
2764        }
2765      }
2766      if (BEValueV && StartValueV) {
2767        // While we are analyzing this PHI node, handle its value symbolically.
2768        const SCEV *SymbolicName = getUnknown(PN);
2769        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2770               "PHI node already processed?");
2771        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2772
2773        // Using this symbolic name for the PHI, analyze the value coming around
2774        // the back-edge.
2775        const SCEV *BEValue = getSCEV(BEValueV);
2776
2777        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2778        // has a special value for the first iteration of the loop.
2779
2780        // If the value coming around the backedge is an add with the symbolic
2781        // value we just inserted, then we found a simple induction variable!
2782        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2783          // If there is a single occurrence of the symbolic value, replace it
2784          // with a recurrence.
2785          unsigned FoundIndex = Add->getNumOperands();
2786          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2787            if (Add->getOperand(i) == SymbolicName)
2788              if (FoundIndex == e) {
2789                FoundIndex = i;
2790                break;
2791              }
2792
2793          if (FoundIndex != Add->getNumOperands()) {
2794            // Create an add with everything but the specified operand.
2795            SmallVector<const SCEV *, 8> Ops;
2796            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2797              if (i != FoundIndex)
2798                Ops.push_back(Add->getOperand(i));
2799            const SCEV *Accum = getAddExpr(Ops);
2800
2801            // This is not a valid addrec if the step amount is varying each
2802            // loop iteration, but is not itself an addrec in this loop.
2803            if (Accum->isLoopInvariant(L) ||
2804                (isa<SCEVAddRecExpr>(Accum) &&
2805                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2806              bool HasNUW = false;
2807              bool HasNSW = false;
2808
2809              // If the increment doesn't overflow, then neither the addrec nor
2810              // the post-increment will overflow.
2811              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2812                if (OBO->hasNoUnsignedWrap())
2813                  HasNUW = true;
2814                if (OBO->hasNoSignedWrap())
2815                  HasNSW = true;
2816              }
2817
2818              const SCEV *StartVal = getSCEV(StartValueV);
2819              const SCEV *PHISCEV =
2820                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2821
2822              // Since the no-wrap flags are on the increment, they apply to the
2823              // post-incremented value as well.
2824              if (Accum->isLoopInvariant(L))
2825                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2826                                    Accum, L, HasNUW, HasNSW);
2827
2828              // Okay, for the entire analysis of this edge we assumed the PHI
2829              // to be symbolic.  We now need to go back and purge all of the
2830              // entries for the scalars that use the symbolic expression.
2831              ForgetSymbolicName(PN, SymbolicName);
2832              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2833              return PHISCEV;
2834            }
2835          }
2836        } else if (const SCEVAddRecExpr *AddRec =
2837                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2838          // Otherwise, this could be a loop like this:
2839          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2840          // In this case, j = {1,+,1}  and BEValue is j.
2841          // Because the other in-value of i (0) fits the evolution of BEValue
2842          // i really is an addrec evolution.
2843          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2844            const SCEV *StartVal = getSCEV(StartValueV);
2845
2846            // If StartVal = j.start - j.stride, we can use StartVal as the
2847            // initial step of the addrec evolution.
2848            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2849                                         AddRec->getOperand(1))) {
2850              const SCEV *PHISCEV =
2851                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2852
2853              // Okay, for the entire analysis of this edge we assumed the PHI
2854              // to be symbolic.  We now need to go back and purge all of the
2855              // entries for the scalars that use the symbolic expression.
2856              ForgetSymbolicName(PN, SymbolicName);
2857              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2858              return PHISCEV;
2859            }
2860          }
2861        }
2862      }
2863    }
2864
2865  // If the PHI has a single incoming value, follow that value, unless the
2866  // PHI's incoming blocks are in a different loop, in which case doing so
2867  // risks breaking LCSSA form. Instcombine would normally zap these, but
2868  // it doesn't have DominatorTree information, so it may miss cases.
2869  if (Value *V = PN->hasConstantValue(DT)) {
2870    bool AllSameLoop = true;
2871    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2872    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2873      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2874        AllSameLoop = false;
2875        break;
2876      }
2877    if (AllSameLoop)
2878      return getSCEV(V);
2879  }
2880
2881  // If it's not a loop phi, we can't handle it yet.
2882  return getUnknown(PN);
2883}
2884
2885/// createNodeForGEP - Expand GEP instructions into add and multiply
2886/// operations. This allows them to be analyzed by regular SCEV code.
2887///
2888const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2889
2890  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2891  // Add expression, because the Instruction may be guarded by control flow
2892  // and the no-overflow bits may not be valid for the expression in any
2893  // context.
2894
2895  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2896  Value *Base = GEP->getOperand(0);
2897  // Don't attempt to analyze GEPs over unsized objects.
2898  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2899    return getUnknown(GEP);
2900  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2901  gep_type_iterator GTI = gep_type_begin(GEP);
2902  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2903                                      E = GEP->op_end();
2904       I != E; ++I) {
2905    Value *Index = *I;
2906    // Compute the (potentially symbolic) offset in bytes for this index.
2907    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2908      // For a struct, add the member offset.
2909      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2910      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2911
2912      // Add the field offset to the running total offset.
2913      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2914    } else {
2915      // For an array, add the element offset, explicitly scaled.
2916      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2917      const SCEV *IndexS = getSCEV(Index);
2918      // Getelementptr indices are signed.
2919      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2920
2921      // Multiply the index by the element size to compute the element offset.
2922      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2923
2924      // Add the element offset to the running total offset.
2925      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2926    }
2927  }
2928
2929  // Get the SCEV for the GEP base.
2930  const SCEV *BaseS = getSCEV(Base);
2931
2932  // Add the total offset from all the GEP indices to the base.
2933  return getAddExpr(BaseS, TotalOffset);
2934}
2935
2936/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2937/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2938/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2939/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2940uint32_t
2941ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2942  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2943    return C->getValue()->getValue().countTrailingZeros();
2944
2945  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2946    return std::min(GetMinTrailingZeros(T->getOperand()),
2947                    (uint32_t)getTypeSizeInBits(T->getType()));
2948
2949  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2950    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2951    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2952             getTypeSizeInBits(E->getType()) : OpRes;
2953  }
2954
2955  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2956    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2957    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2958             getTypeSizeInBits(E->getType()) : OpRes;
2959  }
2960
2961  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2962    // The result is the min of all operands results.
2963    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2964    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2965      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2966    return MinOpRes;
2967  }
2968
2969  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2970    // The result is the sum of all operands results.
2971    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2972    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2973    for (unsigned i = 1, e = M->getNumOperands();
2974         SumOpRes != BitWidth && i != e; ++i)
2975      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2976                          BitWidth);
2977    return SumOpRes;
2978  }
2979
2980  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2981    // The result is the min of all operands results.
2982    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2983    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2984      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2985    return MinOpRes;
2986  }
2987
2988  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2989    // The result is the min of all operands results.
2990    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2991    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2992      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2993    return MinOpRes;
2994  }
2995
2996  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2997    // The result is the min of all operands results.
2998    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2999    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3000      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3001    return MinOpRes;
3002  }
3003
3004  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3005    // For a SCEVUnknown, ask ValueTracking.
3006    unsigned BitWidth = getTypeSizeInBits(U->getType());
3007    APInt Mask = APInt::getAllOnesValue(BitWidth);
3008    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3009    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3010    return Zeros.countTrailingOnes();
3011  }
3012
3013  // SCEVUDivExpr
3014  return 0;
3015}
3016
3017/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3018///
3019ConstantRange
3020ScalarEvolution::getUnsignedRange(const SCEV *S) {
3021
3022  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3023    return ConstantRange(C->getValue()->getValue());
3024
3025  unsigned BitWidth = getTypeSizeInBits(S->getType());
3026  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3027
3028  // If the value has known zeros, the maximum unsigned value will have those
3029  // known zeros as well.
3030  uint32_t TZ = GetMinTrailingZeros(S);
3031  if (TZ != 0)
3032    ConservativeResult =
3033      ConstantRange(APInt::getMinValue(BitWidth),
3034                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3035
3036  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3037    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3038    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3039      X = X.add(getUnsignedRange(Add->getOperand(i)));
3040    return ConservativeResult.intersectWith(X);
3041  }
3042
3043  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3044    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3045    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3046      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3047    return ConservativeResult.intersectWith(X);
3048  }
3049
3050  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3051    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3052    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3053      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3054    return ConservativeResult.intersectWith(X);
3055  }
3056
3057  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3058    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3059    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3060      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3061    return ConservativeResult.intersectWith(X);
3062  }
3063
3064  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3065    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3066    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3067    return ConservativeResult.intersectWith(X.udiv(Y));
3068  }
3069
3070  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3071    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3072    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3073  }
3074
3075  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3076    ConstantRange X = getUnsignedRange(SExt->getOperand());
3077    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3078  }
3079
3080  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3081    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3082    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3083  }
3084
3085  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3086    // If there's no unsigned wrap, the value will never be less than its
3087    // initial value.
3088    if (AddRec->hasNoUnsignedWrap())
3089      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3090        if (!C->getValue()->isZero())
3091          ConservativeResult =
3092            ConservativeResult.intersectWith(
3093              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3094
3095    // TODO: non-affine addrec
3096    if (AddRec->isAffine()) {
3097      const Type *Ty = AddRec->getType();
3098      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3099      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3100          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3101        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3102
3103        const SCEV *Start = AddRec->getStart();
3104        const SCEV *Step = AddRec->getStepRecurrence(*this);
3105
3106        ConstantRange StartRange = getUnsignedRange(Start);
3107        ConstantRange StepRange = getSignedRange(Step);
3108        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3109        ConstantRange EndRange =
3110          StartRange.add(MaxBECountRange.multiply(StepRange));
3111
3112        // Check for overflow. This must be done with ConstantRange arithmetic
3113        // because we could be called from within the ScalarEvolution overflow
3114        // checking code.
3115        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3116        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3117        ConstantRange ExtMaxBECountRange =
3118          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3119        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3120        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3121            ExtEndRange)
3122          return ConservativeResult;
3123
3124        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3125                                   EndRange.getUnsignedMin());
3126        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3127                                   EndRange.getUnsignedMax());
3128        if (Min.isMinValue() && Max.isMaxValue())
3129          return ConservativeResult;
3130        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3131      }
3132    }
3133
3134    return ConservativeResult;
3135  }
3136
3137  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3138    // For a SCEVUnknown, ask ValueTracking.
3139    APInt Mask = APInt::getAllOnesValue(BitWidth);
3140    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3141    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3142    if (Ones == ~Zeros + 1)
3143      return ConservativeResult;
3144    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3145  }
3146
3147  return ConservativeResult;
3148}
3149
3150/// getSignedRange - Determine the signed range for a particular SCEV.
3151///
3152ConstantRange
3153ScalarEvolution::getSignedRange(const SCEV *S) {
3154
3155  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3156    return ConstantRange(C->getValue()->getValue());
3157
3158  unsigned BitWidth = getTypeSizeInBits(S->getType());
3159  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3160
3161  // If the value has known zeros, the maximum signed value will have those
3162  // known zeros as well.
3163  uint32_t TZ = GetMinTrailingZeros(S);
3164  if (TZ != 0)
3165    ConservativeResult =
3166      ConstantRange(APInt::getSignedMinValue(BitWidth),
3167                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3168
3169  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3170    ConstantRange X = getSignedRange(Add->getOperand(0));
3171    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3172      X = X.add(getSignedRange(Add->getOperand(i)));
3173    return ConservativeResult.intersectWith(X);
3174  }
3175
3176  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3177    ConstantRange X = getSignedRange(Mul->getOperand(0));
3178    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3179      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3180    return ConservativeResult.intersectWith(X);
3181  }
3182
3183  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3184    ConstantRange X = getSignedRange(SMax->getOperand(0));
3185    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3186      X = X.smax(getSignedRange(SMax->getOperand(i)));
3187    return ConservativeResult.intersectWith(X);
3188  }
3189
3190  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3191    ConstantRange X = getSignedRange(UMax->getOperand(0));
3192    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3193      X = X.umax(getSignedRange(UMax->getOperand(i)));
3194    return ConservativeResult.intersectWith(X);
3195  }
3196
3197  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3198    ConstantRange X = getSignedRange(UDiv->getLHS());
3199    ConstantRange Y = getSignedRange(UDiv->getRHS());
3200    return ConservativeResult.intersectWith(X.udiv(Y));
3201  }
3202
3203  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3204    ConstantRange X = getSignedRange(ZExt->getOperand());
3205    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3206  }
3207
3208  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3209    ConstantRange X = getSignedRange(SExt->getOperand());
3210    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3211  }
3212
3213  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3214    ConstantRange X = getSignedRange(Trunc->getOperand());
3215    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3216  }
3217
3218  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3219    // If there's no signed wrap, and all the operands have the same sign or
3220    // zero, the value won't ever change sign.
3221    if (AddRec->hasNoSignedWrap()) {
3222      bool AllNonNeg = true;
3223      bool AllNonPos = true;
3224      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3225        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3226        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3227      }
3228      if (AllNonNeg)
3229        ConservativeResult = ConservativeResult.intersectWith(
3230          ConstantRange(APInt(BitWidth, 0),
3231                        APInt::getSignedMinValue(BitWidth)));
3232      else if (AllNonPos)
3233        ConservativeResult = ConservativeResult.intersectWith(
3234          ConstantRange(APInt::getSignedMinValue(BitWidth),
3235                        APInt(BitWidth, 1)));
3236    }
3237
3238    // TODO: non-affine addrec
3239    if (AddRec->isAffine()) {
3240      const Type *Ty = AddRec->getType();
3241      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3242      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3243          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3244        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3245
3246        const SCEV *Start = AddRec->getStart();
3247        const SCEV *Step = AddRec->getStepRecurrence(*this);
3248
3249        ConstantRange StartRange = getSignedRange(Start);
3250        ConstantRange StepRange = getSignedRange(Step);
3251        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3252        ConstantRange EndRange =
3253          StartRange.add(MaxBECountRange.multiply(StepRange));
3254
3255        // Check for overflow. This must be done with ConstantRange arithmetic
3256        // because we could be called from within the ScalarEvolution overflow
3257        // checking code.
3258        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3259        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3260        ConstantRange ExtMaxBECountRange =
3261          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3262        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3263        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3264            ExtEndRange)
3265          return ConservativeResult;
3266
3267        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3268                                   EndRange.getSignedMin());
3269        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3270                                   EndRange.getSignedMax());
3271        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3272          return ConservativeResult;
3273        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3274      }
3275    }
3276
3277    return ConservativeResult;
3278  }
3279
3280  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3281    // For a SCEVUnknown, ask ValueTracking.
3282    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3283      return ConservativeResult;
3284    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3285    if (NS == 1)
3286      return ConservativeResult;
3287    return ConservativeResult.intersectWith(
3288      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3289                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3290  }
3291
3292  return ConservativeResult;
3293}
3294
3295/// createSCEV - We know that there is no SCEV for the specified value.
3296/// Analyze the expression.
3297///
3298const SCEV *ScalarEvolution::createSCEV(Value *V) {
3299  if (!isSCEVable(V->getType()))
3300    return getUnknown(V);
3301
3302  unsigned Opcode = Instruction::UserOp1;
3303  if (Instruction *I = dyn_cast<Instruction>(V)) {
3304    Opcode = I->getOpcode();
3305
3306    // Don't attempt to analyze instructions in blocks that aren't
3307    // reachable. Such instructions don't matter, and they aren't required
3308    // to obey basic rules for definitions dominating uses which this
3309    // analysis depends on.
3310    if (!DT->isReachableFromEntry(I->getParent()))
3311      return getUnknown(V);
3312  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3313    Opcode = CE->getOpcode();
3314  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3315    return getConstant(CI);
3316  else if (isa<ConstantPointerNull>(V))
3317    return getConstant(V->getType(), 0);
3318  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3319    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3320  else
3321    return getUnknown(V);
3322
3323  Operator *U = cast<Operator>(V);
3324  switch (Opcode) {
3325  case Instruction::Add: {
3326    // The simple thing to do would be to just call getSCEV on both operands
3327    // and call getAddExpr with the result. However if we're looking at a
3328    // bunch of things all added together, this can be quite inefficient,
3329    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3330    // Instead, gather up all the operands and make a single getAddExpr call.
3331    // LLVM IR canonical form means we need only traverse the left operands.
3332    SmallVector<const SCEV *, 4> AddOps;
3333    AddOps.push_back(getSCEV(U->getOperand(1)));
3334    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3335      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3336      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3337        break;
3338      U = cast<Operator>(Op);
3339      const SCEV *Op1 = getSCEV(U->getOperand(1));
3340      if (Opcode == Instruction::Sub)
3341        AddOps.push_back(getNegativeSCEV(Op1));
3342      else
3343        AddOps.push_back(Op1);
3344    }
3345    AddOps.push_back(getSCEV(U->getOperand(0)));
3346    return getAddExpr(AddOps);
3347  }
3348  case Instruction::Mul: {
3349    // See the Add code above.
3350    SmallVector<const SCEV *, 4> MulOps;
3351    MulOps.push_back(getSCEV(U->getOperand(1)));
3352    for (Value *Op = U->getOperand(0);
3353         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3354         Op = U->getOperand(0)) {
3355      U = cast<Operator>(Op);
3356      MulOps.push_back(getSCEV(U->getOperand(1)));
3357    }
3358    MulOps.push_back(getSCEV(U->getOperand(0)));
3359    return getMulExpr(MulOps);
3360  }
3361  case Instruction::UDiv:
3362    return getUDivExpr(getSCEV(U->getOperand(0)),
3363                       getSCEV(U->getOperand(1)));
3364  case Instruction::Sub:
3365    return getMinusSCEV(getSCEV(U->getOperand(0)),
3366                        getSCEV(U->getOperand(1)));
3367  case Instruction::And:
3368    // For an expression like x&255 that merely masks off the high bits,
3369    // use zext(trunc(x)) as the SCEV expression.
3370    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3371      if (CI->isNullValue())
3372        return getSCEV(U->getOperand(1));
3373      if (CI->isAllOnesValue())
3374        return getSCEV(U->getOperand(0));
3375      const APInt &A = CI->getValue();
3376
3377      // Instcombine's ShrinkDemandedConstant may strip bits out of
3378      // constants, obscuring what would otherwise be a low-bits mask.
3379      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3380      // knew about to reconstruct a low-bits mask value.
3381      unsigned LZ = A.countLeadingZeros();
3382      unsigned BitWidth = A.getBitWidth();
3383      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3384      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3385      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3386
3387      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3388
3389      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3390        return
3391          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3392                                IntegerType::get(getContext(), BitWidth - LZ)),
3393                            U->getType());
3394    }
3395    break;
3396
3397  case Instruction::Or:
3398    // If the RHS of the Or is a constant, we may have something like:
3399    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3400    // optimizations will transparently handle this case.
3401    //
3402    // In order for this transformation to be safe, the LHS must be of the
3403    // form X*(2^n) and the Or constant must be less than 2^n.
3404    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3405      const SCEV *LHS = getSCEV(U->getOperand(0));
3406      const APInt &CIVal = CI->getValue();
3407      if (GetMinTrailingZeros(LHS) >=
3408          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3409        // Build a plain add SCEV.
3410        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3411        // If the LHS of the add was an addrec and it has no-wrap flags,
3412        // transfer the no-wrap flags, since an or won't introduce a wrap.
3413        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3414          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3415          if (OldAR->hasNoUnsignedWrap())
3416            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3417          if (OldAR->hasNoSignedWrap())
3418            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3419        }
3420        return S;
3421      }
3422    }
3423    break;
3424  case Instruction::Xor:
3425    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3426      // If the RHS of the xor is a signbit, then this is just an add.
3427      // Instcombine turns add of signbit into xor as a strength reduction step.
3428      if (CI->getValue().isSignBit())
3429        return getAddExpr(getSCEV(U->getOperand(0)),
3430                          getSCEV(U->getOperand(1)));
3431
3432      // If the RHS of xor is -1, then this is a not operation.
3433      if (CI->isAllOnesValue())
3434        return getNotSCEV(getSCEV(U->getOperand(0)));
3435
3436      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3437      // This is a variant of the check for xor with -1, and it handles
3438      // the case where instcombine has trimmed non-demanded bits out
3439      // of an xor with -1.
3440      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3441        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3442          if (BO->getOpcode() == Instruction::And &&
3443              LCI->getValue() == CI->getValue())
3444            if (const SCEVZeroExtendExpr *Z =
3445                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3446              const Type *UTy = U->getType();
3447              const SCEV *Z0 = Z->getOperand();
3448              const Type *Z0Ty = Z0->getType();
3449              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3450
3451              // If C is a low-bits mask, the zero extend is serving to
3452              // mask off the high bits. Complement the operand and
3453              // re-apply the zext.
3454              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3455                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3456
3457              // If C is a single bit, it may be in the sign-bit position
3458              // before the zero-extend. In this case, represent the xor
3459              // using an add, which is equivalent, and re-apply the zext.
3460              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3461              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3462                  Trunc.isSignBit())
3463                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3464                                         UTy);
3465            }
3466    }
3467    break;
3468
3469  case Instruction::Shl:
3470    // Turn shift left of a constant amount into a multiply.
3471    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3472      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3473
3474      // If the shift count is not less than the bitwidth, the result of
3475      // the shift is undefined. Don't try to analyze it, because the
3476      // resolution chosen here may differ from the resolution chosen in
3477      // other parts of the compiler.
3478      if (SA->getValue().uge(BitWidth))
3479        break;
3480
3481      Constant *X = ConstantInt::get(getContext(),
3482        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3483      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3484    }
3485    break;
3486
3487  case Instruction::LShr:
3488    // Turn logical shift right of a constant into a unsigned divide.
3489    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3490      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3491
3492      // If the shift count is not less than the bitwidth, the result of
3493      // the shift is undefined. Don't try to analyze it, because the
3494      // resolution chosen here may differ from the resolution chosen in
3495      // other parts of the compiler.
3496      if (SA->getValue().uge(BitWidth))
3497        break;
3498
3499      Constant *X = ConstantInt::get(getContext(),
3500        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3501      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3502    }
3503    break;
3504
3505  case Instruction::AShr:
3506    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3507    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3508      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3509        if (L->getOpcode() == Instruction::Shl &&
3510            L->getOperand(1) == U->getOperand(1)) {
3511          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3512
3513          // If the shift count is not less than the bitwidth, the result of
3514          // the shift is undefined. Don't try to analyze it, because the
3515          // resolution chosen here may differ from the resolution chosen in
3516          // other parts of the compiler.
3517          if (CI->getValue().uge(BitWidth))
3518            break;
3519
3520          uint64_t Amt = BitWidth - CI->getZExtValue();
3521          if (Amt == BitWidth)
3522            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3523          return
3524            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3525                                              IntegerType::get(getContext(),
3526                                                               Amt)),
3527                              U->getType());
3528        }
3529    break;
3530
3531  case Instruction::Trunc:
3532    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3533
3534  case Instruction::ZExt:
3535    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3536
3537  case Instruction::SExt:
3538    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3539
3540  case Instruction::BitCast:
3541    // BitCasts are no-op casts so we just eliminate the cast.
3542    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3543      return getSCEV(U->getOperand(0));
3544    break;
3545
3546  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3547  // lead to pointer expressions which cannot safely be expanded to GEPs,
3548  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3549  // simplifying integer expressions.
3550
3551  case Instruction::GetElementPtr:
3552    return createNodeForGEP(cast<GEPOperator>(U));
3553
3554  case Instruction::PHI:
3555    return createNodeForPHI(cast<PHINode>(U));
3556
3557  case Instruction::Select:
3558    // This could be a smax or umax that was lowered earlier.
3559    // Try to recover it.
3560    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3561      Value *LHS = ICI->getOperand(0);
3562      Value *RHS = ICI->getOperand(1);
3563      switch (ICI->getPredicate()) {
3564      case ICmpInst::ICMP_SLT:
3565      case ICmpInst::ICMP_SLE:
3566        std::swap(LHS, RHS);
3567        // fall through
3568      case ICmpInst::ICMP_SGT:
3569      case ICmpInst::ICMP_SGE:
3570        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3571        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3572        if (LHS->getType() == U->getType()) {
3573          const SCEV *LS = getSCEV(LHS);
3574          const SCEV *RS = getSCEV(RHS);
3575          const SCEV *LA = getSCEV(U->getOperand(1));
3576          const SCEV *RA = getSCEV(U->getOperand(2));
3577          const SCEV *LDiff = getMinusSCEV(LA, LS);
3578          const SCEV *RDiff = getMinusSCEV(RA, RS);
3579          if (LDiff == RDiff)
3580            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3581          LDiff = getMinusSCEV(LA, RS);
3582          RDiff = getMinusSCEV(RA, LS);
3583          if (LDiff == RDiff)
3584            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3585        }
3586        break;
3587      case ICmpInst::ICMP_ULT:
3588      case ICmpInst::ICMP_ULE:
3589        std::swap(LHS, RHS);
3590        // fall through
3591      case ICmpInst::ICMP_UGT:
3592      case ICmpInst::ICMP_UGE:
3593        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3594        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3595        if (LHS->getType() == U->getType()) {
3596          const SCEV *LS = getSCEV(LHS);
3597          const SCEV *RS = getSCEV(RHS);
3598          const SCEV *LA = getSCEV(U->getOperand(1));
3599          const SCEV *RA = getSCEV(U->getOperand(2));
3600          const SCEV *LDiff = getMinusSCEV(LA, LS);
3601          const SCEV *RDiff = getMinusSCEV(RA, RS);
3602          if (LDiff == RDiff)
3603            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3604          LDiff = getMinusSCEV(LA, RS);
3605          RDiff = getMinusSCEV(RA, LS);
3606          if (LDiff == RDiff)
3607            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3608        }
3609        break;
3610      case ICmpInst::ICMP_NE:
3611        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3612        if (LHS->getType() == U->getType() &&
3613            isa<ConstantInt>(RHS) &&
3614            cast<ConstantInt>(RHS)->isZero()) {
3615          const SCEV *One = getConstant(LHS->getType(), 1);
3616          const SCEV *LS = getSCEV(LHS);
3617          const SCEV *LA = getSCEV(U->getOperand(1));
3618          const SCEV *RA = getSCEV(U->getOperand(2));
3619          const SCEV *LDiff = getMinusSCEV(LA, LS);
3620          const SCEV *RDiff = getMinusSCEV(RA, One);
3621          if (LDiff == RDiff)
3622            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3623        }
3624        break;
3625      case ICmpInst::ICMP_EQ:
3626        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3627        if (LHS->getType() == U->getType() &&
3628            isa<ConstantInt>(RHS) &&
3629            cast<ConstantInt>(RHS)->isZero()) {
3630          const SCEV *One = getConstant(LHS->getType(), 1);
3631          const SCEV *LS = getSCEV(LHS);
3632          const SCEV *LA = getSCEV(U->getOperand(1));
3633          const SCEV *RA = getSCEV(U->getOperand(2));
3634          const SCEV *LDiff = getMinusSCEV(LA, One);
3635          const SCEV *RDiff = getMinusSCEV(RA, LS);
3636          if (LDiff == RDiff)
3637            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3638        }
3639        break;
3640      default:
3641        break;
3642      }
3643    }
3644
3645  default: // We cannot analyze this expression.
3646    break;
3647  }
3648
3649  return getUnknown(V);
3650}
3651
3652
3653
3654//===----------------------------------------------------------------------===//
3655//                   Iteration Count Computation Code
3656//
3657
3658/// getBackedgeTakenCount - If the specified loop has a predictable
3659/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3660/// object. The backedge-taken count is the number of times the loop header
3661/// will be branched to from within the loop. This is one less than the
3662/// trip count of the loop, since it doesn't count the first iteration,
3663/// when the header is branched to from outside the loop.
3664///
3665/// Note that it is not valid to call this method on a loop without a
3666/// loop-invariant backedge-taken count (see
3667/// hasLoopInvariantBackedgeTakenCount).
3668///
3669const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3670  return getBackedgeTakenInfo(L).Exact;
3671}
3672
3673/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3674/// return the least SCEV value that is known never to be less than the
3675/// actual backedge taken count.
3676const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3677  return getBackedgeTakenInfo(L).Max;
3678}
3679
3680/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3681/// onto the given Worklist.
3682static void
3683PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3684  BasicBlock *Header = L->getHeader();
3685
3686  // Push all Loop-header PHIs onto the Worklist stack.
3687  for (BasicBlock::iterator I = Header->begin();
3688       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3689    Worklist.push_back(PN);
3690}
3691
3692const ScalarEvolution::BackedgeTakenInfo &
3693ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3694  // Initially insert a CouldNotCompute for this loop. If the insertion
3695  // succeeds, proceed to actually compute a backedge-taken count and
3696  // update the value. The temporary CouldNotCompute value tells SCEV
3697  // code elsewhere that it shouldn't attempt to request a new
3698  // backedge-taken count, which could result in infinite recursion.
3699  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3700    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3701  if (Pair.second) {
3702    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3703    if (BECount.Exact != getCouldNotCompute()) {
3704      assert(BECount.Exact->isLoopInvariant(L) &&
3705             BECount.Max->isLoopInvariant(L) &&
3706             "Computed backedge-taken count isn't loop invariant for loop!");
3707      ++NumTripCountsComputed;
3708
3709      // Update the value in the map.
3710      Pair.first->second = BECount;
3711    } else {
3712      if (BECount.Max != getCouldNotCompute())
3713        // Update the value in the map.
3714        Pair.first->second = BECount;
3715      if (isa<PHINode>(L->getHeader()->begin()))
3716        // Only count loops that have phi nodes as not being computable.
3717        ++NumTripCountsNotComputed;
3718    }
3719
3720    // Now that we know more about the trip count for this loop, forget any
3721    // existing SCEV values for PHI nodes in this loop since they are only
3722    // conservative estimates made without the benefit of trip count
3723    // information. This is similar to the code in forgetLoop, except that
3724    // it handles SCEVUnknown PHI nodes specially.
3725    if (BECount.hasAnyInfo()) {
3726      SmallVector<Instruction *, 16> Worklist;
3727      PushLoopPHIs(L, Worklist);
3728
3729      SmallPtrSet<Instruction *, 8> Visited;
3730      while (!Worklist.empty()) {
3731        Instruction *I = Worklist.pop_back_val();
3732        if (!Visited.insert(I)) continue;
3733
3734        ValueExprMapType::iterator It =
3735          ValueExprMap.find(static_cast<Value *>(I));
3736        if (It != ValueExprMap.end()) {
3737          // SCEVUnknown for a PHI either means that it has an unrecognized
3738          // structure, or it's a PHI that's in the progress of being computed
3739          // by createNodeForPHI.  In the former case, additional loop trip
3740          // count information isn't going to change anything. In the later
3741          // case, createNodeForPHI will perform the necessary updates on its
3742          // own when it gets to that point.
3743          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3744            ValuesAtScopes.erase(It->second);
3745            ValueExprMap.erase(It);
3746          }
3747          if (PHINode *PN = dyn_cast<PHINode>(I))
3748            ConstantEvolutionLoopExitValue.erase(PN);
3749        }
3750
3751        PushDefUseChildren(I, Worklist);
3752      }
3753    }
3754  }
3755  return Pair.first->second;
3756}
3757
3758/// forgetLoop - This method should be called by the client when it has
3759/// changed a loop in a way that may effect ScalarEvolution's ability to
3760/// compute a trip count, or if the loop is deleted.
3761void ScalarEvolution::forgetLoop(const Loop *L) {
3762  // Drop any stored trip count value.
3763  BackedgeTakenCounts.erase(L);
3764
3765  // Drop information about expressions based on loop-header PHIs.
3766  SmallVector<Instruction *, 16> Worklist;
3767  PushLoopPHIs(L, Worklist);
3768
3769  SmallPtrSet<Instruction *, 8> Visited;
3770  while (!Worklist.empty()) {
3771    Instruction *I = Worklist.pop_back_val();
3772    if (!Visited.insert(I)) continue;
3773
3774    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3775    if (It != ValueExprMap.end()) {
3776      ValuesAtScopes.erase(It->second);
3777      ValueExprMap.erase(It);
3778      if (PHINode *PN = dyn_cast<PHINode>(I))
3779        ConstantEvolutionLoopExitValue.erase(PN);
3780    }
3781
3782    PushDefUseChildren(I, Worklist);
3783  }
3784}
3785
3786/// forgetValue - This method should be called by the client when it has
3787/// changed a value in a way that may effect its value, or which may
3788/// disconnect it from a def-use chain linking it to a loop.
3789void ScalarEvolution::forgetValue(Value *V) {
3790  Instruction *I = dyn_cast<Instruction>(V);
3791  if (!I) return;
3792
3793  // Drop information about expressions based on loop-header PHIs.
3794  SmallVector<Instruction *, 16> Worklist;
3795  Worklist.push_back(I);
3796
3797  SmallPtrSet<Instruction *, 8> Visited;
3798  while (!Worklist.empty()) {
3799    I = Worklist.pop_back_val();
3800    if (!Visited.insert(I)) continue;
3801
3802    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3803    if (It != ValueExprMap.end()) {
3804      ValuesAtScopes.erase(It->second);
3805      ValueExprMap.erase(It);
3806      if (PHINode *PN = dyn_cast<PHINode>(I))
3807        ConstantEvolutionLoopExitValue.erase(PN);
3808    }
3809
3810    PushDefUseChildren(I, Worklist);
3811  }
3812}
3813
3814/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3815/// of the specified loop will execute.
3816ScalarEvolution::BackedgeTakenInfo
3817ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3818  SmallVector<BasicBlock *, 8> ExitingBlocks;
3819  L->getExitingBlocks(ExitingBlocks);
3820
3821  // Examine all exits and pick the most conservative values.
3822  const SCEV *BECount = getCouldNotCompute();
3823  const SCEV *MaxBECount = getCouldNotCompute();
3824  bool CouldNotComputeBECount = false;
3825  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3826    BackedgeTakenInfo NewBTI =
3827      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3828
3829    if (NewBTI.Exact == getCouldNotCompute()) {
3830      // We couldn't compute an exact value for this exit, so
3831      // we won't be able to compute an exact value for the loop.
3832      CouldNotComputeBECount = true;
3833      BECount = getCouldNotCompute();
3834    } else if (!CouldNotComputeBECount) {
3835      if (BECount == getCouldNotCompute())
3836        BECount = NewBTI.Exact;
3837      else
3838        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3839    }
3840    if (MaxBECount == getCouldNotCompute())
3841      MaxBECount = NewBTI.Max;
3842    else if (NewBTI.Max != getCouldNotCompute())
3843      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3844  }
3845
3846  return BackedgeTakenInfo(BECount, MaxBECount);
3847}
3848
3849/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3850/// of the specified loop will execute if it exits via the specified block.
3851ScalarEvolution::BackedgeTakenInfo
3852ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3853                                                   BasicBlock *ExitingBlock) {
3854
3855  // Okay, we've chosen an exiting block.  See what condition causes us to
3856  // exit at this block.
3857  //
3858  // FIXME: we should be able to handle switch instructions (with a single exit)
3859  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3860  if (ExitBr == 0) return getCouldNotCompute();
3861  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3862
3863  // At this point, we know we have a conditional branch that determines whether
3864  // the loop is exited.  However, we don't know if the branch is executed each
3865  // time through the loop.  If not, then the execution count of the branch will
3866  // not be equal to the trip count of the loop.
3867  //
3868  // Currently we check for this by checking to see if the Exit branch goes to
3869  // the loop header.  If so, we know it will always execute the same number of
3870  // times as the loop.  We also handle the case where the exit block *is* the
3871  // loop header.  This is common for un-rotated loops.
3872  //
3873  // If both of those tests fail, walk up the unique predecessor chain to the
3874  // header, stopping if there is an edge that doesn't exit the loop. If the
3875  // header is reached, the execution count of the branch will be equal to the
3876  // trip count of the loop.
3877  //
3878  //  More extensive analysis could be done to handle more cases here.
3879  //
3880  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3881      ExitBr->getSuccessor(1) != L->getHeader() &&
3882      ExitBr->getParent() != L->getHeader()) {
3883    // The simple checks failed, try climbing the unique predecessor chain
3884    // up to the header.
3885    bool Ok = false;
3886    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3887      BasicBlock *Pred = BB->getUniquePredecessor();
3888      if (!Pred)
3889        return getCouldNotCompute();
3890      TerminatorInst *PredTerm = Pred->getTerminator();
3891      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3892        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3893        if (PredSucc == BB)
3894          continue;
3895        // If the predecessor has a successor that isn't BB and isn't
3896        // outside the loop, assume the worst.
3897        if (L->contains(PredSucc))
3898          return getCouldNotCompute();
3899      }
3900      if (Pred == L->getHeader()) {
3901        Ok = true;
3902        break;
3903      }
3904      BB = Pred;
3905    }
3906    if (!Ok)
3907      return getCouldNotCompute();
3908  }
3909
3910  // Proceed to the next level to examine the exit condition expression.
3911  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3912                                               ExitBr->getSuccessor(0),
3913                                               ExitBr->getSuccessor(1));
3914}
3915
3916/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3917/// backedge of the specified loop will execute if its exit condition
3918/// were a conditional branch of ExitCond, TBB, and FBB.
3919ScalarEvolution::BackedgeTakenInfo
3920ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3921                                                       Value *ExitCond,
3922                                                       BasicBlock *TBB,
3923                                                       BasicBlock *FBB) {
3924  // Check if the controlling expression for this loop is an And or Or.
3925  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3926    if (BO->getOpcode() == Instruction::And) {
3927      // Recurse on the operands of the and.
3928      BackedgeTakenInfo BTI0 =
3929        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3930      BackedgeTakenInfo BTI1 =
3931        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3932      const SCEV *BECount = getCouldNotCompute();
3933      const SCEV *MaxBECount = getCouldNotCompute();
3934      if (L->contains(TBB)) {
3935        // Both conditions must be true for the loop to continue executing.
3936        // Choose the less conservative count.
3937        if (BTI0.Exact == getCouldNotCompute() ||
3938            BTI1.Exact == getCouldNotCompute())
3939          BECount = getCouldNotCompute();
3940        else
3941          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3942        if (BTI0.Max == getCouldNotCompute())
3943          MaxBECount = BTI1.Max;
3944        else if (BTI1.Max == getCouldNotCompute())
3945          MaxBECount = BTI0.Max;
3946        else
3947          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3948      } else {
3949        // Both conditions must be true at the same time for the loop to exit.
3950        // For now, be conservative.
3951        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3952        if (BTI0.Max == BTI1.Max)
3953          MaxBECount = BTI0.Max;
3954        if (BTI0.Exact == BTI1.Exact)
3955          BECount = BTI0.Exact;
3956      }
3957
3958      return BackedgeTakenInfo(BECount, MaxBECount);
3959    }
3960    if (BO->getOpcode() == Instruction::Or) {
3961      // Recurse on the operands of the or.
3962      BackedgeTakenInfo BTI0 =
3963        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3964      BackedgeTakenInfo BTI1 =
3965        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3966      const SCEV *BECount = getCouldNotCompute();
3967      const SCEV *MaxBECount = getCouldNotCompute();
3968      if (L->contains(FBB)) {
3969        // Both conditions must be false for the loop to continue executing.
3970        // Choose the less conservative count.
3971        if (BTI0.Exact == getCouldNotCompute() ||
3972            BTI1.Exact == getCouldNotCompute())
3973          BECount = getCouldNotCompute();
3974        else
3975          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3976        if (BTI0.Max == getCouldNotCompute())
3977          MaxBECount = BTI1.Max;
3978        else if (BTI1.Max == getCouldNotCompute())
3979          MaxBECount = BTI0.Max;
3980        else
3981          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3982      } else {
3983        // Both conditions must be false at the same time for the loop to exit.
3984        // For now, be conservative.
3985        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3986        if (BTI0.Max == BTI1.Max)
3987          MaxBECount = BTI0.Max;
3988        if (BTI0.Exact == BTI1.Exact)
3989          BECount = BTI0.Exact;
3990      }
3991
3992      return BackedgeTakenInfo(BECount, MaxBECount);
3993    }
3994  }
3995
3996  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3997  // Proceed to the next level to examine the icmp.
3998  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3999    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
4000
4001  // Check for a constant condition. These are normally stripped out by
4002  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4003  // preserve the CFG and is temporarily leaving constant conditions
4004  // in place.
4005  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4006    if (L->contains(FBB) == !CI->getZExtValue())
4007      // The backedge is always taken.
4008      return getCouldNotCompute();
4009    else
4010      // The backedge is never taken.
4011      return getConstant(CI->getType(), 0);
4012  }
4013
4014  // If it's not an integer or pointer comparison then compute it the hard way.
4015  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4016}
4017
4018/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4019/// backedge of the specified loop will execute if its exit condition
4020/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4021ScalarEvolution::BackedgeTakenInfo
4022ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4023                                                           ICmpInst *ExitCond,
4024                                                           BasicBlock *TBB,
4025                                                           BasicBlock *FBB) {
4026
4027  // If the condition was exit on true, convert the condition to exit on false
4028  ICmpInst::Predicate Cond;
4029  if (!L->contains(FBB))
4030    Cond = ExitCond->getPredicate();
4031  else
4032    Cond = ExitCond->getInversePredicate();
4033
4034  // Handle common loops like: for (X = "string"; *X; ++X)
4035  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4036    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4037      BackedgeTakenInfo ItCnt =
4038        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4039      if (ItCnt.hasAnyInfo())
4040        return ItCnt;
4041    }
4042
4043  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4044  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4045
4046  // Try to evaluate any dependencies out of the loop.
4047  LHS = getSCEVAtScope(LHS, L);
4048  RHS = getSCEVAtScope(RHS, L);
4049
4050  // At this point, we would like to compute how many iterations of the
4051  // loop the predicate will return true for these inputs.
4052  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4053    // If there is a loop-invariant, force it into the RHS.
4054    std::swap(LHS, RHS);
4055    Cond = ICmpInst::getSwappedPredicate(Cond);
4056  }
4057
4058  // Simplify the operands before analyzing them.
4059  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4060
4061  // If we have a comparison of a chrec against a constant, try to use value
4062  // ranges to answer this query.
4063  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4064    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4065      if (AddRec->getLoop() == L) {
4066        // Form the constant range.
4067        ConstantRange CompRange(
4068            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4069
4070        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4071        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4072      }
4073
4074  switch (Cond) {
4075  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4076    // Convert to: while (X-Y != 0)
4077    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4078    if (BTI.hasAnyInfo()) return BTI;
4079    break;
4080  }
4081  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4082    // Convert to: while (X-Y == 0)
4083    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4084    if (BTI.hasAnyInfo()) return BTI;
4085    break;
4086  }
4087  case ICmpInst::ICMP_SLT: {
4088    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4089    if (BTI.hasAnyInfo()) return BTI;
4090    break;
4091  }
4092  case ICmpInst::ICMP_SGT: {
4093    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4094                                             getNotSCEV(RHS), L, true);
4095    if (BTI.hasAnyInfo()) return BTI;
4096    break;
4097  }
4098  case ICmpInst::ICMP_ULT: {
4099    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4100    if (BTI.hasAnyInfo()) return BTI;
4101    break;
4102  }
4103  case ICmpInst::ICMP_UGT: {
4104    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4105                                             getNotSCEV(RHS), L, false);
4106    if (BTI.hasAnyInfo()) return BTI;
4107    break;
4108  }
4109  default:
4110#if 0
4111    dbgs() << "ComputeBackedgeTakenCount ";
4112    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4113      dbgs() << "[unsigned] ";
4114    dbgs() << *LHS << "   "
4115         << Instruction::getOpcodeName(Instruction::ICmp)
4116         << "   " << *RHS << "\n";
4117#endif
4118    break;
4119  }
4120  return
4121    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4122}
4123
4124static ConstantInt *
4125EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4126                                ScalarEvolution &SE) {
4127  const SCEV *InVal = SE.getConstant(C);
4128  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4129  assert(isa<SCEVConstant>(Val) &&
4130         "Evaluation of SCEV at constant didn't fold correctly?");
4131  return cast<SCEVConstant>(Val)->getValue();
4132}
4133
4134/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4135/// and a GEP expression (missing the pointer index) indexing into it, return
4136/// the addressed element of the initializer or null if the index expression is
4137/// invalid.
4138static Constant *
4139GetAddressedElementFromGlobal(GlobalVariable *GV,
4140                              const std::vector<ConstantInt*> &Indices) {
4141  Constant *Init = GV->getInitializer();
4142  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4143    uint64_t Idx = Indices[i]->getZExtValue();
4144    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4145      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4146      Init = cast<Constant>(CS->getOperand(Idx));
4147    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4148      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4149      Init = cast<Constant>(CA->getOperand(Idx));
4150    } else if (isa<ConstantAggregateZero>(Init)) {
4151      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4152        assert(Idx < STy->getNumElements() && "Bad struct index!");
4153        Init = Constant::getNullValue(STy->getElementType(Idx));
4154      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4155        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4156        Init = Constant::getNullValue(ATy->getElementType());
4157      } else {
4158        llvm_unreachable("Unknown constant aggregate type!");
4159      }
4160      return 0;
4161    } else {
4162      return 0; // Unknown initializer type
4163    }
4164  }
4165  return Init;
4166}
4167
4168/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4169/// 'icmp op load X, cst', try to see if we can compute the backedge
4170/// execution count.
4171ScalarEvolution::BackedgeTakenInfo
4172ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4173                                                LoadInst *LI,
4174                                                Constant *RHS,
4175                                                const Loop *L,
4176                                                ICmpInst::Predicate predicate) {
4177  if (LI->isVolatile()) return getCouldNotCompute();
4178
4179  // Check to see if the loaded pointer is a getelementptr of a global.
4180  // TODO: Use SCEV instead of manually grubbing with GEPs.
4181  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4182  if (!GEP) return getCouldNotCompute();
4183
4184  // Make sure that it is really a constant global we are gepping, with an
4185  // initializer, and make sure the first IDX is really 0.
4186  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4187  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4188      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4189      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4190    return getCouldNotCompute();
4191
4192  // Okay, we allow one non-constant index into the GEP instruction.
4193  Value *VarIdx = 0;
4194  std::vector<ConstantInt*> Indexes;
4195  unsigned VarIdxNum = 0;
4196  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4197    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4198      Indexes.push_back(CI);
4199    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4200      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4201      VarIdx = GEP->getOperand(i);
4202      VarIdxNum = i-2;
4203      Indexes.push_back(0);
4204    }
4205
4206  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4207  // Check to see if X is a loop variant variable value now.
4208  const SCEV *Idx = getSCEV(VarIdx);
4209  Idx = getSCEVAtScope(Idx, L);
4210
4211  // We can only recognize very limited forms of loop index expressions, in
4212  // particular, only affine AddRec's like {C1,+,C2}.
4213  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4214  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4215      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4216      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4217    return getCouldNotCompute();
4218
4219  unsigned MaxSteps = MaxBruteForceIterations;
4220  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4221    ConstantInt *ItCst = ConstantInt::get(
4222                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4223    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4224
4225    // Form the GEP offset.
4226    Indexes[VarIdxNum] = Val;
4227
4228    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4229    if (Result == 0) break;  // Cannot compute!
4230
4231    // Evaluate the condition for this iteration.
4232    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4233    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4234    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4235#if 0
4236      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4237             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4238             << "***\n";
4239#endif
4240      ++NumArrayLenItCounts;
4241      return getConstant(ItCst);   // Found terminating iteration!
4242    }
4243  }
4244  return getCouldNotCompute();
4245}
4246
4247
4248/// CanConstantFold - Return true if we can constant fold an instruction of the
4249/// specified type, assuming that all operands were constants.
4250static bool CanConstantFold(const Instruction *I) {
4251  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4252      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4253    return true;
4254
4255  if (const CallInst *CI = dyn_cast<CallInst>(I))
4256    if (const Function *F = CI->getCalledFunction())
4257      return canConstantFoldCallTo(F);
4258  return false;
4259}
4260
4261/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4262/// in the loop that V is derived from.  We allow arbitrary operations along the
4263/// way, but the operands of an operation must either be constants or a value
4264/// derived from a constant PHI.  If this expression does not fit with these
4265/// constraints, return null.
4266static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4267  // If this is not an instruction, or if this is an instruction outside of the
4268  // loop, it can't be derived from a loop PHI.
4269  Instruction *I = dyn_cast<Instruction>(V);
4270  if (I == 0 || !L->contains(I)) return 0;
4271
4272  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4273    if (L->getHeader() == I->getParent())
4274      return PN;
4275    else
4276      // We don't currently keep track of the control flow needed to evaluate
4277      // PHIs, so we cannot handle PHIs inside of loops.
4278      return 0;
4279  }
4280
4281  // If we won't be able to constant fold this expression even if the operands
4282  // are constants, return early.
4283  if (!CanConstantFold(I)) return 0;
4284
4285  // Otherwise, we can evaluate this instruction if all of its operands are
4286  // constant or derived from a PHI node themselves.
4287  PHINode *PHI = 0;
4288  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4289    if (!isa<Constant>(I->getOperand(Op))) {
4290      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4291      if (P == 0) return 0;  // Not evolving from PHI
4292      if (PHI == 0)
4293        PHI = P;
4294      else if (PHI != P)
4295        return 0;  // Evolving from multiple different PHIs.
4296    }
4297
4298  // This is a expression evolving from a constant PHI!
4299  return PHI;
4300}
4301
4302/// EvaluateExpression - Given an expression that passes the
4303/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4304/// in the loop has the value PHIVal.  If we can't fold this expression for some
4305/// reason, return null.
4306static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4307                                    const TargetData *TD) {
4308  if (isa<PHINode>(V)) return PHIVal;
4309  if (Constant *C = dyn_cast<Constant>(V)) return C;
4310  Instruction *I = cast<Instruction>(V);
4311
4312  std::vector<Constant*> Operands(I->getNumOperands());
4313
4314  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4315    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4316    if (Operands[i] == 0) return 0;
4317  }
4318
4319  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4320    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4321                                           Operands[1], TD);
4322  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4323                                  &Operands[0], Operands.size(), TD);
4324}
4325
4326/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4327/// in the header of its containing loop, we know the loop executes a
4328/// constant number of times, and the PHI node is just a recurrence
4329/// involving constants, fold it.
4330Constant *
4331ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4332                                                   const APInt &BEs,
4333                                                   const Loop *L) {
4334  std::map<PHINode*, Constant*>::const_iterator I =
4335    ConstantEvolutionLoopExitValue.find(PN);
4336  if (I != ConstantEvolutionLoopExitValue.end())
4337    return I->second;
4338
4339  if (BEs.ugt(MaxBruteForceIterations))
4340    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4341
4342  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4343
4344  // Since the loop is canonicalized, the PHI node must have two entries.  One
4345  // entry must be a constant (coming in from outside of the loop), and the
4346  // second must be derived from the same PHI.
4347  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4348  Constant *StartCST =
4349    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4350  if (StartCST == 0)
4351    return RetVal = 0;  // Must be a constant.
4352
4353  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4354  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4355      !isa<Constant>(BEValue))
4356    return RetVal = 0;  // Not derived from same PHI.
4357
4358  // Execute the loop symbolically to determine the exit value.
4359  if (BEs.getActiveBits() >= 32)
4360    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4361
4362  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4363  unsigned IterationNum = 0;
4364  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4365    if (IterationNum == NumIterations)
4366      return RetVal = PHIVal;  // Got exit value!
4367
4368    // Compute the value of the PHI node for the next iteration.
4369    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4370    if (NextPHI == PHIVal)
4371      return RetVal = NextPHI;  // Stopped evolving!
4372    if (NextPHI == 0)
4373      return 0;        // Couldn't evaluate!
4374    PHIVal = NextPHI;
4375  }
4376}
4377
4378/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4379/// constant number of times (the condition evolves only from constants),
4380/// try to evaluate a few iterations of the loop until we get the exit
4381/// condition gets a value of ExitWhen (true or false).  If we cannot
4382/// evaluate the trip count of the loop, return getCouldNotCompute().
4383const SCEV *
4384ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4385                                                       Value *Cond,
4386                                                       bool ExitWhen) {
4387  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4388  if (PN == 0) return getCouldNotCompute();
4389
4390  // If the loop is canonicalized, the PHI will have exactly two entries.
4391  // That's the only form we support here.
4392  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4393
4394  // One entry must be a constant (coming in from outside of the loop), and the
4395  // second must be derived from the same PHI.
4396  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4397  Constant *StartCST =
4398    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4399  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4400
4401  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4402  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4403      !isa<Constant>(BEValue))
4404    return getCouldNotCompute();  // Not derived from same PHI.
4405
4406  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4407  // the loop symbolically to determine when the condition gets a value of
4408  // "ExitWhen".
4409  unsigned IterationNum = 0;
4410  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4411  for (Constant *PHIVal = StartCST;
4412       IterationNum != MaxIterations; ++IterationNum) {
4413    ConstantInt *CondVal =
4414      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4415
4416    // Couldn't symbolically evaluate.
4417    if (!CondVal) return getCouldNotCompute();
4418
4419    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4420      ++NumBruteForceTripCountsComputed;
4421      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4422    }
4423
4424    // Compute the value of the PHI node for the next iteration.
4425    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4426    if (NextPHI == 0 || NextPHI == PHIVal)
4427      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4428    PHIVal = NextPHI;
4429  }
4430
4431  // Too many iterations were needed to evaluate.
4432  return getCouldNotCompute();
4433}
4434
4435/// getSCEVAtScope - Return a SCEV expression for the specified value
4436/// at the specified scope in the program.  The L value specifies a loop
4437/// nest to evaluate the expression at, where null is the top-level or a
4438/// specified loop is immediately inside of the loop.
4439///
4440/// This method can be used to compute the exit value for a variable defined
4441/// in a loop by querying what the value will hold in the parent loop.
4442///
4443/// In the case that a relevant loop exit value cannot be computed, the
4444/// original value V is returned.
4445const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4446  // Check to see if we've folded this expression at this loop before.
4447  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4448  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4449    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4450  if (!Pair.second)
4451    return Pair.first->second ? Pair.first->second : V;
4452
4453  // Otherwise compute it.
4454  const SCEV *C = computeSCEVAtScope(V, L);
4455  ValuesAtScopes[V][L] = C;
4456  return C;
4457}
4458
4459const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4460  if (isa<SCEVConstant>(V)) return V;
4461
4462  // If this instruction is evolved from a constant-evolving PHI, compute the
4463  // exit value from the loop without using SCEVs.
4464  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4465    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4466      const Loop *LI = (*this->LI)[I->getParent()];
4467      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4468        if (PHINode *PN = dyn_cast<PHINode>(I))
4469          if (PN->getParent() == LI->getHeader()) {
4470            // Okay, there is no closed form solution for the PHI node.  Check
4471            // to see if the loop that contains it has a known backedge-taken
4472            // count.  If so, we may be able to force computation of the exit
4473            // value.
4474            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4475            if (const SCEVConstant *BTCC =
4476                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4477              // Okay, we know how many times the containing loop executes.  If
4478              // this is a constant evolving PHI node, get the final value at
4479              // the specified iteration number.
4480              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4481                                                   BTCC->getValue()->getValue(),
4482                                                               LI);
4483              if (RV) return getSCEV(RV);
4484            }
4485          }
4486
4487      // Okay, this is an expression that we cannot symbolically evaluate
4488      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4489      // the arguments into constants, and if so, try to constant propagate the
4490      // result.  This is particularly useful for computing loop exit values.
4491      if (CanConstantFold(I)) {
4492        SmallVector<Constant *, 4> Operands;
4493        bool MadeImprovement = false;
4494        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4495          Value *Op = I->getOperand(i);
4496          if (Constant *C = dyn_cast<Constant>(Op)) {
4497            Operands.push_back(C);
4498            continue;
4499          }
4500
4501          // If any of the operands is non-constant and if they are
4502          // non-integer and non-pointer, don't even try to analyze them
4503          // with scev techniques.
4504          if (!isSCEVable(Op->getType()))
4505            return V;
4506
4507          const SCEV *OrigV = getSCEV(Op);
4508          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4509          MadeImprovement |= OrigV != OpV;
4510
4511          Constant *C = 0;
4512          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4513            C = SC->getValue();
4514          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4515            C = dyn_cast<Constant>(SU->getValue());
4516          if (!C) return V;
4517          if (C->getType() != Op->getType())
4518            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4519                                                              Op->getType(),
4520                                                              false),
4521                                      C, Op->getType());
4522          Operands.push_back(C);
4523        }
4524
4525        // Check to see if getSCEVAtScope actually made an improvement.
4526        if (MadeImprovement) {
4527          Constant *C = 0;
4528          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4529            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4530                                                Operands[0], Operands[1], TD);
4531          else
4532            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4533                                         &Operands[0], Operands.size(), TD);
4534          if (!C) return V;
4535          return getSCEV(C);
4536        }
4537      }
4538    }
4539
4540    // This is some other type of SCEVUnknown, just return it.
4541    return V;
4542  }
4543
4544  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4545    // Avoid performing the look-up in the common case where the specified
4546    // expression has no loop-variant portions.
4547    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4548      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4549      if (OpAtScope != Comm->getOperand(i)) {
4550        // Okay, at least one of these operands is loop variant but might be
4551        // foldable.  Build a new instance of the folded commutative expression.
4552        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4553                                            Comm->op_begin()+i);
4554        NewOps.push_back(OpAtScope);
4555
4556        for (++i; i != e; ++i) {
4557          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4558          NewOps.push_back(OpAtScope);
4559        }
4560        if (isa<SCEVAddExpr>(Comm))
4561          return getAddExpr(NewOps);
4562        if (isa<SCEVMulExpr>(Comm))
4563          return getMulExpr(NewOps);
4564        if (isa<SCEVSMaxExpr>(Comm))
4565          return getSMaxExpr(NewOps);
4566        if (isa<SCEVUMaxExpr>(Comm))
4567          return getUMaxExpr(NewOps);
4568        llvm_unreachable("Unknown commutative SCEV type!");
4569      }
4570    }
4571    // If we got here, all operands are loop invariant.
4572    return Comm;
4573  }
4574
4575  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4576    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4577    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4578    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4579      return Div;   // must be loop invariant
4580    return getUDivExpr(LHS, RHS);
4581  }
4582
4583  // If this is a loop recurrence for a loop that does not contain L, then we
4584  // are dealing with the final value computed by the loop.
4585  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4586    // First, attempt to evaluate each operand.
4587    // Avoid performing the look-up in the common case where the specified
4588    // expression has no loop-variant portions.
4589    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4590      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4591      if (OpAtScope == AddRec->getOperand(i))
4592        continue;
4593
4594      // Okay, at least one of these operands is loop variant but might be
4595      // foldable.  Build a new instance of the folded commutative expression.
4596      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4597                                          AddRec->op_begin()+i);
4598      NewOps.push_back(OpAtScope);
4599      for (++i; i != e; ++i)
4600        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4601
4602      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4603      break;
4604    }
4605
4606    // If the scope is outside the addrec's loop, evaluate it by using the
4607    // loop exit value of the addrec.
4608    if (!AddRec->getLoop()->contains(L)) {
4609      // To evaluate this recurrence, we need to know how many times the AddRec
4610      // loop iterates.  Compute this now.
4611      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4612      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4613
4614      // Then, evaluate the AddRec.
4615      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4616    }
4617
4618    return AddRec;
4619  }
4620
4621  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4622    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4623    if (Op == Cast->getOperand())
4624      return Cast;  // must be loop invariant
4625    return getZeroExtendExpr(Op, Cast->getType());
4626  }
4627
4628  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4629    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4630    if (Op == Cast->getOperand())
4631      return Cast;  // must be loop invariant
4632    return getSignExtendExpr(Op, Cast->getType());
4633  }
4634
4635  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4636    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4637    if (Op == Cast->getOperand())
4638      return Cast;  // must be loop invariant
4639    return getTruncateExpr(Op, Cast->getType());
4640  }
4641
4642  llvm_unreachable("Unknown SCEV type!");
4643  return 0;
4644}
4645
4646/// getSCEVAtScope - This is a convenience function which does
4647/// getSCEVAtScope(getSCEV(V), L).
4648const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4649  return getSCEVAtScope(getSCEV(V), L);
4650}
4651
4652/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4653/// following equation:
4654///
4655///     A * X = B (mod N)
4656///
4657/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4658/// A and B isn't important.
4659///
4660/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4661static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4662                                               ScalarEvolution &SE) {
4663  uint32_t BW = A.getBitWidth();
4664  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4665  assert(A != 0 && "A must be non-zero.");
4666
4667  // 1. D = gcd(A, N)
4668  //
4669  // The gcd of A and N may have only one prime factor: 2. The number of
4670  // trailing zeros in A is its multiplicity
4671  uint32_t Mult2 = A.countTrailingZeros();
4672  // D = 2^Mult2
4673
4674  // 2. Check if B is divisible by D.
4675  //
4676  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4677  // is not less than multiplicity of this prime factor for D.
4678  if (B.countTrailingZeros() < Mult2)
4679    return SE.getCouldNotCompute();
4680
4681  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4682  // modulo (N / D).
4683  //
4684  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4685  // bit width during computations.
4686  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4687  APInt Mod(BW + 1, 0);
4688  Mod.set(BW - Mult2);  // Mod = N / D
4689  APInt I = AD.multiplicativeInverse(Mod);
4690
4691  // 4. Compute the minimum unsigned root of the equation:
4692  // I * (B / D) mod (N / D)
4693  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4694
4695  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4696  // bits.
4697  return SE.getConstant(Result.trunc(BW));
4698}
4699
4700/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4701/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4702/// might be the same) or two SCEVCouldNotCompute objects.
4703///
4704static std::pair<const SCEV *,const SCEV *>
4705SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4706  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4707  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4708  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4709  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4710
4711  // We currently can only solve this if the coefficients are constants.
4712  if (!LC || !MC || !NC) {
4713    const SCEV *CNC = SE.getCouldNotCompute();
4714    return std::make_pair(CNC, CNC);
4715  }
4716
4717  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4718  const APInt &L = LC->getValue()->getValue();
4719  const APInt &M = MC->getValue()->getValue();
4720  const APInt &N = NC->getValue()->getValue();
4721  APInt Two(BitWidth, 2);
4722  APInt Four(BitWidth, 4);
4723
4724  {
4725    using namespace APIntOps;
4726    const APInt& C = L;
4727    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4728    // The B coefficient is M-N/2
4729    APInt B(M);
4730    B -= sdiv(N,Two);
4731
4732    // The A coefficient is N/2
4733    APInt A(N.sdiv(Two));
4734
4735    // Compute the B^2-4ac term.
4736    APInt SqrtTerm(B);
4737    SqrtTerm *= B;
4738    SqrtTerm -= Four * (A * C);
4739
4740    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4741    // integer value or else APInt::sqrt() will assert.
4742    APInt SqrtVal(SqrtTerm.sqrt());
4743
4744    // Compute the two solutions for the quadratic formula.
4745    // The divisions must be performed as signed divisions.
4746    APInt NegB(-B);
4747    APInt TwoA( A << 1 );
4748    if (TwoA.isMinValue()) {
4749      const SCEV *CNC = SE.getCouldNotCompute();
4750      return std::make_pair(CNC, CNC);
4751    }
4752
4753    LLVMContext &Context = SE.getContext();
4754
4755    ConstantInt *Solution1 =
4756      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4757    ConstantInt *Solution2 =
4758      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4759
4760    return std::make_pair(SE.getConstant(Solution1),
4761                          SE.getConstant(Solution2));
4762    } // end APIntOps namespace
4763}
4764
4765/// HowFarToZero - Return the number of times a backedge comparing the specified
4766/// value to zero will execute.  If not computable, return CouldNotCompute.
4767ScalarEvolution::BackedgeTakenInfo
4768ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4769  // If the value is a constant
4770  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4771    // If the value is already zero, the branch will execute zero times.
4772    if (C->getValue()->isZero()) return C;
4773    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4774  }
4775
4776  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4777  if (!AddRec || AddRec->getLoop() != L)
4778    return getCouldNotCompute();
4779
4780  if (AddRec->isAffine()) {
4781    // If this is an affine expression, the execution count of this branch is
4782    // the minimum unsigned root of the following equation:
4783    //
4784    //     Start + Step*N = 0 (mod 2^BW)
4785    //
4786    // equivalent to:
4787    //
4788    //             Step*N = -Start (mod 2^BW)
4789    //
4790    // where BW is the common bit width of Start and Step.
4791
4792    // Get the initial value for the loop.
4793    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4794                                       L->getParentLoop());
4795    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4796                                      L->getParentLoop());
4797
4798    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4799      // For now we handle only constant steps.
4800
4801      // First, handle unitary steps.
4802      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4803        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4804      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4805        return Start;                           //    N = Start (as unsigned)
4806
4807      // Then, try to solve the above equation provided that Start is constant.
4808      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4809        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4810                                            -StartC->getValue()->getValue(),
4811                                            *this);
4812    }
4813  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4814    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4815    // the quadratic equation to solve it.
4816    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4817                                                                    *this);
4818    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4819    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4820    if (R1) {
4821#if 0
4822      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4823             << "  sol#2: " << *R2 << "\n";
4824#endif
4825      // Pick the smallest positive root value.
4826      if (ConstantInt *CB =
4827          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4828                                   R1->getValue(), R2->getValue()))) {
4829        if (CB->getZExtValue() == false)
4830          std::swap(R1, R2);   // R1 is the minimum root now.
4831
4832        // We can only use this value if the chrec ends up with an exact zero
4833        // value at this index.  When solving for "X*X != 5", for example, we
4834        // should not accept a root of 2.
4835        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4836        if (Val->isZero())
4837          return R1;  // We found a quadratic root!
4838      }
4839    }
4840  }
4841
4842  return getCouldNotCompute();
4843}
4844
4845/// HowFarToNonZero - Return the number of times a backedge checking the
4846/// specified value for nonzero will execute.  If not computable, return
4847/// CouldNotCompute
4848ScalarEvolution::BackedgeTakenInfo
4849ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4850  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4851  // handle them yet except for the trivial case.  This could be expanded in the
4852  // future as needed.
4853
4854  // If the value is a constant, check to see if it is known to be non-zero
4855  // already.  If so, the backedge will execute zero times.
4856  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4857    if (!C->getValue()->isNullValue())
4858      return getConstant(C->getType(), 0);
4859    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4860  }
4861
4862  // We could implement others, but I really doubt anyone writes loops like
4863  // this, and if they did, they would already be constant folded.
4864  return getCouldNotCompute();
4865}
4866
4867/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4868/// (which may not be an immediate predecessor) which has exactly one
4869/// successor from which BB is reachable, or null if no such block is
4870/// found.
4871///
4872std::pair<BasicBlock *, BasicBlock *>
4873ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4874  // If the block has a unique predecessor, then there is no path from the
4875  // predecessor to the block that does not go through the direct edge
4876  // from the predecessor to the block.
4877  if (BasicBlock *Pred = BB->getSinglePredecessor())
4878    return std::make_pair(Pred, BB);
4879
4880  // A loop's header is defined to be a block that dominates the loop.
4881  // If the header has a unique predecessor outside the loop, it must be
4882  // a block that has exactly one successor that can reach the loop.
4883  if (Loop *L = LI->getLoopFor(BB))
4884    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4885
4886  return std::pair<BasicBlock *, BasicBlock *>();
4887}
4888
4889/// HasSameValue - SCEV structural equivalence is usually sufficient for
4890/// testing whether two expressions are equal, however for the purposes of
4891/// looking for a condition guarding a loop, it can be useful to be a little
4892/// more general, since a front-end may have replicated the controlling
4893/// expression.
4894///
4895static bool HasSameValue(const SCEV *A, const SCEV *B) {
4896  // Quick check to see if they are the same SCEV.
4897  if (A == B) return true;
4898
4899  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4900  // two different instructions with the same value. Check for this case.
4901  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4902    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4903      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4904        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4905          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4906            return true;
4907
4908  // Otherwise assume they may have a different value.
4909  return false;
4910}
4911
4912/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4913/// predicate Pred. Return true iff any changes were made.
4914///
4915bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4916                                           const SCEV *&LHS, const SCEV *&RHS) {
4917  bool Changed = false;
4918
4919  // Canonicalize a constant to the right side.
4920  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4921    // Check for both operands constant.
4922    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4923      if (ConstantExpr::getICmp(Pred,
4924                                LHSC->getValue(),
4925                                RHSC->getValue())->isNullValue())
4926        goto trivially_false;
4927      else
4928        goto trivially_true;
4929    }
4930    // Otherwise swap the operands to put the constant on the right.
4931    std::swap(LHS, RHS);
4932    Pred = ICmpInst::getSwappedPredicate(Pred);
4933    Changed = true;
4934  }
4935
4936  // If we're comparing an addrec with a value which is loop-invariant in the
4937  // addrec's loop, put the addrec on the left. Also make a dominance check,
4938  // as both operands could be addrecs loop-invariant in each other's loop.
4939  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4940    const Loop *L = AR->getLoop();
4941    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4942      std::swap(LHS, RHS);
4943      Pred = ICmpInst::getSwappedPredicate(Pred);
4944      Changed = true;
4945    }
4946  }
4947
4948  // If there's a constant operand, canonicalize comparisons with boundary
4949  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4950  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4951    const APInt &RA = RC->getValue()->getValue();
4952    switch (Pred) {
4953    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4954    case ICmpInst::ICMP_EQ:
4955    case ICmpInst::ICMP_NE:
4956      break;
4957    case ICmpInst::ICMP_UGE:
4958      if ((RA - 1).isMinValue()) {
4959        Pred = ICmpInst::ICMP_NE;
4960        RHS = getConstant(RA - 1);
4961        Changed = true;
4962        break;
4963      }
4964      if (RA.isMaxValue()) {
4965        Pred = ICmpInst::ICMP_EQ;
4966        Changed = true;
4967        break;
4968      }
4969      if (RA.isMinValue()) goto trivially_true;
4970
4971      Pred = ICmpInst::ICMP_UGT;
4972      RHS = getConstant(RA - 1);
4973      Changed = true;
4974      break;
4975    case ICmpInst::ICMP_ULE:
4976      if ((RA + 1).isMaxValue()) {
4977        Pred = ICmpInst::ICMP_NE;
4978        RHS = getConstant(RA + 1);
4979        Changed = true;
4980        break;
4981      }
4982      if (RA.isMinValue()) {
4983        Pred = ICmpInst::ICMP_EQ;
4984        Changed = true;
4985        break;
4986      }
4987      if (RA.isMaxValue()) goto trivially_true;
4988
4989      Pred = ICmpInst::ICMP_ULT;
4990      RHS = getConstant(RA + 1);
4991      Changed = true;
4992      break;
4993    case ICmpInst::ICMP_SGE:
4994      if ((RA - 1).isMinSignedValue()) {
4995        Pred = ICmpInst::ICMP_NE;
4996        RHS = getConstant(RA - 1);
4997        Changed = true;
4998        break;
4999      }
5000      if (RA.isMaxSignedValue()) {
5001        Pred = ICmpInst::ICMP_EQ;
5002        Changed = true;
5003        break;
5004      }
5005      if (RA.isMinSignedValue()) goto trivially_true;
5006
5007      Pred = ICmpInst::ICMP_SGT;
5008      RHS = getConstant(RA - 1);
5009      Changed = true;
5010      break;
5011    case ICmpInst::ICMP_SLE:
5012      if ((RA + 1).isMaxSignedValue()) {
5013        Pred = ICmpInst::ICMP_NE;
5014        RHS = getConstant(RA + 1);
5015        Changed = true;
5016        break;
5017      }
5018      if (RA.isMinSignedValue()) {
5019        Pred = ICmpInst::ICMP_EQ;
5020        Changed = true;
5021        break;
5022      }
5023      if (RA.isMaxSignedValue()) goto trivially_true;
5024
5025      Pred = ICmpInst::ICMP_SLT;
5026      RHS = getConstant(RA + 1);
5027      Changed = true;
5028      break;
5029    case ICmpInst::ICMP_UGT:
5030      if (RA.isMinValue()) {
5031        Pred = ICmpInst::ICMP_NE;
5032        Changed = true;
5033        break;
5034      }
5035      if ((RA + 1).isMaxValue()) {
5036        Pred = ICmpInst::ICMP_EQ;
5037        RHS = getConstant(RA + 1);
5038        Changed = true;
5039        break;
5040      }
5041      if (RA.isMaxValue()) goto trivially_false;
5042      break;
5043    case ICmpInst::ICMP_ULT:
5044      if (RA.isMaxValue()) {
5045        Pred = ICmpInst::ICMP_NE;
5046        Changed = true;
5047        break;
5048      }
5049      if ((RA - 1).isMinValue()) {
5050        Pred = ICmpInst::ICMP_EQ;
5051        RHS = getConstant(RA - 1);
5052        Changed = true;
5053        break;
5054      }
5055      if (RA.isMinValue()) goto trivially_false;
5056      break;
5057    case ICmpInst::ICMP_SGT:
5058      if (RA.isMinSignedValue()) {
5059        Pred = ICmpInst::ICMP_NE;
5060        Changed = true;
5061        break;
5062      }
5063      if ((RA + 1).isMaxSignedValue()) {
5064        Pred = ICmpInst::ICMP_EQ;
5065        RHS = getConstant(RA + 1);
5066        Changed = true;
5067        break;
5068      }
5069      if (RA.isMaxSignedValue()) goto trivially_false;
5070      break;
5071    case ICmpInst::ICMP_SLT:
5072      if (RA.isMaxSignedValue()) {
5073        Pred = ICmpInst::ICMP_NE;
5074        Changed = true;
5075        break;
5076      }
5077      if ((RA - 1).isMinSignedValue()) {
5078       Pred = ICmpInst::ICMP_EQ;
5079       RHS = getConstant(RA - 1);
5080        Changed = true;
5081       break;
5082      }
5083      if (RA.isMinSignedValue()) goto trivially_false;
5084      break;
5085    }
5086  }
5087
5088  // Check for obvious equality.
5089  if (HasSameValue(LHS, RHS)) {
5090    if (ICmpInst::isTrueWhenEqual(Pred))
5091      goto trivially_true;
5092    if (ICmpInst::isFalseWhenEqual(Pred))
5093      goto trivially_false;
5094  }
5095
5096  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5097  // adding or subtracting 1 from one of the operands.
5098  switch (Pred) {
5099  case ICmpInst::ICMP_SLE:
5100    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5101      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5102                       /*HasNUW=*/false, /*HasNSW=*/true);
5103      Pred = ICmpInst::ICMP_SLT;
5104      Changed = true;
5105    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5106      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5107                       /*HasNUW=*/false, /*HasNSW=*/true);
5108      Pred = ICmpInst::ICMP_SLT;
5109      Changed = true;
5110    }
5111    break;
5112  case ICmpInst::ICMP_SGE:
5113    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5114      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5115                       /*HasNUW=*/false, /*HasNSW=*/true);
5116      Pred = ICmpInst::ICMP_SGT;
5117      Changed = true;
5118    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5119      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5120                       /*HasNUW=*/false, /*HasNSW=*/true);
5121      Pred = ICmpInst::ICMP_SGT;
5122      Changed = true;
5123    }
5124    break;
5125  case ICmpInst::ICMP_ULE:
5126    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5127      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5128                       /*HasNUW=*/true, /*HasNSW=*/false);
5129      Pred = ICmpInst::ICMP_ULT;
5130      Changed = true;
5131    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5132      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5133                       /*HasNUW=*/true, /*HasNSW=*/false);
5134      Pred = ICmpInst::ICMP_ULT;
5135      Changed = true;
5136    }
5137    break;
5138  case ICmpInst::ICMP_UGE:
5139    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5140      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5141                       /*HasNUW=*/true, /*HasNSW=*/false);
5142      Pred = ICmpInst::ICMP_UGT;
5143      Changed = true;
5144    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5145      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5146                       /*HasNUW=*/true, /*HasNSW=*/false);
5147      Pred = ICmpInst::ICMP_UGT;
5148      Changed = true;
5149    }
5150    break;
5151  default:
5152    break;
5153  }
5154
5155  // TODO: More simplifications are possible here.
5156
5157  return Changed;
5158
5159trivially_true:
5160  // Return 0 == 0.
5161  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5162  Pred = ICmpInst::ICMP_EQ;
5163  return true;
5164
5165trivially_false:
5166  // Return 0 != 0.
5167  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5168  Pred = ICmpInst::ICMP_NE;
5169  return true;
5170}
5171
5172bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5173  return getSignedRange(S).getSignedMax().isNegative();
5174}
5175
5176bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5177  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5178}
5179
5180bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5181  return !getSignedRange(S).getSignedMin().isNegative();
5182}
5183
5184bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5185  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5186}
5187
5188bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5189  return isKnownNegative(S) || isKnownPositive(S);
5190}
5191
5192bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5193                                       const SCEV *LHS, const SCEV *RHS) {
5194  // Canonicalize the inputs first.
5195  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5196
5197  // If LHS or RHS is an addrec, check to see if the condition is true in
5198  // every iteration of the loop.
5199  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5200    if (isLoopEntryGuardedByCond(
5201          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5202        isLoopBackedgeGuardedByCond(
5203          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5204      return true;
5205  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5206    if (isLoopEntryGuardedByCond(
5207          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5208        isLoopBackedgeGuardedByCond(
5209          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5210      return true;
5211
5212  // Otherwise see what can be done with known constant ranges.
5213  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5214}
5215
5216bool
5217ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5218                                            const SCEV *LHS, const SCEV *RHS) {
5219  if (HasSameValue(LHS, RHS))
5220    return ICmpInst::isTrueWhenEqual(Pred);
5221
5222  // This code is split out from isKnownPredicate because it is called from
5223  // within isLoopEntryGuardedByCond.
5224  switch (Pred) {
5225  default:
5226    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5227    break;
5228  case ICmpInst::ICMP_SGT:
5229    Pred = ICmpInst::ICMP_SLT;
5230    std::swap(LHS, RHS);
5231  case ICmpInst::ICMP_SLT: {
5232    ConstantRange LHSRange = getSignedRange(LHS);
5233    ConstantRange RHSRange = getSignedRange(RHS);
5234    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5235      return true;
5236    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5237      return false;
5238    break;
5239  }
5240  case ICmpInst::ICMP_SGE:
5241    Pred = ICmpInst::ICMP_SLE;
5242    std::swap(LHS, RHS);
5243  case ICmpInst::ICMP_SLE: {
5244    ConstantRange LHSRange = getSignedRange(LHS);
5245    ConstantRange RHSRange = getSignedRange(RHS);
5246    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5247      return true;
5248    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5249      return false;
5250    break;
5251  }
5252  case ICmpInst::ICMP_UGT:
5253    Pred = ICmpInst::ICMP_ULT;
5254    std::swap(LHS, RHS);
5255  case ICmpInst::ICMP_ULT: {
5256    ConstantRange LHSRange = getUnsignedRange(LHS);
5257    ConstantRange RHSRange = getUnsignedRange(RHS);
5258    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5259      return true;
5260    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5261      return false;
5262    break;
5263  }
5264  case ICmpInst::ICMP_UGE:
5265    Pred = ICmpInst::ICMP_ULE;
5266    std::swap(LHS, RHS);
5267  case ICmpInst::ICMP_ULE: {
5268    ConstantRange LHSRange = getUnsignedRange(LHS);
5269    ConstantRange RHSRange = getUnsignedRange(RHS);
5270    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5271      return true;
5272    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5273      return false;
5274    break;
5275  }
5276  case ICmpInst::ICMP_NE: {
5277    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5278      return true;
5279    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5280      return true;
5281
5282    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5283    if (isKnownNonZero(Diff))
5284      return true;
5285    break;
5286  }
5287  case ICmpInst::ICMP_EQ:
5288    // The check at the top of the function catches the case where
5289    // the values are known to be equal.
5290    break;
5291  }
5292  return false;
5293}
5294
5295/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5296/// protected by a conditional between LHS and RHS.  This is used to
5297/// to eliminate casts.
5298bool
5299ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5300                                             ICmpInst::Predicate Pred,
5301                                             const SCEV *LHS, const SCEV *RHS) {
5302  // Interpret a null as meaning no loop, where there is obviously no guard
5303  // (interprocedural conditions notwithstanding).
5304  if (!L) return true;
5305
5306  BasicBlock *Latch = L->getLoopLatch();
5307  if (!Latch)
5308    return false;
5309
5310  BranchInst *LoopContinuePredicate =
5311    dyn_cast<BranchInst>(Latch->getTerminator());
5312  if (!LoopContinuePredicate ||
5313      LoopContinuePredicate->isUnconditional())
5314    return false;
5315
5316  return isImpliedCond(Pred, LHS, RHS,
5317                       LoopContinuePredicate->getCondition(),
5318                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5319}
5320
5321/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5322/// by a conditional between LHS and RHS.  This is used to help avoid max
5323/// expressions in loop trip counts, and to eliminate casts.
5324bool
5325ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5326                                          ICmpInst::Predicate Pred,
5327                                          const SCEV *LHS, const SCEV *RHS) {
5328  // Interpret a null as meaning no loop, where there is obviously no guard
5329  // (interprocedural conditions notwithstanding).
5330  if (!L) return false;
5331
5332  // Starting at the loop predecessor, climb up the predecessor chain, as long
5333  // as there are predecessors that can be found that have unique successors
5334  // leading to the original header.
5335  for (std::pair<BasicBlock *, BasicBlock *>
5336         Pair(L->getLoopPredecessor(), L->getHeader());
5337       Pair.first;
5338       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5339
5340    BranchInst *LoopEntryPredicate =
5341      dyn_cast<BranchInst>(Pair.first->getTerminator());
5342    if (!LoopEntryPredicate ||
5343        LoopEntryPredicate->isUnconditional())
5344      continue;
5345
5346    if (isImpliedCond(Pred, LHS, RHS,
5347                      LoopEntryPredicate->getCondition(),
5348                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5349      return true;
5350  }
5351
5352  return false;
5353}
5354
5355/// isImpliedCond - Test whether the condition described by Pred, LHS,
5356/// and RHS is true whenever the given Cond value evaluates to true.
5357bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5358                                    const SCEV *LHS, const SCEV *RHS,
5359                                    Value *FoundCondValue,
5360                                    bool Inverse) {
5361  // Recursively handle And and Or conditions.
5362  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5363    if (BO->getOpcode() == Instruction::And) {
5364      if (!Inverse)
5365        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5366               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5367    } else if (BO->getOpcode() == Instruction::Or) {
5368      if (Inverse)
5369        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5370               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5371    }
5372  }
5373
5374  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5375  if (!ICI) return false;
5376
5377  // Bail if the ICmp's operands' types are wider than the needed type
5378  // before attempting to call getSCEV on them. This avoids infinite
5379  // recursion, since the analysis of widening casts can require loop
5380  // exit condition information for overflow checking, which would
5381  // lead back here.
5382  if (getTypeSizeInBits(LHS->getType()) <
5383      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5384    return false;
5385
5386  // Now that we found a conditional branch that dominates the loop, check to
5387  // see if it is the comparison we are looking for.
5388  ICmpInst::Predicate FoundPred;
5389  if (Inverse)
5390    FoundPred = ICI->getInversePredicate();
5391  else
5392    FoundPred = ICI->getPredicate();
5393
5394  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5395  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5396
5397  // Balance the types. The case where FoundLHS' type is wider than
5398  // LHS' type is checked for above.
5399  if (getTypeSizeInBits(LHS->getType()) >
5400      getTypeSizeInBits(FoundLHS->getType())) {
5401    if (CmpInst::isSigned(Pred)) {
5402      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5403      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5404    } else {
5405      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5406      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5407    }
5408  }
5409
5410  // Canonicalize the query to match the way instcombine will have
5411  // canonicalized the comparison.
5412  if (SimplifyICmpOperands(Pred, LHS, RHS))
5413    if (LHS == RHS)
5414      return CmpInst::isTrueWhenEqual(Pred);
5415  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5416    if (FoundLHS == FoundRHS)
5417      return CmpInst::isFalseWhenEqual(Pred);
5418
5419  // Check to see if we can make the LHS or RHS match.
5420  if (LHS == FoundRHS || RHS == FoundLHS) {
5421    if (isa<SCEVConstant>(RHS)) {
5422      std::swap(FoundLHS, FoundRHS);
5423      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5424    } else {
5425      std::swap(LHS, RHS);
5426      Pred = ICmpInst::getSwappedPredicate(Pred);
5427    }
5428  }
5429
5430  // Check whether the found predicate is the same as the desired predicate.
5431  if (FoundPred == Pred)
5432    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5433
5434  // Check whether swapping the found predicate makes it the same as the
5435  // desired predicate.
5436  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5437    if (isa<SCEVConstant>(RHS))
5438      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5439    else
5440      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5441                                   RHS, LHS, FoundLHS, FoundRHS);
5442  }
5443
5444  // Check whether the actual condition is beyond sufficient.
5445  if (FoundPred == ICmpInst::ICMP_EQ)
5446    if (ICmpInst::isTrueWhenEqual(Pred))
5447      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5448        return true;
5449  if (Pred == ICmpInst::ICMP_NE)
5450    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5451      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5452        return true;
5453
5454  // Otherwise assume the worst.
5455  return false;
5456}
5457
5458/// isImpliedCondOperands - Test whether the condition described by Pred,
5459/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5460/// and FoundRHS is true.
5461bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5462                                            const SCEV *LHS, const SCEV *RHS,
5463                                            const SCEV *FoundLHS,
5464                                            const SCEV *FoundRHS) {
5465  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5466                                     FoundLHS, FoundRHS) ||
5467         // ~x < ~y --> x > y
5468         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5469                                     getNotSCEV(FoundRHS),
5470                                     getNotSCEV(FoundLHS));
5471}
5472
5473/// isImpliedCondOperandsHelper - Test whether the condition described by
5474/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5475/// FoundLHS, and FoundRHS is true.
5476bool
5477ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5478                                             const SCEV *LHS, const SCEV *RHS,
5479                                             const SCEV *FoundLHS,
5480                                             const SCEV *FoundRHS) {
5481  switch (Pred) {
5482  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5483  case ICmpInst::ICMP_EQ:
5484  case ICmpInst::ICMP_NE:
5485    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5486      return true;
5487    break;
5488  case ICmpInst::ICMP_SLT:
5489  case ICmpInst::ICMP_SLE:
5490    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5491        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5492      return true;
5493    break;
5494  case ICmpInst::ICMP_SGT:
5495  case ICmpInst::ICMP_SGE:
5496    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5497        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5498      return true;
5499    break;
5500  case ICmpInst::ICMP_ULT:
5501  case ICmpInst::ICMP_ULE:
5502    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5503        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5504      return true;
5505    break;
5506  case ICmpInst::ICMP_UGT:
5507  case ICmpInst::ICMP_UGE:
5508    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5509        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5510      return true;
5511    break;
5512  }
5513
5514  return false;
5515}
5516
5517/// getBECount - Subtract the end and start values and divide by the step,
5518/// rounding up, to get the number of times the backedge is executed. Return
5519/// CouldNotCompute if an intermediate computation overflows.
5520const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5521                                        const SCEV *End,
5522                                        const SCEV *Step,
5523                                        bool NoWrap) {
5524  assert(!isKnownNegative(Step) &&
5525         "This code doesn't handle negative strides yet!");
5526
5527  const Type *Ty = Start->getType();
5528  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5529  const SCEV *Diff = getMinusSCEV(End, Start);
5530  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5531
5532  // Add an adjustment to the difference between End and Start so that
5533  // the division will effectively round up.
5534  const SCEV *Add = getAddExpr(Diff, RoundUp);
5535
5536  if (!NoWrap) {
5537    // Check Add for unsigned overflow.
5538    // TODO: More sophisticated things could be done here.
5539    const Type *WideTy = IntegerType::get(getContext(),
5540                                          getTypeSizeInBits(Ty) + 1);
5541    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5542    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5543    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5544    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5545      return getCouldNotCompute();
5546  }
5547
5548  return getUDivExpr(Add, Step);
5549}
5550
5551/// HowManyLessThans - Return the number of times a backedge containing the
5552/// specified less-than comparison will execute.  If not computable, return
5553/// CouldNotCompute.
5554ScalarEvolution::BackedgeTakenInfo
5555ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5556                                  const Loop *L, bool isSigned) {
5557  // Only handle:  "ADDREC < LoopInvariant".
5558  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5559
5560  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5561  if (!AddRec || AddRec->getLoop() != L)
5562    return getCouldNotCompute();
5563
5564  // Check to see if we have a flag which makes analysis easy.
5565  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5566                           AddRec->hasNoUnsignedWrap();
5567
5568  if (AddRec->isAffine()) {
5569    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5570    const SCEV *Step = AddRec->getStepRecurrence(*this);
5571
5572    if (Step->isZero())
5573      return getCouldNotCompute();
5574    if (Step->isOne()) {
5575      // With unit stride, the iteration never steps past the limit value.
5576    } else if (isKnownPositive(Step)) {
5577      // Test whether a positive iteration can step past the limit
5578      // value and past the maximum value for its type in a single step.
5579      // Note that it's not sufficient to check NoWrap here, because even
5580      // though the value after a wrap is undefined, it's not undefined
5581      // behavior, so if wrap does occur, the loop could either terminate or
5582      // loop infinitely, but in either case, the loop is guaranteed to
5583      // iterate at least until the iteration where the wrapping occurs.
5584      const SCEV *One = getConstant(Step->getType(), 1);
5585      if (isSigned) {
5586        APInt Max = APInt::getSignedMaxValue(BitWidth);
5587        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5588              .slt(getSignedRange(RHS).getSignedMax()))
5589          return getCouldNotCompute();
5590      } else {
5591        APInt Max = APInt::getMaxValue(BitWidth);
5592        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5593              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5594          return getCouldNotCompute();
5595      }
5596    } else
5597      // TODO: Handle negative strides here and below.
5598      return getCouldNotCompute();
5599
5600    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5601    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5602    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5603    // treat m-n as signed nor unsigned due to overflow possibility.
5604
5605    // First, we get the value of the LHS in the first iteration: n
5606    const SCEV *Start = AddRec->getOperand(0);
5607
5608    // Determine the minimum constant start value.
5609    const SCEV *MinStart = getConstant(isSigned ?
5610      getSignedRange(Start).getSignedMin() :
5611      getUnsignedRange(Start).getUnsignedMin());
5612
5613    // If we know that the condition is true in order to enter the loop,
5614    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5615    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5616    // the division must round up.
5617    const SCEV *End = RHS;
5618    if (!isLoopEntryGuardedByCond(L,
5619                                  isSigned ? ICmpInst::ICMP_SLT :
5620                                             ICmpInst::ICMP_ULT,
5621                                  getMinusSCEV(Start, Step), RHS))
5622      End = isSigned ? getSMaxExpr(RHS, Start)
5623                     : getUMaxExpr(RHS, Start);
5624
5625    // Determine the maximum constant end value.
5626    const SCEV *MaxEnd = getConstant(isSigned ?
5627      getSignedRange(End).getSignedMax() :
5628      getUnsignedRange(End).getUnsignedMax());
5629
5630    // If MaxEnd is within a step of the maximum integer value in its type,
5631    // adjust it down to the minimum value which would produce the same effect.
5632    // This allows the subsequent ceiling division of (N+(step-1))/step to
5633    // compute the correct value.
5634    const SCEV *StepMinusOne = getMinusSCEV(Step,
5635                                            getConstant(Step->getType(), 1));
5636    MaxEnd = isSigned ?
5637      getSMinExpr(MaxEnd,
5638                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5639                               StepMinusOne)) :
5640      getUMinExpr(MaxEnd,
5641                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5642                               StepMinusOne));
5643
5644    // Finally, we subtract these two values and divide, rounding up, to get
5645    // the number of times the backedge is executed.
5646    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5647
5648    // The maximum backedge count is similar, except using the minimum start
5649    // value and the maximum end value.
5650    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5651
5652    return BackedgeTakenInfo(BECount, MaxBECount);
5653  }
5654
5655  return getCouldNotCompute();
5656}
5657
5658/// getNumIterationsInRange - Return the number of iterations of this loop that
5659/// produce values in the specified constant range.  Another way of looking at
5660/// this is that it returns the first iteration number where the value is not in
5661/// the condition, thus computing the exit count. If the iteration count can't
5662/// be computed, an instance of SCEVCouldNotCompute is returned.
5663const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5664                                                    ScalarEvolution &SE) const {
5665  if (Range.isFullSet())  // Infinite loop.
5666    return SE.getCouldNotCompute();
5667
5668  // If the start is a non-zero constant, shift the range to simplify things.
5669  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5670    if (!SC->getValue()->isZero()) {
5671      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5672      Operands[0] = SE.getConstant(SC->getType(), 0);
5673      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5674      if (const SCEVAddRecExpr *ShiftedAddRec =
5675            dyn_cast<SCEVAddRecExpr>(Shifted))
5676        return ShiftedAddRec->getNumIterationsInRange(
5677                           Range.subtract(SC->getValue()->getValue()), SE);
5678      // This is strange and shouldn't happen.
5679      return SE.getCouldNotCompute();
5680    }
5681
5682  // The only time we can solve this is when we have all constant indices.
5683  // Otherwise, we cannot determine the overflow conditions.
5684  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5685    if (!isa<SCEVConstant>(getOperand(i)))
5686      return SE.getCouldNotCompute();
5687
5688
5689  // Okay at this point we know that all elements of the chrec are constants and
5690  // that the start element is zero.
5691
5692  // First check to see if the range contains zero.  If not, the first
5693  // iteration exits.
5694  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5695  if (!Range.contains(APInt(BitWidth, 0)))
5696    return SE.getConstant(getType(), 0);
5697
5698  if (isAffine()) {
5699    // If this is an affine expression then we have this situation:
5700    //   Solve {0,+,A} in Range  ===  Ax in Range
5701
5702    // We know that zero is in the range.  If A is positive then we know that
5703    // the upper value of the range must be the first possible exit value.
5704    // If A is negative then the lower of the range is the last possible loop
5705    // value.  Also note that we already checked for a full range.
5706    APInt One(BitWidth,1);
5707    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5708    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5709
5710    // The exit value should be (End+A)/A.
5711    APInt ExitVal = (End + A).udiv(A);
5712    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5713
5714    // Evaluate at the exit value.  If we really did fall out of the valid
5715    // range, then we computed our trip count, otherwise wrap around or other
5716    // things must have happened.
5717    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5718    if (Range.contains(Val->getValue()))
5719      return SE.getCouldNotCompute();  // Something strange happened
5720
5721    // Ensure that the previous value is in the range.  This is a sanity check.
5722    assert(Range.contains(
5723           EvaluateConstantChrecAtConstant(this,
5724           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5725           "Linear scev computation is off in a bad way!");
5726    return SE.getConstant(ExitValue);
5727  } else if (isQuadratic()) {
5728    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5729    // quadratic equation to solve it.  To do this, we must frame our problem in
5730    // terms of figuring out when zero is crossed, instead of when
5731    // Range.getUpper() is crossed.
5732    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5733    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5734    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5735
5736    // Next, solve the constructed addrec
5737    std::pair<const SCEV *,const SCEV *> Roots =
5738      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5739    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5740    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5741    if (R1) {
5742      // Pick the smallest positive root value.
5743      if (ConstantInt *CB =
5744          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5745                         R1->getValue(), R2->getValue()))) {
5746        if (CB->getZExtValue() == false)
5747          std::swap(R1, R2);   // R1 is the minimum root now.
5748
5749        // Make sure the root is not off by one.  The returned iteration should
5750        // not be in the range, but the previous one should be.  When solving
5751        // for "X*X < 5", for example, we should not return a root of 2.
5752        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5753                                                             R1->getValue(),
5754                                                             SE);
5755        if (Range.contains(R1Val->getValue())) {
5756          // The next iteration must be out of the range...
5757          ConstantInt *NextVal =
5758                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5759
5760          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5761          if (!Range.contains(R1Val->getValue()))
5762            return SE.getConstant(NextVal);
5763          return SE.getCouldNotCompute();  // Something strange happened
5764        }
5765
5766        // If R1 was not in the range, then it is a good return value.  Make
5767        // sure that R1-1 WAS in the range though, just in case.
5768        ConstantInt *NextVal =
5769               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5770        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5771        if (Range.contains(R1Val->getValue()))
5772          return R1;
5773        return SE.getCouldNotCompute();  // Something strange happened
5774      }
5775    }
5776  }
5777
5778  return SE.getCouldNotCompute();
5779}
5780
5781
5782
5783//===----------------------------------------------------------------------===//
5784//                   SCEVCallbackVH Class Implementation
5785//===----------------------------------------------------------------------===//
5786
5787void ScalarEvolution::SCEVCallbackVH::deleted() {
5788  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5789  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5790    SE->ConstantEvolutionLoopExitValue.erase(PN);
5791  SE->ValueExprMap.erase(getValPtr());
5792  // this now dangles!
5793}
5794
5795void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5796  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5797
5798  // Forget all the expressions associated with users of the old value,
5799  // so that future queries will recompute the expressions using the new
5800  // value.
5801  Value *Old = getValPtr();
5802  SmallVector<User *, 16> Worklist;
5803  SmallPtrSet<User *, 8> Visited;
5804  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5805       UI != UE; ++UI)
5806    Worklist.push_back(*UI);
5807  while (!Worklist.empty()) {
5808    User *U = Worklist.pop_back_val();
5809    // Deleting the Old value will cause this to dangle. Postpone
5810    // that until everything else is done.
5811    if (U == Old)
5812      continue;
5813    if (!Visited.insert(U))
5814      continue;
5815    if (PHINode *PN = dyn_cast<PHINode>(U))
5816      SE->ConstantEvolutionLoopExitValue.erase(PN);
5817    SE->ValueExprMap.erase(U);
5818    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5819         UI != UE; ++UI)
5820      Worklist.push_back(*UI);
5821  }
5822  // Delete the Old value.
5823  if (PHINode *PN = dyn_cast<PHINode>(Old))
5824    SE->ConstantEvolutionLoopExitValue.erase(PN);
5825  SE->ValueExprMap.erase(Old);
5826  // this now dangles!
5827}
5828
5829ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5830  : CallbackVH(V), SE(se) {}
5831
5832//===----------------------------------------------------------------------===//
5833//                   ScalarEvolution Class Implementation
5834//===----------------------------------------------------------------------===//
5835
5836ScalarEvolution::ScalarEvolution()
5837  : FunctionPass(ID), FirstUnknown(0) {
5838  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5839}
5840
5841bool ScalarEvolution::runOnFunction(Function &F) {
5842  this->F = &F;
5843  LI = &getAnalysis<LoopInfo>();
5844  TD = getAnalysisIfAvailable<TargetData>();
5845  DT = &getAnalysis<DominatorTree>();
5846  return false;
5847}
5848
5849void ScalarEvolution::releaseMemory() {
5850  // Iterate through all the SCEVUnknown instances and call their
5851  // destructors, so that they release their references to their values.
5852  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5853    U->~SCEVUnknown();
5854  FirstUnknown = 0;
5855
5856  ValueExprMap.clear();
5857  BackedgeTakenCounts.clear();
5858  ConstantEvolutionLoopExitValue.clear();
5859  ValuesAtScopes.clear();
5860  UniqueSCEVs.clear();
5861  SCEVAllocator.Reset();
5862}
5863
5864void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5865  AU.setPreservesAll();
5866  AU.addRequiredTransitive<LoopInfo>();
5867  AU.addRequiredTransitive<DominatorTree>();
5868}
5869
5870bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5871  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5872}
5873
5874static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5875                          const Loop *L) {
5876  // Print all inner loops first
5877  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5878    PrintLoopInfo(OS, SE, *I);
5879
5880  OS << "Loop ";
5881  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5882  OS << ": ";
5883
5884  SmallVector<BasicBlock *, 8> ExitBlocks;
5885  L->getExitBlocks(ExitBlocks);
5886  if (ExitBlocks.size() != 1)
5887    OS << "<multiple exits> ";
5888
5889  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5890    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5891  } else {
5892    OS << "Unpredictable backedge-taken count. ";
5893  }
5894
5895  OS << "\n"
5896        "Loop ";
5897  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5898  OS << ": ";
5899
5900  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5901    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5902  } else {
5903    OS << "Unpredictable max backedge-taken count. ";
5904  }
5905
5906  OS << "\n";
5907}
5908
5909void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5910  // ScalarEvolution's implementation of the print method is to print
5911  // out SCEV values of all instructions that are interesting. Doing
5912  // this potentially causes it to create new SCEV objects though,
5913  // which technically conflicts with the const qualifier. This isn't
5914  // observable from outside the class though, so casting away the
5915  // const isn't dangerous.
5916  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5917
5918  OS << "Classifying expressions for: ";
5919  WriteAsOperand(OS, F, /*PrintType=*/false);
5920  OS << "\n";
5921  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5922    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5923      OS << *I << '\n';
5924      OS << "  -->  ";
5925      const SCEV *SV = SE.getSCEV(&*I);
5926      SV->print(OS);
5927
5928      const Loop *L = LI->getLoopFor((*I).getParent());
5929
5930      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5931      if (AtUse != SV) {
5932        OS << "  -->  ";
5933        AtUse->print(OS);
5934      }
5935
5936      if (L) {
5937        OS << "\t\t" "Exits: ";
5938        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5939        if (!ExitValue->isLoopInvariant(L)) {
5940          OS << "<<Unknown>>";
5941        } else {
5942          OS << *ExitValue;
5943        }
5944      }
5945
5946      OS << "\n";
5947    }
5948
5949  OS << "Determining loop execution counts for: ";
5950  WriteAsOperand(OS, F, /*PrintType=*/false);
5951  OS << "\n";
5952  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5953    PrintLoopInfo(OS, &SE, *I);
5954}
5955
5956