ScalarEvolution.cpp revision 40a5a1b39ee1cd40ff9d04740386b667fb27b340
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the const SCEV*
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Analysis/ValueTracking.h"
72#include "llvm/Assembly/Writer.h"
73#include "llvm/Target/TargetData.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/Support/Compiler.h"
76#include "llvm/Support/ConstantRange.h"
77#include "llvm/Support/GetElementPtrTypeIterator.h"
78#include "llvm/Support/InstIterator.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <algorithm>
84using namespace llvm;
85
86STATISTIC(NumArrayLenItCounts,
87          "Number of trip counts computed with array length");
88STATISTIC(NumTripCountsComputed,
89          "Number of loops with predictable loop counts");
90STATISTIC(NumTripCountsNotComputed,
91          "Number of loops without predictable loop counts");
92STATISTIC(NumBruteForceTripCountsComputed,
93          "Number of loops with trip counts computed by force");
94
95static cl::opt<unsigned>
96MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
97                        cl::desc("Maximum number of iterations SCEV will "
98                                 "symbolically execute a constant derived loop"),
99                        cl::init(100));
100
101static RegisterPass<ScalarEvolution>
102R("scalar-evolution", "Scalar Evolution Analysis", false, true);
103char ScalarEvolution::ID = 0;
104
105//===----------------------------------------------------------------------===//
106//                           SCEV class definitions
107//===----------------------------------------------------------------------===//
108
109//===----------------------------------------------------------------------===//
110// Implementation of the SCEV class.
111//
112SCEV::~SCEV() {}
113void SCEV::dump() const {
114  print(errs());
115  errs() << '\n';
116}
117
118void SCEV::print(std::ostream &o) const {
119  raw_os_ostream OS(o);
120  print(OS);
121}
122
123bool SCEV::isZero() const {
124  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
125    return SC->getValue()->isZero();
126  return false;
127}
128
129bool SCEV::isOne() const {
130  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131    return SC->getValue()->isOne();
132  return false;
133}
134
135bool SCEV::isAllOnesValue() const {
136  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137    return SC->getValue()->isAllOnesValue();
138  return false;
139}
140
141SCEVCouldNotCompute::SCEVCouldNotCompute() :
142  SCEV(scCouldNotCompute) {}
143
144bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return false;
147}
148
149const Type *SCEVCouldNotCompute::getType() const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151  return 0;
152}
153
154bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
155  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
156  return false;
157}
158
159const SCEV* SCEVCouldNotCompute::
160replaceSymbolicValuesWithConcrete(const SCEV* Sym,
161                                  const SCEV* Conc,
162                                  ScalarEvolution &SE) const {
163  return this;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174
175// SCEVConstants - Only allow the creation of one SCEVConstant for any
176// particular value.  Don't use a const SCEV* here, or else the object will
177// never be deleted!
178
179const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
180  SCEVConstant *&R = SCEVConstants[V];
181  if (R == 0) R = new SCEVConstant(V);
182  return R;
183}
184
185const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(Val));
187}
188
189const SCEV*
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
192}
193
194const Type *SCEVConstant::getType() const { return V->getType(); }
195
196void SCEVConstant::print(raw_ostream &OS) const {
197  WriteAsOperand(OS, V, false);
198}
199
200SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
201                           const SCEV* op, const Type *ty)
202  : SCEV(SCEVTy), Op(op), Ty(ty) {}
203
204bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
205  return Op->dominates(BB, DT);
206}
207
208// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
209// particular input.  Don't use a const SCEV* here, or else the object will
210// never be deleted!
211
212SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty)
213  : SCEVCastExpr(scTruncate, op, ty) {
214  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215         (Ty->isInteger() || isa<PointerType>(Ty)) &&
216         "Cannot truncate non-integer value!");
217}
218
219
220void SCEVTruncateExpr::print(raw_ostream &OS) const {
221  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
222}
223
224// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
225// particular input.  Don't use a const SCEV* here, or else the object will never
226// be deleted!
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty)
229  : SCEVCastExpr(scZeroExtend, op, ty) {
230  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231         (Ty->isInteger() || isa<PointerType>(Ty)) &&
232         "Cannot zero extend non-integer value!");
233}
234
235void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
236  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
237}
238
239// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
240// particular input.  Don't use a const SCEV* here, or else the object will never
241// be deleted!
242
243SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty)
244  : SCEVCastExpr(scSignExtend, op, ty) {
245  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
246         (Ty->isInteger() || isa<PointerType>(Ty)) &&
247         "Cannot sign extend non-integer value!");
248}
249
250void SCEVSignExtendExpr::print(raw_ostream &OS) const {
251  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
252}
253
254// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
255// particular input.  Don't use a const SCEV* here, or else the object will never
256// be deleted!
257
258void SCEVCommutativeExpr::print(raw_ostream &OS) const {
259  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
260  const char *OpStr = getOperationStr();
261  OS << "(" << *Operands[0];
262  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
263    OS << OpStr << *Operands[i];
264  OS << ")";
265}
266
267const SCEV* SCEVCommutativeExpr::
268replaceSymbolicValuesWithConcrete(const SCEV* Sym,
269                                  const SCEV* Conc,
270                                  ScalarEvolution &SE) const {
271  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272    const SCEV* H =
273      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
274    if (H != getOperand(i)) {
275      SmallVector<const SCEV*, 8> NewOps;
276      NewOps.reserve(getNumOperands());
277      for (unsigned j = 0; j != i; ++j)
278        NewOps.push_back(getOperand(j));
279      NewOps.push_back(H);
280      for (++i; i != e; ++i)
281        NewOps.push_back(getOperand(i)->
282                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
283
284      if (isa<SCEVAddExpr>(this))
285        return SE.getAddExpr(NewOps);
286      else if (isa<SCEVMulExpr>(this))
287        return SE.getMulExpr(NewOps);
288      else if (isa<SCEVSMaxExpr>(this))
289        return SE.getSMaxExpr(NewOps);
290      else if (isa<SCEVUMaxExpr>(this))
291        return SE.getUMaxExpr(NewOps);
292      else
293        assert(0 && "Unknown commutative expr!");
294    }
295  }
296  return this;
297}
298
299bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
300  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
301    if (!getOperand(i)->dominates(BB, DT))
302      return false;
303  }
304  return true;
305}
306
307
308// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
309// input.  Don't use a const SCEV* here, or else the object will never be
310// deleted!
311
312bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
313  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
314}
315
316void SCEVUDivExpr::print(raw_ostream &OS) const {
317  OS << "(" << *LHS << " /u " << *RHS << ")";
318}
319
320const Type *SCEVUDivExpr::getType() const {
321  // In most cases the types of LHS and RHS will be the same, but in some
322  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
323  // depend on the type for correctness, but handling types carefully can
324  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
325  // a pointer type than the RHS, so use the RHS' type here.
326  return RHS->getType();
327}
328
329// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
330// particular input.  Don't use a const SCEV* here, or else the object will never
331// be deleted!
332
333const SCEV* SCEVAddRecExpr::
334replaceSymbolicValuesWithConcrete(const SCEV* Sym,
335                                  const SCEV* Conc,
336                                  ScalarEvolution &SE) const {
337  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
338    const SCEV* H =
339      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
340    if (H != getOperand(i)) {
341      SmallVector<const SCEV*, 8> NewOps;
342      NewOps.reserve(getNumOperands());
343      for (unsigned j = 0; j != i; ++j)
344        NewOps.push_back(getOperand(j));
345      NewOps.push_back(H);
346      for (++i; i != e; ++i)
347        NewOps.push_back(getOperand(i)->
348                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
349
350      return SE.getAddRecExpr(NewOps, L);
351    }
352  }
353  return this;
354}
355
356
357bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
358  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
359  // contain L and if the start is invariant.
360  // Add recurrences are never invariant in the function-body (null loop).
361  return QueryLoop &&
362         !QueryLoop->contains(L->getHeader()) &&
363         getOperand(0)->isLoopInvariant(QueryLoop);
364}
365
366
367void SCEVAddRecExpr::print(raw_ostream &OS) const {
368  OS << "{" << *Operands[0];
369  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
370    OS << ",+," << *Operands[i];
371  OS << "}<" << L->getHeader()->getName() + ">";
372}
373
374// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
375// value.  Don't use a const SCEV* here, or else the object will never be
376// deleted!
377
378bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
379  // All non-instruction values are loop invariant.  All instructions are loop
380  // invariant if they are not contained in the specified loop.
381  // Instructions are never considered invariant in the function body
382  // (null loop) because they are defined within the "loop".
383  if (Instruction *I = dyn_cast<Instruction>(V))
384    return L && !L->contains(I->getParent());
385  return true;
386}
387
388bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
389  if (Instruction *I = dyn_cast<Instruction>(getValue()))
390    return DT->dominates(I->getParent(), BB);
391  return true;
392}
393
394const Type *SCEVUnknown::getType() const {
395  return V->getType();
396}
397
398void SCEVUnknown::print(raw_ostream &OS) const {
399  WriteAsOperand(OS, V, false);
400}
401
402//===----------------------------------------------------------------------===//
403//                               SCEV Utilities
404//===----------------------------------------------------------------------===//
405
406namespace {
407  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
408  /// than the complexity of the RHS.  This comparator is used to canonicalize
409  /// expressions.
410  class VISIBILITY_HIDDEN SCEVComplexityCompare {
411    LoopInfo *LI;
412  public:
413    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
414
415    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
416      // Primarily, sort the SCEVs by their getSCEVType().
417      if (LHS->getSCEVType() != RHS->getSCEVType())
418        return LHS->getSCEVType() < RHS->getSCEVType();
419
420      // Aside from the getSCEVType() ordering, the particular ordering
421      // isn't very important except that it's beneficial to be consistent,
422      // so that (a + b) and (b + a) don't end up as different expressions.
423
424      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
425      // not as complete as it could be.
426      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
427        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
428
429        // Order pointer values after integer values. This helps SCEVExpander
430        // form GEPs.
431        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
432          return false;
433        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
434          return true;
435
436        // Compare getValueID values.
437        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
438          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
439
440        // Sort arguments by their position.
441        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
442          const Argument *RA = cast<Argument>(RU->getValue());
443          return LA->getArgNo() < RA->getArgNo();
444        }
445
446        // For instructions, compare their loop depth, and their opcode.
447        // This is pretty loose.
448        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
449          Instruction *RV = cast<Instruction>(RU->getValue());
450
451          // Compare loop depths.
452          if (LI->getLoopDepth(LV->getParent()) !=
453              LI->getLoopDepth(RV->getParent()))
454            return LI->getLoopDepth(LV->getParent()) <
455                   LI->getLoopDepth(RV->getParent());
456
457          // Compare opcodes.
458          if (LV->getOpcode() != RV->getOpcode())
459            return LV->getOpcode() < RV->getOpcode();
460
461          // Compare the number of operands.
462          if (LV->getNumOperands() != RV->getNumOperands())
463            return LV->getNumOperands() < RV->getNumOperands();
464        }
465
466        return false;
467      }
468
469      // Compare constant values.
470      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
471        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
472        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
473      }
474
475      // Compare addrec loop depths.
476      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
477        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
478        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
479          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
480      }
481
482      // Lexicographically compare n-ary expressions.
483      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
484        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
485        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
486          if (i >= RC->getNumOperands())
487            return false;
488          if (operator()(LC->getOperand(i), RC->getOperand(i)))
489            return true;
490          if (operator()(RC->getOperand(i), LC->getOperand(i)))
491            return false;
492        }
493        return LC->getNumOperands() < RC->getNumOperands();
494      }
495
496      // Lexicographically compare udiv expressions.
497      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
498        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
499        if (operator()(LC->getLHS(), RC->getLHS()))
500          return true;
501        if (operator()(RC->getLHS(), LC->getLHS()))
502          return false;
503        if (operator()(LC->getRHS(), RC->getRHS()))
504          return true;
505        if (operator()(RC->getRHS(), LC->getRHS()))
506          return false;
507        return false;
508      }
509
510      // Compare cast expressions by operand.
511      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
512        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
513        return operator()(LC->getOperand(), RC->getOperand());
514      }
515
516      assert(0 && "Unknown SCEV kind!");
517      return false;
518    }
519  };
520}
521
522/// GroupByComplexity - Given a list of SCEV objects, order them by their
523/// complexity, and group objects of the same complexity together by value.
524/// When this routine is finished, we know that any duplicates in the vector are
525/// consecutive and that complexity is monotonically increasing.
526///
527/// Note that we go take special precautions to ensure that we get determinstic
528/// results from this routine.  In other words, we don't want the results of
529/// this to depend on where the addresses of various SCEV objects happened to
530/// land in memory.
531///
532static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
533                              LoopInfo *LI) {
534  if (Ops.size() < 2) return;  // Noop
535  if (Ops.size() == 2) {
536    // This is the common case, which also happens to be trivially simple.
537    // Special case it.
538    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
539      std::swap(Ops[0], Ops[1]);
540    return;
541  }
542
543  // Do the rough sort by complexity.
544  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
545
546  // Now that we are sorted by complexity, group elements of the same
547  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
548  // be extremely short in practice.  Note that we take this approach because we
549  // do not want to depend on the addresses of the objects we are grouping.
550  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
551    const SCEV *S = Ops[i];
552    unsigned Complexity = S->getSCEVType();
553
554    // If there are any objects of the same complexity and same value as this
555    // one, group them.
556    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
557      if (Ops[j] == S) { // Found a duplicate.
558        // Move it to immediately after i'th element.
559        std::swap(Ops[i+1], Ops[j]);
560        ++i;   // no need to rescan it.
561        if (i == e-2) return;  // Done!
562      }
563    }
564  }
565}
566
567
568
569//===----------------------------------------------------------------------===//
570//                      Simple SCEV method implementations
571//===----------------------------------------------------------------------===//
572
573/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
574/// Assume, K > 0.
575static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
576                                      ScalarEvolution &SE,
577                                      const Type* ResultTy) {
578  // Handle the simplest case efficiently.
579  if (K == 1)
580    return SE.getTruncateOrZeroExtend(It, ResultTy);
581
582  // We are using the following formula for BC(It, K):
583  //
584  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
585  //
586  // Suppose, W is the bitwidth of the return value.  We must be prepared for
587  // overflow.  Hence, we must assure that the result of our computation is
588  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
589  // safe in modular arithmetic.
590  //
591  // However, this code doesn't use exactly that formula; the formula it uses
592  // is something like the following, where T is the number of factors of 2 in
593  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
594  // exponentiation:
595  //
596  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
597  //
598  // This formula is trivially equivalent to the previous formula.  However,
599  // this formula can be implemented much more efficiently.  The trick is that
600  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
601  // arithmetic.  To do exact division in modular arithmetic, all we have
602  // to do is multiply by the inverse.  Therefore, this step can be done at
603  // width W.
604  //
605  // The next issue is how to safely do the division by 2^T.  The way this
606  // is done is by doing the multiplication step at a width of at least W + T
607  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
608  // when we perform the division by 2^T (which is equivalent to a right shift
609  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
610  // truncated out after the division by 2^T.
611  //
612  // In comparison to just directly using the first formula, this technique
613  // is much more efficient; using the first formula requires W * K bits,
614  // but this formula less than W + K bits. Also, the first formula requires
615  // a division step, whereas this formula only requires multiplies and shifts.
616  //
617  // It doesn't matter whether the subtraction step is done in the calculation
618  // width or the input iteration count's width; if the subtraction overflows,
619  // the result must be zero anyway.  We prefer here to do it in the width of
620  // the induction variable because it helps a lot for certain cases; CodeGen
621  // isn't smart enough to ignore the overflow, which leads to much less
622  // efficient code if the width of the subtraction is wider than the native
623  // register width.
624  //
625  // (It's possible to not widen at all by pulling out factors of 2 before
626  // the multiplication; for example, K=2 can be calculated as
627  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
628  // extra arithmetic, so it's not an obvious win, and it gets
629  // much more complicated for K > 3.)
630
631  // Protection from insane SCEVs; this bound is conservative,
632  // but it probably doesn't matter.
633  if (K > 1000)
634    return SE.getCouldNotCompute();
635
636  unsigned W = SE.getTypeSizeInBits(ResultTy);
637
638  // Calculate K! / 2^T and T; we divide out the factors of two before
639  // multiplying for calculating K! / 2^T to avoid overflow.
640  // Other overflow doesn't matter because we only care about the bottom
641  // W bits of the result.
642  APInt OddFactorial(W, 1);
643  unsigned T = 1;
644  for (unsigned i = 3; i <= K; ++i) {
645    APInt Mult(W, i);
646    unsigned TwoFactors = Mult.countTrailingZeros();
647    T += TwoFactors;
648    Mult = Mult.lshr(TwoFactors);
649    OddFactorial *= Mult;
650  }
651
652  // We need at least W + T bits for the multiplication step
653  unsigned CalculationBits = W + T;
654
655  // Calcuate 2^T, at width T+W.
656  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
657
658  // Calculate the multiplicative inverse of K! / 2^T;
659  // this multiplication factor will perform the exact division by
660  // K! / 2^T.
661  APInt Mod = APInt::getSignedMinValue(W+1);
662  APInt MultiplyFactor = OddFactorial.zext(W+1);
663  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
664  MultiplyFactor = MultiplyFactor.trunc(W);
665
666  // Calculate the product, at width T+W
667  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
668  const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
669  for (unsigned i = 1; i != K; ++i) {
670    const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
671    Dividend = SE.getMulExpr(Dividend,
672                             SE.getTruncateOrZeroExtend(S, CalculationTy));
673  }
674
675  // Divide by 2^T
676  const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
677
678  // Truncate the result, and divide by K! / 2^T.
679
680  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
681                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
682}
683
684/// evaluateAtIteration - Return the value of this chain of recurrences at
685/// the specified iteration number.  We can evaluate this recurrence by
686/// multiplying each element in the chain by the binomial coefficient
687/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
688///
689///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
690///
691/// where BC(It, k) stands for binomial coefficient.
692///
693const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
694                                               ScalarEvolution &SE) const {
695  const SCEV* Result = getStart();
696  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
697    // The computation is correct in the face of overflow provided that the
698    // multiplication is performed _after_ the evaluation of the binomial
699    // coefficient.
700    const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType());
701    if (isa<SCEVCouldNotCompute>(Coeff))
702      return Coeff;
703
704    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
705  }
706  return Result;
707}
708
709//===----------------------------------------------------------------------===//
710//                    SCEV Expression folder implementations
711//===----------------------------------------------------------------------===//
712
713const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
714                                            const Type *Ty) {
715  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
716         "This is not a truncating conversion!");
717  assert(isSCEVable(Ty) &&
718         "This is not a conversion to a SCEVable type!");
719  Ty = getEffectiveSCEVType(Ty);
720
721  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
722    return getConstant(
723      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
724
725  // trunc(trunc(x)) --> trunc(x)
726  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
727    return getTruncateExpr(ST->getOperand(), Ty);
728
729  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
730  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
731    return getTruncateOrSignExtend(SS->getOperand(), Ty);
732
733  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
734  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
735    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
736
737  // If the input value is a chrec scev, truncate the chrec's operands.
738  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
739    SmallVector<const SCEV*, 4> Operands;
740    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
741      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
742    return getAddRecExpr(Operands, AddRec->getLoop());
743  }
744
745  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
746  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
747  return Result;
748}
749
750const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
751                                              const Type *Ty) {
752  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
753         "This is not an extending conversion!");
754  assert(isSCEVable(Ty) &&
755         "This is not a conversion to a SCEVable type!");
756  Ty = getEffectiveSCEVType(Ty);
757
758  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
759    const Type *IntTy = getEffectiveSCEVType(Ty);
760    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
761    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
762    return getConstant(cast<ConstantInt>(C));
763  }
764
765  // zext(zext(x)) --> zext(x)
766  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
767    return getZeroExtendExpr(SZ->getOperand(), Ty);
768
769  // If the input value is a chrec scev, and we can prove that the value
770  // did not overflow the old, smaller, value, we can zero extend all of the
771  // operands (often constants).  This allows analysis of something like
772  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
773  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
774    if (AR->isAffine()) {
775      // Check whether the backedge-taken count is SCEVCouldNotCompute.
776      // Note that this serves two purposes: It filters out loops that are
777      // simply not analyzable, and it covers the case where this code is
778      // being called from within backedge-taken count analysis, such that
779      // attempting to ask for the backedge-taken count would likely result
780      // in infinite recursion. In the later case, the analysis code will
781      // cope with a conservative value, and it will take care to purge
782      // that value once it has finished.
783      const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
784      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
785        // Manually compute the final value for AR, checking for
786        // overflow.
787        const SCEV* Start = AR->getStart();
788        const SCEV* Step = AR->getStepRecurrence(*this);
789
790        // Check whether the backedge-taken count can be losslessly casted to
791        // the addrec's type. The count is always unsigned.
792        const SCEV* CastedMaxBECount =
793          getTruncateOrZeroExtend(MaxBECount, Start->getType());
794        const SCEV* RecastedMaxBECount =
795          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
796        if (MaxBECount == RecastedMaxBECount) {
797          const Type *WideTy =
798            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
799          // Check whether Start+Step*MaxBECount has no unsigned overflow.
800          const SCEV* ZMul =
801            getMulExpr(CastedMaxBECount,
802                       getTruncateOrZeroExtend(Step, Start->getType()));
803          const SCEV* Add = getAddExpr(Start, ZMul);
804          const SCEV* OperandExtendedAdd =
805            getAddExpr(getZeroExtendExpr(Start, WideTy),
806                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
807                                  getZeroExtendExpr(Step, WideTy)));
808          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
809            // Return the expression with the addrec on the outside.
810            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
811                                 getZeroExtendExpr(Step, Ty),
812                                 AR->getLoop());
813
814          // Similar to above, only this time treat the step value as signed.
815          // This covers loops that count down.
816          const SCEV* SMul =
817            getMulExpr(CastedMaxBECount,
818                       getTruncateOrSignExtend(Step, Start->getType()));
819          Add = getAddExpr(Start, SMul);
820          OperandExtendedAdd =
821            getAddExpr(getZeroExtendExpr(Start, WideTy),
822                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823                                  getSignExtendExpr(Step, WideTy)));
824          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
825            // Return the expression with the addrec on the outside.
826            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
827                                 getSignExtendExpr(Step, Ty),
828                                 AR->getLoop());
829        }
830      }
831    }
832
833  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
834  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
835  return Result;
836}
837
838const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
839                                              const Type *Ty) {
840  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
841         "This is not an extending conversion!");
842  assert(isSCEVable(Ty) &&
843         "This is not a conversion to a SCEVable type!");
844  Ty = getEffectiveSCEVType(Ty);
845
846  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
847    const Type *IntTy = getEffectiveSCEVType(Ty);
848    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
849    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
850    return getConstant(cast<ConstantInt>(C));
851  }
852
853  // sext(sext(x)) --> sext(x)
854  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
855    return getSignExtendExpr(SS->getOperand(), Ty);
856
857  // If the input value is a chrec scev, and we can prove that the value
858  // did not overflow the old, smaller, value, we can sign extend all of the
859  // operands (often constants).  This allows analysis of something like
860  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
861  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
862    if (AR->isAffine()) {
863      // Check whether the backedge-taken count is SCEVCouldNotCompute.
864      // Note that this serves two purposes: It filters out loops that are
865      // simply not analyzable, and it covers the case where this code is
866      // being called from within backedge-taken count analysis, such that
867      // attempting to ask for the backedge-taken count would likely result
868      // in infinite recursion. In the later case, the analysis code will
869      // cope with a conservative value, and it will take care to purge
870      // that value once it has finished.
871      const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
872      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
873        // Manually compute the final value for AR, checking for
874        // overflow.
875        const SCEV* Start = AR->getStart();
876        const SCEV* Step = AR->getStepRecurrence(*this);
877
878        // Check whether the backedge-taken count can be losslessly casted to
879        // the addrec's type. The count is always unsigned.
880        const SCEV* CastedMaxBECount =
881          getTruncateOrZeroExtend(MaxBECount, Start->getType());
882        const SCEV* RecastedMaxBECount =
883          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
884        if (MaxBECount == RecastedMaxBECount) {
885          const Type *WideTy =
886            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
887          // Check whether Start+Step*MaxBECount has no signed overflow.
888          const SCEV* SMul =
889            getMulExpr(CastedMaxBECount,
890                       getTruncateOrSignExtend(Step, Start->getType()));
891          const SCEV* Add = getAddExpr(Start, SMul);
892          const SCEV* OperandExtendedAdd =
893            getAddExpr(getSignExtendExpr(Start, WideTy),
894                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
895                                  getSignExtendExpr(Step, WideTy)));
896          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
897            // Return the expression with the addrec on the outside.
898            return getAddRecExpr(getSignExtendExpr(Start, Ty),
899                                 getSignExtendExpr(Step, Ty),
900                                 AR->getLoop());
901        }
902      }
903    }
904
905  SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)];
906  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
907  return Result;
908}
909
910/// getAnyExtendExpr - Return a SCEV for the given operand extended with
911/// unspecified bits out to the given type.
912///
913const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
914                                             const Type *Ty) {
915  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
916         "This is not an extending conversion!");
917  assert(isSCEVable(Ty) &&
918         "This is not a conversion to a SCEVable type!");
919  Ty = getEffectiveSCEVType(Ty);
920
921  // Sign-extend negative constants.
922  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
923    if (SC->getValue()->getValue().isNegative())
924      return getSignExtendExpr(Op, Ty);
925
926  // Peel off a truncate cast.
927  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
928    const SCEV* NewOp = T->getOperand();
929    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
930      return getAnyExtendExpr(NewOp, Ty);
931    return getTruncateOrNoop(NewOp, Ty);
932  }
933
934  // Next try a zext cast. If the cast is folded, use it.
935  const SCEV* ZExt = getZeroExtendExpr(Op, Ty);
936  if (!isa<SCEVZeroExtendExpr>(ZExt))
937    return ZExt;
938
939  // Next try a sext cast. If the cast is folded, use it.
940  const SCEV* SExt = getSignExtendExpr(Op, Ty);
941  if (!isa<SCEVSignExtendExpr>(SExt))
942    return SExt;
943
944  // If the expression is obviously signed, use the sext cast value.
945  if (isa<SCEVSMaxExpr>(Op))
946    return SExt;
947
948  // Absent any other information, use the zext cast value.
949  return ZExt;
950}
951
952/// CollectAddOperandsWithScales - Process the given Ops list, which is
953/// a list of operands to be added under the given scale, update the given
954/// map. This is a helper function for getAddRecExpr. As an example of
955/// what it does, given a sequence of operands that would form an add
956/// expression like this:
957///
958///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
959///
960/// where A and B are constants, update the map with these values:
961///
962///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
963///
964/// and add 13 + A*B*29 to AccumulatedConstant.
965/// This will allow getAddRecExpr to produce this:
966///
967///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
968///
969/// This form often exposes folding opportunities that are hidden in
970/// the original operand list.
971///
972/// Return true iff it appears that any interesting folding opportunities
973/// may be exposed. This helps getAddRecExpr short-circuit extra work in
974/// the common case where no interesting opportunities are present, and
975/// is also used as a check to avoid infinite recursion.
976///
977static bool
978CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
979                             SmallVector<const SCEV*, 8> &NewOps,
980                             APInt &AccumulatedConstant,
981                             const SmallVectorImpl<const SCEV*> &Ops,
982                             const APInt &Scale,
983                             ScalarEvolution &SE) {
984  bool Interesting = false;
985
986  // Iterate over the add operands.
987  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
988    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
989    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
990      APInt NewScale =
991        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
992      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
993        // A multiplication of a constant with another add; recurse.
994        Interesting |=
995          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
996                                       cast<SCEVAddExpr>(Mul->getOperand(1))
997                                         ->getOperands(),
998                                       NewScale, SE);
999      } else {
1000        // A multiplication of a constant with some other value. Update
1001        // the map.
1002        SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1003        const SCEV* Key = SE.getMulExpr(MulOps);
1004        std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1005          M.insert(std::make_pair(Key, APInt()));
1006        if (Pair.second) {
1007          Pair.first->second = NewScale;
1008          NewOps.push_back(Pair.first->first);
1009        } else {
1010          Pair.first->second += NewScale;
1011          // The map already had an entry for this value, which may indicate
1012          // a folding opportunity.
1013          Interesting = true;
1014        }
1015      }
1016    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1017      // Pull a buried constant out to the outside.
1018      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1019        Interesting = true;
1020      AccumulatedConstant += Scale * C->getValue()->getValue();
1021    } else {
1022      // An ordinary operand. Update the map.
1023      std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1024        M.insert(std::make_pair(Ops[i], APInt()));
1025      if (Pair.second) {
1026        Pair.first->second = Scale;
1027        NewOps.push_back(Pair.first->first);
1028      } else {
1029        Pair.first->second += Scale;
1030        // The map already had an entry for this value, which may indicate
1031        // a folding opportunity.
1032        Interesting = true;
1033      }
1034    }
1035  }
1036
1037  return Interesting;
1038}
1039
1040namespace {
1041  struct APIntCompare {
1042    bool operator()(const APInt &LHS, const APInt &RHS) const {
1043      return LHS.ult(RHS);
1044    }
1045  };
1046}
1047
1048/// getAddExpr - Get a canonical add expression, or something simpler if
1049/// possible.
1050const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
1051  assert(!Ops.empty() && "Cannot get empty add!");
1052  if (Ops.size() == 1) return Ops[0];
1053#ifndef NDEBUG
1054  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1055    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1056           getEffectiveSCEVType(Ops[0]->getType()) &&
1057           "SCEVAddExpr operand types don't match!");
1058#endif
1059
1060  // Sort by complexity, this groups all similar expression types together.
1061  GroupByComplexity(Ops, LI);
1062
1063  // If there are any constants, fold them together.
1064  unsigned Idx = 0;
1065  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1066    ++Idx;
1067    assert(Idx < Ops.size());
1068    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1069      // We found two constants, fold them together!
1070      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1071                           RHSC->getValue()->getValue());
1072      if (Ops.size() == 2) return Ops[0];
1073      Ops.erase(Ops.begin()+1);  // Erase the folded element
1074      LHSC = cast<SCEVConstant>(Ops[0]);
1075    }
1076
1077    // If we are left with a constant zero being added, strip it off.
1078    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1079      Ops.erase(Ops.begin());
1080      --Idx;
1081    }
1082  }
1083
1084  if (Ops.size() == 1) return Ops[0];
1085
1086  // Okay, check to see if the same value occurs in the operand list twice.  If
1087  // so, merge them together into an multiply expression.  Since we sorted the
1088  // list, these values are required to be adjacent.
1089  const Type *Ty = Ops[0]->getType();
1090  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1091    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1092      // Found a match, merge the two values into a multiply, and add any
1093      // remaining values to the result.
1094      const SCEV* Two = getIntegerSCEV(2, Ty);
1095      const SCEV* Mul = getMulExpr(Ops[i], Two);
1096      if (Ops.size() == 2)
1097        return Mul;
1098      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1099      Ops.push_back(Mul);
1100      return getAddExpr(Ops);
1101    }
1102
1103  // Check for truncates. If all the operands are truncated from the same
1104  // type, see if factoring out the truncate would permit the result to be
1105  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1106  // if the contents of the resulting outer trunc fold to something simple.
1107  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1108    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1109    const Type *DstType = Trunc->getType();
1110    const Type *SrcType = Trunc->getOperand()->getType();
1111    SmallVector<const SCEV*, 8> LargeOps;
1112    bool Ok = true;
1113    // Check all the operands to see if they can be represented in the
1114    // source type of the truncate.
1115    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1116      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1117        if (T->getOperand()->getType() != SrcType) {
1118          Ok = false;
1119          break;
1120        }
1121        LargeOps.push_back(T->getOperand());
1122      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1123        // This could be either sign or zero extension, but sign extension
1124        // is much more likely to be foldable here.
1125        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1126      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1127        SmallVector<const SCEV*, 8> LargeMulOps;
1128        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1129          if (const SCEVTruncateExpr *T =
1130                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1131            if (T->getOperand()->getType() != SrcType) {
1132              Ok = false;
1133              break;
1134            }
1135            LargeMulOps.push_back(T->getOperand());
1136          } else if (const SCEVConstant *C =
1137                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1138            // This could be either sign or zero extension, but sign extension
1139            // is much more likely to be foldable here.
1140            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1141          } else {
1142            Ok = false;
1143            break;
1144          }
1145        }
1146        if (Ok)
1147          LargeOps.push_back(getMulExpr(LargeMulOps));
1148      } else {
1149        Ok = false;
1150        break;
1151      }
1152    }
1153    if (Ok) {
1154      // Evaluate the expression in the larger type.
1155      const SCEV* Fold = getAddExpr(LargeOps);
1156      // If it folds to something simple, use it. Otherwise, don't.
1157      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1158        return getTruncateExpr(Fold, DstType);
1159    }
1160  }
1161
1162  // Skip past any other cast SCEVs.
1163  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1164    ++Idx;
1165
1166  // If there are add operands they would be next.
1167  if (Idx < Ops.size()) {
1168    bool DeletedAdd = false;
1169    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1170      // If we have an add, expand the add operands onto the end of the operands
1171      // list.
1172      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1173      Ops.erase(Ops.begin()+Idx);
1174      DeletedAdd = true;
1175    }
1176
1177    // If we deleted at least one add, we added operands to the end of the list,
1178    // and they are not necessarily sorted.  Recurse to resort and resimplify
1179    // any operands we just aquired.
1180    if (DeletedAdd)
1181      return getAddExpr(Ops);
1182  }
1183
1184  // Skip over the add expression until we get to a multiply.
1185  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1186    ++Idx;
1187
1188  // Check to see if there are any folding opportunities present with
1189  // operands multiplied by constant values.
1190  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1191    uint64_t BitWidth = getTypeSizeInBits(Ty);
1192    DenseMap<const SCEV*, APInt> M;
1193    SmallVector<const SCEV*, 8> NewOps;
1194    APInt AccumulatedConstant(BitWidth, 0);
1195    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1196                                     Ops, APInt(BitWidth, 1), *this)) {
1197      // Some interesting folding opportunity is present, so its worthwhile to
1198      // re-generate the operands list. Group the operands by constant scale,
1199      // to avoid multiplying by the same constant scale multiple times.
1200      std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists;
1201      for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(),
1202           E = NewOps.end(); I != E; ++I)
1203        MulOpLists[M.find(*I)->second].push_back(*I);
1204      // Re-generate the operands list.
1205      Ops.clear();
1206      if (AccumulatedConstant != 0)
1207        Ops.push_back(getConstant(AccumulatedConstant));
1208      for (std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare>::iterator I =
1209           MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1210        if (I->first != 0)
1211          Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second)));
1212      if (Ops.empty())
1213        return getIntegerSCEV(0, Ty);
1214      if (Ops.size() == 1)
1215        return Ops[0];
1216      return getAddExpr(Ops);
1217    }
1218  }
1219
1220  // If we are adding something to a multiply expression, make sure the
1221  // something is not already an operand of the multiply.  If so, merge it into
1222  // the multiply.
1223  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1224    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1225    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1226      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1227      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1228        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1229          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1230          const SCEV* InnerMul = Mul->getOperand(MulOp == 0);
1231          if (Mul->getNumOperands() != 2) {
1232            // If the multiply has more than two operands, we must get the
1233            // Y*Z term.
1234            SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
1235            MulOps.erase(MulOps.begin()+MulOp);
1236            InnerMul = getMulExpr(MulOps);
1237          }
1238          const SCEV* One = getIntegerSCEV(1, Ty);
1239          const SCEV* AddOne = getAddExpr(InnerMul, One);
1240          const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1241          if (Ops.size() == 2) return OuterMul;
1242          if (AddOp < Idx) {
1243            Ops.erase(Ops.begin()+AddOp);
1244            Ops.erase(Ops.begin()+Idx-1);
1245          } else {
1246            Ops.erase(Ops.begin()+Idx);
1247            Ops.erase(Ops.begin()+AddOp-1);
1248          }
1249          Ops.push_back(OuterMul);
1250          return getAddExpr(Ops);
1251        }
1252
1253      // Check this multiply against other multiplies being added together.
1254      for (unsigned OtherMulIdx = Idx+1;
1255           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1256           ++OtherMulIdx) {
1257        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1258        // If MulOp occurs in OtherMul, we can fold the two multiplies
1259        // together.
1260        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1261             OMulOp != e; ++OMulOp)
1262          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1263            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1264            const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0);
1265            if (Mul->getNumOperands() != 2) {
1266              SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
1267              MulOps.erase(MulOps.begin()+MulOp);
1268              InnerMul1 = getMulExpr(MulOps);
1269            }
1270            const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1271            if (OtherMul->getNumOperands() != 2) {
1272              SmallVector<const SCEV*, 4> MulOps(OtherMul->op_begin(),
1273                                             OtherMul->op_end());
1274              MulOps.erase(MulOps.begin()+OMulOp);
1275              InnerMul2 = getMulExpr(MulOps);
1276            }
1277            const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1278            const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1279            if (Ops.size() == 2) return OuterMul;
1280            Ops.erase(Ops.begin()+Idx);
1281            Ops.erase(Ops.begin()+OtherMulIdx-1);
1282            Ops.push_back(OuterMul);
1283            return getAddExpr(Ops);
1284          }
1285      }
1286    }
1287  }
1288
1289  // If there are any add recurrences in the operands list, see if any other
1290  // added values are loop invariant.  If so, we can fold them into the
1291  // recurrence.
1292  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1293    ++Idx;
1294
1295  // Scan over all recurrences, trying to fold loop invariants into them.
1296  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1297    // Scan all of the other operands to this add and add them to the vector if
1298    // they are loop invariant w.r.t. the recurrence.
1299    SmallVector<const SCEV*, 8> LIOps;
1300    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1301    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1302      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1303        LIOps.push_back(Ops[i]);
1304        Ops.erase(Ops.begin()+i);
1305        --i; --e;
1306      }
1307
1308    // If we found some loop invariants, fold them into the recurrence.
1309    if (!LIOps.empty()) {
1310      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1311      LIOps.push_back(AddRec->getStart());
1312
1313      SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(),
1314                                           AddRec->op_end());
1315      AddRecOps[0] = getAddExpr(LIOps);
1316
1317      const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1318      // If all of the other operands were loop invariant, we are done.
1319      if (Ops.size() == 1) return NewRec;
1320
1321      // Otherwise, add the folded AddRec by the non-liv parts.
1322      for (unsigned i = 0;; ++i)
1323        if (Ops[i] == AddRec) {
1324          Ops[i] = NewRec;
1325          break;
1326        }
1327      return getAddExpr(Ops);
1328    }
1329
1330    // Okay, if there weren't any loop invariants to be folded, check to see if
1331    // there are multiple AddRec's with the same loop induction variable being
1332    // added together.  If so, we can fold them.
1333    for (unsigned OtherIdx = Idx+1;
1334         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1335      if (OtherIdx != Idx) {
1336        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1337        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1338          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1339          SmallVector<const SCEV*, 4> NewOps(AddRec->op_begin(), AddRec->op_end());
1340          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1341            if (i >= NewOps.size()) {
1342              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1343                            OtherAddRec->op_end());
1344              break;
1345            }
1346            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1347          }
1348          const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1349
1350          if (Ops.size() == 2) return NewAddRec;
1351
1352          Ops.erase(Ops.begin()+Idx);
1353          Ops.erase(Ops.begin()+OtherIdx-1);
1354          Ops.push_back(NewAddRec);
1355          return getAddExpr(Ops);
1356        }
1357      }
1358
1359    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1360    // next one.
1361  }
1362
1363  // Okay, it looks like we really DO need an add expr.  Check to see if we
1364  // already have one, otherwise create a new one.
1365  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1366  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
1367                                                                 SCEVOps)];
1368  if (Result == 0) Result = new SCEVAddExpr(Ops);
1369  return Result;
1370}
1371
1372
1373/// getMulExpr - Get a canonical multiply expression, or something simpler if
1374/// possible.
1375const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
1376  assert(!Ops.empty() && "Cannot get empty mul!");
1377#ifndef NDEBUG
1378  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1379    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1380           getEffectiveSCEVType(Ops[0]->getType()) &&
1381           "SCEVMulExpr operand types don't match!");
1382#endif
1383
1384  // Sort by complexity, this groups all similar expression types together.
1385  GroupByComplexity(Ops, LI);
1386
1387  // If there are any constants, fold them together.
1388  unsigned Idx = 0;
1389  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1390
1391    // C1*(C2+V) -> C1*C2 + C1*V
1392    if (Ops.size() == 2)
1393      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1394        if (Add->getNumOperands() == 2 &&
1395            isa<SCEVConstant>(Add->getOperand(0)))
1396          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1397                            getMulExpr(LHSC, Add->getOperand(1)));
1398
1399
1400    ++Idx;
1401    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1402      // We found two constants, fold them together!
1403      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1404                                           RHSC->getValue()->getValue());
1405      Ops[0] = getConstant(Fold);
1406      Ops.erase(Ops.begin()+1);  // Erase the folded element
1407      if (Ops.size() == 1) return Ops[0];
1408      LHSC = cast<SCEVConstant>(Ops[0]);
1409    }
1410
1411    // If we are left with a constant one being multiplied, strip it off.
1412    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1413      Ops.erase(Ops.begin());
1414      --Idx;
1415    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1416      // If we have a multiply of zero, it will always be zero.
1417      return Ops[0];
1418    }
1419  }
1420
1421  // Skip over the add expression until we get to a multiply.
1422  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1423    ++Idx;
1424
1425  if (Ops.size() == 1)
1426    return Ops[0];
1427
1428  // If there are mul operands inline them all into this expression.
1429  if (Idx < Ops.size()) {
1430    bool DeletedMul = false;
1431    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1432      // If we have an mul, expand the mul operands onto the end of the operands
1433      // list.
1434      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1435      Ops.erase(Ops.begin()+Idx);
1436      DeletedMul = true;
1437    }
1438
1439    // If we deleted at least one mul, we added operands to the end of the list,
1440    // and they are not necessarily sorted.  Recurse to resort and resimplify
1441    // any operands we just aquired.
1442    if (DeletedMul)
1443      return getMulExpr(Ops);
1444  }
1445
1446  // If there are any add recurrences in the operands list, see if any other
1447  // added values are loop invariant.  If so, we can fold them into the
1448  // recurrence.
1449  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1450    ++Idx;
1451
1452  // Scan over all recurrences, trying to fold loop invariants into them.
1453  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1454    // Scan all of the other operands to this mul and add them to the vector if
1455    // they are loop invariant w.r.t. the recurrence.
1456    SmallVector<const SCEV*, 8> LIOps;
1457    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1458    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1459      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1460        LIOps.push_back(Ops[i]);
1461        Ops.erase(Ops.begin()+i);
1462        --i; --e;
1463      }
1464
1465    // If we found some loop invariants, fold them into the recurrence.
1466    if (!LIOps.empty()) {
1467      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1468      SmallVector<const SCEV*, 4> NewOps;
1469      NewOps.reserve(AddRec->getNumOperands());
1470      if (LIOps.size() == 1) {
1471        const SCEV *Scale = LIOps[0];
1472        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1473          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1474      } else {
1475        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1476          SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end());
1477          MulOps.push_back(AddRec->getOperand(i));
1478          NewOps.push_back(getMulExpr(MulOps));
1479        }
1480      }
1481
1482      const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1483
1484      // If all of the other operands were loop invariant, we are done.
1485      if (Ops.size() == 1) return NewRec;
1486
1487      // Otherwise, multiply the folded AddRec by the non-liv parts.
1488      for (unsigned i = 0;; ++i)
1489        if (Ops[i] == AddRec) {
1490          Ops[i] = NewRec;
1491          break;
1492        }
1493      return getMulExpr(Ops);
1494    }
1495
1496    // Okay, if there weren't any loop invariants to be folded, check to see if
1497    // there are multiple AddRec's with the same loop induction variable being
1498    // multiplied together.  If so, we can fold them.
1499    for (unsigned OtherIdx = Idx+1;
1500         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1501      if (OtherIdx != Idx) {
1502        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1503        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1504          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1505          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1506          const SCEV* NewStart = getMulExpr(F->getStart(),
1507                                                 G->getStart());
1508          const SCEV* B = F->getStepRecurrence(*this);
1509          const SCEV* D = G->getStepRecurrence(*this);
1510          const SCEV* NewStep = getAddExpr(getMulExpr(F, D),
1511                                          getMulExpr(G, B),
1512                                          getMulExpr(B, D));
1513          const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep,
1514                                               F->getLoop());
1515          if (Ops.size() == 2) return NewAddRec;
1516
1517          Ops.erase(Ops.begin()+Idx);
1518          Ops.erase(Ops.begin()+OtherIdx-1);
1519          Ops.push_back(NewAddRec);
1520          return getMulExpr(Ops);
1521        }
1522      }
1523
1524    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1525    // next one.
1526  }
1527
1528  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1529  // already have one, otherwise create a new one.
1530  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1531  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
1532                                                                 SCEVOps)];
1533  if (Result == 0)
1534    Result = new SCEVMulExpr(Ops);
1535  return Result;
1536}
1537
1538/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1539/// possible.
1540const SCEV* ScalarEvolution::getUDivExpr(const SCEV* LHS,
1541                                        const SCEV* RHS) {
1542  assert(getEffectiveSCEVType(LHS->getType()) ==
1543         getEffectiveSCEVType(RHS->getType()) &&
1544         "SCEVUDivExpr operand types don't match!");
1545
1546  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1547    if (RHSC->getValue()->equalsInt(1))
1548      return LHS;                            // X udiv 1 --> x
1549    if (RHSC->isZero())
1550      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1551
1552    // Determine if the division can be folded into the operands of
1553    // its operands.
1554    // TODO: Generalize this to non-constants by using known-bits information.
1555    const Type *Ty = LHS->getType();
1556    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1557    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1558    // For non-power-of-two values, effectively round the value up to the
1559    // nearest power of two.
1560    if (!RHSC->getValue()->getValue().isPowerOf2())
1561      ++MaxShiftAmt;
1562    const IntegerType *ExtTy =
1563      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1564    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1565    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1566      if (const SCEVConstant *Step =
1567            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1568        if (!Step->getValue()->getValue()
1569              .urem(RHSC->getValue()->getValue()) &&
1570            getZeroExtendExpr(AR, ExtTy) ==
1571            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1572                          getZeroExtendExpr(Step, ExtTy),
1573                          AR->getLoop())) {
1574          SmallVector<const SCEV*, 4> Operands;
1575          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1576            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1577          return getAddRecExpr(Operands, AR->getLoop());
1578        }
1579    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1580    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1581      SmallVector<const SCEV*, 4> Operands;
1582      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1583        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1584      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1585        // Find an operand that's safely divisible.
1586        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1587          const SCEV* Op = M->getOperand(i);
1588          const SCEV* Div = getUDivExpr(Op, RHSC);
1589          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1590            const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
1591            Operands = SmallVector<const SCEV*, 4>(MOperands.begin(),
1592                                                  MOperands.end());
1593            Operands[i] = Div;
1594            return getMulExpr(Operands);
1595          }
1596        }
1597    }
1598    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1599    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1600      SmallVector<const SCEV*, 4> Operands;
1601      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1602        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1603      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1604        Operands.clear();
1605        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1606          const SCEV* Op = getUDivExpr(A->getOperand(i), RHS);
1607          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1608            break;
1609          Operands.push_back(Op);
1610        }
1611        if (Operands.size() == A->getNumOperands())
1612          return getAddExpr(Operands);
1613      }
1614    }
1615
1616    // Fold if both operands are constant.
1617    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1618      Constant *LHSCV = LHSC->getValue();
1619      Constant *RHSCV = RHSC->getValue();
1620      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1621                                                                 RHSCV)));
1622    }
1623  }
1624
1625  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1626  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1627  return Result;
1628}
1629
1630
1631/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1632/// Simplify the expression as much as possible.
1633const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
1634                               const SCEV* Step, const Loop *L) {
1635  SmallVector<const SCEV*, 4> Operands;
1636  Operands.push_back(Start);
1637  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1638    if (StepChrec->getLoop() == L) {
1639      Operands.insert(Operands.end(), StepChrec->op_begin(),
1640                      StepChrec->op_end());
1641      return getAddRecExpr(Operands, L);
1642    }
1643
1644  Operands.push_back(Step);
1645  return getAddRecExpr(Operands, L);
1646}
1647
1648/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1649/// Simplify the expression as much as possible.
1650const SCEV* ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
1651                                          const Loop *L) {
1652  if (Operands.size() == 1) return Operands[0];
1653#ifndef NDEBUG
1654  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1655    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1656           getEffectiveSCEVType(Operands[0]->getType()) &&
1657           "SCEVAddRecExpr operand types don't match!");
1658#endif
1659
1660  if (Operands.back()->isZero()) {
1661    Operands.pop_back();
1662    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1663  }
1664
1665  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1666  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1667    const Loop* NestedLoop = NestedAR->getLoop();
1668    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1669      SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(),
1670                                                NestedAR->op_end());
1671      Operands[0] = NestedAR->getStart();
1672      NestedOperands[0] = getAddRecExpr(Operands, L);
1673      return getAddRecExpr(NestedOperands, NestedLoop);
1674    }
1675  }
1676
1677  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1678  SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)];
1679  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1680  return Result;
1681}
1682
1683const SCEV* ScalarEvolution::getSMaxExpr(const SCEV* LHS,
1684                                        const SCEV* RHS) {
1685  SmallVector<const SCEV*, 2> Ops;
1686  Ops.push_back(LHS);
1687  Ops.push_back(RHS);
1688  return getSMaxExpr(Ops);
1689}
1690
1691const SCEV*
1692ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1693  assert(!Ops.empty() && "Cannot get empty smax!");
1694  if (Ops.size() == 1) return Ops[0];
1695#ifndef NDEBUG
1696  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1697    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1698           getEffectiveSCEVType(Ops[0]->getType()) &&
1699           "SCEVSMaxExpr operand types don't match!");
1700#endif
1701
1702  // Sort by complexity, this groups all similar expression types together.
1703  GroupByComplexity(Ops, LI);
1704
1705  // If there are any constants, fold them together.
1706  unsigned Idx = 0;
1707  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1708    ++Idx;
1709    assert(Idx < Ops.size());
1710    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1711      // We found two constants, fold them together!
1712      ConstantInt *Fold = ConstantInt::get(
1713                              APIntOps::smax(LHSC->getValue()->getValue(),
1714                                             RHSC->getValue()->getValue()));
1715      Ops[0] = getConstant(Fold);
1716      Ops.erase(Ops.begin()+1);  // Erase the folded element
1717      if (Ops.size() == 1) return Ops[0];
1718      LHSC = cast<SCEVConstant>(Ops[0]);
1719    }
1720
1721    // If we are left with a constant -inf, strip it off.
1722    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1723      Ops.erase(Ops.begin());
1724      --Idx;
1725    }
1726  }
1727
1728  if (Ops.size() == 1) return Ops[0];
1729
1730  // Find the first SMax
1731  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1732    ++Idx;
1733
1734  // Check to see if one of the operands is an SMax. If so, expand its operands
1735  // onto our operand list, and recurse to simplify.
1736  if (Idx < Ops.size()) {
1737    bool DeletedSMax = false;
1738    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1739      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1740      Ops.erase(Ops.begin()+Idx);
1741      DeletedSMax = true;
1742    }
1743
1744    if (DeletedSMax)
1745      return getSMaxExpr(Ops);
1746  }
1747
1748  // Okay, check to see if the same value occurs in the operand list twice.  If
1749  // so, delete one.  Since we sorted the list, these values are required to
1750  // be adjacent.
1751  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1752    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1753      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1754      --i; --e;
1755    }
1756
1757  if (Ops.size() == 1) return Ops[0];
1758
1759  assert(!Ops.empty() && "Reduced smax down to nothing!");
1760
1761  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1762  // already have one, otherwise create a new one.
1763  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1764  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr,
1765                                                                 SCEVOps)];
1766  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1767  return Result;
1768}
1769
1770const SCEV* ScalarEvolution::getUMaxExpr(const SCEV* LHS,
1771                                        const SCEV* RHS) {
1772  SmallVector<const SCEV*, 2> Ops;
1773  Ops.push_back(LHS);
1774  Ops.push_back(RHS);
1775  return getUMaxExpr(Ops);
1776}
1777
1778const SCEV*
1779ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1780  assert(!Ops.empty() && "Cannot get empty umax!");
1781  if (Ops.size() == 1) return Ops[0];
1782#ifndef NDEBUG
1783  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1784    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1785           getEffectiveSCEVType(Ops[0]->getType()) &&
1786           "SCEVUMaxExpr operand types don't match!");
1787#endif
1788
1789  // Sort by complexity, this groups all similar expression types together.
1790  GroupByComplexity(Ops, LI);
1791
1792  // If there are any constants, fold them together.
1793  unsigned Idx = 0;
1794  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1795    ++Idx;
1796    assert(Idx < Ops.size());
1797    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1798      // We found two constants, fold them together!
1799      ConstantInt *Fold = ConstantInt::get(
1800                              APIntOps::umax(LHSC->getValue()->getValue(),
1801                                             RHSC->getValue()->getValue()));
1802      Ops[0] = getConstant(Fold);
1803      Ops.erase(Ops.begin()+1);  // Erase the folded element
1804      if (Ops.size() == 1) return Ops[0];
1805      LHSC = cast<SCEVConstant>(Ops[0]);
1806    }
1807
1808    // If we are left with a constant zero, strip it off.
1809    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1810      Ops.erase(Ops.begin());
1811      --Idx;
1812    }
1813  }
1814
1815  if (Ops.size() == 1) return Ops[0];
1816
1817  // Find the first UMax
1818  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1819    ++Idx;
1820
1821  // Check to see if one of the operands is a UMax. If so, expand its operands
1822  // onto our operand list, and recurse to simplify.
1823  if (Idx < Ops.size()) {
1824    bool DeletedUMax = false;
1825    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1826      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1827      Ops.erase(Ops.begin()+Idx);
1828      DeletedUMax = true;
1829    }
1830
1831    if (DeletedUMax)
1832      return getUMaxExpr(Ops);
1833  }
1834
1835  // Okay, check to see if the same value occurs in the operand list twice.  If
1836  // so, delete one.  Since we sorted the list, these values are required to
1837  // be adjacent.
1838  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1839    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1840      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1841      --i; --e;
1842    }
1843
1844  if (Ops.size() == 1) return Ops[0];
1845
1846  assert(!Ops.empty() && "Reduced umax down to nothing!");
1847
1848  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1849  // already have one, otherwise create a new one.
1850  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1851  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr,
1852                                                                 SCEVOps)];
1853  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1854  return Result;
1855}
1856
1857const SCEV* ScalarEvolution::getSMinExpr(const SCEV* LHS,
1858                                        const SCEV* RHS) {
1859  // ~smax(~x, ~y) == smin(x, y).
1860  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1861}
1862
1863const SCEV* ScalarEvolution::getUMinExpr(const SCEV* LHS,
1864                                        const SCEV* RHS) {
1865  // ~umax(~x, ~y) == umin(x, y)
1866  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1867}
1868
1869const SCEV* ScalarEvolution::getUnknown(Value *V) {
1870  // Don't attempt to do anything other than create a SCEVUnknown object
1871  // here.  createSCEV only calls getUnknown after checking for all other
1872  // interesting possibilities, and any other code that calls getUnknown
1873  // is doing so in order to hide a value from SCEV canonicalization.
1874
1875  SCEVUnknown *&Result = SCEVUnknowns[V];
1876  if (Result == 0) Result = new SCEVUnknown(V);
1877  return Result;
1878}
1879
1880//===----------------------------------------------------------------------===//
1881//            Basic SCEV Analysis and PHI Idiom Recognition Code
1882//
1883
1884/// isSCEVable - Test if values of the given type are analyzable within
1885/// the SCEV framework. This primarily includes integer types, and it
1886/// can optionally include pointer types if the ScalarEvolution class
1887/// has access to target-specific information.
1888bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1889  // Integers are always SCEVable.
1890  if (Ty->isInteger())
1891    return true;
1892
1893  // Pointers are SCEVable if TargetData information is available
1894  // to provide pointer size information.
1895  if (isa<PointerType>(Ty))
1896    return TD != NULL;
1897
1898  // Otherwise it's not SCEVable.
1899  return false;
1900}
1901
1902/// getTypeSizeInBits - Return the size in bits of the specified type,
1903/// for which isSCEVable must return true.
1904uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1905  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1906
1907  // If we have a TargetData, use it!
1908  if (TD)
1909    return TD->getTypeSizeInBits(Ty);
1910
1911  // Otherwise, we support only integer types.
1912  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1913  return Ty->getPrimitiveSizeInBits();
1914}
1915
1916/// getEffectiveSCEVType - Return a type with the same bitwidth as
1917/// the given type and which represents how SCEV will treat the given
1918/// type, for which isSCEVable must return true. For pointer types,
1919/// this is the pointer-sized integer type.
1920const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1921  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1922
1923  if (Ty->isInteger())
1924    return Ty;
1925
1926  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1927  return TD->getIntPtrType();
1928}
1929
1930const SCEV* ScalarEvolution::getCouldNotCompute() {
1931  return CouldNotCompute;
1932}
1933
1934/// hasSCEV - Return true if the SCEV for this value has already been
1935/// computed.
1936bool ScalarEvolution::hasSCEV(Value *V) const {
1937  return Scalars.count(V);
1938}
1939
1940/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1941/// expression and create a new one.
1942const SCEV* ScalarEvolution::getSCEV(Value *V) {
1943  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1944
1945  std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V);
1946  if (I != Scalars.end()) return I->second;
1947  const SCEV* S = createSCEV(V);
1948  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1949  return S;
1950}
1951
1952/// getIntegerSCEV - Given a SCEVable type, create a constant for the
1953/// specified signed integer value and return a SCEV for the constant.
1954const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1955  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
1956  return getConstant(ConstantInt::get(ITy, Val));
1957}
1958
1959/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1960///
1961const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) {
1962  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1963    return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
1964
1965  const Type *Ty = V->getType();
1966  Ty = getEffectiveSCEVType(Ty);
1967  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1968}
1969
1970/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1971const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) {
1972  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1973    return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
1974
1975  const Type *Ty = V->getType();
1976  Ty = getEffectiveSCEVType(Ty);
1977  const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1978  return getMinusSCEV(AllOnes, V);
1979}
1980
1981/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1982///
1983const SCEV* ScalarEvolution::getMinusSCEV(const SCEV* LHS,
1984                                         const SCEV* RHS) {
1985  // X - Y --> X + -Y
1986  return getAddExpr(LHS, getNegativeSCEV(RHS));
1987}
1988
1989/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1990/// input value to the specified type.  If the type must be extended, it is zero
1991/// extended.
1992const SCEV*
1993ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
1994                                         const Type *Ty) {
1995  const Type *SrcTy = V->getType();
1996  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1997         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1998         "Cannot truncate or zero extend with non-integer arguments!");
1999  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2000    return V;  // No conversion
2001  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2002    return getTruncateExpr(V, Ty);
2003  return getZeroExtendExpr(V, Ty);
2004}
2005
2006/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2007/// input value to the specified type.  If the type must be extended, it is sign
2008/// extended.
2009const SCEV*
2010ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
2011                                         const Type *Ty) {
2012  const Type *SrcTy = V->getType();
2013  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2014         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2015         "Cannot truncate or zero extend with non-integer arguments!");
2016  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2017    return V;  // No conversion
2018  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2019    return getTruncateExpr(V, Ty);
2020  return getSignExtendExpr(V, Ty);
2021}
2022
2023/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2024/// input value to the specified type.  If the type must be extended, it is zero
2025/// extended.  The conversion must not be narrowing.
2026const SCEV*
2027ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
2028  const Type *SrcTy = V->getType();
2029  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2030         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2031         "Cannot noop or zero extend with non-integer arguments!");
2032  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2033         "getNoopOrZeroExtend cannot truncate!");
2034  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2035    return V;  // No conversion
2036  return getZeroExtendExpr(V, Ty);
2037}
2038
2039/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2040/// input value to the specified type.  If the type must be extended, it is sign
2041/// extended.  The conversion must not be narrowing.
2042const SCEV*
2043ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
2044  const Type *SrcTy = V->getType();
2045  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2046         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2047         "Cannot noop or sign extend with non-integer arguments!");
2048  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2049         "getNoopOrSignExtend cannot truncate!");
2050  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2051    return V;  // No conversion
2052  return getSignExtendExpr(V, Ty);
2053}
2054
2055/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2056/// the input value to the specified type. If the type must be extended,
2057/// it is extended with unspecified bits. The conversion must not be
2058/// narrowing.
2059const SCEV*
2060ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
2061  const Type *SrcTy = V->getType();
2062  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2063         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2064         "Cannot noop or any extend with non-integer arguments!");
2065  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2066         "getNoopOrAnyExtend cannot truncate!");
2067  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2068    return V;  // No conversion
2069  return getAnyExtendExpr(V, Ty);
2070}
2071
2072/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2073/// input value to the specified type.  The conversion must not be widening.
2074const SCEV*
2075ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
2076  const Type *SrcTy = V->getType();
2077  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2078         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2079         "Cannot truncate or noop with non-integer arguments!");
2080  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2081         "getTruncateOrNoop cannot extend!");
2082  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2083    return V;  // No conversion
2084  return getTruncateExpr(V, Ty);
2085}
2086
2087/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2088/// the types using zero-extension, and then perform a umax operation
2089/// with them.
2090const SCEV* ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV* LHS,
2091                                                       const SCEV* RHS) {
2092  const SCEV* PromotedLHS = LHS;
2093  const SCEV* PromotedRHS = RHS;
2094
2095  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2096    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2097  else
2098    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2099
2100  return getUMaxExpr(PromotedLHS, PromotedRHS);
2101}
2102
2103/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2104/// the types using zero-extension, and then perform a umin operation
2105/// with them.
2106const SCEV* ScalarEvolution::getUMinFromMismatchedTypes(const SCEV* LHS,
2107                                                       const SCEV* RHS) {
2108  const SCEV* PromotedLHS = LHS;
2109  const SCEV* PromotedRHS = RHS;
2110
2111  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2112    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2113  else
2114    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2115
2116  return getUMinExpr(PromotedLHS, PromotedRHS);
2117}
2118
2119/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2120/// the specified instruction and replaces any references to the symbolic value
2121/// SymName with the specified value.  This is used during PHI resolution.
2122void ScalarEvolution::
2123ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEV* SymName,
2124                                 const SCEV* NewVal) {
2125  std::map<SCEVCallbackVH, const SCEV*>::iterator SI =
2126    Scalars.find(SCEVCallbackVH(I, this));
2127  if (SI == Scalars.end()) return;
2128
2129  const SCEV* NV =
2130    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
2131  if (NV == SI->second) return;  // No change.
2132
2133  SI->second = NV;       // Update the scalars map!
2134
2135  // Any instruction values that use this instruction might also need to be
2136  // updated!
2137  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2138       UI != E; ++UI)
2139    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2140}
2141
2142/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2143/// a loop header, making it a potential recurrence, or it doesn't.
2144///
2145const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
2146  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2147    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2148      if (L->getHeader() == PN->getParent()) {
2149        // If it lives in the loop header, it has two incoming values, one
2150        // from outside the loop, and one from inside.
2151        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2152        unsigned BackEdge     = IncomingEdge^1;
2153
2154        // While we are analyzing this PHI node, handle its value symbolically.
2155        const SCEV* SymbolicName = getUnknown(PN);
2156        assert(Scalars.find(PN) == Scalars.end() &&
2157               "PHI node already processed?");
2158        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2159
2160        // Using this symbolic name for the PHI, analyze the value coming around
2161        // the back-edge.
2162        const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2163
2164        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2165        // has a special value for the first iteration of the loop.
2166
2167        // If the value coming around the backedge is an add with the symbolic
2168        // value we just inserted, then we found a simple induction variable!
2169        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2170          // If there is a single occurrence of the symbolic value, replace it
2171          // with a recurrence.
2172          unsigned FoundIndex = Add->getNumOperands();
2173          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2174            if (Add->getOperand(i) == SymbolicName)
2175              if (FoundIndex == e) {
2176                FoundIndex = i;
2177                break;
2178              }
2179
2180          if (FoundIndex != Add->getNumOperands()) {
2181            // Create an add with everything but the specified operand.
2182            SmallVector<const SCEV*, 8> Ops;
2183            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2184              if (i != FoundIndex)
2185                Ops.push_back(Add->getOperand(i));
2186            const SCEV* Accum = getAddExpr(Ops);
2187
2188            // This is not a valid addrec if the step amount is varying each
2189            // loop iteration, but is not itself an addrec in this loop.
2190            if (Accum->isLoopInvariant(L) ||
2191                (isa<SCEVAddRecExpr>(Accum) &&
2192                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2193              const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2194              const SCEV* PHISCEV  = getAddRecExpr(StartVal, Accum, L);
2195
2196              // Okay, for the entire analysis of this edge we assumed the PHI
2197              // to be symbolic.  We now need to go back and update all of the
2198              // entries for the scalars that use the PHI (except for the PHI
2199              // itself) to use the new analyzed value instead of the "symbolic"
2200              // value.
2201              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2202              return PHISCEV;
2203            }
2204          }
2205        } else if (const SCEVAddRecExpr *AddRec =
2206                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2207          // Otherwise, this could be a loop like this:
2208          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2209          // In this case, j = {1,+,1}  and BEValue is j.
2210          // Because the other in-value of i (0) fits the evolution of BEValue
2211          // i really is an addrec evolution.
2212          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2213            const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2214
2215            // If StartVal = j.start - j.stride, we can use StartVal as the
2216            // initial step of the addrec evolution.
2217            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2218                                            AddRec->getOperand(1))) {
2219              const SCEV* PHISCEV =
2220                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2221
2222              // Okay, for the entire analysis of this edge we assumed the PHI
2223              // to be symbolic.  We now need to go back and update all of the
2224              // entries for the scalars that use the PHI (except for the PHI
2225              // itself) to use the new analyzed value instead of the "symbolic"
2226              // value.
2227              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2228              return PHISCEV;
2229            }
2230          }
2231        }
2232
2233        return SymbolicName;
2234      }
2235
2236  // If it's not a loop phi, we can't handle it yet.
2237  return getUnknown(PN);
2238}
2239
2240/// createNodeForGEP - Expand GEP instructions into add and multiply
2241/// operations. This allows them to be analyzed by regular SCEV code.
2242///
2243const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
2244
2245  const Type *IntPtrTy = TD->getIntPtrType();
2246  Value *Base = GEP->getOperand(0);
2247  // Don't attempt to analyze GEPs over unsized objects.
2248  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2249    return getUnknown(GEP);
2250  const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy);
2251  gep_type_iterator GTI = gep_type_begin(GEP);
2252  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2253                                      E = GEP->op_end();
2254       I != E; ++I) {
2255    Value *Index = *I;
2256    // Compute the (potentially symbolic) offset in bytes for this index.
2257    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2258      // For a struct, add the member offset.
2259      const StructLayout &SL = *TD->getStructLayout(STy);
2260      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2261      uint64_t Offset = SL.getElementOffset(FieldNo);
2262      TotalOffset = getAddExpr(TotalOffset,
2263                                  getIntegerSCEV(Offset, IntPtrTy));
2264    } else {
2265      // For an array, add the element offset, explicitly scaled.
2266      const SCEV* LocalOffset = getSCEV(Index);
2267      if (!isa<PointerType>(LocalOffset->getType()))
2268        // Getelementptr indicies are signed.
2269        LocalOffset = getTruncateOrSignExtend(LocalOffset,
2270                                              IntPtrTy);
2271      LocalOffset =
2272        getMulExpr(LocalOffset,
2273                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2274                                  IntPtrTy));
2275      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2276    }
2277  }
2278  return getAddExpr(getSCEV(Base), TotalOffset);
2279}
2280
2281/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2282/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2283/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2284/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2285uint32_t
2286ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
2287  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2288    return C->getValue()->getValue().countTrailingZeros();
2289
2290  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2291    return std::min(GetMinTrailingZeros(T->getOperand()),
2292                    (uint32_t)getTypeSizeInBits(T->getType()));
2293
2294  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2295    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2296    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2297             getTypeSizeInBits(E->getType()) : OpRes;
2298  }
2299
2300  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2301    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2302    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2303             getTypeSizeInBits(E->getType()) : OpRes;
2304  }
2305
2306  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2307    // The result is the min of all operands results.
2308    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2309    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2310      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2311    return MinOpRes;
2312  }
2313
2314  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2315    // The result is the sum of all operands results.
2316    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2317    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2318    for (unsigned i = 1, e = M->getNumOperands();
2319         SumOpRes != BitWidth && i != e; ++i)
2320      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2321                          BitWidth);
2322    return SumOpRes;
2323  }
2324
2325  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2326    // The result is the min of all operands results.
2327    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2328    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2329      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2330    return MinOpRes;
2331  }
2332
2333  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2334    // The result is the min of all operands results.
2335    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2336    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2337      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2338    return MinOpRes;
2339  }
2340
2341  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2342    // The result is the min of all operands results.
2343    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2344    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2345      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2346    return MinOpRes;
2347  }
2348
2349  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2350    // For a SCEVUnknown, ask ValueTracking.
2351    unsigned BitWidth = getTypeSizeInBits(U->getType());
2352    APInt Mask = APInt::getAllOnesValue(BitWidth);
2353    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2354    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2355    return Zeros.countTrailingOnes();
2356  }
2357
2358  // SCEVUDivExpr
2359  return 0;
2360}
2361
2362uint32_t
2363ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
2364  // TODO: Handle other SCEV expression types here.
2365
2366  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2367    return C->getValue()->getValue().countLeadingZeros();
2368
2369  if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
2370    // A zero-extension cast adds zero bits.
2371    return GetMinLeadingZeros(C->getOperand()) +
2372           (getTypeSizeInBits(C->getType()) -
2373            getTypeSizeInBits(C->getOperand()->getType()));
2374  }
2375
2376  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2377    // For a SCEVUnknown, ask ValueTracking.
2378    unsigned BitWidth = getTypeSizeInBits(U->getType());
2379    APInt Mask = APInt::getAllOnesValue(BitWidth);
2380    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2381    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2382    return Zeros.countLeadingOnes();
2383  }
2384
2385  return 1;
2386}
2387
2388uint32_t
2389ScalarEvolution::GetMinSignBits(const SCEV* S) {
2390  // TODO: Handle other SCEV expression types here.
2391
2392  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
2393    const APInt &A = C->getValue()->getValue();
2394    return A.isNegative() ? A.countLeadingOnes() :
2395                            A.countLeadingZeros();
2396  }
2397
2398  if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
2399    // A sign-extension cast adds sign bits.
2400    return GetMinSignBits(C->getOperand()) +
2401           (getTypeSizeInBits(C->getType()) -
2402            getTypeSizeInBits(C->getOperand()->getType()));
2403  }
2404
2405  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2406    unsigned BitWidth = getTypeSizeInBits(A->getType());
2407
2408    // Special case decrementing a value (ADD X, -1):
2409    if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
2410      if (CRHS->isAllOnesValue()) {
2411        SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
2412        const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
2413        unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
2414
2415        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2416        // sign bits set.
2417        if (LZ == BitWidth - 1)
2418          return BitWidth;
2419
2420        // If we are subtracting one from a positive number, there is no carry
2421        // out of the result.
2422        if (LZ > 0)
2423          return GetMinSignBits(OtherOpsAdd);
2424      }
2425
2426    // Add can have at most one carry bit.  Thus we know that the output
2427    // is, at worst, one more bit than the inputs.
2428    unsigned Min = BitWidth;
2429    for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2430      unsigned N = GetMinSignBits(A->getOperand(i));
2431      Min = std::min(Min, N) - 1;
2432      if (Min == 0) return 1;
2433    }
2434    return 1;
2435  }
2436
2437  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2438    // For a SCEVUnknown, ask ValueTracking.
2439    return ComputeNumSignBits(U->getValue(), TD);
2440  }
2441
2442  return 1;
2443}
2444
2445/// createSCEV - We know that there is no SCEV for the specified value.
2446/// Analyze the expression.
2447///
2448const SCEV* ScalarEvolution::createSCEV(Value *V) {
2449  if (!isSCEVable(V->getType()))
2450    return getUnknown(V);
2451
2452  unsigned Opcode = Instruction::UserOp1;
2453  if (Instruction *I = dyn_cast<Instruction>(V))
2454    Opcode = I->getOpcode();
2455  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2456    Opcode = CE->getOpcode();
2457  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2458    return getConstant(CI);
2459  else if (isa<ConstantPointerNull>(V))
2460    return getIntegerSCEV(0, V->getType());
2461  else if (isa<UndefValue>(V))
2462    return getIntegerSCEV(0, V->getType());
2463  else
2464    return getUnknown(V);
2465
2466  User *U = cast<User>(V);
2467  switch (Opcode) {
2468  case Instruction::Add:
2469    return getAddExpr(getSCEV(U->getOperand(0)),
2470                      getSCEV(U->getOperand(1)));
2471  case Instruction::Mul:
2472    return getMulExpr(getSCEV(U->getOperand(0)),
2473                      getSCEV(U->getOperand(1)));
2474  case Instruction::UDiv:
2475    return getUDivExpr(getSCEV(U->getOperand(0)),
2476                       getSCEV(U->getOperand(1)));
2477  case Instruction::Sub:
2478    return getMinusSCEV(getSCEV(U->getOperand(0)),
2479                        getSCEV(U->getOperand(1)));
2480  case Instruction::And:
2481    // For an expression like x&255 that merely masks off the high bits,
2482    // use zext(trunc(x)) as the SCEV expression.
2483    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2484      if (CI->isNullValue())
2485        return getSCEV(U->getOperand(1));
2486      if (CI->isAllOnesValue())
2487        return getSCEV(U->getOperand(0));
2488      const APInt &A = CI->getValue();
2489
2490      // Instcombine's ShrinkDemandedConstant may strip bits out of
2491      // constants, obscuring what would otherwise be a low-bits mask.
2492      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2493      // knew about to reconstruct a low-bits mask value.
2494      unsigned LZ = A.countLeadingZeros();
2495      unsigned BitWidth = A.getBitWidth();
2496      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2497      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2498      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2499
2500      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2501
2502      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2503        return
2504          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2505                                            IntegerType::get(BitWidth - LZ)),
2506                            U->getType());
2507    }
2508    break;
2509
2510  case Instruction::Or:
2511    // If the RHS of the Or is a constant, we may have something like:
2512    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2513    // optimizations will transparently handle this case.
2514    //
2515    // In order for this transformation to be safe, the LHS must be of the
2516    // form X*(2^n) and the Or constant must be less than 2^n.
2517    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2518      const SCEV* LHS = getSCEV(U->getOperand(0));
2519      const APInt &CIVal = CI->getValue();
2520      if (GetMinTrailingZeros(LHS) >=
2521          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2522        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2523    }
2524    break;
2525  case Instruction::Xor:
2526    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2527      // If the RHS of the xor is a signbit, then this is just an add.
2528      // Instcombine turns add of signbit into xor as a strength reduction step.
2529      if (CI->getValue().isSignBit())
2530        return getAddExpr(getSCEV(U->getOperand(0)),
2531                          getSCEV(U->getOperand(1)));
2532
2533      // If the RHS of xor is -1, then this is a not operation.
2534      if (CI->isAllOnesValue())
2535        return getNotSCEV(getSCEV(U->getOperand(0)));
2536
2537      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2538      // This is a variant of the check for xor with -1, and it handles
2539      // the case where instcombine has trimmed non-demanded bits out
2540      // of an xor with -1.
2541      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2542        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2543          if (BO->getOpcode() == Instruction::And &&
2544              LCI->getValue() == CI->getValue())
2545            if (const SCEVZeroExtendExpr *Z =
2546                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2547              const Type *UTy = U->getType();
2548              const SCEV* Z0 = Z->getOperand();
2549              const Type *Z0Ty = Z0->getType();
2550              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2551
2552              // If C is a low-bits mask, the zero extend is zerving to
2553              // mask off the high bits. Complement the operand and
2554              // re-apply the zext.
2555              if (APIntOps::isMask(Z0TySize, CI->getValue()))
2556                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2557
2558              // If C is a single bit, it may be in the sign-bit position
2559              // before the zero-extend. In this case, represent the xor
2560              // using an add, which is equivalent, and re-apply the zext.
2561              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2562              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2563                  Trunc.isSignBit())
2564                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2565                                         UTy);
2566            }
2567    }
2568    break;
2569
2570  case Instruction::Shl:
2571    // Turn shift left of a constant amount into a multiply.
2572    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2573      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2574      Constant *X = ConstantInt::get(
2575        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2576      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2577    }
2578    break;
2579
2580  case Instruction::LShr:
2581    // Turn logical shift right of a constant into a unsigned divide.
2582    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2583      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2584      Constant *X = ConstantInt::get(
2585        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2586      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2587    }
2588    break;
2589
2590  case Instruction::AShr:
2591    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2592    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2593      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2594        if (L->getOpcode() == Instruction::Shl &&
2595            L->getOperand(1) == U->getOperand(1)) {
2596          unsigned BitWidth = getTypeSizeInBits(U->getType());
2597          uint64_t Amt = BitWidth - CI->getZExtValue();
2598          if (Amt == BitWidth)
2599            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2600          if (Amt > BitWidth)
2601            return getIntegerSCEV(0, U->getType()); // value is undefined
2602          return
2603            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2604                                                      IntegerType::get(Amt)),
2605                                 U->getType());
2606        }
2607    break;
2608
2609  case Instruction::Trunc:
2610    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2611
2612  case Instruction::ZExt:
2613    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2614
2615  case Instruction::SExt:
2616    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2617
2618  case Instruction::BitCast:
2619    // BitCasts are no-op casts so we just eliminate the cast.
2620    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2621      return getSCEV(U->getOperand(0));
2622    break;
2623
2624  case Instruction::IntToPtr:
2625    if (!TD) break; // Without TD we can't analyze pointers.
2626    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2627                                   TD->getIntPtrType());
2628
2629  case Instruction::PtrToInt:
2630    if (!TD) break; // Without TD we can't analyze pointers.
2631    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2632                                   U->getType());
2633
2634  case Instruction::GetElementPtr:
2635    if (!TD) break; // Without TD we can't analyze pointers.
2636    return createNodeForGEP(U);
2637
2638  case Instruction::PHI:
2639    return createNodeForPHI(cast<PHINode>(U));
2640
2641  case Instruction::Select:
2642    // This could be a smax or umax that was lowered earlier.
2643    // Try to recover it.
2644    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2645      Value *LHS = ICI->getOperand(0);
2646      Value *RHS = ICI->getOperand(1);
2647      switch (ICI->getPredicate()) {
2648      case ICmpInst::ICMP_SLT:
2649      case ICmpInst::ICMP_SLE:
2650        std::swap(LHS, RHS);
2651        // fall through
2652      case ICmpInst::ICMP_SGT:
2653      case ICmpInst::ICMP_SGE:
2654        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2655          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2656        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2657          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2658        break;
2659      case ICmpInst::ICMP_ULT:
2660      case ICmpInst::ICMP_ULE:
2661        std::swap(LHS, RHS);
2662        // fall through
2663      case ICmpInst::ICMP_UGT:
2664      case ICmpInst::ICMP_UGE:
2665        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2666          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2667        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2668          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2669        break;
2670      case ICmpInst::ICMP_NE:
2671        // n != 0 ? n : 1  ->  umax(n, 1)
2672        if (LHS == U->getOperand(1) &&
2673            isa<ConstantInt>(U->getOperand(2)) &&
2674            cast<ConstantInt>(U->getOperand(2))->isOne() &&
2675            isa<ConstantInt>(RHS) &&
2676            cast<ConstantInt>(RHS)->isZero())
2677          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2678        break;
2679      case ICmpInst::ICMP_EQ:
2680        // n == 0 ? 1 : n  ->  umax(n, 1)
2681        if (LHS == U->getOperand(2) &&
2682            isa<ConstantInt>(U->getOperand(1)) &&
2683            cast<ConstantInt>(U->getOperand(1))->isOne() &&
2684            isa<ConstantInt>(RHS) &&
2685            cast<ConstantInt>(RHS)->isZero())
2686          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2687        break;
2688      default:
2689        break;
2690      }
2691    }
2692
2693  default: // We cannot analyze this expression.
2694    break;
2695  }
2696
2697  return getUnknown(V);
2698}
2699
2700
2701
2702//===----------------------------------------------------------------------===//
2703//                   Iteration Count Computation Code
2704//
2705
2706/// getBackedgeTakenCount - If the specified loop has a predictable
2707/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2708/// object. The backedge-taken count is the number of times the loop header
2709/// will be branched to from within the loop. This is one less than the
2710/// trip count of the loop, since it doesn't count the first iteration,
2711/// when the header is branched to from outside the loop.
2712///
2713/// Note that it is not valid to call this method on a loop without a
2714/// loop-invariant backedge-taken count (see
2715/// hasLoopInvariantBackedgeTakenCount).
2716///
2717const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2718  return getBackedgeTakenInfo(L).Exact;
2719}
2720
2721/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2722/// return the least SCEV value that is known never to be less than the
2723/// actual backedge taken count.
2724const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2725  return getBackedgeTakenInfo(L).Max;
2726}
2727
2728const ScalarEvolution::BackedgeTakenInfo &
2729ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2730  // Initially insert a CouldNotCompute for this loop. If the insertion
2731  // succeeds, procede to actually compute a backedge-taken count and
2732  // update the value. The temporary CouldNotCompute value tells SCEV
2733  // code elsewhere that it shouldn't attempt to request a new
2734  // backedge-taken count, which could result in infinite recursion.
2735  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2736    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2737  if (Pair.second) {
2738    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2739    if (ItCount.Exact != CouldNotCompute) {
2740      assert(ItCount.Exact->isLoopInvariant(L) &&
2741             ItCount.Max->isLoopInvariant(L) &&
2742             "Computed trip count isn't loop invariant for loop!");
2743      ++NumTripCountsComputed;
2744
2745      // Update the value in the map.
2746      Pair.first->second = ItCount;
2747    } else {
2748      if (ItCount.Max != CouldNotCompute)
2749        // Update the value in the map.
2750        Pair.first->second = ItCount;
2751      if (isa<PHINode>(L->getHeader()->begin()))
2752        // Only count loops that have phi nodes as not being computable.
2753        ++NumTripCountsNotComputed;
2754    }
2755
2756    // Now that we know more about the trip count for this loop, forget any
2757    // existing SCEV values for PHI nodes in this loop since they are only
2758    // conservative estimates made without the benefit
2759    // of trip count information.
2760    if (ItCount.hasAnyInfo())
2761      forgetLoopPHIs(L);
2762  }
2763  return Pair.first->second;
2764}
2765
2766/// forgetLoopBackedgeTakenCount - This method should be called by the
2767/// client when it has changed a loop in a way that may effect
2768/// ScalarEvolution's ability to compute a trip count, or if the loop
2769/// is deleted.
2770void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2771  BackedgeTakenCounts.erase(L);
2772  forgetLoopPHIs(L);
2773}
2774
2775/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2776/// PHI nodes in the given loop. This is used when the trip count of
2777/// the loop may have changed.
2778void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2779  BasicBlock *Header = L->getHeader();
2780
2781  // Push all Loop-header PHIs onto the Worklist stack, except those
2782  // that are presently represented via a SCEVUnknown. SCEVUnknown for
2783  // a PHI either means that it has an unrecognized structure, or it's
2784  // a PHI that's in the progress of being computed by createNodeForPHI.
2785  // In the former case, additional loop trip count information isn't
2786  // going to change anything. In the later case, createNodeForPHI will
2787  // perform the necessary updates on its own when it gets to that point.
2788  SmallVector<Instruction *, 16> Worklist;
2789  for (BasicBlock::iterator I = Header->begin();
2790       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2791    std::map<SCEVCallbackVH, const SCEV*>::iterator It = Scalars.find((Value*)I);
2792    if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2793      Worklist.push_back(PN);
2794  }
2795
2796  while (!Worklist.empty()) {
2797    Instruction *I = Worklist.pop_back_val();
2798    if (Scalars.erase(I))
2799      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2800           UI != UE; ++UI)
2801        Worklist.push_back(cast<Instruction>(UI));
2802  }
2803}
2804
2805/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2806/// of the specified loop will execute.
2807ScalarEvolution::BackedgeTakenInfo
2808ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2809  SmallVector<BasicBlock*, 8> ExitingBlocks;
2810  L->getExitingBlocks(ExitingBlocks);
2811
2812  // Examine all exits and pick the most conservative values.
2813  const SCEV* BECount = CouldNotCompute;
2814  const SCEV* MaxBECount = CouldNotCompute;
2815  bool CouldNotComputeBECount = false;
2816  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2817    BackedgeTakenInfo NewBTI =
2818      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
2819
2820    if (NewBTI.Exact == CouldNotCompute) {
2821      // We couldn't compute an exact value for this exit, so
2822      // we won't be able to compute an exact value for the loop.
2823      CouldNotComputeBECount = true;
2824      BECount = CouldNotCompute;
2825    } else if (!CouldNotComputeBECount) {
2826      if (BECount == CouldNotCompute)
2827        BECount = NewBTI.Exact;
2828      else
2829        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
2830    }
2831    if (MaxBECount == CouldNotCompute)
2832      MaxBECount = NewBTI.Max;
2833    else if (NewBTI.Max != CouldNotCompute)
2834      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
2835  }
2836
2837  return BackedgeTakenInfo(BECount, MaxBECount);
2838}
2839
2840/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
2841/// of the specified loop will execute if it exits via the specified block.
2842ScalarEvolution::BackedgeTakenInfo
2843ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
2844                                                   BasicBlock *ExitingBlock) {
2845
2846  // Okay, we've chosen an exiting block.  See what condition causes us to
2847  // exit at this block.
2848  //
2849  // FIXME: we should be able to handle switch instructions (with a single exit)
2850  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2851  if (ExitBr == 0) return CouldNotCompute;
2852  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2853
2854  // At this point, we know we have a conditional branch that determines whether
2855  // the loop is exited.  However, we don't know if the branch is executed each
2856  // time through the loop.  If not, then the execution count of the branch will
2857  // not be equal to the trip count of the loop.
2858  //
2859  // Currently we check for this by checking to see if the Exit branch goes to
2860  // the loop header.  If so, we know it will always execute the same number of
2861  // times as the loop.  We also handle the case where the exit block *is* the
2862  // loop header.  This is common for un-rotated loops.
2863  //
2864  // If both of those tests fail, walk up the unique predecessor chain to the
2865  // header, stopping if there is an edge that doesn't exit the loop. If the
2866  // header is reached, the execution count of the branch will be equal to the
2867  // trip count of the loop.
2868  //
2869  //  More extensive analysis could be done to handle more cases here.
2870  //
2871  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2872      ExitBr->getSuccessor(1) != L->getHeader() &&
2873      ExitBr->getParent() != L->getHeader()) {
2874    // The simple checks failed, try climbing the unique predecessor chain
2875    // up to the header.
2876    bool Ok = false;
2877    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
2878      BasicBlock *Pred = BB->getUniquePredecessor();
2879      if (!Pred)
2880        return CouldNotCompute;
2881      TerminatorInst *PredTerm = Pred->getTerminator();
2882      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
2883        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
2884        if (PredSucc == BB)
2885          continue;
2886        // If the predecessor has a successor that isn't BB and isn't
2887        // outside the loop, assume the worst.
2888        if (L->contains(PredSucc))
2889          return CouldNotCompute;
2890      }
2891      if (Pred == L->getHeader()) {
2892        Ok = true;
2893        break;
2894      }
2895      BB = Pred;
2896    }
2897    if (!Ok)
2898      return CouldNotCompute;
2899  }
2900
2901  // Procede to the next level to examine the exit condition expression.
2902  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
2903                                               ExitBr->getSuccessor(0),
2904                                               ExitBr->getSuccessor(1));
2905}
2906
2907/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
2908/// backedge of the specified loop will execute if its exit condition
2909/// were a conditional branch of ExitCond, TBB, and FBB.
2910ScalarEvolution::BackedgeTakenInfo
2911ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
2912                                                       Value *ExitCond,
2913                                                       BasicBlock *TBB,
2914                                                       BasicBlock *FBB) {
2915  // Check if the controlling expression for this loop is an And or Or.
2916  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
2917    if (BO->getOpcode() == Instruction::And) {
2918      // Recurse on the operands of the and.
2919      BackedgeTakenInfo BTI0 =
2920        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2921      BackedgeTakenInfo BTI1 =
2922        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2923      const SCEV* BECount = CouldNotCompute;
2924      const SCEV* MaxBECount = CouldNotCompute;
2925      if (L->contains(TBB)) {
2926        // Both conditions must be true for the loop to continue executing.
2927        // Choose the less conservative count.
2928        if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
2929          BECount = CouldNotCompute;
2930        else
2931          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2932        if (BTI0.Max == CouldNotCompute)
2933          MaxBECount = BTI1.Max;
2934        else if (BTI1.Max == CouldNotCompute)
2935          MaxBECount = BTI0.Max;
2936        else
2937          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
2938      } else {
2939        // Both conditions must be true for the loop to exit.
2940        assert(L->contains(FBB) && "Loop block has no successor in loop!");
2941        if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2942          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2943        if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2944          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2945      }
2946
2947      return BackedgeTakenInfo(BECount, MaxBECount);
2948    }
2949    if (BO->getOpcode() == Instruction::Or) {
2950      // Recurse on the operands of the or.
2951      BackedgeTakenInfo BTI0 =
2952        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2953      BackedgeTakenInfo BTI1 =
2954        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2955      const SCEV* BECount = CouldNotCompute;
2956      const SCEV* MaxBECount = CouldNotCompute;
2957      if (L->contains(FBB)) {
2958        // Both conditions must be false for the loop to continue executing.
2959        // Choose the less conservative count.
2960        if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
2961          BECount = CouldNotCompute;
2962        else
2963          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2964        if (BTI0.Max == CouldNotCompute)
2965          MaxBECount = BTI1.Max;
2966        else if (BTI1.Max == CouldNotCompute)
2967          MaxBECount = BTI0.Max;
2968        else
2969          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
2970      } else {
2971        // Both conditions must be false for the loop to exit.
2972        assert(L->contains(TBB) && "Loop block has no successor in loop!");
2973        if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2974          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2975        if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2976          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2977      }
2978
2979      return BackedgeTakenInfo(BECount, MaxBECount);
2980    }
2981  }
2982
2983  // With an icmp, it may be feasible to compute an exact backedge-taken count.
2984  // Procede to the next level to examine the icmp.
2985  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
2986    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
2987
2988  // If it's not an integer or pointer comparison then compute it the hard way.
2989  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
2990}
2991
2992/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
2993/// backedge of the specified loop will execute if its exit condition
2994/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
2995ScalarEvolution::BackedgeTakenInfo
2996ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
2997                                                           ICmpInst *ExitCond,
2998                                                           BasicBlock *TBB,
2999                                                           BasicBlock *FBB) {
3000
3001  // If the condition was exit on true, convert the condition to exit on false
3002  ICmpInst::Predicate Cond;
3003  if (!L->contains(FBB))
3004    Cond = ExitCond->getPredicate();
3005  else
3006    Cond = ExitCond->getInversePredicate();
3007
3008  // Handle common loops like: for (X = "string"; *X; ++X)
3009  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3010    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3011      const SCEV* ItCnt =
3012        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3013      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3014        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3015        return BackedgeTakenInfo(ItCnt,
3016                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3017                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3018      }
3019    }
3020
3021  const SCEV* LHS = getSCEV(ExitCond->getOperand(0));
3022  const SCEV* RHS = getSCEV(ExitCond->getOperand(1));
3023
3024  // Try to evaluate any dependencies out of the loop.
3025  LHS = getSCEVAtScope(LHS, L);
3026  RHS = getSCEVAtScope(RHS, L);
3027
3028  // At this point, we would like to compute how many iterations of the
3029  // loop the predicate will return true for these inputs.
3030  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3031    // If there is a loop-invariant, force it into the RHS.
3032    std::swap(LHS, RHS);
3033    Cond = ICmpInst::getSwappedPredicate(Cond);
3034  }
3035
3036  // If we have a comparison of a chrec against a constant, try to use value
3037  // ranges to answer this query.
3038  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3039    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3040      if (AddRec->getLoop() == L) {
3041        // Form the constant range.
3042        ConstantRange CompRange(
3043            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3044
3045        const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3046        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3047      }
3048
3049  switch (Cond) {
3050  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3051    // Convert to: while (X-Y != 0)
3052    const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3053    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3054    break;
3055  }
3056  case ICmpInst::ICMP_EQ: {
3057    // Convert to: while (X-Y == 0)           // while (X == Y)
3058    const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3059    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3060    break;
3061  }
3062  case ICmpInst::ICMP_SLT: {
3063    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3064    if (BTI.hasAnyInfo()) return BTI;
3065    break;
3066  }
3067  case ICmpInst::ICMP_SGT: {
3068    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3069                                             getNotSCEV(RHS), L, true);
3070    if (BTI.hasAnyInfo()) return BTI;
3071    break;
3072  }
3073  case ICmpInst::ICMP_ULT: {
3074    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3075    if (BTI.hasAnyInfo()) return BTI;
3076    break;
3077  }
3078  case ICmpInst::ICMP_UGT: {
3079    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3080                                             getNotSCEV(RHS), L, false);
3081    if (BTI.hasAnyInfo()) return BTI;
3082    break;
3083  }
3084  default:
3085#if 0
3086    errs() << "ComputeBackedgeTakenCount ";
3087    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3088      errs() << "[unsigned] ";
3089    errs() << *LHS << "   "
3090         << Instruction::getOpcodeName(Instruction::ICmp)
3091         << "   " << *RHS << "\n";
3092#endif
3093    break;
3094  }
3095  return
3096    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3097}
3098
3099static ConstantInt *
3100EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3101                                ScalarEvolution &SE) {
3102  const SCEV* InVal = SE.getConstant(C);
3103  const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE);
3104  assert(isa<SCEVConstant>(Val) &&
3105         "Evaluation of SCEV at constant didn't fold correctly?");
3106  return cast<SCEVConstant>(Val)->getValue();
3107}
3108
3109/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3110/// and a GEP expression (missing the pointer index) indexing into it, return
3111/// the addressed element of the initializer or null if the index expression is
3112/// invalid.
3113static Constant *
3114GetAddressedElementFromGlobal(GlobalVariable *GV,
3115                              const std::vector<ConstantInt*> &Indices) {
3116  Constant *Init = GV->getInitializer();
3117  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3118    uint64_t Idx = Indices[i]->getZExtValue();
3119    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3120      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3121      Init = cast<Constant>(CS->getOperand(Idx));
3122    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3123      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3124      Init = cast<Constant>(CA->getOperand(Idx));
3125    } else if (isa<ConstantAggregateZero>(Init)) {
3126      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3127        assert(Idx < STy->getNumElements() && "Bad struct index!");
3128        Init = Constant::getNullValue(STy->getElementType(Idx));
3129      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3130        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3131        Init = Constant::getNullValue(ATy->getElementType());
3132      } else {
3133        assert(0 && "Unknown constant aggregate type!");
3134      }
3135      return 0;
3136    } else {
3137      return 0; // Unknown initializer type
3138    }
3139  }
3140  return Init;
3141}
3142
3143/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3144/// 'icmp op load X, cst', try to see if we can compute the backedge
3145/// execution count.
3146const SCEV* ScalarEvolution::
3147ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
3148                                             const Loop *L,
3149                                             ICmpInst::Predicate predicate) {
3150  if (LI->isVolatile()) return CouldNotCompute;
3151
3152  // Check to see if the loaded pointer is a getelementptr of a global.
3153  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3154  if (!GEP) return CouldNotCompute;
3155
3156  // Make sure that it is really a constant global we are gepping, with an
3157  // initializer, and make sure the first IDX is really 0.
3158  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3159  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3160      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3161      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3162    return CouldNotCompute;
3163
3164  // Okay, we allow one non-constant index into the GEP instruction.
3165  Value *VarIdx = 0;
3166  std::vector<ConstantInt*> Indexes;
3167  unsigned VarIdxNum = 0;
3168  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3169    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3170      Indexes.push_back(CI);
3171    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3172      if (VarIdx) return CouldNotCompute;  // Multiple non-constant idx's.
3173      VarIdx = GEP->getOperand(i);
3174      VarIdxNum = i-2;
3175      Indexes.push_back(0);
3176    }
3177
3178  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3179  // Check to see if X is a loop variant variable value now.
3180  const SCEV* Idx = getSCEV(VarIdx);
3181  Idx = getSCEVAtScope(Idx, L);
3182
3183  // We can only recognize very limited forms of loop index expressions, in
3184  // particular, only affine AddRec's like {C1,+,C2}.
3185  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3186  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3187      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3188      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3189    return CouldNotCompute;
3190
3191  unsigned MaxSteps = MaxBruteForceIterations;
3192  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3193    ConstantInt *ItCst =
3194      ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
3195    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3196
3197    // Form the GEP offset.
3198    Indexes[VarIdxNum] = Val;
3199
3200    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3201    if (Result == 0) break;  // Cannot compute!
3202
3203    // Evaluate the condition for this iteration.
3204    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3205    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3206    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3207#if 0
3208      errs() << "\n***\n*** Computed loop count " << *ItCst
3209             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3210             << "***\n";
3211#endif
3212      ++NumArrayLenItCounts;
3213      return getConstant(ItCst);   // Found terminating iteration!
3214    }
3215  }
3216  return CouldNotCompute;
3217}
3218
3219
3220/// CanConstantFold - Return true if we can constant fold an instruction of the
3221/// specified type, assuming that all operands were constants.
3222static bool CanConstantFold(const Instruction *I) {
3223  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3224      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3225    return true;
3226
3227  if (const CallInst *CI = dyn_cast<CallInst>(I))
3228    if (const Function *F = CI->getCalledFunction())
3229      return canConstantFoldCallTo(F);
3230  return false;
3231}
3232
3233/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3234/// in the loop that V is derived from.  We allow arbitrary operations along the
3235/// way, but the operands of an operation must either be constants or a value
3236/// derived from a constant PHI.  If this expression does not fit with these
3237/// constraints, return null.
3238static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3239  // If this is not an instruction, or if this is an instruction outside of the
3240  // loop, it can't be derived from a loop PHI.
3241  Instruction *I = dyn_cast<Instruction>(V);
3242  if (I == 0 || !L->contains(I->getParent())) return 0;
3243
3244  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3245    if (L->getHeader() == I->getParent())
3246      return PN;
3247    else
3248      // We don't currently keep track of the control flow needed to evaluate
3249      // PHIs, so we cannot handle PHIs inside of loops.
3250      return 0;
3251  }
3252
3253  // If we won't be able to constant fold this expression even if the operands
3254  // are constants, return early.
3255  if (!CanConstantFold(I)) return 0;
3256
3257  // Otherwise, we can evaluate this instruction if all of its operands are
3258  // constant or derived from a PHI node themselves.
3259  PHINode *PHI = 0;
3260  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3261    if (!(isa<Constant>(I->getOperand(Op)) ||
3262          isa<GlobalValue>(I->getOperand(Op)))) {
3263      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3264      if (P == 0) return 0;  // Not evolving from PHI
3265      if (PHI == 0)
3266        PHI = P;
3267      else if (PHI != P)
3268        return 0;  // Evolving from multiple different PHIs.
3269    }
3270
3271  // This is a expression evolving from a constant PHI!
3272  return PHI;
3273}
3274
3275/// EvaluateExpression - Given an expression that passes the
3276/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3277/// in the loop has the value PHIVal.  If we can't fold this expression for some
3278/// reason, return null.
3279static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3280  if (isa<PHINode>(V)) return PHIVal;
3281  if (Constant *C = dyn_cast<Constant>(V)) return C;
3282  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3283  Instruction *I = cast<Instruction>(V);
3284
3285  std::vector<Constant*> Operands;
3286  Operands.resize(I->getNumOperands());
3287
3288  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3289    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3290    if (Operands[i] == 0) return 0;
3291  }
3292
3293  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3294    return ConstantFoldCompareInstOperands(CI->getPredicate(),
3295                                           &Operands[0], Operands.size());
3296  else
3297    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3298                                    &Operands[0], Operands.size());
3299}
3300
3301/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3302/// in the header of its containing loop, we know the loop executes a
3303/// constant number of times, and the PHI node is just a recurrence
3304/// involving constants, fold it.
3305Constant *ScalarEvolution::
3306getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
3307  std::map<PHINode*, Constant*>::iterator I =
3308    ConstantEvolutionLoopExitValue.find(PN);
3309  if (I != ConstantEvolutionLoopExitValue.end())
3310    return I->second;
3311
3312  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3313    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3314
3315  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3316
3317  // Since the loop is canonicalized, the PHI node must have two entries.  One
3318  // entry must be a constant (coming in from outside of the loop), and the
3319  // second must be derived from the same PHI.
3320  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3321  Constant *StartCST =
3322    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3323  if (StartCST == 0)
3324    return RetVal = 0;  // Must be a constant.
3325
3326  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3327  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3328  if (PN2 != PN)
3329    return RetVal = 0;  // Not derived from same PHI.
3330
3331  // Execute the loop symbolically to determine the exit value.
3332  if (BEs.getActiveBits() >= 32)
3333    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3334
3335  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3336  unsigned IterationNum = 0;
3337  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3338    if (IterationNum == NumIterations)
3339      return RetVal = PHIVal;  // Got exit value!
3340
3341    // Compute the value of the PHI node for the next iteration.
3342    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3343    if (NextPHI == PHIVal)
3344      return RetVal = NextPHI;  // Stopped evolving!
3345    if (NextPHI == 0)
3346      return 0;        // Couldn't evaluate!
3347    PHIVal = NextPHI;
3348  }
3349}
3350
3351/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3352/// constant number of times (the condition evolves only from constants),
3353/// try to evaluate a few iterations of the loop until we get the exit
3354/// condition gets a value of ExitWhen (true or false).  If we cannot
3355/// evaluate the trip count of the loop, return CouldNotCompute.
3356const SCEV* ScalarEvolution::
3357ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
3358  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3359  if (PN == 0) return CouldNotCompute;
3360
3361  // Since the loop is canonicalized, the PHI node must have two entries.  One
3362  // entry must be a constant (coming in from outside of the loop), and the
3363  // second must be derived from the same PHI.
3364  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3365  Constant *StartCST =
3366    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3367  if (StartCST == 0) return CouldNotCompute;  // Must be a constant.
3368
3369  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3370  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3371  if (PN2 != PN) return CouldNotCompute;  // Not derived from same PHI.
3372
3373  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3374  // the loop symbolically to determine when the condition gets a value of
3375  // "ExitWhen".
3376  unsigned IterationNum = 0;
3377  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3378  for (Constant *PHIVal = StartCST;
3379       IterationNum != MaxIterations; ++IterationNum) {
3380    ConstantInt *CondVal =
3381      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3382
3383    // Couldn't symbolically evaluate.
3384    if (!CondVal) return CouldNotCompute;
3385
3386    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3387      ConstantEvolutionLoopExitValue[PN] = PHIVal;
3388      ++NumBruteForceTripCountsComputed;
3389      return getConstant(Type::Int32Ty, IterationNum);
3390    }
3391
3392    // Compute the value of the PHI node for the next iteration.
3393    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3394    if (NextPHI == 0 || NextPHI == PHIVal)
3395      return CouldNotCompute;   // Couldn't evaluate or not making progress...
3396    PHIVal = NextPHI;
3397  }
3398
3399  // Too many iterations were needed to evaluate.
3400  return CouldNotCompute;
3401}
3402
3403/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3404/// at the specified scope in the program.  The L value specifies a loop
3405/// nest to evaluate the expression at, where null is the top-level or a
3406/// specified loop is immediately inside of the loop.
3407///
3408/// This method can be used to compute the exit value for a variable defined
3409/// in a loop by querying what the value will hold in the parent loop.
3410///
3411/// In the case that a relevant loop exit value cannot be computed, the
3412/// original value V is returned.
3413const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3414  // FIXME: this should be turned into a virtual method on SCEV!
3415
3416  if (isa<SCEVConstant>(V)) return V;
3417
3418  // If this instruction is evolved from a constant-evolving PHI, compute the
3419  // exit value from the loop without using SCEVs.
3420  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3421    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3422      const Loop *LI = (*this->LI)[I->getParent()];
3423      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3424        if (PHINode *PN = dyn_cast<PHINode>(I))
3425          if (PN->getParent() == LI->getHeader()) {
3426            // Okay, there is no closed form solution for the PHI node.  Check
3427            // to see if the loop that contains it has a known backedge-taken
3428            // count.  If so, we may be able to force computation of the exit
3429            // value.
3430            const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI);
3431            if (const SCEVConstant *BTCC =
3432                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3433              // Okay, we know how many times the containing loop executes.  If
3434              // this is a constant evolving PHI node, get the final value at
3435              // the specified iteration number.
3436              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3437                                                   BTCC->getValue()->getValue(),
3438                                                               LI);
3439              if (RV) return getUnknown(RV);
3440            }
3441          }
3442
3443      // Okay, this is an expression that we cannot symbolically evaluate
3444      // into a SCEV.  Check to see if it's possible to symbolically evaluate
3445      // the arguments into constants, and if so, try to constant propagate the
3446      // result.  This is particularly useful for computing loop exit values.
3447      if (CanConstantFold(I)) {
3448        // Check to see if we've folded this instruction at this loop before.
3449        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3450        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3451          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3452        if (!Pair.second)
3453          return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
3454
3455        std::vector<Constant*> Operands;
3456        Operands.reserve(I->getNumOperands());
3457        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3458          Value *Op = I->getOperand(i);
3459          if (Constant *C = dyn_cast<Constant>(Op)) {
3460            Operands.push_back(C);
3461          } else {
3462            // If any of the operands is non-constant and if they are
3463            // non-integer and non-pointer, don't even try to analyze them
3464            // with scev techniques.
3465            if (!isSCEVable(Op->getType()))
3466              return V;
3467
3468            const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L);
3469            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3470              Constant *C = SC->getValue();
3471              if (C->getType() != Op->getType())
3472                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3473                                                                  Op->getType(),
3474                                                                  false),
3475                                          C, Op->getType());
3476              Operands.push_back(C);
3477            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3478              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3479                if (C->getType() != Op->getType())
3480                  C =
3481                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3482                                                                  Op->getType(),
3483                                                                  false),
3484                                          C, Op->getType());
3485                Operands.push_back(C);
3486              } else
3487                return V;
3488            } else {
3489              return V;
3490            }
3491          }
3492        }
3493
3494        Constant *C;
3495        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3496          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3497                                              &Operands[0], Operands.size());
3498        else
3499          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3500                                       &Operands[0], Operands.size());
3501        Pair.first->second = C;
3502        return getUnknown(C);
3503      }
3504    }
3505
3506    // This is some other type of SCEVUnknown, just return it.
3507    return V;
3508  }
3509
3510  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3511    // Avoid performing the look-up in the common case where the specified
3512    // expression has no loop-variant portions.
3513    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3514      const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3515      if (OpAtScope != Comm->getOperand(i)) {
3516        // Okay, at least one of these operands is loop variant but might be
3517        // foldable.  Build a new instance of the folded commutative expression.
3518        SmallVector<const SCEV*, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i);
3519        NewOps.push_back(OpAtScope);
3520
3521        for (++i; i != e; ++i) {
3522          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3523          NewOps.push_back(OpAtScope);
3524        }
3525        if (isa<SCEVAddExpr>(Comm))
3526          return getAddExpr(NewOps);
3527        if (isa<SCEVMulExpr>(Comm))
3528          return getMulExpr(NewOps);
3529        if (isa<SCEVSMaxExpr>(Comm))
3530          return getSMaxExpr(NewOps);
3531        if (isa<SCEVUMaxExpr>(Comm))
3532          return getUMaxExpr(NewOps);
3533        assert(0 && "Unknown commutative SCEV type!");
3534      }
3535    }
3536    // If we got here, all operands are loop invariant.
3537    return Comm;
3538  }
3539
3540  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3541    const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L);
3542    const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L);
3543    if (LHS == Div->getLHS() && RHS == Div->getRHS())
3544      return Div;   // must be loop invariant
3545    return getUDivExpr(LHS, RHS);
3546  }
3547
3548  // If this is a loop recurrence for a loop that does not contain L, then we
3549  // are dealing with the final value computed by the loop.
3550  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3551    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3552      // To evaluate this recurrence, we need to know how many times the AddRec
3553      // loop iterates.  Compute this now.
3554      const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3555      if (BackedgeTakenCount == CouldNotCompute) return AddRec;
3556
3557      // Then, evaluate the AddRec.
3558      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3559    }
3560    return AddRec;
3561  }
3562
3563  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3564    const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3565    if (Op == Cast->getOperand())
3566      return Cast;  // must be loop invariant
3567    return getZeroExtendExpr(Op, Cast->getType());
3568  }
3569
3570  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3571    const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3572    if (Op == Cast->getOperand())
3573      return Cast;  // must be loop invariant
3574    return getSignExtendExpr(Op, Cast->getType());
3575  }
3576
3577  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3578    const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3579    if (Op == Cast->getOperand())
3580      return Cast;  // must be loop invariant
3581    return getTruncateExpr(Op, Cast->getType());
3582  }
3583
3584  assert(0 && "Unknown SCEV type!");
3585  return 0;
3586}
3587
3588/// getSCEVAtScope - This is a convenience function which does
3589/// getSCEVAtScope(getSCEV(V), L).
3590const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3591  return getSCEVAtScope(getSCEV(V), L);
3592}
3593
3594/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3595/// following equation:
3596///
3597///     A * X = B (mod N)
3598///
3599/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3600/// A and B isn't important.
3601///
3602/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3603static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3604                                               ScalarEvolution &SE) {
3605  uint32_t BW = A.getBitWidth();
3606  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3607  assert(A != 0 && "A must be non-zero.");
3608
3609  // 1. D = gcd(A, N)
3610  //
3611  // The gcd of A and N may have only one prime factor: 2. The number of
3612  // trailing zeros in A is its multiplicity
3613  uint32_t Mult2 = A.countTrailingZeros();
3614  // D = 2^Mult2
3615
3616  // 2. Check if B is divisible by D.
3617  //
3618  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3619  // is not less than multiplicity of this prime factor for D.
3620  if (B.countTrailingZeros() < Mult2)
3621    return SE.getCouldNotCompute();
3622
3623  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3624  // modulo (N / D).
3625  //
3626  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3627  // bit width during computations.
3628  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3629  APInt Mod(BW + 1, 0);
3630  Mod.set(BW - Mult2);  // Mod = N / D
3631  APInt I = AD.multiplicativeInverse(Mod);
3632
3633  // 4. Compute the minimum unsigned root of the equation:
3634  // I * (B / D) mod (N / D)
3635  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3636
3637  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3638  // bits.
3639  return SE.getConstant(Result.trunc(BW));
3640}
3641
3642/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3643/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3644/// might be the same) or two SCEVCouldNotCompute objects.
3645///
3646static std::pair<const SCEV*,const SCEV*>
3647SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3648  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3649  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3650  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3651  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3652
3653  // We currently can only solve this if the coefficients are constants.
3654  if (!LC || !MC || !NC) {
3655    const SCEV *CNC = SE.getCouldNotCompute();
3656    return std::make_pair(CNC, CNC);
3657  }
3658
3659  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3660  const APInt &L = LC->getValue()->getValue();
3661  const APInt &M = MC->getValue()->getValue();
3662  const APInt &N = NC->getValue()->getValue();
3663  APInt Two(BitWidth, 2);
3664  APInt Four(BitWidth, 4);
3665
3666  {
3667    using namespace APIntOps;
3668    const APInt& C = L;
3669    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3670    // The B coefficient is M-N/2
3671    APInt B(M);
3672    B -= sdiv(N,Two);
3673
3674    // The A coefficient is N/2
3675    APInt A(N.sdiv(Two));
3676
3677    // Compute the B^2-4ac term.
3678    APInt SqrtTerm(B);
3679    SqrtTerm *= B;
3680    SqrtTerm -= Four * (A * C);
3681
3682    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3683    // integer value or else APInt::sqrt() will assert.
3684    APInt SqrtVal(SqrtTerm.sqrt());
3685
3686    // Compute the two solutions for the quadratic formula.
3687    // The divisions must be performed as signed divisions.
3688    APInt NegB(-B);
3689    APInt TwoA( A << 1 );
3690    if (TwoA.isMinValue()) {
3691      const SCEV *CNC = SE.getCouldNotCompute();
3692      return std::make_pair(CNC, CNC);
3693    }
3694
3695    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3696    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3697
3698    return std::make_pair(SE.getConstant(Solution1),
3699                          SE.getConstant(Solution2));
3700    } // end APIntOps namespace
3701}
3702
3703/// HowFarToZero - Return the number of times a backedge comparing the specified
3704/// value to zero will execute.  If not computable, return CouldNotCompute.
3705const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3706  // If the value is a constant
3707  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3708    // If the value is already zero, the branch will execute zero times.
3709    if (C->getValue()->isZero()) return C;
3710    return CouldNotCompute;  // Otherwise it will loop infinitely.
3711  }
3712
3713  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3714  if (!AddRec || AddRec->getLoop() != L)
3715    return CouldNotCompute;
3716
3717  if (AddRec->isAffine()) {
3718    // If this is an affine expression, the execution count of this branch is
3719    // the minimum unsigned root of the following equation:
3720    //
3721    //     Start + Step*N = 0 (mod 2^BW)
3722    //
3723    // equivalent to:
3724    //
3725    //             Step*N = -Start (mod 2^BW)
3726    //
3727    // where BW is the common bit width of Start and Step.
3728
3729    // Get the initial value for the loop.
3730    const SCEV* Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3731    const SCEV* Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3732
3733    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3734      // For now we handle only constant steps.
3735
3736      // First, handle unitary steps.
3737      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3738        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3739      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3740        return Start;                           //    N = Start (as unsigned)
3741
3742      // Then, try to solve the above equation provided that Start is constant.
3743      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3744        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3745                                            -StartC->getValue()->getValue(),
3746                                            *this);
3747    }
3748  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3749    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3750    // the quadratic equation to solve it.
3751    std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec,
3752                                                                    *this);
3753    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3754    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3755    if (R1) {
3756#if 0
3757      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3758             << "  sol#2: " << *R2 << "\n";
3759#endif
3760      // Pick the smallest positive root value.
3761      if (ConstantInt *CB =
3762          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3763                                   R1->getValue(), R2->getValue()))) {
3764        if (CB->getZExtValue() == false)
3765          std::swap(R1, R2);   // R1 is the minimum root now.
3766
3767        // We can only use this value if the chrec ends up with an exact zero
3768        // value at this index.  When solving for "X*X != 5", for example, we
3769        // should not accept a root of 2.
3770        const SCEV* Val = AddRec->evaluateAtIteration(R1, *this);
3771        if (Val->isZero())
3772          return R1;  // We found a quadratic root!
3773      }
3774    }
3775  }
3776
3777  return CouldNotCompute;
3778}
3779
3780/// HowFarToNonZero - Return the number of times a backedge checking the
3781/// specified value for nonzero will execute.  If not computable, return
3782/// CouldNotCompute
3783const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3784  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3785  // handle them yet except for the trivial case.  This could be expanded in the
3786  // future as needed.
3787
3788  // If the value is a constant, check to see if it is known to be non-zero
3789  // already.  If so, the backedge will execute zero times.
3790  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3791    if (!C->getValue()->isNullValue())
3792      return getIntegerSCEV(0, C->getType());
3793    return CouldNotCompute;  // Otherwise it will loop infinitely.
3794  }
3795
3796  // We could implement others, but I really doubt anyone writes loops like
3797  // this, and if they did, they would already be constant folded.
3798  return CouldNotCompute;
3799}
3800
3801/// getLoopPredecessor - If the given loop's header has exactly one unique
3802/// predecessor outside the loop, return it. Otherwise return null.
3803///
3804BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3805  BasicBlock *Header = L->getHeader();
3806  BasicBlock *Pred = 0;
3807  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3808       PI != E; ++PI)
3809    if (!L->contains(*PI)) {
3810      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3811      Pred = *PI;
3812    }
3813  return Pred;
3814}
3815
3816/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3817/// (which may not be an immediate predecessor) which has exactly one
3818/// successor from which BB is reachable, or null if no such block is
3819/// found.
3820///
3821BasicBlock *
3822ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3823  // If the block has a unique predecessor, then there is no path from the
3824  // predecessor to the block that does not go through the direct edge
3825  // from the predecessor to the block.
3826  if (BasicBlock *Pred = BB->getSinglePredecessor())
3827    return Pred;
3828
3829  // A loop's header is defined to be a block that dominates the loop.
3830  // If the header has a unique predecessor outside the loop, it must be
3831  // a block that has exactly one successor that can reach the loop.
3832  if (Loop *L = LI->getLoopFor(BB))
3833    return getLoopPredecessor(L);
3834
3835  return 0;
3836}
3837
3838/// HasSameValue - SCEV structural equivalence is usually sufficient for
3839/// testing whether two expressions are equal, however for the purposes of
3840/// looking for a condition guarding a loop, it can be useful to be a little
3841/// more general, since a front-end may have replicated the controlling
3842/// expression.
3843///
3844static bool HasSameValue(const SCEV* A, const SCEV* B) {
3845  // Quick check to see if they are the same SCEV.
3846  if (A == B) return true;
3847
3848  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
3849  // two different instructions with the same value. Check for this case.
3850  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
3851    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
3852      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
3853        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
3854          if (AI->isIdenticalTo(BI))
3855            return true;
3856
3857  // Otherwise assume they may have a different value.
3858  return false;
3859}
3860
3861/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3862/// a conditional between LHS and RHS.  This is used to help avoid max
3863/// expressions in loop trip counts.
3864bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3865                                          ICmpInst::Predicate Pred,
3866                                          const SCEV *LHS, const SCEV *RHS) {
3867  // Interpret a null as meaning no loop, where there is obviously no guard
3868  // (interprocedural conditions notwithstanding).
3869  if (!L) return false;
3870
3871  BasicBlock *Predecessor = getLoopPredecessor(L);
3872  BasicBlock *PredecessorDest = L->getHeader();
3873
3874  // Starting at the loop predecessor, climb up the predecessor chain, as long
3875  // as there are predecessors that can be found that have unique successors
3876  // leading to the original header.
3877  for (; Predecessor;
3878       PredecessorDest = Predecessor,
3879       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
3880
3881    BranchInst *LoopEntryPredicate =
3882      dyn_cast<BranchInst>(Predecessor->getTerminator());
3883    if (!LoopEntryPredicate ||
3884        LoopEntryPredicate->isUnconditional())
3885      continue;
3886
3887    if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
3888                        LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
3889      return true;
3890  }
3891
3892  return false;
3893}
3894
3895/// isNecessaryCond - Test whether the given CondValue value is a condition
3896/// which is at least as strict as the one described by Pred, LHS, and RHS.
3897bool ScalarEvolution::isNecessaryCond(Value *CondValue,
3898                                      ICmpInst::Predicate Pred,
3899                                      const SCEV *LHS, const SCEV *RHS,
3900                                      bool Inverse) {
3901  // Recursivly handle And and Or conditions.
3902  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
3903    if (BO->getOpcode() == Instruction::And) {
3904      if (!Inverse)
3905        return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
3906               isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
3907    } else if (BO->getOpcode() == Instruction::Or) {
3908      if (Inverse)
3909        return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
3910               isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
3911    }
3912  }
3913
3914  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
3915  if (!ICI) return false;
3916
3917  // Now that we found a conditional branch that dominates the loop, check to
3918  // see if it is the comparison we are looking for.
3919  Value *PreCondLHS = ICI->getOperand(0);
3920  Value *PreCondRHS = ICI->getOperand(1);
3921  ICmpInst::Predicate Cond;
3922  if (Inverse)
3923    Cond = ICI->getInversePredicate();
3924  else
3925    Cond = ICI->getPredicate();
3926
3927  if (Cond == Pred)
3928    ; // An exact match.
3929  else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3930    ; // The actual condition is beyond sufficient.
3931  else
3932    // Check a few special cases.
3933    switch (Cond) {
3934    case ICmpInst::ICMP_UGT:
3935      if (Pred == ICmpInst::ICMP_ULT) {
3936        std::swap(PreCondLHS, PreCondRHS);
3937        Cond = ICmpInst::ICMP_ULT;
3938        break;
3939      }
3940      return false;
3941    case ICmpInst::ICMP_SGT:
3942      if (Pred == ICmpInst::ICMP_SLT) {
3943        std::swap(PreCondLHS, PreCondRHS);
3944        Cond = ICmpInst::ICMP_SLT;
3945        break;
3946      }
3947      return false;
3948    case ICmpInst::ICMP_NE:
3949      // Expressions like (x >u 0) are often canonicalized to (x != 0),
3950      // so check for this case by checking if the NE is comparing against
3951      // a minimum or maximum constant.
3952      if (!ICmpInst::isTrueWhenEqual(Pred))
3953        if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3954          const APInt &A = CI->getValue();
3955          switch (Pred) {
3956          case ICmpInst::ICMP_SLT:
3957            if (A.isMaxSignedValue()) break;
3958            return false;
3959          case ICmpInst::ICMP_SGT:
3960            if (A.isMinSignedValue()) break;
3961            return false;
3962          case ICmpInst::ICMP_ULT:
3963            if (A.isMaxValue()) break;
3964            return false;
3965          case ICmpInst::ICMP_UGT:
3966            if (A.isMinValue()) break;
3967            return false;
3968          default:
3969            return false;
3970          }
3971          Cond = ICmpInst::ICMP_NE;
3972          // NE is symmetric but the original comparison may not be. Swap
3973          // the operands if necessary so that they match below.
3974          if (isa<SCEVConstant>(LHS))
3975            std::swap(PreCondLHS, PreCondRHS);
3976          break;
3977        }
3978      return false;
3979    default:
3980      // We weren't able to reconcile the condition.
3981      return false;
3982    }
3983
3984  if (!PreCondLHS->getType()->isInteger()) return false;
3985
3986  const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
3987  const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
3988  return (HasSameValue(LHS, PreCondLHSSCEV) &&
3989          HasSameValue(RHS, PreCondRHSSCEV)) ||
3990         (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
3991          HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
3992}
3993
3994/// getBECount - Subtract the end and start values and divide by the step,
3995/// rounding up, to get the number of times the backedge is executed. Return
3996/// CouldNotCompute if an intermediate computation overflows.
3997const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
3998                                       const SCEV* End,
3999                                       const SCEV* Step) {
4000  const Type *Ty = Start->getType();
4001  const SCEV* NegOne = getIntegerSCEV(-1, Ty);
4002  const SCEV* Diff = getMinusSCEV(End, Start);
4003  const SCEV* RoundUp = getAddExpr(Step, NegOne);
4004
4005  // Add an adjustment to the difference between End and Start so that
4006  // the division will effectively round up.
4007  const SCEV* Add = getAddExpr(Diff, RoundUp);
4008
4009  // Check Add for unsigned overflow.
4010  // TODO: More sophisticated things could be done here.
4011  const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
4012  const SCEV* OperandExtendedAdd =
4013    getAddExpr(getZeroExtendExpr(Diff, WideTy),
4014               getZeroExtendExpr(RoundUp, WideTy));
4015  if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4016    return CouldNotCompute;
4017
4018  return getUDivExpr(Add, Step);
4019}
4020
4021/// HowManyLessThans - Return the number of times a backedge containing the
4022/// specified less-than comparison will execute.  If not computable, return
4023/// CouldNotCompute.
4024ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
4025HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4026                 const Loop *L, bool isSigned) {
4027  // Only handle:  "ADDREC < LoopInvariant".
4028  if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
4029
4030  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4031  if (!AddRec || AddRec->getLoop() != L)
4032    return CouldNotCompute;
4033
4034  if (AddRec->isAffine()) {
4035    // FORNOW: We only support unit strides.
4036    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4037    const SCEV* Step = AddRec->getStepRecurrence(*this);
4038
4039    // TODO: handle non-constant strides.
4040    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4041    if (!CStep || CStep->isZero())
4042      return CouldNotCompute;
4043    if (CStep->isOne()) {
4044      // With unit stride, the iteration never steps past the limit value.
4045    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4046      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4047        // Test whether a positive iteration iteration can step past the limit
4048        // value and past the maximum value for its type in a single step.
4049        if (isSigned) {
4050          APInt Max = APInt::getSignedMaxValue(BitWidth);
4051          if ((Max - CStep->getValue()->getValue())
4052                .slt(CLimit->getValue()->getValue()))
4053            return CouldNotCompute;
4054        } else {
4055          APInt Max = APInt::getMaxValue(BitWidth);
4056          if ((Max - CStep->getValue()->getValue())
4057                .ult(CLimit->getValue()->getValue()))
4058            return CouldNotCompute;
4059        }
4060      } else
4061        // TODO: handle non-constant limit values below.
4062        return CouldNotCompute;
4063    } else
4064      // TODO: handle negative strides below.
4065      return CouldNotCompute;
4066
4067    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4068    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4069    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4070    // treat m-n as signed nor unsigned due to overflow possibility.
4071
4072    // First, we get the value of the LHS in the first iteration: n
4073    const SCEV* Start = AddRec->getOperand(0);
4074
4075    // Determine the minimum constant start value.
4076    const SCEV* MinStart = isa<SCEVConstant>(Start) ? Start :
4077      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
4078                             APInt::getMinValue(BitWidth));
4079
4080    // If we know that the condition is true in order to enter the loop,
4081    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4082    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4083    // the division must round up.
4084    const SCEV* End = RHS;
4085    if (!isLoopGuardedByCond(L,
4086                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
4087                             getMinusSCEV(Start, Step), RHS))
4088      End = isSigned ? getSMaxExpr(RHS, Start)
4089                     : getUMaxExpr(RHS, Start);
4090
4091    // Determine the maximum constant end value.
4092    const SCEV* MaxEnd =
4093      isa<SCEVConstant>(End) ? End :
4094      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
4095                               .ashr(GetMinSignBits(End) - 1) :
4096                             APInt::getMaxValue(BitWidth)
4097                               .lshr(GetMinLeadingZeros(End)));
4098
4099    // Finally, we subtract these two values and divide, rounding up, to get
4100    // the number of times the backedge is executed.
4101    const SCEV* BECount = getBECount(Start, End, Step);
4102
4103    // The maximum backedge count is similar, except using the minimum start
4104    // value and the maximum end value.
4105    const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);;
4106
4107    return BackedgeTakenInfo(BECount, MaxBECount);
4108  }
4109
4110  return CouldNotCompute;
4111}
4112
4113/// getNumIterationsInRange - Return the number of iterations of this loop that
4114/// produce values in the specified constant range.  Another way of looking at
4115/// this is that it returns the first iteration number where the value is not in
4116/// the condition, thus computing the exit count. If the iteration count can't
4117/// be computed, an instance of SCEVCouldNotCompute is returned.
4118const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4119                                                   ScalarEvolution &SE) const {
4120  if (Range.isFullSet())  // Infinite loop.
4121    return SE.getCouldNotCompute();
4122
4123  // If the start is a non-zero constant, shift the range to simplify things.
4124  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4125    if (!SC->getValue()->isZero()) {
4126      SmallVector<const SCEV*, 4> Operands(op_begin(), op_end());
4127      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4128      const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop());
4129      if (const SCEVAddRecExpr *ShiftedAddRec =
4130            dyn_cast<SCEVAddRecExpr>(Shifted))
4131        return ShiftedAddRec->getNumIterationsInRange(
4132                           Range.subtract(SC->getValue()->getValue()), SE);
4133      // This is strange and shouldn't happen.
4134      return SE.getCouldNotCompute();
4135    }
4136
4137  // The only time we can solve this is when we have all constant indices.
4138  // Otherwise, we cannot determine the overflow conditions.
4139  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4140    if (!isa<SCEVConstant>(getOperand(i)))
4141      return SE.getCouldNotCompute();
4142
4143
4144  // Okay at this point we know that all elements of the chrec are constants and
4145  // that the start element is zero.
4146
4147  // First check to see if the range contains zero.  If not, the first
4148  // iteration exits.
4149  unsigned BitWidth = SE.getTypeSizeInBits(getType());
4150  if (!Range.contains(APInt(BitWidth, 0)))
4151    return SE.getIntegerSCEV(0, getType());
4152
4153  if (isAffine()) {
4154    // If this is an affine expression then we have this situation:
4155    //   Solve {0,+,A} in Range  ===  Ax in Range
4156
4157    // We know that zero is in the range.  If A is positive then we know that
4158    // the upper value of the range must be the first possible exit value.
4159    // If A is negative then the lower of the range is the last possible loop
4160    // value.  Also note that we already checked for a full range.
4161    APInt One(BitWidth,1);
4162    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4163    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4164
4165    // The exit value should be (End+A)/A.
4166    APInt ExitVal = (End + A).udiv(A);
4167    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
4168
4169    // Evaluate at the exit value.  If we really did fall out of the valid
4170    // range, then we computed our trip count, otherwise wrap around or other
4171    // things must have happened.
4172    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4173    if (Range.contains(Val->getValue()))
4174      return SE.getCouldNotCompute();  // Something strange happened
4175
4176    // Ensure that the previous value is in the range.  This is a sanity check.
4177    assert(Range.contains(
4178           EvaluateConstantChrecAtConstant(this,
4179           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
4180           "Linear scev computation is off in a bad way!");
4181    return SE.getConstant(ExitValue);
4182  } else if (isQuadratic()) {
4183    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4184    // quadratic equation to solve it.  To do this, we must frame our problem in
4185    // terms of figuring out when zero is crossed, instead of when
4186    // Range.getUpper() is crossed.
4187    SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end());
4188    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4189    const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4190
4191    // Next, solve the constructed addrec
4192    std::pair<const SCEV*,const SCEV*> Roots =
4193      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4194    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4195    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4196    if (R1) {
4197      // Pick the smallest positive root value.
4198      if (ConstantInt *CB =
4199          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4200                                   R1->getValue(), R2->getValue()))) {
4201        if (CB->getZExtValue() == false)
4202          std::swap(R1, R2);   // R1 is the minimum root now.
4203
4204        // Make sure the root is not off by one.  The returned iteration should
4205        // not be in the range, but the previous one should be.  When solving
4206        // for "X*X < 5", for example, we should not return a root of 2.
4207        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4208                                                             R1->getValue(),
4209                                                             SE);
4210        if (Range.contains(R1Val->getValue())) {
4211          // The next iteration must be out of the range...
4212          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
4213
4214          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4215          if (!Range.contains(R1Val->getValue()))
4216            return SE.getConstant(NextVal);
4217          return SE.getCouldNotCompute();  // Something strange happened
4218        }
4219
4220        // If R1 was not in the range, then it is a good return value.  Make
4221        // sure that R1-1 WAS in the range though, just in case.
4222        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
4223        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4224        if (Range.contains(R1Val->getValue()))
4225          return R1;
4226        return SE.getCouldNotCompute();  // Something strange happened
4227      }
4228    }
4229  }
4230
4231  return SE.getCouldNotCompute();
4232}
4233
4234
4235
4236//===----------------------------------------------------------------------===//
4237//                   SCEVCallbackVH Class Implementation
4238//===----------------------------------------------------------------------===//
4239
4240void ScalarEvolution::SCEVCallbackVH::deleted() {
4241  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4242  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4243    SE->ConstantEvolutionLoopExitValue.erase(PN);
4244  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4245    SE->ValuesAtScopes.erase(I);
4246  SE->Scalars.erase(getValPtr());
4247  // this now dangles!
4248}
4249
4250void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4251  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4252
4253  // Forget all the expressions associated with users of the old value,
4254  // so that future queries will recompute the expressions using the new
4255  // value.
4256  SmallVector<User *, 16> Worklist;
4257  Value *Old = getValPtr();
4258  bool DeleteOld = false;
4259  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4260       UI != UE; ++UI)
4261    Worklist.push_back(*UI);
4262  while (!Worklist.empty()) {
4263    User *U = Worklist.pop_back_val();
4264    // Deleting the Old value will cause this to dangle. Postpone
4265    // that until everything else is done.
4266    if (U == Old) {
4267      DeleteOld = true;
4268      continue;
4269    }
4270    if (PHINode *PN = dyn_cast<PHINode>(U))
4271      SE->ConstantEvolutionLoopExitValue.erase(PN);
4272    if (Instruction *I = dyn_cast<Instruction>(U))
4273      SE->ValuesAtScopes.erase(I);
4274    if (SE->Scalars.erase(U))
4275      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4276           UI != UE; ++UI)
4277        Worklist.push_back(*UI);
4278  }
4279  if (DeleteOld) {
4280    if (PHINode *PN = dyn_cast<PHINode>(Old))
4281      SE->ConstantEvolutionLoopExitValue.erase(PN);
4282    if (Instruction *I = dyn_cast<Instruction>(Old))
4283      SE->ValuesAtScopes.erase(I);
4284    SE->Scalars.erase(Old);
4285    // this now dangles!
4286  }
4287  // this may dangle!
4288}
4289
4290ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4291  : CallbackVH(V), SE(se) {}
4292
4293//===----------------------------------------------------------------------===//
4294//                   ScalarEvolution Class Implementation
4295//===----------------------------------------------------------------------===//
4296
4297ScalarEvolution::ScalarEvolution()
4298  : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) {
4299}
4300
4301bool ScalarEvolution::runOnFunction(Function &F) {
4302  this->F = &F;
4303  LI = &getAnalysis<LoopInfo>();
4304  TD = getAnalysisIfAvailable<TargetData>();
4305  return false;
4306}
4307
4308void ScalarEvolution::releaseMemory() {
4309  Scalars.clear();
4310  BackedgeTakenCounts.clear();
4311  ConstantEvolutionLoopExitValue.clear();
4312  ValuesAtScopes.clear();
4313
4314  for (std::map<ConstantInt*, SCEVConstant*>::iterator
4315       I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I)
4316    delete I->second;
4317  for (std::map<std::pair<const SCEV*, const Type*>,
4318       SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(),
4319       E = SCEVTruncates.end(); I != E; ++I)
4320    delete I->second;
4321  for (std::map<std::pair<const SCEV*, const Type*>,
4322       SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(),
4323       E = SCEVZeroExtends.end(); I != E; ++I)
4324    delete I->second;
4325  for (std::map<std::pair<unsigned, std::vector<const SCEV*> >,
4326       SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(),
4327       E = SCEVCommExprs.end(); I != E; ++I)
4328    delete I->second;
4329  for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator
4330       I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I)
4331    delete I->second;
4332  for (std::map<std::pair<const SCEV*, const Type*>,
4333       SCEVSignExtendExpr*>::iterator I =  SCEVSignExtends.begin(),
4334       E = SCEVSignExtends.end(); I != E; ++I)
4335    delete I->second;
4336  for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
4337       SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(),
4338       E = SCEVAddRecExprs.end(); I != E; ++I)
4339    delete I->second;
4340  for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(),
4341       E = SCEVUnknowns.end(); I != E; ++I)
4342    delete I->second;
4343
4344  SCEVConstants.clear();
4345  SCEVTruncates.clear();
4346  SCEVZeroExtends.clear();
4347  SCEVCommExprs.clear();
4348  SCEVUDivs.clear();
4349  SCEVSignExtends.clear();
4350  SCEVAddRecExprs.clear();
4351  SCEVUnknowns.clear();
4352}
4353
4354void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4355  AU.setPreservesAll();
4356  AU.addRequiredTransitive<LoopInfo>();
4357}
4358
4359bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4360  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4361}
4362
4363static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4364                          const Loop *L) {
4365  // Print all inner loops first
4366  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4367    PrintLoopInfo(OS, SE, *I);
4368
4369  OS << "Loop " << L->getHeader()->getName() << ": ";
4370
4371  SmallVector<BasicBlock*, 8> ExitBlocks;
4372  L->getExitBlocks(ExitBlocks);
4373  if (ExitBlocks.size() != 1)
4374    OS << "<multiple exits> ";
4375
4376  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4377    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
4378  } else {
4379    OS << "Unpredictable backedge-taken count. ";
4380  }
4381
4382  OS << "\n";
4383  OS << "Loop " << L->getHeader()->getName() << ": ";
4384
4385  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4386    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4387  } else {
4388    OS << "Unpredictable max backedge-taken count. ";
4389  }
4390
4391  OS << "\n";
4392}
4393
4394void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
4395  // ScalarEvolution's implementaiton of the print method is to print
4396  // out SCEV values of all instructions that are interesting. Doing
4397  // this potentially causes it to create new SCEV objects though,
4398  // which technically conflicts with the const qualifier. This isn't
4399  // observable from outside the class though (the hasSCEV function
4400  // notwithstanding), so casting away the const isn't dangerous.
4401  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
4402
4403  OS << "Classifying expressions for: " << F->getName() << "\n";
4404  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
4405    if (isSCEVable(I->getType())) {
4406      OS << *I;
4407      OS << "  -->  ";
4408      const SCEV* SV = SE.getSCEV(&*I);
4409      SV->print(OS);
4410
4411      const Loop *L = LI->getLoopFor((*I).getParent());
4412
4413      const SCEV* AtUse = SE.getSCEVAtScope(SV, L);
4414      if (AtUse != SV) {
4415        OS << "  -->  ";
4416        AtUse->print(OS);
4417      }
4418
4419      if (L) {
4420        OS << "\t\t" "Exits: ";
4421        const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
4422        if (!ExitValue->isLoopInvariant(L)) {
4423          OS << "<<Unknown>>";
4424        } else {
4425          OS << *ExitValue;
4426        }
4427      }
4428
4429      OS << "\n";
4430    }
4431
4432  OS << "Determining loop execution counts for: " << F->getName() << "\n";
4433  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4434    PrintLoopInfo(OS, &SE, *I);
4435}
4436
4437void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4438  raw_os_ostream OS(o);
4439  print(OS, M);
4440}
4441