ScalarEvolution.cpp revision 361e54d433e67db5d6b6455f7fd098de8c01f882
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/GetElementPtrTypeIterator.h"
77#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <ostream>
84#include <algorithm>
85using namespace llvm;
86
87STATISTIC(NumArrayLenItCounts,
88          "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90          "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92          "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94          "Number of loops with trip counts computed by force");
95
96static cl::opt<unsigned>
97MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                        cl::desc("Maximum number of iterations SCEV will "
99                                 "symbolically execute a constant derived loop"),
100                        cl::init(100));
101
102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107//                           SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
115  print(errs());
116  errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120  raw_os_ostream OS(o);
121  print(OS);
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130
131SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
132SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
133
134bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
135  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
136  return false;
137}
138
139const Type *SCEVCouldNotCompute::getType() const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return 0;
142}
143
144bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return false;
147}
148
149SCEVHandle SCEVCouldNotCompute::
150replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
151                                  const SCEVHandle &Conc,
152                                  ScalarEvolution &SE) const {
153  return this;
154}
155
156void SCEVCouldNotCompute::print(raw_ostream &OS) const {
157  OS << "***COULDNOTCOMPUTE***";
158}
159
160bool SCEVCouldNotCompute::classof(const SCEV *S) {
161  return S->getSCEVType() == scCouldNotCompute;
162}
163
164
165// SCEVConstants - Only allow the creation of one SCEVConstant for any
166// particular value.  Don't use a SCEVHandle here, or else the object will
167// never be deleted!
168static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
169
170
171SCEVConstant::~SCEVConstant() {
172  SCEVConstants->erase(V);
173}
174
175SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
176  SCEVConstant *&R = (*SCEVConstants)[V];
177  if (R == 0) R = new SCEVConstant(V);
178  return R;
179}
180
181SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
182  return getConstant(ConstantInt::get(Val));
183}
184
185const Type *SCEVConstant::getType() const { return V->getType(); }
186
187void SCEVConstant::print(raw_ostream &OS) const {
188  WriteAsOperand(OS, V, false);
189}
190
191SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
192                           const SCEVHandle &op, const Type *ty)
193  : SCEV(SCEVTy), Op(op), Ty(ty) {}
194
195SCEVCastExpr::~SCEVCastExpr() {}
196
197bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
198  return Op->dominates(BB, DT);
199}
200
201// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202// particular input.  Don't use a SCEVHandle here, or else the object will
203// never be deleted!
204static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
205                     SCEVTruncateExpr*> > SCEVTruncates;
206
207SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208  : SCEVCastExpr(scTruncate, op, ty) {
209  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
210         (Ty->isInteger() || isa<PointerType>(Ty)) &&
211         "Cannot truncate non-integer value!");
212}
213
214SCEVTruncateExpr::~SCEVTruncateExpr() {
215  SCEVTruncates->erase(std::make_pair(Op, Ty));
216}
217
218void SCEVTruncateExpr::print(raw_ostream &OS) const {
219  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
220}
221
222// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
223// particular input.  Don't use a SCEVHandle here, or else the object will never
224// be deleted!
225static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
226                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
229  : SCEVCastExpr(scZeroExtend, op, ty) {
230  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231         (Ty->isInteger() || isa<PointerType>(Ty)) &&
232         "Cannot zero extend non-integer value!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237}
238
239void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
240  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
241}
242
243// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
244// particular input.  Don't use a SCEVHandle here, or else the object will never
245// be deleted!
246static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
247                     SCEVSignExtendExpr*> > SCEVSignExtends;
248
249SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
250  : SCEVCastExpr(scSignExtend, op, ty) {
251  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
252         (Ty->isInteger() || isa<PointerType>(Ty)) &&
253         "Cannot sign extend non-integer value!");
254}
255
256SCEVSignExtendExpr::~SCEVSignExtendExpr() {
257  SCEVSignExtends->erase(std::make_pair(Op, Ty));
258}
259
260void SCEVSignExtendExpr::print(raw_ostream &OS) const {
261  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
262}
263
264// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
265// particular input.  Don't use a SCEVHandle here, or else the object will never
266// be deleted!
267static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
268                     SCEVCommutativeExpr*> > SCEVCommExprs;
269
270SCEVCommutativeExpr::~SCEVCommutativeExpr() {
271  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
272  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
273}
274
275void SCEVCommutativeExpr::print(raw_ostream &OS) const {
276  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
277  const char *OpStr = getOperationStr();
278  OS << "(" << *Operands[0];
279  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
280    OS << OpStr << *Operands[i];
281  OS << ")";
282}
283
284SCEVHandle SCEVCommutativeExpr::
285replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
286                                  const SCEVHandle &Conc,
287                                  ScalarEvolution &SE) const {
288  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
289    SCEVHandle H =
290      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
291    if (H != getOperand(i)) {
292      std::vector<SCEVHandle> NewOps;
293      NewOps.reserve(getNumOperands());
294      for (unsigned j = 0; j != i; ++j)
295        NewOps.push_back(getOperand(j));
296      NewOps.push_back(H);
297      for (++i; i != e; ++i)
298        NewOps.push_back(getOperand(i)->
299                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
300
301      if (isa<SCEVAddExpr>(this))
302        return SE.getAddExpr(NewOps);
303      else if (isa<SCEVMulExpr>(this))
304        return SE.getMulExpr(NewOps);
305      else if (isa<SCEVSMaxExpr>(this))
306        return SE.getSMaxExpr(NewOps);
307      else if (isa<SCEVUMaxExpr>(this))
308        return SE.getUMaxExpr(NewOps);
309      else
310        assert(0 && "Unknown commutative expr!");
311    }
312  }
313  return this;
314}
315
316bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
317  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
318    if (!getOperand(i)->dominates(BB, DT))
319      return false;
320  }
321  return true;
322}
323
324
325// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
326// input.  Don't use a SCEVHandle here, or else the object will never be
327// deleted!
328static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
329                     SCEVUDivExpr*> > SCEVUDivs;
330
331SCEVUDivExpr::~SCEVUDivExpr() {
332  SCEVUDivs->erase(std::make_pair(LHS, RHS));
333}
334
335bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
336  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
337}
338
339void SCEVUDivExpr::print(raw_ostream &OS) const {
340  OS << "(" << *LHS << " /u " << *RHS << ")";
341}
342
343const Type *SCEVUDivExpr::getType() const {
344  return LHS->getType();
345}
346
347// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
348// particular input.  Don't use a SCEVHandle here, or else the object will never
349// be deleted!
350static ManagedStatic<std::map<std::pair<const Loop *,
351                                        std::vector<const SCEV*> >,
352                     SCEVAddRecExpr*> > SCEVAddRecExprs;
353
354SCEVAddRecExpr::~SCEVAddRecExpr() {
355  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
356  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
357}
358
359SCEVHandle SCEVAddRecExpr::
360replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
361                                  const SCEVHandle &Conc,
362                                  ScalarEvolution &SE) const {
363  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
364    SCEVHandle H =
365      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
366    if (H != getOperand(i)) {
367      std::vector<SCEVHandle> NewOps;
368      NewOps.reserve(getNumOperands());
369      for (unsigned j = 0; j != i; ++j)
370        NewOps.push_back(getOperand(j));
371      NewOps.push_back(H);
372      for (++i; i != e; ++i)
373        NewOps.push_back(getOperand(i)->
374                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
375
376      return SE.getAddRecExpr(NewOps, L);
377    }
378  }
379  return this;
380}
381
382
383bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
384  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
385  // contain L and if the start is invariant.
386  return !QueryLoop->contains(L->getHeader()) &&
387         getOperand(0)->isLoopInvariant(QueryLoop);
388}
389
390
391void SCEVAddRecExpr::print(raw_ostream &OS) const {
392  OS << "{" << *Operands[0];
393  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
394    OS << ",+," << *Operands[i];
395  OS << "}<" << L->getHeader()->getName() + ">";
396}
397
398// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
399// value.  Don't use a SCEVHandle here, or else the object will never be
400// deleted!
401static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
402
403SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
404
405bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
406  // All non-instruction values are loop invariant.  All instructions are loop
407  // invariant if they are not contained in the specified loop.
408  if (Instruction *I = dyn_cast<Instruction>(V))
409    return !L->contains(I->getParent());
410  return true;
411}
412
413bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414  if (Instruction *I = dyn_cast<Instruction>(getValue()))
415    return DT->dominates(I->getParent(), BB);
416  return true;
417}
418
419const Type *SCEVUnknown::getType() const {
420  return V->getType();
421}
422
423void SCEVUnknown::print(raw_ostream &OS) const {
424  WriteAsOperand(OS, V, false);
425}
426
427//===----------------------------------------------------------------------===//
428//                               SCEV Utilities
429//===----------------------------------------------------------------------===//
430
431namespace {
432  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
433  /// than the complexity of the RHS.  This comparator is used to canonicalize
434  /// expressions.
435  class VISIBILITY_HIDDEN SCEVComplexityCompare {
436    LoopInfo *LI;
437  public:
438    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
439
440    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
441      // Primarily, sort the SCEVs by their getSCEVType().
442      if (LHS->getSCEVType() != RHS->getSCEVType())
443        return LHS->getSCEVType() < RHS->getSCEVType();
444
445      // Aside from the getSCEVType() ordering, the particular ordering
446      // isn't very important except that it's beneficial to be consistent,
447      // so that (a + b) and (b + a) don't end up as different expressions.
448
449      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
450      // not as complete as it could be.
451      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
452        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
453
454        // Compare getValueID values.
455        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
456          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
457
458        // Sort arguments by their position.
459        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
460          const Argument *RA = cast<Argument>(RU->getValue());
461          return LA->getArgNo() < RA->getArgNo();
462        }
463
464        // For instructions, compare their loop depth, and their opcode.
465        // This is pretty loose.
466        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
467          Instruction *RV = cast<Instruction>(RU->getValue());
468
469          // Compare loop depths.
470          if (LI->getLoopDepth(LV->getParent()) !=
471              LI->getLoopDepth(RV->getParent()))
472            return LI->getLoopDepth(LV->getParent()) <
473                   LI->getLoopDepth(RV->getParent());
474
475          // Compare opcodes.
476          if (LV->getOpcode() != RV->getOpcode())
477            return LV->getOpcode() < RV->getOpcode();
478
479          // Compare the number of operands.
480          if (LV->getNumOperands() != RV->getNumOperands())
481            return LV->getNumOperands() < RV->getNumOperands();
482        }
483
484        return false;
485      }
486
487      // Constant sorting doesn't matter since they'll be folded.
488      if (isa<SCEVConstant>(LHS))
489        return false;
490
491      // Lexicographically compare n-ary expressions.
492      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
493        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
494        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
495          if (i >= RC->getNumOperands())
496            return false;
497          if (operator()(LC->getOperand(i), RC->getOperand(i)))
498            return true;
499          if (operator()(RC->getOperand(i), LC->getOperand(i)))
500            return false;
501        }
502        return LC->getNumOperands() < RC->getNumOperands();
503      }
504
505      // Lexicographically compare udiv expressions.
506      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
507        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
508        if (operator()(LC->getLHS(), RC->getLHS()))
509          return true;
510        if (operator()(RC->getLHS(), LC->getLHS()))
511          return false;
512        if (operator()(LC->getRHS(), RC->getRHS()))
513          return true;
514        if (operator()(RC->getRHS(), LC->getRHS()))
515          return false;
516        return false;
517      }
518
519      // Compare cast expressions by operand.
520      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
521        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
522        return operator()(LC->getOperand(), RC->getOperand());
523      }
524
525      assert(0 && "Unknown SCEV kind!");
526      return false;
527    }
528  };
529}
530
531/// GroupByComplexity - Given a list of SCEV objects, order them by their
532/// complexity, and group objects of the same complexity together by value.
533/// When this routine is finished, we know that any duplicates in the vector are
534/// consecutive and that complexity is monotonically increasing.
535///
536/// Note that we go take special precautions to ensure that we get determinstic
537/// results from this routine.  In other words, we don't want the results of
538/// this to depend on where the addresses of various SCEV objects happened to
539/// land in memory.
540///
541static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
542                              LoopInfo *LI) {
543  if (Ops.size() < 2) return;  // Noop
544  if (Ops.size() == 2) {
545    // This is the common case, which also happens to be trivially simple.
546    // Special case it.
547    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
548      std::swap(Ops[0], Ops[1]);
549    return;
550  }
551
552  // Do the rough sort by complexity.
553  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
554
555  // Now that we are sorted by complexity, group elements of the same
556  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
557  // be extremely short in practice.  Note that we take this approach because we
558  // do not want to depend on the addresses of the objects we are grouping.
559  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
560    const SCEV *S = Ops[i];
561    unsigned Complexity = S->getSCEVType();
562
563    // If there are any objects of the same complexity and same value as this
564    // one, group them.
565    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
566      if (Ops[j] == S) { // Found a duplicate.
567        // Move it to immediately after i'th element.
568        std::swap(Ops[i+1], Ops[j]);
569        ++i;   // no need to rescan it.
570        if (i == e-2) return;  // Done!
571      }
572    }
573  }
574}
575
576
577
578//===----------------------------------------------------------------------===//
579//                      Simple SCEV method implementations
580//===----------------------------------------------------------------------===//
581
582/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
583// Assume, K > 0.
584static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
585                                      ScalarEvolution &SE,
586                                      const Type* ResultTy) {
587  // Handle the simplest case efficiently.
588  if (K == 1)
589    return SE.getTruncateOrZeroExtend(It, ResultTy);
590
591  // We are using the following formula for BC(It, K):
592  //
593  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
594  //
595  // Suppose, W is the bitwidth of the return value.  We must be prepared for
596  // overflow.  Hence, we must assure that the result of our computation is
597  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
598  // safe in modular arithmetic.
599  //
600  // However, this code doesn't use exactly that formula; the formula it uses
601  // is something like the following, where T is the number of factors of 2 in
602  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
603  // exponentiation:
604  //
605  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
606  //
607  // This formula is trivially equivalent to the previous formula.  However,
608  // this formula can be implemented much more efficiently.  The trick is that
609  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
610  // arithmetic.  To do exact division in modular arithmetic, all we have
611  // to do is multiply by the inverse.  Therefore, this step can be done at
612  // width W.
613  //
614  // The next issue is how to safely do the division by 2^T.  The way this
615  // is done is by doing the multiplication step at a width of at least W + T
616  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
617  // when we perform the division by 2^T (which is equivalent to a right shift
618  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
619  // truncated out after the division by 2^T.
620  //
621  // In comparison to just directly using the first formula, this technique
622  // is much more efficient; using the first formula requires W * K bits,
623  // but this formula less than W + K bits. Also, the first formula requires
624  // a division step, whereas this formula only requires multiplies and shifts.
625  //
626  // It doesn't matter whether the subtraction step is done in the calculation
627  // width or the input iteration count's width; if the subtraction overflows,
628  // the result must be zero anyway.  We prefer here to do it in the width of
629  // the induction variable because it helps a lot for certain cases; CodeGen
630  // isn't smart enough to ignore the overflow, which leads to much less
631  // efficient code if the width of the subtraction is wider than the native
632  // register width.
633  //
634  // (It's possible to not widen at all by pulling out factors of 2 before
635  // the multiplication; for example, K=2 can be calculated as
636  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
637  // extra arithmetic, so it's not an obvious win, and it gets
638  // much more complicated for K > 3.)
639
640  // Protection from insane SCEVs; this bound is conservative,
641  // but it probably doesn't matter.
642  if (K > 1000)
643    return SE.getCouldNotCompute();
644
645  unsigned W = SE.getTypeSizeInBits(ResultTy);
646
647  // Calculate K! / 2^T and T; we divide out the factors of two before
648  // multiplying for calculating K! / 2^T to avoid overflow.
649  // Other overflow doesn't matter because we only care about the bottom
650  // W bits of the result.
651  APInt OddFactorial(W, 1);
652  unsigned T = 1;
653  for (unsigned i = 3; i <= K; ++i) {
654    APInt Mult(W, i);
655    unsigned TwoFactors = Mult.countTrailingZeros();
656    T += TwoFactors;
657    Mult = Mult.lshr(TwoFactors);
658    OddFactorial *= Mult;
659  }
660
661  // We need at least W + T bits for the multiplication step
662  unsigned CalculationBits = W + T;
663
664  // Calcuate 2^T, at width T+W.
665  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
666
667  // Calculate the multiplicative inverse of K! / 2^T;
668  // this multiplication factor will perform the exact division by
669  // K! / 2^T.
670  APInt Mod = APInt::getSignedMinValue(W+1);
671  APInt MultiplyFactor = OddFactorial.zext(W+1);
672  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
673  MultiplyFactor = MultiplyFactor.trunc(W);
674
675  // Calculate the product, at width T+W
676  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
677  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
678  for (unsigned i = 1; i != K; ++i) {
679    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
680    Dividend = SE.getMulExpr(Dividend,
681                             SE.getTruncateOrZeroExtend(S, CalculationTy));
682  }
683
684  // Divide by 2^T
685  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
686
687  // Truncate the result, and divide by K! / 2^T.
688
689  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
690                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
691}
692
693/// evaluateAtIteration - Return the value of this chain of recurrences at
694/// the specified iteration number.  We can evaluate this recurrence by
695/// multiplying each element in the chain by the binomial coefficient
696/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
697///
698///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
699///
700/// where BC(It, k) stands for binomial coefficient.
701///
702SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
703                                               ScalarEvolution &SE) const {
704  SCEVHandle Result = getStart();
705  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
706    // The computation is correct in the face of overflow provided that the
707    // multiplication is performed _after_ the evaluation of the binomial
708    // coefficient.
709    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
710    if (isa<SCEVCouldNotCompute>(Coeff))
711      return Coeff;
712
713    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
714  }
715  return Result;
716}
717
718//===----------------------------------------------------------------------===//
719//                    SCEV Expression folder implementations
720//===----------------------------------------------------------------------===//
721
722SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
723                                            const Type *Ty) {
724  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
725         "This is not a truncating conversion!");
726  assert(isSCEVable(Ty) &&
727         "This is not a conversion to a SCEVable type!");
728  Ty = getEffectiveSCEVType(Ty);
729
730  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
731    return getUnknown(
732        ConstantExpr::getTrunc(SC->getValue(), Ty));
733
734  // trunc(trunc(x)) --> trunc(x)
735  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
736    return getTruncateExpr(ST->getOperand(), Ty);
737
738  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
739  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
740    return getTruncateOrSignExtend(SS->getOperand(), Ty);
741
742  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
743  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
744    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
745
746  // If the input value is a chrec scev made out of constants, truncate
747  // all of the constants.
748  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
749    std::vector<SCEVHandle> Operands;
750    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
751      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
752    return getAddRecExpr(Operands, AddRec->getLoop());
753  }
754
755  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
756  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
757  return Result;
758}
759
760SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
761                                              const Type *Ty) {
762  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
763         "This is not an extending conversion!");
764  assert(isSCEVable(Ty) &&
765         "This is not a conversion to a SCEVable type!");
766  Ty = getEffectiveSCEVType(Ty);
767
768  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
769    const Type *IntTy = getEffectiveSCEVType(Ty);
770    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
771    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
772    return getUnknown(C);
773  }
774
775  // zext(zext(x)) --> zext(x)
776  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
777    return getZeroExtendExpr(SZ->getOperand(), Ty);
778
779  // If the input value is a chrec scev, and we can prove that the value
780  // did not overflow the old, smaller, value, we can zero extend all of the
781  // operands (often constants).  This allows analysis of something like
782  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
783  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
784    if (AR->isAffine()) {
785      // Check whether the backedge-taken count is SCEVCouldNotCompute.
786      // Note that this serves two purposes: It filters out loops that are
787      // simply not analyzable, and it covers the case where this code is
788      // being called from within backedge-taken count analysis, such that
789      // attempting to ask for the backedge-taken count would likely result
790      // in infinite recursion. In the later case, the analysis code will
791      // cope with a conservative value, and it will take care to purge
792      // that value once it has finished.
793      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
794      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
795        // Manually compute the final value for AR, checking for
796        // overflow.
797        SCEVHandle Start = AR->getStart();
798        SCEVHandle Step = AR->getStepRecurrence(*this);
799
800        // Check whether the backedge-taken count can be losslessly casted to
801        // the addrec's type. The count is always unsigned.
802        SCEVHandle CastedMaxBECount =
803          getTruncateOrZeroExtend(MaxBECount, Start->getType());
804        if (MaxBECount ==
805            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
806          const Type *WideTy =
807            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
808          // Check whether Start+Step*MaxBECount has no unsigned overflow.
809          SCEVHandle ZMul =
810            getMulExpr(CastedMaxBECount,
811                       getTruncateOrZeroExtend(Step, Start->getType()));
812          SCEVHandle Add = getAddExpr(Start, ZMul);
813          if (getZeroExtendExpr(Add, WideTy) ==
814              getAddExpr(getZeroExtendExpr(Start, WideTy),
815                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
816                                    getZeroExtendExpr(Step, WideTy))))
817            // Return the expression with the addrec on the outside.
818            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
819                                 getZeroExtendExpr(Step, Ty),
820                                 AR->getLoop());
821
822          // Similar to above, only this time treat the step value as signed.
823          // This covers loops that count down.
824          SCEVHandle SMul =
825            getMulExpr(CastedMaxBECount,
826                       getTruncateOrSignExtend(Step, Start->getType()));
827          Add = getAddExpr(Start, SMul);
828          if (getZeroExtendExpr(Add, WideTy) ==
829              getAddExpr(getZeroExtendExpr(Start, WideTy),
830                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
831                                    getSignExtendExpr(Step, WideTy))))
832            // Return the expression with the addrec on the outside.
833            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
834                                 getSignExtendExpr(Step, Ty),
835                                 AR->getLoop());
836        }
837      }
838    }
839
840  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
841  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
842  return Result;
843}
844
845SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
846                                              const Type *Ty) {
847  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
848         "This is not an extending conversion!");
849  assert(isSCEVable(Ty) &&
850         "This is not a conversion to a SCEVable type!");
851  Ty = getEffectiveSCEVType(Ty);
852
853  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
854    const Type *IntTy = getEffectiveSCEVType(Ty);
855    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
856    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
857    return getUnknown(C);
858  }
859
860  // sext(sext(x)) --> sext(x)
861  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
862    return getSignExtendExpr(SS->getOperand(), Ty);
863
864  // If the input value is a chrec scev, and we can prove that the value
865  // did not overflow the old, smaller, value, we can sign extend all of the
866  // operands (often constants).  This allows analysis of something like
867  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
868  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
869    if (AR->isAffine()) {
870      // Check whether the backedge-taken count is SCEVCouldNotCompute.
871      // Note that this serves two purposes: It filters out loops that are
872      // simply not analyzable, and it covers the case where this code is
873      // being called from within backedge-taken count analysis, such that
874      // attempting to ask for the backedge-taken count would likely result
875      // in infinite recursion. In the later case, the analysis code will
876      // cope with a conservative value, and it will take care to purge
877      // that value once it has finished.
878      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
879      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
880        // Manually compute the final value for AR, checking for
881        // overflow.
882        SCEVHandle Start = AR->getStart();
883        SCEVHandle Step = AR->getStepRecurrence(*this);
884
885        // Check whether the backedge-taken count can be losslessly casted to
886        // the addrec's type. The count is always unsigned.
887        SCEVHandle CastedMaxBECount =
888          getTruncateOrZeroExtend(MaxBECount, Start->getType());
889        if (MaxBECount ==
890            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
891          const Type *WideTy =
892            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
893          // Check whether Start+Step*MaxBECount has no signed overflow.
894          SCEVHandle SMul =
895            getMulExpr(CastedMaxBECount,
896                       getTruncateOrSignExtend(Step, Start->getType()));
897          SCEVHandle Add = getAddExpr(Start, SMul);
898          if (getSignExtendExpr(Add, WideTy) ==
899              getAddExpr(getSignExtendExpr(Start, WideTy),
900                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
901                                    getSignExtendExpr(Step, WideTy))))
902            // Return the expression with the addrec on the outside.
903            return getAddRecExpr(getSignExtendExpr(Start, Ty),
904                                 getSignExtendExpr(Step, Ty),
905                                 AR->getLoop());
906        }
907      }
908    }
909
910  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
911  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
912  return Result;
913}
914
915// get - Get a canonical add expression, or something simpler if possible.
916SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
917  assert(!Ops.empty() && "Cannot get empty add!");
918  if (Ops.size() == 1) return Ops[0];
919
920  // Sort by complexity, this groups all similar expression types together.
921  GroupByComplexity(Ops, LI);
922
923  // If there are any constants, fold them together.
924  unsigned Idx = 0;
925  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
926    ++Idx;
927    assert(Idx < Ops.size());
928    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
929      // We found two constants, fold them together!
930      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
931                                           RHSC->getValue()->getValue());
932      Ops[0] = getConstant(Fold);
933      Ops.erase(Ops.begin()+1);  // Erase the folded element
934      if (Ops.size() == 1) return Ops[0];
935      LHSC = cast<SCEVConstant>(Ops[0]);
936    }
937
938    // If we are left with a constant zero being added, strip it off.
939    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
940      Ops.erase(Ops.begin());
941      --Idx;
942    }
943  }
944
945  if (Ops.size() == 1) return Ops[0];
946
947  // Okay, check to see if the same value occurs in the operand list twice.  If
948  // so, merge them together into an multiply expression.  Since we sorted the
949  // list, these values are required to be adjacent.
950  const Type *Ty = Ops[0]->getType();
951  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
952    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
953      // Found a match, merge the two values into a multiply, and add any
954      // remaining values to the result.
955      SCEVHandle Two = getIntegerSCEV(2, Ty);
956      SCEVHandle Mul = getMulExpr(Ops[i], Two);
957      if (Ops.size() == 2)
958        return Mul;
959      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
960      Ops.push_back(Mul);
961      return getAddExpr(Ops);
962    }
963
964  // Check for truncates. If all the operands are truncated from the same
965  // type, see if factoring out the truncate would permit the result to be
966  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
967  // if the contents of the resulting outer trunc fold to something simple.
968  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
969    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
970    const Type *DstType = Trunc->getType();
971    const Type *SrcType = Trunc->getOperand()->getType();
972    std::vector<SCEVHandle> LargeOps;
973    bool Ok = true;
974    // Check all the operands to see if they can be represented in the
975    // source type of the truncate.
976    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
977      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
978        if (T->getOperand()->getType() != SrcType) {
979          Ok = false;
980          break;
981        }
982        LargeOps.push_back(T->getOperand());
983      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
984        // This could be either sign or zero extension, but sign extension
985        // is much more likely to be foldable here.
986        LargeOps.push_back(getSignExtendExpr(C, SrcType));
987      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
988        std::vector<SCEVHandle> LargeMulOps;
989        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
990          if (const SCEVTruncateExpr *T =
991                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
992            if (T->getOperand()->getType() != SrcType) {
993              Ok = false;
994              break;
995            }
996            LargeMulOps.push_back(T->getOperand());
997          } else if (const SCEVConstant *C =
998                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
999            // This could be either sign or zero extension, but sign extension
1000            // is much more likely to be foldable here.
1001            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1002          } else {
1003            Ok = false;
1004            break;
1005          }
1006        }
1007        if (Ok)
1008          LargeOps.push_back(getMulExpr(LargeMulOps));
1009      } else {
1010        Ok = false;
1011        break;
1012      }
1013    }
1014    if (Ok) {
1015      // Evaluate the expression in the larger type.
1016      SCEVHandle Fold = getAddExpr(LargeOps);
1017      // If it folds to something simple, use it. Otherwise, don't.
1018      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1019        return getTruncateExpr(Fold, DstType);
1020    }
1021  }
1022
1023  // Skip past any other cast SCEVs.
1024  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1025    ++Idx;
1026
1027  // If there are add operands they would be next.
1028  if (Idx < Ops.size()) {
1029    bool DeletedAdd = false;
1030    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1031      // If we have an add, expand the add operands onto the end of the operands
1032      // list.
1033      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1034      Ops.erase(Ops.begin()+Idx);
1035      DeletedAdd = true;
1036    }
1037
1038    // If we deleted at least one add, we added operands to the end of the list,
1039    // and they are not necessarily sorted.  Recurse to resort and resimplify
1040    // any operands we just aquired.
1041    if (DeletedAdd)
1042      return getAddExpr(Ops);
1043  }
1044
1045  // Skip over the add expression until we get to a multiply.
1046  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1047    ++Idx;
1048
1049  // If we are adding something to a multiply expression, make sure the
1050  // something is not already an operand of the multiply.  If so, merge it into
1051  // the multiply.
1052  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1053    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1054    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1055      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1056      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1057        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1058          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1059          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1060          if (Mul->getNumOperands() != 2) {
1061            // If the multiply has more than two operands, we must get the
1062            // Y*Z term.
1063            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1064            MulOps.erase(MulOps.begin()+MulOp);
1065            InnerMul = getMulExpr(MulOps);
1066          }
1067          SCEVHandle One = getIntegerSCEV(1, Ty);
1068          SCEVHandle AddOne = getAddExpr(InnerMul, One);
1069          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1070          if (Ops.size() == 2) return OuterMul;
1071          if (AddOp < Idx) {
1072            Ops.erase(Ops.begin()+AddOp);
1073            Ops.erase(Ops.begin()+Idx-1);
1074          } else {
1075            Ops.erase(Ops.begin()+Idx);
1076            Ops.erase(Ops.begin()+AddOp-1);
1077          }
1078          Ops.push_back(OuterMul);
1079          return getAddExpr(Ops);
1080        }
1081
1082      // Check this multiply against other multiplies being added together.
1083      for (unsigned OtherMulIdx = Idx+1;
1084           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1085           ++OtherMulIdx) {
1086        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1087        // If MulOp occurs in OtherMul, we can fold the two multiplies
1088        // together.
1089        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1090             OMulOp != e; ++OMulOp)
1091          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1092            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1093            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1094            if (Mul->getNumOperands() != 2) {
1095              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1096              MulOps.erase(MulOps.begin()+MulOp);
1097              InnerMul1 = getMulExpr(MulOps);
1098            }
1099            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1100            if (OtherMul->getNumOperands() != 2) {
1101              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1102                                             OtherMul->op_end());
1103              MulOps.erase(MulOps.begin()+OMulOp);
1104              InnerMul2 = getMulExpr(MulOps);
1105            }
1106            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1107            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1108            if (Ops.size() == 2) return OuterMul;
1109            Ops.erase(Ops.begin()+Idx);
1110            Ops.erase(Ops.begin()+OtherMulIdx-1);
1111            Ops.push_back(OuterMul);
1112            return getAddExpr(Ops);
1113          }
1114      }
1115    }
1116  }
1117
1118  // If there are any add recurrences in the operands list, see if any other
1119  // added values are loop invariant.  If so, we can fold them into the
1120  // recurrence.
1121  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1122    ++Idx;
1123
1124  // Scan over all recurrences, trying to fold loop invariants into them.
1125  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1126    // Scan all of the other operands to this add and add them to the vector if
1127    // they are loop invariant w.r.t. the recurrence.
1128    std::vector<SCEVHandle> LIOps;
1129    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1130    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1131      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1132        LIOps.push_back(Ops[i]);
1133        Ops.erase(Ops.begin()+i);
1134        --i; --e;
1135      }
1136
1137    // If we found some loop invariants, fold them into the recurrence.
1138    if (!LIOps.empty()) {
1139      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1140      LIOps.push_back(AddRec->getStart());
1141
1142      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1143      AddRecOps[0] = getAddExpr(LIOps);
1144
1145      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1146      // If all of the other operands were loop invariant, we are done.
1147      if (Ops.size() == 1) return NewRec;
1148
1149      // Otherwise, add the folded AddRec by the non-liv parts.
1150      for (unsigned i = 0;; ++i)
1151        if (Ops[i] == AddRec) {
1152          Ops[i] = NewRec;
1153          break;
1154        }
1155      return getAddExpr(Ops);
1156    }
1157
1158    // Okay, if there weren't any loop invariants to be folded, check to see if
1159    // there are multiple AddRec's with the same loop induction variable being
1160    // added together.  If so, we can fold them.
1161    for (unsigned OtherIdx = Idx+1;
1162         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1163      if (OtherIdx != Idx) {
1164        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1165        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1166          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1167          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1168          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1169            if (i >= NewOps.size()) {
1170              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1171                            OtherAddRec->op_end());
1172              break;
1173            }
1174            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1175          }
1176          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1177
1178          if (Ops.size() == 2) return NewAddRec;
1179
1180          Ops.erase(Ops.begin()+Idx);
1181          Ops.erase(Ops.begin()+OtherIdx-1);
1182          Ops.push_back(NewAddRec);
1183          return getAddExpr(Ops);
1184        }
1185      }
1186
1187    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1188    // next one.
1189  }
1190
1191  // Okay, it looks like we really DO need an add expr.  Check to see if we
1192  // already have one, otherwise create a new one.
1193  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1194  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1195                                                                 SCEVOps)];
1196  if (Result == 0) Result = new SCEVAddExpr(Ops);
1197  return Result;
1198}
1199
1200
1201SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1202  assert(!Ops.empty() && "Cannot get empty mul!");
1203
1204  // Sort by complexity, this groups all similar expression types together.
1205  GroupByComplexity(Ops, LI);
1206
1207  // If there are any constants, fold them together.
1208  unsigned Idx = 0;
1209  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1210
1211    // C1*(C2+V) -> C1*C2 + C1*V
1212    if (Ops.size() == 2)
1213      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1214        if (Add->getNumOperands() == 2 &&
1215            isa<SCEVConstant>(Add->getOperand(0)))
1216          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1217                            getMulExpr(LHSC, Add->getOperand(1)));
1218
1219
1220    ++Idx;
1221    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1222      // We found two constants, fold them together!
1223      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1224                                           RHSC->getValue()->getValue());
1225      Ops[0] = getConstant(Fold);
1226      Ops.erase(Ops.begin()+1);  // Erase the folded element
1227      if (Ops.size() == 1) return Ops[0];
1228      LHSC = cast<SCEVConstant>(Ops[0]);
1229    }
1230
1231    // If we are left with a constant one being multiplied, strip it off.
1232    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1233      Ops.erase(Ops.begin());
1234      --Idx;
1235    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1236      // If we have a multiply of zero, it will always be zero.
1237      return Ops[0];
1238    }
1239  }
1240
1241  // Skip over the add expression until we get to a multiply.
1242  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1243    ++Idx;
1244
1245  if (Ops.size() == 1)
1246    return Ops[0];
1247
1248  // If there are mul operands inline them all into this expression.
1249  if (Idx < Ops.size()) {
1250    bool DeletedMul = false;
1251    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1252      // If we have an mul, expand the mul operands onto the end of the operands
1253      // list.
1254      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1255      Ops.erase(Ops.begin()+Idx);
1256      DeletedMul = true;
1257    }
1258
1259    // If we deleted at least one mul, we added operands to the end of the list,
1260    // and they are not necessarily sorted.  Recurse to resort and resimplify
1261    // any operands we just aquired.
1262    if (DeletedMul)
1263      return getMulExpr(Ops);
1264  }
1265
1266  // If there are any add recurrences in the operands list, see if any other
1267  // added values are loop invariant.  If so, we can fold them into the
1268  // recurrence.
1269  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1270    ++Idx;
1271
1272  // Scan over all recurrences, trying to fold loop invariants into them.
1273  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1274    // Scan all of the other operands to this mul and add them to the vector if
1275    // they are loop invariant w.r.t. the recurrence.
1276    std::vector<SCEVHandle> LIOps;
1277    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1278    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1279      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1280        LIOps.push_back(Ops[i]);
1281        Ops.erase(Ops.begin()+i);
1282        --i; --e;
1283      }
1284
1285    // If we found some loop invariants, fold them into the recurrence.
1286    if (!LIOps.empty()) {
1287      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1288      std::vector<SCEVHandle> NewOps;
1289      NewOps.reserve(AddRec->getNumOperands());
1290      if (LIOps.size() == 1) {
1291        const SCEV *Scale = LIOps[0];
1292        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1293          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1294      } else {
1295        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1296          std::vector<SCEVHandle> MulOps(LIOps);
1297          MulOps.push_back(AddRec->getOperand(i));
1298          NewOps.push_back(getMulExpr(MulOps));
1299        }
1300      }
1301
1302      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1303
1304      // If all of the other operands were loop invariant, we are done.
1305      if (Ops.size() == 1) return NewRec;
1306
1307      // Otherwise, multiply the folded AddRec by the non-liv parts.
1308      for (unsigned i = 0;; ++i)
1309        if (Ops[i] == AddRec) {
1310          Ops[i] = NewRec;
1311          break;
1312        }
1313      return getMulExpr(Ops);
1314    }
1315
1316    // Okay, if there weren't any loop invariants to be folded, check to see if
1317    // there are multiple AddRec's with the same loop induction variable being
1318    // multiplied together.  If so, we can fold them.
1319    for (unsigned OtherIdx = Idx+1;
1320         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1321      if (OtherIdx != Idx) {
1322        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1323        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1324          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1325          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1326          SCEVHandle NewStart = getMulExpr(F->getStart(),
1327                                                 G->getStart());
1328          SCEVHandle B = F->getStepRecurrence(*this);
1329          SCEVHandle D = G->getStepRecurrence(*this);
1330          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1331                                          getMulExpr(G, B),
1332                                          getMulExpr(B, D));
1333          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1334                                               F->getLoop());
1335          if (Ops.size() == 2) return NewAddRec;
1336
1337          Ops.erase(Ops.begin()+Idx);
1338          Ops.erase(Ops.begin()+OtherIdx-1);
1339          Ops.push_back(NewAddRec);
1340          return getMulExpr(Ops);
1341        }
1342      }
1343
1344    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1345    // next one.
1346  }
1347
1348  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1349  // already have one, otherwise create a new one.
1350  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1351  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1352                                                                 SCEVOps)];
1353  if (Result == 0)
1354    Result = new SCEVMulExpr(Ops);
1355  return Result;
1356}
1357
1358SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1359                                        const SCEVHandle &RHS) {
1360  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1361    if (RHSC->getValue()->equalsInt(1))
1362      return LHS;                            // X udiv 1 --> x
1363    if (RHSC->isZero())
1364      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1365
1366    // Determine if the division can be folded into the operands of
1367    // its operands.
1368    // TODO: Generalize this to non-constants by using known-bits information.
1369    const Type *Ty = LHS->getType();
1370    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1371    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1372    // For non-power-of-two values, effectively round the value up to the
1373    // nearest power of two.
1374    if (!RHSC->getValue()->getValue().isPowerOf2())
1375      ++MaxShiftAmt;
1376    const IntegerType *ExtTy =
1377      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1378    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1379    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1380      if (const SCEVConstant *Step =
1381            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1382        if (!Step->getValue()->getValue()
1383              .urem(RHSC->getValue()->getValue()) &&
1384            getZeroExtendExpr(AR, ExtTy) ==
1385            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1386                          getZeroExtendExpr(Step, ExtTy),
1387                          AR->getLoop())) {
1388          std::vector<SCEVHandle> Operands;
1389          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1390            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1391          return getAddRecExpr(Operands, AR->getLoop());
1392        }
1393    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1394    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1395      std::vector<SCEVHandle> Operands;
1396      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1397        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1398      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1399        // Find an operand that's safely divisible.
1400        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1401          SCEVHandle Op = M->getOperand(i);
1402          SCEVHandle Div = getUDivExpr(Op, RHSC);
1403          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1404            Operands = M->getOperands();
1405            Operands[i] = Div;
1406            return getMulExpr(Operands);
1407          }
1408        }
1409    }
1410    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1411    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1412      std::vector<SCEVHandle> Operands;
1413      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1414        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1415      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1416        Operands.clear();
1417        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1418          SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1419          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1420            break;
1421          Operands.push_back(Op);
1422        }
1423        if (Operands.size() == A->getNumOperands())
1424          return getAddExpr(Operands);
1425      }
1426    }
1427
1428    // Fold if both operands are constant.
1429    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1430      Constant *LHSCV = LHSC->getValue();
1431      Constant *RHSCV = RHSC->getValue();
1432      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1433    }
1434  }
1435
1436  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1437  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1438  return Result;
1439}
1440
1441
1442/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1443/// specified loop.  Simplify the expression as much as possible.
1444SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1445                               const SCEVHandle &Step, const Loop *L) {
1446  std::vector<SCEVHandle> Operands;
1447  Operands.push_back(Start);
1448  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1449    if (StepChrec->getLoop() == L) {
1450      Operands.insert(Operands.end(), StepChrec->op_begin(),
1451                      StepChrec->op_end());
1452      return getAddRecExpr(Operands, L);
1453    }
1454
1455  Operands.push_back(Step);
1456  return getAddRecExpr(Operands, L);
1457}
1458
1459/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1460/// specified loop.  Simplify the expression as much as possible.
1461SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1462                                          const Loop *L) {
1463  if (Operands.size() == 1) return Operands[0];
1464
1465  if (Operands.back()->isZero()) {
1466    Operands.pop_back();
1467    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1468  }
1469
1470  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1471  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1472    const Loop* NestedLoop = NestedAR->getLoop();
1473    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1474      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1475                                             NestedAR->op_end());
1476      SCEVHandle NestedARHandle(NestedAR);
1477      Operands[0] = NestedAR->getStart();
1478      NestedOperands[0] = getAddRecExpr(Operands, L);
1479      return getAddRecExpr(NestedOperands, NestedLoop);
1480    }
1481  }
1482
1483  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1484  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1485  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1486  return Result;
1487}
1488
1489SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1490                                        const SCEVHandle &RHS) {
1491  std::vector<SCEVHandle> Ops;
1492  Ops.push_back(LHS);
1493  Ops.push_back(RHS);
1494  return getSMaxExpr(Ops);
1495}
1496
1497SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1498  assert(!Ops.empty() && "Cannot get empty smax!");
1499  if (Ops.size() == 1) return Ops[0];
1500
1501  // Sort by complexity, this groups all similar expression types together.
1502  GroupByComplexity(Ops, LI);
1503
1504  // If there are any constants, fold them together.
1505  unsigned Idx = 0;
1506  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1507    ++Idx;
1508    assert(Idx < Ops.size());
1509    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1510      // We found two constants, fold them together!
1511      ConstantInt *Fold = ConstantInt::get(
1512                              APIntOps::smax(LHSC->getValue()->getValue(),
1513                                             RHSC->getValue()->getValue()));
1514      Ops[0] = getConstant(Fold);
1515      Ops.erase(Ops.begin()+1);  // Erase the folded element
1516      if (Ops.size() == 1) return Ops[0];
1517      LHSC = cast<SCEVConstant>(Ops[0]);
1518    }
1519
1520    // If we are left with a constant -inf, strip it off.
1521    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1522      Ops.erase(Ops.begin());
1523      --Idx;
1524    }
1525  }
1526
1527  if (Ops.size() == 1) return Ops[0];
1528
1529  // Find the first SMax
1530  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1531    ++Idx;
1532
1533  // Check to see if one of the operands is an SMax. If so, expand its operands
1534  // onto our operand list, and recurse to simplify.
1535  if (Idx < Ops.size()) {
1536    bool DeletedSMax = false;
1537    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1538      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1539      Ops.erase(Ops.begin()+Idx);
1540      DeletedSMax = true;
1541    }
1542
1543    if (DeletedSMax)
1544      return getSMaxExpr(Ops);
1545  }
1546
1547  // Okay, check to see if the same value occurs in the operand list twice.  If
1548  // so, delete one.  Since we sorted the list, these values are required to
1549  // be adjacent.
1550  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1551    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1552      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1553      --i; --e;
1554    }
1555
1556  if (Ops.size() == 1) return Ops[0];
1557
1558  assert(!Ops.empty() && "Reduced smax down to nothing!");
1559
1560  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1561  // already have one, otherwise create a new one.
1562  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1563  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1564                                                                 SCEVOps)];
1565  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1566  return Result;
1567}
1568
1569SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1570                                        const SCEVHandle &RHS) {
1571  std::vector<SCEVHandle> Ops;
1572  Ops.push_back(LHS);
1573  Ops.push_back(RHS);
1574  return getUMaxExpr(Ops);
1575}
1576
1577SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1578  assert(!Ops.empty() && "Cannot get empty umax!");
1579  if (Ops.size() == 1) return Ops[0];
1580
1581  // Sort by complexity, this groups all similar expression types together.
1582  GroupByComplexity(Ops, LI);
1583
1584  // If there are any constants, fold them together.
1585  unsigned Idx = 0;
1586  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1587    ++Idx;
1588    assert(Idx < Ops.size());
1589    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1590      // We found two constants, fold them together!
1591      ConstantInt *Fold = ConstantInt::get(
1592                              APIntOps::umax(LHSC->getValue()->getValue(),
1593                                             RHSC->getValue()->getValue()));
1594      Ops[0] = getConstant(Fold);
1595      Ops.erase(Ops.begin()+1);  // Erase the folded element
1596      if (Ops.size() == 1) return Ops[0];
1597      LHSC = cast<SCEVConstant>(Ops[0]);
1598    }
1599
1600    // If we are left with a constant zero, strip it off.
1601    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1602      Ops.erase(Ops.begin());
1603      --Idx;
1604    }
1605  }
1606
1607  if (Ops.size() == 1) return Ops[0];
1608
1609  // Find the first UMax
1610  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1611    ++Idx;
1612
1613  // Check to see if one of the operands is a UMax. If so, expand its operands
1614  // onto our operand list, and recurse to simplify.
1615  if (Idx < Ops.size()) {
1616    bool DeletedUMax = false;
1617    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1618      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1619      Ops.erase(Ops.begin()+Idx);
1620      DeletedUMax = true;
1621    }
1622
1623    if (DeletedUMax)
1624      return getUMaxExpr(Ops);
1625  }
1626
1627  // Okay, check to see if the same value occurs in the operand list twice.  If
1628  // so, delete one.  Since we sorted the list, these values are required to
1629  // be adjacent.
1630  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1631    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1632      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1633      --i; --e;
1634    }
1635
1636  if (Ops.size() == 1) return Ops[0];
1637
1638  assert(!Ops.empty() && "Reduced umax down to nothing!");
1639
1640  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1641  // already have one, otherwise create a new one.
1642  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1643  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1644                                                                 SCEVOps)];
1645  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1646  return Result;
1647}
1648
1649SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1650  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1651    return getConstant(CI);
1652  if (isa<ConstantPointerNull>(V))
1653    return getIntegerSCEV(0, V->getType());
1654  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1655  if (Result == 0) Result = new SCEVUnknown(V);
1656  return Result;
1657}
1658
1659//===----------------------------------------------------------------------===//
1660//            Basic SCEV Analysis and PHI Idiom Recognition Code
1661//
1662
1663/// isSCEVable - Test if values of the given type are analyzable within
1664/// the SCEV framework. This primarily includes integer types, and it
1665/// can optionally include pointer types if the ScalarEvolution class
1666/// has access to target-specific information.
1667bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1668  // Integers are always SCEVable.
1669  if (Ty->isInteger())
1670    return true;
1671
1672  // Pointers are SCEVable if TargetData information is available
1673  // to provide pointer size information.
1674  if (isa<PointerType>(Ty))
1675    return TD != NULL;
1676
1677  // Otherwise it's not SCEVable.
1678  return false;
1679}
1680
1681/// getTypeSizeInBits - Return the size in bits of the specified type,
1682/// for which isSCEVable must return true.
1683uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1684  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1685
1686  // If we have a TargetData, use it!
1687  if (TD)
1688    return TD->getTypeSizeInBits(Ty);
1689
1690  // Otherwise, we support only integer types.
1691  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1692  return Ty->getPrimitiveSizeInBits();
1693}
1694
1695/// getEffectiveSCEVType - Return a type with the same bitwidth as
1696/// the given type and which represents how SCEV will treat the given
1697/// type, for which isSCEVable must return true. For pointer types,
1698/// this is the pointer-sized integer type.
1699const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1700  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1701
1702  if (Ty->isInteger())
1703    return Ty;
1704
1705  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1706  return TD->getIntPtrType();
1707}
1708
1709SCEVHandle ScalarEvolution::getCouldNotCompute() {
1710  return UnknownValue;
1711}
1712
1713/// hasSCEV - Return true if the SCEV for this value has already been
1714/// computed.
1715bool ScalarEvolution::hasSCEV(Value *V) const {
1716  return Scalars.count(V);
1717}
1718
1719/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1720/// expression and create a new one.
1721SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1722  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1723
1724  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1725  if (I != Scalars.end()) return I->second;
1726  SCEVHandle S = createSCEV(V);
1727  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1728  return S;
1729}
1730
1731/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1732/// specified signed integer value and return a SCEV for the constant.
1733SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1734  Ty = getEffectiveSCEVType(Ty);
1735  Constant *C;
1736  if (Val == 0)
1737    C = Constant::getNullValue(Ty);
1738  else if (Ty->isFloatingPoint())
1739    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1740                                APFloat::IEEEdouble, Val));
1741  else
1742    C = ConstantInt::get(Ty, Val);
1743  return getUnknown(C);
1744}
1745
1746/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1747///
1748SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1749  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1750    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1751
1752  const Type *Ty = V->getType();
1753  Ty = getEffectiveSCEVType(Ty);
1754  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1755}
1756
1757/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1758SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1759  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1760    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1761
1762  const Type *Ty = V->getType();
1763  Ty = getEffectiveSCEVType(Ty);
1764  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1765  return getMinusSCEV(AllOnes, V);
1766}
1767
1768/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1769///
1770SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1771                                         const SCEVHandle &RHS) {
1772  // X - Y --> X + -Y
1773  return getAddExpr(LHS, getNegativeSCEV(RHS));
1774}
1775
1776/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1777/// input value to the specified type.  If the type must be extended, it is zero
1778/// extended.
1779SCEVHandle
1780ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1781                                         const Type *Ty) {
1782  const Type *SrcTy = V->getType();
1783  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1784         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1785         "Cannot truncate or zero extend with non-integer arguments!");
1786  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1787    return V;  // No conversion
1788  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1789    return getTruncateExpr(V, Ty);
1790  return getZeroExtendExpr(V, Ty);
1791}
1792
1793/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1794/// input value to the specified type.  If the type must be extended, it is sign
1795/// extended.
1796SCEVHandle
1797ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1798                                         const Type *Ty) {
1799  const Type *SrcTy = V->getType();
1800  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1801         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1802         "Cannot truncate or zero extend with non-integer arguments!");
1803  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1804    return V;  // No conversion
1805  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1806    return getTruncateExpr(V, Ty);
1807  return getSignExtendExpr(V, Ty);
1808}
1809
1810/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1811/// the specified instruction and replaces any references to the symbolic value
1812/// SymName with the specified value.  This is used during PHI resolution.
1813void ScalarEvolution::
1814ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1815                                 const SCEVHandle &NewVal) {
1816  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1817    Scalars.find(SCEVCallbackVH(I, this));
1818  if (SI == Scalars.end()) return;
1819
1820  SCEVHandle NV =
1821    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1822  if (NV == SI->second) return;  // No change.
1823
1824  SI->second = NV;       // Update the scalars map!
1825
1826  // Any instruction values that use this instruction might also need to be
1827  // updated!
1828  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1829       UI != E; ++UI)
1830    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1831}
1832
1833/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1834/// a loop header, making it a potential recurrence, or it doesn't.
1835///
1836SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1837  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1838    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1839      if (L->getHeader() == PN->getParent()) {
1840        // If it lives in the loop header, it has two incoming values, one
1841        // from outside the loop, and one from inside.
1842        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1843        unsigned BackEdge     = IncomingEdge^1;
1844
1845        // While we are analyzing this PHI node, handle its value symbolically.
1846        SCEVHandle SymbolicName = getUnknown(PN);
1847        assert(Scalars.find(PN) == Scalars.end() &&
1848               "PHI node already processed?");
1849        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1850
1851        // Using this symbolic name for the PHI, analyze the value coming around
1852        // the back-edge.
1853        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1854
1855        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1856        // has a special value for the first iteration of the loop.
1857
1858        // If the value coming around the backedge is an add with the symbolic
1859        // value we just inserted, then we found a simple induction variable!
1860        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1861          // If there is a single occurrence of the symbolic value, replace it
1862          // with a recurrence.
1863          unsigned FoundIndex = Add->getNumOperands();
1864          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1865            if (Add->getOperand(i) == SymbolicName)
1866              if (FoundIndex == e) {
1867                FoundIndex = i;
1868                break;
1869              }
1870
1871          if (FoundIndex != Add->getNumOperands()) {
1872            // Create an add with everything but the specified operand.
1873            std::vector<SCEVHandle> Ops;
1874            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1875              if (i != FoundIndex)
1876                Ops.push_back(Add->getOperand(i));
1877            SCEVHandle Accum = getAddExpr(Ops);
1878
1879            // This is not a valid addrec if the step amount is varying each
1880            // loop iteration, but is not itself an addrec in this loop.
1881            if (Accum->isLoopInvariant(L) ||
1882                (isa<SCEVAddRecExpr>(Accum) &&
1883                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1884              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1885              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1886
1887              // Okay, for the entire analysis of this edge we assumed the PHI
1888              // to be symbolic.  We now need to go back and update all of the
1889              // entries for the scalars that use the PHI (except for the PHI
1890              // itself) to use the new analyzed value instead of the "symbolic"
1891              // value.
1892              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1893              return PHISCEV;
1894            }
1895          }
1896        } else if (const SCEVAddRecExpr *AddRec =
1897                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
1898          // Otherwise, this could be a loop like this:
1899          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1900          // In this case, j = {1,+,1}  and BEValue is j.
1901          // Because the other in-value of i (0) fits the evolution of BEValue
1902          // i really is an addrec evolution.
1903          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1904            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1905
1906            // If StartVal = j.start - j.stride, we can use StartVal as the
1907            // initial step of the addrec evolution.
1908            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1909                                            AddRec->getOperand(1))) {
1910              SCEVHandle PHISCEV =
1911                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1912
1913              // Okay, for the entire analysis of this edge we assumed the PHI
1914              // to be symbolic.  We now need to go back and update all of the
1915              // entries for the scalars that use the PHI (except for the PHI
1916              // itself) to use the new analyzed value instead of the "symbolic"
1917              // value.
1918              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1919              return PHISCEV;
1920            }
1921          }
1922        }
1923
1924        return SymbolicName;
1925      }
1926
1927  // If it's not a loop phi, we can't handle it yet.
1928  return getUnknown(PN);
1929}
1930
1931/// createNodeForGEP - Expand GEP instructions into add and multiply
1932/// operations. This allows them to be analyzed by regular SCEV code.
1933///
1934SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
1935
1936  const Type *IntPtrTy = TD->getIntPtrType();
1937  Value *Base = GEP->getOperand(0);
1938  // Don't attempt to analyze GEPs over unsized objects.
1939  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
1940    return getUnknown(GEP);
1941  SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1942  gep_type_iterator GTI = gep_type_begin(GEP);
1943  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
1944                                      E = GEP->op_end();
1945       I != E; ++I) {
1946    Value *Index = *I;
1947    // Compute the (potentially symbolic) offset in bytes for this index.
1948    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1949      // For a struct, add the member offset.
1950      const StructLayout &SL = *TD->getStructLayout(STy);
1951      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1952      uint64_t Offset = SL.getElementOffset(FieldNo);
1953      TotalOffset = getAddExpr(TotalOffset,
1954                                  getIntegerSCEV(Offset, IntPtrTy));
1955    } else {
1956      // For an array, add the element offset, explicitly scaled.
1957      SCEVHandle LocalOffset = getSCEV(Index);
1958      if (!isa<PointerType>(LocalOffset->getType()))
1959        // Getelementptr indicies are signed.
1960        LocalOffset = getTruncateOrSignExtend(LocalOffset,
1961                                              IntPtrTy);
1962      LocalOffset =
1963        getMulExpr(LocalOffset,
1964                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
1965                                  IntPtrTy));
1966      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
1967    }
1968  }
1969  return getAddExpr(getSCEV(Base), TotalOffset);
1970}
1971
1972/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1973/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1974/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1975/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1976static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1977  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1978    return C->getValue()->getValue().countTrailingZeros();
1979
1980  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1981    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1982                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
1983
1984  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1985    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1986    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1987             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1988  }
1989
1990  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1991    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1992    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1993             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1994  }
1995
1996  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1997    // The result is the min of all operands results.
1998    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1999    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2000      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2001    return MinOpRes;
2002  }
2003
2004  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2005    // The result is the sum of all operands results.
2006    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2007    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
2008    for (unsigned i = 1, e = M->getNumOperands();
2009         SumOpRes != BitWidth && i != e; ++i)
2010      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
2011                          BitWidth);
2012    return SumOpRes;
2013  }
2014
2015  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2016    // The result is the min of all operands results.
2017    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2018    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2019      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2020    return MinOpRes;
2021  }
2022
2023  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2024    // The result is the min of all operands results.
2025    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2026    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2027      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2028    return MinOpRes;
2029  }
2030
2031  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2032    // The result is the min of all operands results.
2033    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2034    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2035      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2036    return MinOpRes;
2037  }
2038
2039  // SCEVUDivExpr, SCEVUnknown
2040  return 0;
2041}
2042
2043/// createSCEV - We know that there is no SCEV for the specified value.
2044/// Analyze the expression.
2045///
2046SCEVHandle ScalarEvolution::createSCEV(Value *V) {
2047  if (!isSCEVable(V->getType()))
2048    return getUnknown(V);
2049
2050  unsigned Opcode = Instruction::UserOp1;
2051  if (Instruction *I = dyn_cast<Instruction>(V))
2052    Opcode = I->getOpcode();
2053  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2054    Opcode = CE->getOpcode();
2055  else
2056    return getUnknown(V);
2057
2058  User *U = cast<User>(V);
2059  switch (Opcode) {
2060  case Instruction::Add:
2061    return getAddExpr(getSCEV(U->getOperand(0)),
2062                      getSCEV(U->getOperand(1)));
2063  case Instruction::Mul:
2064    return getMulExpr(getSCEV(U->getOperand(0)),
2065                      getSCEV(U->getOperand(1)));
2066  case Instruction::UDiv:
2067    return getUDivExpr(getSCEV(U->getOperand(0)),
2068                       getSCEV(U->getOperand(1)));
2069  case Instruction::Sub:
2070    return getMinusSCEV(getSCEV(U->getOperand(0)),
2071                        getSCEV(U->getOperand(1)));
2072  case Instruction::And:
2073    // For an expression like x&255 that merely masks off the high bits,
2074    // use zext(trunc(x)) as the SCEV expression.
2075    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2076      if (CI->isNullValue())
2077        return getSCEV(U->getOperand(1));
2078      if (CI->isAllOnesValue())
2079        return getSCEV(U->getOperand(0));
2080      const APInt &A = CI->getValue();
2081      unsigned Ones = A.countTrailingOnes();
2082      if (APIntOps::isMask(Ones, A))
2083        return
2084          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2085                                            IntegerType::get(Ones)),
2086                            U->getType());
2087    }
2088    break;
2089  case Instruction::Or:
2090    // If the RHS of the Or is a constant, we may have something like:
2091    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2092    // optimizations will transparently handle this case.
2093    //
2094    // In order for this transformation to be safe, the LHS must be of the
2095    // form X*(2^n) and the Or constant must be less than 2^n.
2096    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2097      SCEVHandle LHS = getSCEV(U->getOperand(0));
2098      const APInt &CIVal = CI->getValue();
2099      if (GetMinTrailingZeros(LHS, *this) >=
2100          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2101        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2102    }
2103    break;
2104  case Instruction::Xor:
2105    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2106      // If the RHS of the xor is a signbit, then this is just an add.
2107      // Instcombine turns add of signbit into xor as a strength reduction step.
2108      if (CI->getValue().isSignBit())
2109        return getAddExpr(getSCEV(U->getOperand(0)),
2110                          getSCEV(U->getOperand(1)));
2111
2112      // If the RHS of xor is -1, then this is a not operation.
2113      else if (CI->isAllOnesValue())
2114        return getNotSCEV(getSCEV(U->getOperand(0)));
2115    }
2116    break;
2117
2118  case Instruction::Shl:
2119    // Turn shift left of a constant amount into a multiply.
2120    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2121      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2122      Constant *X = ConstantInt::get(
2123        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2124      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2125    }
2126    break;
2127
2128  case Instruction::LShr:
2129    // Turn logical shift right of a constant into a unsigned divide.
2130    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2131      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2132      Constant *X = ConstantInt::get(
2133        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2134      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2135    }
2136    break;
2137
2138  case Instruction::AShr:
2139    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2140    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2141      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2142        if (L->getOpcode() == Instruction::Shl &&
2143            L->getOperand(1) == U->getOperand(1)) {
2144          unsigned BitWidth = getTypeSizeInBits(U->getType());
2145          uint64_t Amt = BitWidth - CI->getZExtValue();
2146          if (Amt == BitWidth)
2147            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2148          if (Amt > BitWidth)
2149            return getIntegerSCEV(0, U->getType()); // value is undefined
2150          return
2151            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2152                                                      IntegerType::get(Amt)),
2153                                 U->getType());
2154        }
2155    break;
2156
2157  case Instruction::Trunc:
2158    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2159
2160  case Instruction::ZExt:
2161    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2162
2163  case Instruction::SExt:
2164    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2165
2166  case Instruction::BitCast:
2167    // BitCasts are no-op casts so we just eliminate the cast.
2168    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2169      return getSCEV(U->getOperand(0));
2170    break;
2171
2172  case Instruction::IntToPtr:
2173    if (!TD) break; // Without TD we can't analyze pointers.
2174    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2175                                   TD->getIntPtrType());
2176
2177  case Instruction::PtrToInt:
2178    if (!TD) break; // Without TD we can't analyze pointers.
2179    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2180                                   U->getType());
2181
2182  case Instruction::GetElementPtr:
2183    if (!TD) break; // Without TD we can't analyze pointers.
2184    return createNodeForGEP(U);
2185
2186  case Instruction::PHI:
2187    return createNodeForPHI(cast<PHINode>(U));
2188
2189  case Instruction::Select:
2190    // This could be a smax or umax that was lowered earlier.
2191    // Try to recover it.
2192    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2193      Value *LHS = ICI->getOperand(0);
2194      Value *RHS = ICI->getOperand(1);
2195      switch (ICI->getPredicate()) {
2196      case ICmpInst::ICMP_SLT:
2197      case ICmpInst::ICMP_SLE:
2198        std::swap(LHS, RHS);
2199        // fall through
2200      case ICmpInst::ICMP_SGT:
2201      case ICmpInst::ICMP_SGE:
2202        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2203          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2204        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2205          // ~smax(~x, ~y) == smin(x, y).
2206          return getNotSCEV(getSMaxExpr(
2207                                   getNotSCEV(getSCEV(LHS)),
2208                                   getNotSCEV(getSCEV(RHS))));
2209        break;
2210      case ICmpInst::ICMP_ULT:
2211      case ICmpInst::ICMP_ULE:
2212        std::swap(LHS, RHS);
2213        // fall through
2214      case ICmpInst::ICMP_UGT:
2215      case ICmpInst::ICMP_UGE:
2216        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2217          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2218        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2219          // ~umax(~x, ~y) == umin(x, y)
2220          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2221                                        getNotSCEV(getSCEV(RHS))));
2222        break;
2223      default:
2224        break;
2225      }
2226    }
2227
2228  default: // We cannot analyze this expression.
2229    break;
2230  }
2231
2232  return getUnknown(V);
2233}
2234
2235
2236
2237//===----------------------------------------------------------------------===//
2238//                   Iteration Count Computation Code
2239//
2240
2241/// getBackedgeTakenCount - If the specified loop has a predictable
2242/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2243/// object. The backedge-taken count is the number of times the loop header
2244/// will be branched to from within the loop. This is one less than the
2245/// trip count of the loop, since it doesn't count the first iteration,
2246/// when the header is branched to from outside the loop.
2247///
2248/// Note that it is not valid to call this method on a loop without a
2249/// loop-invariant backedge-taken count (see
2250/// hasLoopInvariantBackedgeTakenCount).
2251///
2252SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2253  return getBackedgeTakenInfo(L).Exact;
2254}
2255
2256/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2257/// return the least SCEV value that is known never to be less than the
2258/// actual backedge taken count.
2259SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2260  return getBackedgeTakenInfo(L).Max;
2261}
2262
2263const ScalarEvolution::BackedgeTakenInfo &
2264ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2265  // Initially insert a CouldNotCompute for this loop. If the insertion
2266  // succeeds, procede to actually compute a backedge-taken count and
2267  // update the value. The temporary CouldNotCompute value tells SCEV
2268  // code elsewhere that it shouldn't attempt to request a new
2269  // backedge-taken count, which could result in infinite recursion.
2270  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2271    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2272  if (Pair.second) {
2273    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2274    if (ItCount.Exact != UnknownValue) {
2275      assert(ItCount.Exact->isLoopInvariant(L) &&
2276             ItCount.Max->isLoopInvariant(L) &&
2277             "Computed trip count isn't loop invariant for loop!");
2278      ++NumTripCountsComputed;
2279
2280      // Update the value in the map.
2281      Pair.first->second = ItCount;
2282    } else if (isa<PHINode>(L->getHeader()->begin())) {
2283      // Only count loops that have phi nodes as not being computable.
2284      ++NumTripCountsNotComputed;
2285    }
2286
2287    // Now that we know more about the trip count for this loop, forget any
2288    // existing SCEV values for PHI nodes in this loop since they are only
2289    // conservative estimates made without the benefit
2290    // of trip count information.
2291    if (ItCount.hasAnyInfo())
2292      forgetLoopPHIs(L);
2293  }
2294  return Pair.first->second;
2295}
2296
2297/// forgetLoopBackedgeTakenCount - This method should be called by the
2298/// client when it has changed a loop in a way that may effect
2299/// ScalarEvolution's ability to compute a trip count, or if the loop
2300/// is deleted.
2301void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2302  BackedgeTakenCounts.erase(L);
2303  forgetLoopPHIs(L);
2304}
2305
2306/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2307/// PHI nodes in the given loop. This is used when the trip count of
2308/// the loop may have changed.
2309void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2310  BasicBlock *Header = L->getHeader();
2311
2312  SmallVector<Instruction *, 16> Worklist;
2313  for (BasicBlock::iterator I = Header->begin();
2314       PHINode *PN = dyn_cast<PHINode>(I); ++I)
2315    Worklist.push_back(PN);
2316
2317  while (!Worklist.empty()) {
2318    Instruction *I = Worklist.pop_back_val();
2319    if (Scalars.erase(I))
2320      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2321           UI != UE; ++UI)
2322        Worklist.push_back(cast<Instruction>(UI));
2323  }
2324}
2325
2326/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2327/// of the specified loop will execute.
2328ScalarEvolution::BackedgeTakenInfo
2329ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2330  // If the loop has a non-one exit block count, we can't analyze it.
2331  SmallVector<BasicBlock*, 8> ExitBlocks;
2332  L->getExitBlocks(ExitBlocks);
2333  if (ExitBlocks.size() != 1) return UnknownValue;
2334
2335  // Okay, there is one exit block.  Try to find the condition that causes the
2336  // loop to be exited.
2337  BasicBlock *ExitBlock = ExitBlocks[0];
2338
2339  BasicBlock *ExitingBlock = 0;
2340  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2341       PI != E; ++PI)
2342    if (L->contains(*PI)) {
2343      if (ExitingBlock == 0)
2344        ExitingBlock = *PI;
2345      else
2346        return UnknownValue;   // More than one block exiting!
2347    }
2348  assert(ExitingBlock && "No exits from loop, something is broken!");
2349
2350  // Okay, we've computed the exiting block.  See what condition causes us to
2351  // exit.
2352  //
2353  // FIXME: we should be able to handle switch instructions (with a single exit)
2354  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2355  if (ExitBr == 0) return UnknownValue;
2356  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2357
2358  // At this point, we know we have a conditional branch that determines whether
2359  // the loop is exited.  However, we don't know if the branch is executed each
2360  // time through the loop.  If not, then the execution count of the branch will
2361  // not be equal to the trip count of the loop.
2362  //
2363  // Currently we check for this by checking to see if the Exit branch goes to
2364  // the loop header.  If so, we know it will always execute the same number of
2365  // times as the loop.  We also handle the case where the exit block *is* the
2366  // loop header.  This is common for un-rotated loops.  More extensive analysis
2367  // could be done to handle more cases here.
2368  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2369      ExitBr->getSuccessor(1) != L->getHeader() &&
2370      ExitBr->getParent() != L->getHeader())
2371    return UnknownValue;
2372
2373  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2374
2375  // If it's not an integer or pointer comparison then compute it the hard way.
2376  if (ExitCond == 0)
2377    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2378                                          ExitBr->getSuccessor(0) == ExitBlock);
2379
2380  // If the condition was exit on true, convert the condition to exit on false
2381  ICmpInst::Predicate Cond;
2382  if (ExitBr->getSuccessor(1) == ExitBlock)
2383    Cond = ExitCond->getPredicate();
2384  else
2385    Cond = ExitCond->getInversePredicate();
2386
2387  // Handle common loops like: for (X = "string"; *X; ++X)
2388  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2389    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2390      SCEVHandle ItCnt =
2391        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2392      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2393    }
2394
2395  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2396  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2397
2398  // Try to evaluate any dependencies out of the loop.
2399  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2400  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2401  Tmp = getSCEVAtScope(RHS, L);
2402  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2403
2404  // At this point, we would like to compute how many iterations of the
2405  // loop the predicate will return true for these inputs.
2406  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2407    // If there is a loop-invariant, force it into the RHS.
2408    std::swap(LHS, RHS);
2409    Cond = ICmpInst::getSwappedPredicate(Cond);
2410  }
2411
2412  // If we have a comparison of a chrec against a constant, try to use value
2413  // ranges to answer this query.
2414  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2415    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2416      if (AddRec->getLoop() == L) {
2417        // Form the constant range.
2418        ConstantRange CompRange(
2419            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
2420
2421        SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2422        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2423      }
2424
2425  switch (Cond) {
2426  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2427    // Convert to: while (X-Y != 0)
2428    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2429    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2430    break;
2431  }
2432  case ICmpInst::ICMP_EQ: {
2433    // Convert to: while (X-Y == 0)           // while (X == Y)
2434    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2435    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2436    break;
2437  }
2438  case ICmpInst::ICMP_SLT: {
2439    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2440    if (BTI.hasAnyInfo()) return BTI;
2441    break;
2442  }
2443  case ICmpInst::ICMP_SGT: {
2444    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2445                                             getNotSCEV(RHS), L, true);
2446    if (BTI.hasAnyInfo()) return BTI;
2447    break;
2448  }
2449  case ICmpInst::ICMP_ULT: {
2450    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2451    if (BTI.hasAnyInfo()) return BTI;
2452    break;
2453  }
2454  case ICmpInst::ICMP_UGT: {
2455    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2456                                             getNotSCEV(RHS), L, false);
2457    if (BTI.hasAnyInfo()) return BTI;
2458    break;
2459  }
2460  default:
2461#if 0
2462    errs() << "ComputeBackedgeTakenCount ";
2463    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2464      errs() << "[unsigned] ";
2465    errs() << *LHS << "   "
2466         << Instruction::getOpcodeName(Instruction::ICmp)
2467         << "   " << *RHS << "\n";
2468#endif
2469    break;
2470  }
2471  return
2472    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2473                                          ExitBr->getSuccessor(0) == ExitBlock);
2474}
2475
2476static ConstantInt *
2477EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2478                                ScalarEvolution &SE) {
2479  SCEVHandle InVal = SE.getConstant(C);
2480  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2481  assert(isa<SCEVConstant>(Val) &&
2482         "Evaluation of SCEV at constant didn't fold correctly?");
2483  return cast<SCEVConstant>(Val)->getValue();
2484}
2485
2486/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2487/// and a GEP expression (missing the pointer index) indexing into it, return
2488/// the addressed element of the initializer or null if the index expression is
2489/// invalid.
2490static Constant *
2491GetAddressedElementFromGlobal(GlobalVariable *GV,
2492                              const std::vector<ConstantInt*> &Indices) {
2493  Constant *Init = GV->getInitializer();
2494  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2495    uint64_t Idx = Indices[i]->getZExtValue();
2496    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2497      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2498      Init = cast<Constant>(CS->getOperand(Idx));
2499    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2500      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2501      Init = cast<Constant>(CA->getOperand(Idx));
2502    } else if (isa<ConstantAggregateZero>(Init)) {
2503      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2504        assert(Idx < STy->getNumElements() && "Bad struct index!");
2505        Init = Constant::getNullValue(STy->getElementType(Idx));
2506      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2507        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2508        Init = Constant::getNullValue(ATy->getElementType());
2509      } else {
2510        assert(0 && "Unknown constant aggregate type!");
2511      }
2512      return 0;
2513    } else {
2514      return 0; // Unknown initializer type
2515    }
2516  }
2517  return Init;
2518}
2519
2520/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2521/// 'icmp op load X, cst', try to see if we can compute the backedge
2522/// execution count.
2523SCEVHandle ScalarEvolution::
2524ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2525                                             const Loop *L,
2526                                             ICmpInst::Predicate predicate) {
2527  if (LI->isVolatile()) return UnknownValue;
2528
2529  // Check to see if the loaded pointer is a getelementptr of a global.
2530  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2531  if (!GEP) return UnknownValue;
2532
2533  // Make sure that it is really a constant global we are gepping, with an
2534  // initializer, and make sure the first IDX is really 0.
2535  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2536  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2537      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2538      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2539    return UnknownValue;
2540
2541  // Okay, we allow one non-constant index into the GEP instruction.
2542  Value *VarIdx = 0;
2543  std::vector<ConstantInt*> Indexes;
2544  unsigned VarIdxNum = 0;
2545  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2546    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2547      Indexes.push_back(CI);
2548    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2549      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2550      VarIdx = GEP->getOperand(i);
2551      VarIdxNum = i-2;
2552      Indexes.push_back(0);
2553    }
2554
2555  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2556  // Check to see if X is a loop variant variable value now.
2557  SCEVHandle Idx = getSCEV(VarIdx);
2558  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2559  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2560
2561  // We can only recognize very limited forms of loop index expressions, in
2562  // particular, only affine AddRec's like {C1,+,C2}.
2563  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2564  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2565      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2566      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2567    return UnknownValue;
2568
2569  unsigned MaxSteps = MaxBruteForceIterations;
2570  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2571    ConstantInt *ItCst =
2572      ConstantInt::get(IdxExpr->getType(), IterationNum);
2573    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2574
2575    // Form the GEP offset.
2576    Indexes[VarIdxNum] = Val;
2577
2578    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2579    if (Result == 0) break;  // Cannot compute!
2580
2581    // Evaluate the condition for this iteration.
2582    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2583    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2584    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2585#if 0
2586      errs() << "\n***\n*** Computed loop count " << *ItCst
2587             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2588             << "***\n";
2589#endif
2590      ++NumArrayLenItCounts;
2591      return getConstant(ItCst);   // Found terminating iteration!
2592    }
2593  }
2594  return UnknownValue;
2595}
2596
2597
2598/// CanConstantFold - Return true if we can constant fold an instruction of the
2599/// specified type, assuming that all operands were constants.
2600static bool CanConstantFold(const Instruction *I) {
2601  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2602      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2603    return true;
2604
2605  if (const CallInst *CI = dyn_cast<CallInst>(I))
2606    if (const Function *F = CI->getCalledFunction())
2607      return canConstantFoldCallTo(F);
2608  return false;
2609}
2610
2611/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2612/// in the loop that V is derived from.  We allow arbitrary operations along the
2613/// way, but the operands of an operation must either be constants or a value
2614/// derived from a constant PHI.  If this expression does not fit with these
2615/// constraints, return null.
2616static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2617  // If this is not an instruction, or if this is an instruction outside of the
2618  // loop, it can't be derived from a loop PHI.
2619  Instruction *I = dyn_cast<Instruction>(V);
2620  if (I == 0 || !L->contains(I->getParent())) return 0;
2621
2622  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2623    if (L->getHeader() == I->getParent())
2624      return PN;
2625    else
2626      // We don't currently keep track of the control flow needed to evaluate
2627      // PHIs, so we cannot handle PHIs inside of loops.
2628      return 0;
2629  }
2630
2631  // If we won't be able to constant fold this expression even if the operands
2632  // are constants, return early.
2633  if (!CanConstantFold(I)) return 0;
2634
2635  // Otherwise, we can evaluate this instruction if all of its operands are
2636  // constant or derived from a PHI node themselves.
2637  PHINode *PHI = 0;
2638  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2639    if (!(isa<Constant>(I->getOperand(Op)) ||
2640          isa<GlobalValue>(I->getOperand(Op)))) {
2641      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2642      if (P == 0) return 0;  // Not evolving from PHI
2643      if (PHI == 0)
2644        PHI = P;
2645      else if (PHI != P)
2646        return 0;  // Evolving from multiple different PHIs.
2647    }
2648
2649  // This is a expression evolving from a constant PHI!
2650  return PHI;
2651}
2652
2653/// EvaluateExpression - Given an expression that passes the
2654/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2655/// in the loop has the value PHIVal.  If we can't fold this expression for some
2656/// reason, return null.
2657static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2658  if (isa<PHINode>(V)) return PHIVal;
2659  if (Constant *C = dyn_cast<Constant>(V)) return C;
2660  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2661  Instruction *I = cast<Instruction>(V);
2662
2663  std::vector<Constant*> Operands;
2664  Operands.resize(I->getNumOperands());
2665
2666  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2667    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2668    if (Operands[i] == 0) return 0;
2669  }
2670
2671  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2672    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2673                                           &Operands[0], Operands.size());
2674  else
2675    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2676                                    &Operands[0], Operands.size());
2677}
2678
2679/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2680/// in the header of its containing loop, we know the loop executes a
2681/// constant number of times, and the PHI node is just a recurrence
2682/// involving constants, fold it.
2683Constant *ScalarEvolution::
2684getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2685  std::map<PHINode*, Constant*>::iterator I =
2686    ConstantEvolutionLoopExitValue.find(PN);
2687  if (I != ConstantEvolutionLoopExitValue.end())
2688    return I->second;
2689
2690  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2691    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2692
2693  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2694
2695  // Since the loop is canonicalized, the PHI node must have two entries.  One
2696  // entry must be a constant (coming in from outside of the loop), and the
2697  // second must be derived from the same PHI.
2698  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2699  Constant *StartCST =
2700    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2701  if (StartCST == 0)
2702    return RetVal = 0;  // Must be a constant.
2703
2704  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2705  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2706  if (PN2 != PN)
2707    return RetVal = 0;  // Not derived from same PHI.
2708
2709  // Execute the loop symbolically to determine the exit value.
2710  if (BEs.getActiveBits() >= 32)
2711    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2712
2713  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2714  unsigned IterationNum = 0;
2715  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2716    if (IterationNum == NumIterations)
2717      return RetVal = PHIVal;  // Got exit value!
2718
2719    // Compute the value of the PHI node for the next iteration.
2720    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2721    if (NextPHI == PHIVal)
2722      return RetVal = NextPHI;  // Stopped evolving!
2723    if (NextPHI == 0)
2724      return 0;        // Couldn't evaluate!
2725    PHIVal = NextPHI;
2726  }
2727}
2728
2729/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2730/// constant number of times (the condition evolves only from constants),
2731/// try to evaluate a few iterations of the loop until we get the exit
2732/// condition gets a value of ExitWhen (true or false).  If we cannot
2733/// evaluate the trip count of the loop, return UnknownValue.
2734SCEVHandle ScalarEvolution::
2735ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2736  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2737  if (PN == 0) return UnknownValue;
2738
2739  // Since the loop is canonicalized, the PHI node must have two entries.  One
2740  // entry must be a constant (coming in from outside of the loop), and the
2741  // second must be derived from the same PHI.
2742  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2743  Constant *StartCST =
2744    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2745  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2746
2747  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2748  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2749  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2750
2751  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2752  // the loop symbolically to determine when the condition gets a value of
2753  // "ExitWhen".
2754  unsigned IterationNum = 0;
2755  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2756  for (Constant *PHIVal = StartCST;
2757       IterationNum != MaxIterations; ++IterationNum) {
2758    ConstantInt *CondVal =
2759      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2760
2761    // Couldn't symbolically evaluate.
2762    if (!CondVal) return UnknownValue;
2763
2764    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2765      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2766      ++NumBruteForceTripCountsComputed;
2767      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2768    }
2769
2770    // Compute the value of the PHI node for the next iteration.
2771    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2772    if (NextPHI == 0 || NextPHI == PHIVal)
2773      return UnknownValue;  // Couldn't evaluate or not making progress...
2774    PHIVal = NextPHI;
2775  }
2776
2777  // Too many iterations were needed to evaluate.
2778  return UnknownValue;
2779}
2780
2781/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2782/// at the specified scope in the program.  The L value specifies a loop
2783/// nest to evaluate the expression at, where null is the top-level or a
2784/// specified loop is immediately inside of the loop.
2785///
2786/// This method can be used to compute the exit value for a variable defined
2787/// in a loop by querying what the value will hold in the parent loop.
2788///
2789/// If this value is not computable at this scope, a SCEVCouldNotCompute
2790/// object is returned.
2791SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2792  // FIXME: this should be turned into a virtual method on SCEV!
2793
2794  if (isa<SCEVConstant>(V)) return V;
2795
2796  // If this instruction is evolved from a constant-evolving PHI, compute the
2797  // exit value from the loop without using SCEVs.
2798  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2799    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2800      const Loop *LI = (*this->LI)[I->getParent()];
2801      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2802        if (PHINode *PN = dyn_cast<PHINode>(I))
2803          if (PN->getParent() == LI->getHeader()) {
2804            // Okay, there is no closed form solution for the PHI node.  Check
2805            // to see if the loop that contains it has a known backedge-taken
2806            // count.  If so, we may be able to force computation of the exit
2807            // value.
2808            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2809            if (const SCEVConstant *BTCC =
2810                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2811              // Okay, we know how many times the containing loop executes.  If
2812              // this is a constant evolving PHI node, get the final value at
2813              // the specified iteration number.
2814              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2815                                                   BTCC->getValue()->getValue(),
2816                                                               LI);
2817              if (RV) return getUnknown(RV);
2818            }
2819          }
2820
2821      // Okay, this is an expression that we cannot symbolically evaluate
2822      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2823      // the arguments into constants, and if so, try to constant propagate the
2824      // result.  This is particularly useful for computing loop exit values.
2825      if (CanConstantFold(I)) {
2826        // Check to see if we've folded this instruction at this loop before.
2827        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2828        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2829          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2830        if (!Pair.second)
2831          return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2832
2833        std::vector<Constant*> Operands;
2834        Operands.reserve(I->getNumOperands());
2835        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2836          Value *Op = I->getOperand(i);
2837          if (Constant *C = dyn_cast<Constant>(Op)) {
2838            Operands.push_back(C);
2839          } else {
2840            // If any of the operands is non-constant and if they are
2841            // non-integer and non-pointer, don't even try to analyze them
2842            // with scev techniques.
2843            if (!isSCEVable(Op->getType()))
2844              return V;
2845
2846            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2847            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2848              Constant *C = SC->getValue();
2849              if (C->getType() != Op->getType())
2850                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2851                                                                  Op->getType(),
2852                                                                  false),
2853                                          C, Op->getType());
2854              Operands.push_back(C);
2855            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2856              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2857                if (C->getType() != Op->getType())
2858                  C =
2859                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2860                                                                  Op->getType(),
2861                                                                  false),
2862                                          C, Op->getType());
2863                Operands.push_back(C);
2864              } else
2865                return V;
2866            } else {
2867              return V;
2868            }
2869          }
2870        }
2871
2872        Constant *C;
2873        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2874          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2875                                              &Operands[0], Operands.size());
2876        else
2877          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2878                                       &Operands[0], Operands.size());
2879        Pair.first->second = C;
2880        return getUnknown(C);
2881      }
2882    }
2883
2884    // This is some other type of SCEVUnknown, just return it.
2885    return V;
2886  }
2887
2888  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2889    // Avoid performing the look-up in the common case where the specified
2890    // expression has no loop-variant portions.
2891    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2892      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2893      if (OpAtScope != Comm->getOperand(i)) {
2894        if (OpAtScope == UnknownValue) return UnknownValue;
2895        // Okay, at least one of these operands is loop variant but might be
2896        // foldable.  Build a new instance of the folded commutative expression.
2897        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2898        NewOps.push_back(OpAtScope);
2899
2900        for (++i; i != e; ++i) {
2901          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2902          if (OpAtScope == UnknownValue) return UnknownValue;
2903          NewOps.push_back(OpAtScope);
2904        }
2905        if (isa<SCEVAddExpr>(Comm))
2906          return getAddExpr(NewOps);
2907        if (isa<SCEVMulExpr>(Comm))
2908          return getMulExpr(NewOps);
2909        if (isa<SCEVSMaxExpr>(Comm))
2910          return getSMaxExpr(NewOps);
2911        if (isa<SCEVUMaxExpr>(Comm))
2912          return getUMaxExpr(NewOps);
2913        assert(0 && "Unknown commutative SCEV type!");
2914      }
2915    }
2916    // If we got here, all operands are loop invariant.
2917    return Comm;
2918  }
2919
2920  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2921    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2922    if (LHS == UnknownValue) return LHS;
2923    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2924    if (RHS == UnknownValue) return RHS;
2925    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2926      return Div;   // must be loop invariant
2927    return getUDivExpr(LHS, RHS);
2928  }
2929
2930  // If this is a loop recurrence for a loop that does not contain L, then we
2931  // are dealing with the final value computed by the loop.
2932  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2933    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2934      // To evaluate this recurrence, we need to know how many times the AddRec
2935      // loop iterates.  Compute this now.
2936      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2937      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2938
2939      // Then, evaluate the AddRec.
2940      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2941    }
2942    return UnknownValue;
2943  }
2944
2945  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2946    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2947    if (Op == UnknownValue) return Op;
2948    if (Op == Cast->getOperand())
2949      return Cast;  // must be loop invariant
2950    return getZeroExtendExpr(Op, Cast->getType());
2951  }
2952
2953  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2954    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2955    if (Op == UnknownValue) return Op;
2956    if (Op == Cast->getOperand())
2957      return Cast;  // must be loop invariant
2958    return getSignExtendExpr(Op, Cast->getType());
2959  }
2960
2961  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2962    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2963    if (Op == UnknownValue) return Op;
2964    if (Op == Cast->getOperand())
2965      return Cast;  // must be loop invariant
2966    return getTruncateExpr(Op, Cast->getType());
2967  }
2968
2969  assert(0 && "Unknown SCEV type!");
2970}
2971
2972/// getSCEVAtScope - This is a convenience function which does
2973/// getSCEVAtScope(getSCEV(V), L).
2974SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2975  return getSCEVAtScope(getSCEV(V), L);
2976}
2977
2978/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2979/// following equation:
2980///
2981///     A * X = B (mod N)
2982///
2983/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2984/// A and B isn't important.
2985///
2986/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2987static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2988                                               ScalarEvolution &SE) {
2989  uint32_t BW = A.getBitWidth();
2990  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2991  assert(A != 0 && "A must be non-zero.");
2992
2993  // 1. D = gcd(A, N)
2994  //
2995  // The gcd of A and N may have only one prime factor: 2. The number of
2996  // trailing zeros in A is its multiplicity
2997  uint32_t Mult2 = A.countTrailingZeros();
2998  // D = 2^Mult2
2999
3000  // 2. Check if B is divisible by D.
3001  //
3002  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3003  // is not less than multiplicity of this prime factor for D.
3004  if (B.countTrailingZeros() < Mult2)
3005    return SE.getCouldNotCompute();
3006
3007  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3008  // modulo (N / D).
3009  //
3010  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3011  // bit width during computations.
3012  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3013  APInt Mod(BW + 1, 0);
3014  Mod.set(BW - Mult2);  // Mod = N / D
3015  APInt I = AD.multiplicativeInverse(Mod);
3016
3017  // 4. Compute the minimum unsigned root of the equation:
3018  // I * (B / D) mod (N / D)
3019  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3020
3021  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3022  // bits.
3023  return SE.getConstant(Result.trunc(BW));
3024}
3025
3026/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3027/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3028/// might be the same) or two SCEVCouldNotCompute objects.
3029///
3030static std::pair<SCEVHandle,SCEVHandle>
3031SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3032  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3033  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3034  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3035  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3036
3037  // We currently can only solve this if the coefficients are constants.
3038  if (!LC || !MC || !NC) {
3039    const SCEV *CNC = SE.getCouldNotCompute();
3040    return std::make_pair(CNC, CNC);
3041  }
3042
3043  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3044  const APInt &L = LC->getValue()->getValue();
3045  const APInt &M = MC->getValue()->getValue();
3046  const APInt &N = NC->getValue()->getValue();
3047  APInt Two(BitWidth, 2);
3048  APInt Four(BitWidth, 4);
3049
3050  {
3051    using namespace APIntOps;
3052    const APInt& C = L;
3053    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3054    // The B coefficient is M-N/2
3055    APInt B(M);
3056    B -= sdiv(N,Two);
3057
3058    // The A coefficient is N/2
3059    APInt A(N.sdiv(Two));
3060
3061    // Compute the B^2-4ac term.
3062    APInt SqrtTerm(B);
3063    SqrtTerm *= B;
3064    SqrtTerm -= Four * (A * C);
3065
3066    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3067    // integer value or else APInt::sqrt() will assert.
3068    APInt SqrtVal(SqrtTerm.sqrt());
3069
3070    // Compute the two solutions for the quadratic formula.
3071    // The divisions must be performed as signed divisions.
3072    APInt NegB(-B);
3073    APInt TwoA( A << 1 );
3074    if (TwoA.isMinValue()) {
3075      const SCEV *CNC = SE.getCouldNotCompute();
3076      return std::make_pair(CNC, CNC);
3077    }
3078
3079    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3080    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3081
3082    return std::make_pair(SE.getConstant(Solution1),
3083                          SE.getConstant(Solution2));
3084    } // end APIntOps namespace
3085}
3086
3087/// HowFarToZero - Return the number of times a backedge comparing the specified
3088/// value to zero will execute.  If not computable, return UnknownValue
3089SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3090  // If the value is a constant
3091  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3092    // If the value is already zero, the branch will execute zero times.
3093    if (C->getValue()->isZero()) return C;
3094    return UnknownValue;  // Otherwise it will loop infinitely.
3095  }
3096
3097  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3098  if (!AddRec || AddRec->getLoop() != L)
3099    return UnknownValue;
3100
3101  if (AddRec->isAffine()) {
3102    // If this is an affine expression, the execution count of this branch is
3103    // the minimum unsigned root of the following equation:
3104    //
3105    //     Start + Step*N = 0 (mod 2^BW)
3106    //
3107    // equivalent to:
3108    //
3109    //             Step*N = -Start (mod 2^BW)
3110    //
3111    // where BW is the common bit width of Start and Step.
3112
3113    // Get the initial value for the loop.
3114    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3115    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
3116
3117    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3118
3119    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3120      // For now we handle only constant steps.
3121
3122      // First, handle unitary steps.
3123      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3124        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3125      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3126        return Start;                           //    N = Start (as unsigned)
3127
3128      // Then, try to solve the above equation provided that Start is constant.
3129      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3130        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3131                                            -StartC->getValue()->getValue(),
3132                                            *this);
3133    }
3134  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3135    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3136    // the quadratic equation to solve it.
3137    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3138                                                                    *this);
3139    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3140    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3141    if (R1) {
3142#if 0
3143      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3144             << "  sol#2: " << *R2 << "\n";
3145#endif
3146      // Pick the smallest positive root value.
3147      if (ConstantInt *CB =
3148          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3149                                   R1->getValue(), R2->getValue()))) {
3150        if (CB->getZExtValue() == false)
3151          std::swap(R1, R2);   // R1 is the minimum root now.
3152
3153        // We can only use this value if the chrec ends up with an exact zero
3154        // value at this index.  When solving for "X*X != 5", for example, we
3155        // should not accept a root of 2.
3156        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3157        if (Val->isZero())
3158          return R1;  // We found a quadratic root!
3159      }
3160    }
3161  }
3162
3163  return UnknownValue;
3164}
3165
3166/// HowFarToNonZero - Return the number of times a backedge checking the
3167/// specified value for nonzero will execute.  If not computable, return
3168/// UnknownValue
3169SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3170  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3171  // handle them yet except for the trivial case.  This could be expanded in the
3172  // future as needed.
3173
3174  // If the value is a constant, check to see if it is known to be non-zero
3175  // already.  If so, the backedge will execute zero times.
3176  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3177    if (!C->getValue()->isNullValue())
3178      return getIntegerSCEV(0, C->getType());
3179    return UnknownValue;  // Otherwise it will loop infinitely.
3180  }
3181
3182  // We could implement others, but I really doubt anyone writes loops like
3183  // this, and if they did, they would already be constant folded.
3184  return UnknownValue;
3185}
3186
3187/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3188/// (which may not be an immediate predecessor) which has exactly one
3189/// successor from which BB is reachable, or null if no such block is
3190/// found.
3191///
3192BasicBlock *
3193ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3194  // If the block has a unique predecessor, then there is no path from the
3195  // predecessor to the block that does not go through the direct edge
3196  // from the predecessor to the block.
3197  if (BasicBlock *Pred = BB->getSinglePredecessor())
3198    return Pred;
3199
3200  // A loop's header is defined to be a block that dominates the loop.
3201  // If the loop has a preheader, it must be a block that has exactly
3202  // one successor that can reach BB. This is slightly more strict
3203  // than necessary, but works if critical edges are split.
3204  if (Loop *L = LI->getLoopFor(BB))
3205    return L->getLoopPreheader();
3206
3207  return 0;
3208}
3209
3210/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3211/// a conditional between LHS and RHS.  This is used to help avoid max
3212/// expressions in loop trip counts.
3213bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3214                                          ICmpInst::Predicate Pred,
3215                                          const SCEV *LHS, const SCEV *RHS) {
3216  BasicBlock *Preheader = L->getLoopPreheader();
3217  BasicBlock *PreheaderDest = L->getHeader();
3218
3219  // Starting at the preheader, climb up the predecessor chain, as long as
3220  // there are predecessors that can be found that have unique successors
3221  // leading to the original header.
3222  for (; Preheader;
3223       PreheaderDest = Preheader,
3224       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3225
3226    BranchInst *LoopEntryPredicate =
3227      dyn_cast<BranchInst>(Preheader->getTerminator());
3228    if (!LoopEntryPredicate ||
3229        LoopEntryPredicate->isUnconditional())
3230      continue;
3231
3232    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3233    if (!ICI) continue;
3234
3235    // Now that we found a conditional branch that dominates the loop, check to
3236    // see if it is the comparison we are looking for.
3237    Value *PreCondLHS = ICI->getOperand(0);
3238    Value *PreCondRHS = ICI->getOperand(1);
3239    ICmpInst::Predicate Cond;
3240    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3241      Cond = ICI->getPredicate();
3242    else
3243      Cond = ICI->getInversePredicate();
3244
3245    if (Cond == Pred)
3246      ; // An exact match.
3247    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3248      ; // The actual condition is beyond sufficient.
3249    else
3250      // Check a few special cases.
3251      switch (Cond) {
3252      case ICmpInst::ICMP_UGT:
3253        if (Pred == ICmpInst::ICMP_ULT) {
3254          std::swap(PreCondLHS, PreCondRHS);
3255          Cond = ICmpInst::ICMP_ULT;
3256          break;
3257        }
3258        continue;
3259      case ICmpInst::ICMP_SGT:
3260        if (Pred == ICmpInst::ICMP_SLT) {
3261          std::swap(PreCondLHS, PreCondRHS);
3262          Cond = ICmpInst::ICMP_SLT;
3263          break;
3264        }
3265        continue;
3266      case ICmpInst::ICMP_NE:
3267        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3268        // so check for this case by checking if the NE is comparing against
3269        // a minimum or maximum constant.
3270        if (!ICmpInst::isTrueWhenEqual(Pred))
3271          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3272            const APInt &A = CI->getValue();
3273            switch (Pred) {
3274            case ICmpInst::ICMP_SLT:
3275              if (A.isMaxSignedValue()) break;
3276              continue;
3277            case ICmpInst::ICMP_SGT:
3278              if (A.isMinSignedValue()) break;
3279              continue;
3280            case ICmpInst::ICMP_ULT:
3281              if (A.isMaxValue()) break;
3282              continue;
3283            case ICmpInst::ICMP_UGT:
3284              if (A.isMinValue()) break;
3285              continue;
3286            default:
3287              continue;
3288            }
3289            Cond = ICmpInst::ICMP_NE;
3290            // NE is symmetric but the original comparison may not be. Swap
3291            // the operands if necessary so that they match below.
3292            if (isa<SCEVConstant>(LHS))
3293              std::swap(PreCondLHS, PreCondRHS);
3294            break;
3295          }
3296        continue;
3297      default:
3298        // We weren't able to reconcile the condition.
3299        continue;
3300      }
3301
3302    if (!PreCondLHS->getType()->isInteger()) continue;
3303
3304    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3305    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3306    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3307        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3308         RHS == getNotSCEV(PreCondLHSSCEV)))
3309      return true;
3310  }
3311
3312  return false;
3313}
3314
3315/// HowManyLessThans - Return the number of times a backedge containing the
3316/// specified less-than comparison will execute.  If not computable, return
3317/// UnknownValue.
3318ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3319HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3320                 const Loop *L, bool isSigned) {
3321  // Only handle:  "ADDREC < LoopInvariant".
3322  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3323
3324  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3325  if (!AddRec || AddRec->getLoop() != L)
3326    return UnknownValue;
3327
3328  if (AddRec->isAffine()) {
3329    // FORNOW: We only support unit strides.
3330    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3331    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3332    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3333
3334    // TODO: handle non-constant strides.
3335    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3336    if (!CStep || CStep->isZero())
3337      return UnknownValue;
3338    if (CStep->getValue()->getValue() == 1) {
3339      // With unit stride, the iteration never steps past the limit value.
3340    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3341      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3342        // Test whether a positive iteration iteration can step past the limit
3343        // value and past the maximum value for its type in a single step.
3344        if (isSigned) {
3345          APInt Max = APInt::getSignedMaxValue(BitWidth);
3346          if ((Max - CStep->getValue()->getValue())
3347                .slt(CLimit->getValue()->getValue()))
3348            return UnknownValue;
3349        } else {
3350          APInt Max = APInt::getMaxValue(BitWidth);
3351          if ((Max - CStep->getValue()->getValue())
3352                .ult(CLimit->getValue()->getValue()))
3353            return UnknownValue;
3354        }
3355      } else
3356        // TODO: handle non-constant limit values below.
3357        return UnknownValue;
3358    } else
3359      // TODO: handle negative strides below.
3360      return UnknownValue;
3361
3362    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3363    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3364    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3365    // treat m-n as signed nor unsigned due to overflow possibility.
3366
3367    // First, we get the value of the LHS in the first iteration: n
3368    SCEVHandle Start = AddRec->getOperand(0);
3369
3370    // Determine the minimum constant start value.
3371    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3372      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3373                             APInt::getMinValue(BitWidth));
3374
3375    // If we know that the condition is true in order to enter the loop,
3376    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3377    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3378    // division must round up.
3379    SCEVHandle End = RHS;
3380    if (!isLoopGuardedByCond(L,
3381                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3382                             getMinusSCEV(Start, Step), RHS))
3383      End = isSigned ? getSMaxExpr(RHS, Start)
3384                     : getUMaxExpr(RHS, Start);
3385
3386    // Determine the maximum constant end value.
3387    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3388      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3389                             APInt::getMaxValue(BitWidth));
3390
3391    // Finally, we subtract these two values and divide, rounding up, to get
3392    // the number of times the backedge is executed.
3393    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3394                                                getAddExpr(Step, NegOne)),
3395                                     Step);
3396
3397    // The maximum backedge count is similar, except using the minimum start
3398    // value and the maximum end value.
3399    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3400                                                                MinStart),
3401                                                   getAddExpr(Step, NegOne)),
3402                                        Step);
3403
3404    return BackedgeTakenInfo(BECount, MaxBECount);
3405  }
3406
3407  return UnknownValue;
3408}
3409
3410/// getNumIterationsInRange - Return the number of iterations of this loop that
3411/// produce values in the specified constant range.  Another way of looking at
3412/// this is that it returns the first iteration number where the value is not in
3413/// the condition, thus computing the exit count. If the iteration count can't
3414/// be computed, an instance of SCEVCouldNotCompute is returned.
3415SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3416                                                   ScalarEvolution &SE) const {
3417  if (Range.isFullSet())  // Infinite loop.
3418    return SE.getCouldNotCompute();
3419
3420  // If the start is a non-zero constant, shift the range to simplify things.
3421  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3422    if (!SC->getValue()->isZero()) {
3423      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3424      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3425      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3426      if (const SCEVAddRecExpr *ShiftedAddRec =
3427            dyn_cast<SCEVAddRecExpr>(Shifted))
3428        return ShiftedAddRec->getNumIterationsInRange(
3429                           Range.subtract(SC->getValue()->getValue()), SE);
3430      // This is strange and shouldn't happen.
3431      return SE.getCouldNotCompute();
3432    }
3433
3434  // The only time we can solve this is when we have all constant indices.
3435  // Otherwise, we cannot determine the overflow conditions.
3436  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3437    if (!isa<SCEVConstant>(getOperand(i)))
3438      return SE.getCouldNotCompute();
3439
3440
3441  // Okay at this point we know that all elements of the chrec are constants and
3442  // that the start element is zero.
3443
3444  // First check to see if the range contains zero.  If not, the first
3445  // iteration exits.
3446  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3447  if (!Range.contains(APInt(BitWidth, 0)))
3448    return SE.getConstant(ConstantInt::get(getType(),0));
3449
3450  if (isAffine()) {
3451    // If this is an affine expression then we have this situation:
3452    //   Solve {0,+,A} in Range  ===  Ax in Range
3453
3454    // We know that zero is in the range.  If A is positive then we know that
3455    // the upper value of the range must be the first possible exit value.
3456    // If A is negative then the lower of the range is the last possible loop
3457    // value.  Also note that we already checked for a full range.
3458    APInt One(BitWidth,1);
3459    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3460    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3461
3462    // The exit value should be (End+A)/A.
3463    APInt ExitVal = (End + A).udiv(A);
3464    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3465
3466    // Evaluate at the exit value.  If we really did fall out of the valid
3467    // range, then we computed our trip count, otherwise wrap around or other
3468    // things must have happened.
3469    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3470    if (Range.contains(Val->getValue()))
3471      return SE.getCouldNotCompute();  // Something strange happened
3472
3473    // Ensure that the previous value is in the range.  This is a sanity check.
3474    assert(Range.contains(
3475           EvaluateConstantChrecAtConstant(this,
3476           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3477           "Linear scev computation is off in a bad way!");
3478    return SE.getConstant(ExitValue);
3479  } else if (isQuadratic()) {
3480    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3481    // quadratic equation to solve it.  To do this, we must frame our problem in
3482    // terms of figuring out when zero is crossed, instead of when
3483    // Range.getUpper() is crossed.
3484    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3485    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3486    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3487
3488    // Next, solve the constructed addrec
3489    std::pair<SCEVHandle,SCEVHandle> Roots =
3490      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3491    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3492    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3493    if (R1) {
3494      // Pick the smallest positive root value.
3495      if (ConstantInt *CB =
3496          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3497                                   R1->getValue(), R2->getValue()))) {
3498        if (CB->getZExtValue() == false)
3499          std::swap(R1, R2);   // R1 is the minimum root now.
3500
3501        // Make sure the root is not off by one.  The returned iteration should
3502        // not be in the range, but the previous one should be.  When solving
3503        // for "X*X < 5", for example, we should not return a root of 2.
3504        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3505                                                             R1->getValue(),
3506                                                             SE);
3507        if (Range.contains(R1Val->getValue())) {
3508          // The next iteration must be out of the range...
3509          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3510
3511          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3512          if (!Range.contains(R1Val->getValue()))
3513            return SE.getConstant(NextVal);
3514          return SE.getCouldNotCompute();  // Something strange happened
3515        }
3516
3517        // If R1 was not in the range, then it is a good return value.  Make
3518        // sure that R1-1 WAS in the range though, just in case.
3519        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3520        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3521        if (Range.contains(R1Val->getValue()))
3522          return R1;
3523        return SE.getCouldNotCompute();  // Something strange happened
3524      }
3525    }
3526  }
3527
3528  return SE.getCouldNotCompute();
3529}
3530
3531
3532
3533//===----------------------------------------------------------------------===//
3534//                   SCEVCallbackVH Class Implementation
3535//===----------------------------------------------------------------------===//
3536
3537void SCEVCallbackVH::deleted() {
3538  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3539  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3540    SE->ConstantEvolutionLoopExitValue.erase(PN);
3541  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3542    SE->ValuesAtScopes.erase(I);
3543  SE->Scalars.erase(getValPtr());
3544  // this now dangles!
3545}
3546
3547void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3548  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3549
3550  // Forget all the expressions associated with users of the old value,
3551  // so that future queries will recompute the expressions using the new
3552  // value.
3553  SmallVector<User *, 16> Worklist;
3554  Value *Old = getValPtr();
3555  bool DeleteOld = false;
3556  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3557       UI != UE; ++UI)
3558    Worklist.push_back(*UI);
3559  while (!Worklist.empty()) {
3560    User *U = Worklist.pop_back_val();
3561    // Deleting the Old value will cause this to dangle. Postpone
3562    // that until everything else is done.
3563    if (U == Old) {
3564      DeleteOld = true;
3565      continue;
3566    }
3567    if (PHINode *PN = dyn_cast<PHINode>(U))
3568      SE->ConstantEvolutionLoopExitValue.erase(PN);
3569    if (Instruction *I = dyn_cast<Instruction>(U))
3570      SE->ValuesAtScopes.erase(I);
3571    if (SE->Scalars.erase(U))
3572      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3573           UI != UE; ++UI)
3574        Worklist.push_back(*UI);
3575  }
3576  if (DeleteOld) {
3577    if (PHINode *PN = dyn_cast<PHINode>(Old))
3578      SE->ConstantEvolutionLoopExitValue.erase(PN);
3579    if (Instruction *I = dyn_cast<Instruction>(Old))
3580      SE->ValuesAtScopes.erase(I);
3581    SE->Scalars.erase(Old);
3582    // this now dangles!
3583  }
3584  // this may dangle!
3585}
3586
3587SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3588  : CallbackVH(V), SE(se) {}
3589
3590//===----------------------------------------------------------------------===//
3591//                   ScalarEvolution Class Implementation
3592//===----------------------------------------------------------------------===//
3593
3594ScalarEvolution::ScalarEvolution()
3595  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3596}
3597
3598bool ScalarEvolution::runOnFunction(Function &F) {
3599  this->F = &F;
3600  LI = &getAnalysis<LoopInfo>();
3601  TD = getAnalysisIfAvailable<TargetData>();
3602  return false;
3603}
3604
3605void ScalarEvolution::releaseMemory() {
3606  Scalars.clear();
3607  BackedgeTakenCounts.clear();
3608  ConstantEvolutionLoopExitValue.clear();
3609  ValuesAtScopes.clear();
3610}
3611
3612void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3613  AU.setPreservesAll();
3614  AU.addRequiredTransitive<LoopInfo>();
3615}
3616
3617bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3618  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3619}
3620
3621static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3622                          const Loop *L) {
3623  // Print all inner loops first
3624  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3625    PrintLoopInfo(OS, SE, *I);
3626
3627  OS << "Loop " << L->getHeader()->getName() << ": ";
3628
3629  SmallVector<BasicBlock*, 8> ExitBlocks;
3630  L->getExitBlocks(ExitBlocks);
3631  if (ExitBlocks.size() != 1)
3632    OS << "<multiple exits> ";
3633
3634  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3635    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3636  } else {
3637    OS << "Unpredictable backedge-taken count. ";
3638  }
3639
3640  OS << "\n";
3641}
3642
3643void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3644  // ScalarEvolution's implementaiton of the print method is to print
3645  // out SCEV values of all instructions that are interesting. Doing
3646  // this potentially causes it to create new SCEV objects though,
3647  // which technically conflicts with the const qualifier. This isn't
3648  // observable from outside the class though (the hasSCEV function
3649  // notwithstanding), so casting away the const isn't dangerous.
3650  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3651
3652  OS << "Classifying expressions for: " << F->getName() << "\n";
3653  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3654    if (isSCEVable(I->getType())) {
3655      OS << *I;
3656      OS << "  -->  ";
3657      SCEVHandle SV = SE.getSCEV(&*I);
3658      SV->print(OS);
3659      OS << "\t\t";
3660
3661      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3662        OS << "Exits: ";
3663        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3664        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3665          OS << "<<Unknown>>";
3666        } else {
3667          OS << *ExitValue;
3668        }
3669      }
3670
3671
3672      OS << "\n";
3673    }
3674
3675  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3676  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3677    PrintLoopInfo(OS, &SE, *I);
3678}
3679
3680void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3681  raw_os_ostream OS(o);
3682  print(OS, M);
3683}
3684