ScalarEvolution.cpp revision 4db3581a288dcd7e56f0a1ecdc2316cd85e183c7
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(errs());
122  errs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
181  new (S) SCEVConstant(ID, V);
182  UniqueSCEVs.InsertNode(S, IP);
183  return S;
184}
185
186const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
187  return getConstant(ConstantInt::get(getContext(), Val));
188}
189
190const SCEV *
191ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
192  return getConstant(
193    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
194}
195
196const Type *SCEVConstant::getType() const { return V->getType(); }
197
198void SCEVConstant::print(raw_ostream &OS) const {
199  WriteAsOperand(OS, V, false);
200}
201
202SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
203                           unsigned SCEVTy, const SCEV *op, const Type *ty)
204  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
205
206bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
207  return Op->dominates(BB, DT);
208}
209
210bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
211  return Op->properlyDominates(BB, DT);
212}
213
214SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
215                                   const SCEV *op, const Type *ty)
216  : SCEVCastExpr(ID, scTruncate, op, ty) {
217  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
218         (Ty->isInteger() || isa<PointerType>(Ty)) &&
219         "Cannot truncate non-integer value!");
220}
221
222void SCEVTruncateExpr::print(raw_ostream &OS) const {
223  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
224}
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
227                                       const SCEV *op, const Type *ty)
228  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
229  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
230         (Ty->isInteger() || isa<PointerType>(Ty)) &&
231         "Cannot zero extend non-integer value!");
232}
233
234void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
235  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
236}
237
238SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
239                                       const SCEV *op, const Type *ty)
240  : SCEVCastExpr(ID, scSignExtend, op, ty) {
241  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242         (Ty->isInteger() || isa<PointerType>(Ty)) &&
243         "Cannot sign extend non-integer value!");
244}
245
246void SCEVSignExtendExpr::print(raw_ostream &OS) const {
247  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
248}
249
250void SCEVCommutativeExpr::print(raw_ostream &OS) const {
251  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
252  const char *OpStr = getOperationStr();
253  OS << "(" << *Operands[0];
254  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
255    OS << OpStr << *Operands[i];
256  OS << ")";
257}
258
259bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
260  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
261    if (!getOperand(i)->dominates(BB, DT))
262      return false;
263  }
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
269    if (!getOperand(i)->properlyDominates(BB, DT))
270      return false;
271  }
272  return true;
273}
274
275bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
276  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
277}
278
279bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
280  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
281}
282
283void SCEVUDivExpr::print(raw_ostream &OS) const {
284  OS << "(" << *LHS << " /u " << *RHS << ")";
285}
286
287const Type *SCEVUDivExpr::getType() const {
288  // In most cases the types of LHS and RHS will be the same, but in some
289  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
290  // depend on the type for correctness, but handling types carefully can
291  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
292  // a pointer type than the RHS, so use the RHS' type here.
293  return RHS->getType();
294}
295
296bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
297  // Add recurrences are never invariant in the function-body (null loop).
298  if (!QueryLoop)
299    return false;
300
301  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
302  if (QueryLoop->contains(L->getHeader()))
303    return false;
304
305  // This recurrence is variant w.r.t. QueryLoop if any of its operands
306  // are variant.
307  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308    if (!getOperand(i)->isLoopInvariant(QueryLoop))
309      return false;
310
311  // Otherwise it's loop-invariant.
312  return true;
313}
314
315void SCEVAddRecExpr::print(raw_ostream &OS) const {
316  OS << "{" << *Operands[0];
317  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
318    OS << ",+," << *Operands[i];
319  OS << "}<" << L->getHeader()->getName() + ">";
320}
321
322void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
323  // LLVM struct fields don't have names, so just print the field number.
324  OS << "offsetof(" << *STy << ", " << FieldNo << ")";
325}
326
327void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
328  OS << "sizeof(" << *AllocTy << ")";
329}
330
331bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
332  // All non-instruction values are loop invariant.  All instructions are loop
333  // invariant if they are not contained in the specified loop.
334  // Instructions are never considered invariant in the function body
335  // (null loop) because they are defined within the "loop".
336  if (Instruction *I = dyn_cast<Instruction>(V))
337    return L && !L->contains(I->getParent());
338  return true;
339}
340
341bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
342  if (Instruction *I = dyn_cast<Instruction>(getValue()))
343    return DT->dominates(I->getParent(), BB);
344  return true;
345}
346
347bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
348  if (Instruction *I = dyn_cast<Instruction>(getValue()))
349    return DT->properlyDominates(I->getParent(), BB);
350  return true;
351}
352
353const Type *SCEVUnknown::getType() const {
354  return V->getType();
355}
356
357void SCEVUnknown::print(raw_ostream &OS) const {
358  WriteAsOperand(OS, V, false);
359}
360
361//===----------------------------------------------------------------------===//
362//                               SCEV Utilities
363//===----------------------------------------------------------------------===//
364
365static bool CompareTypes(const Type *A, const Type *B) {
366  if (A->getTypeID() != B->getTypeID())
367    return A->getTypeID() < B->getTypeID();
368  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
369    const IntegerType *BI = cast<IntegerType>(B);
370    return AI->getBitWidth() < BI->getBitWidth();
371  }
372  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
373    const PointerType *BI = cast<PointerType>(B);
374    return CompareTypes(AI->getElementType(), BI->getElementType());
375  }
376  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
377    const ArrayType *BI = cast<ArrayType>(B);
378    if (AI->getNumElements() != BI->getNumElements())
379      return AI->getNumElements() < BI->getNumElements();
380    return CompareTypes(AI->getElementType(), BI->getElementType());
381  }
382  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
383    const VectorType *BI = cast<VectorType>(B);
384    if (AI->getNumElements() != BI->getNumElements())
385      return AI->getNumElements() < BI->getNumElements();
386    return CompareTypes(AI->getElementType(), BI->getElementType());
387  }
388  if (const StructType *AI = dyn_cast<StructType>(A)) {
389    const StructType *BI = cast<StructType>(B);
390    if (AI->getNumElements() != BI->getNumElements())
391      return AI->getNumElements() < BI->getNumElements();
392    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
393      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
394          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
395        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
396  }
397  return false;
398}
399
400namespace {
401  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
402  /// than the complexity of the RHS.  This comparator is used to canonicalize
403  /// expressions.
404  class VISIBILITY_HIDDEN SCEVComplexityCompare {
405    LoopInfo *LI;
406  public:
407    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
408
409    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
410      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
411      if (LHS == RHS)
412        return false;
413
414      // Primarily, sort the SCEVs by their getSCEVType().
415      if (LHS->getSCEVType() != RHS->getSCEVType())
416        return LHS->getSCEVType() < RHS->getSCEVType();
417
418      // Aside from the getSCEVType() ordering, the particular ordering
419      // isn't very important except that it's beneficial to be consistent,
420      // so that (a + b) and (b + a) don't end up as different expressions.
421
422      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
423      // not as complete as it could be.
424      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
425        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
426
427        // Order pointer values after integer values. This helps SCEVExpander
428        // form GEPs.
429        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
430          return false;
431        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
432          return true;
433
434        // Compare getValueID values.
435        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
436          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
437
438        // Sort arguments by their position.
439        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
440          const Argument *RA = cast<Argument>(RU->getValue());
441          return LA->getArgNo() < RA->getArgNo();
442        }
443
444        // For instructions, compare their loop depth, and their opcode.
445        // This is pretty loose.
446        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
447          Instruction *RV = cast<Instruction>(RU->getValue());
448
449          // Compare loop depths.
450          if (LI->getLoopDepth(LV->getParent()) !=
451              LI->getLoopDepth(RV->getParent()))
452            return LI->getLoopDepth(LV->getParent()) <
453                   LI->getLoopDepth(RV->getParent());
454
455          // Compare opcodes.
456          if (LV->getOpcode() != RV->getOpcode())
457            return LV->getOpcode() < RV->getOpcode();
458
459          // Compare the number of operands.
460          if (LV->getNumOperands() != RV->getNumOperands())
461            return LV->getNumOperands() < RV->getNumOperands();
462        }
463
464        return false;
465      }
466
467      // Compare constant values.
468      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
469        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
470        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
471          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
472        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
473      }
474
475      // Compare addrec loop depths.
476      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
477        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
478        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
479          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
480      }
481
482      // Lexicographically compare n-ary expressions.
483      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
484        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
485        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
486          if (i >= RC->getNumOperands())
487            return false;
488          if (operator()(LC->getOperand(i), RC->getOperand(i)))
489            return true;
490          if (operator()(RC->getOperand(i), LC->getOperand(i)))
491            return false;
492        }
493        return LC->getNumOperands() < RC->getNumOperands();
494      }
495
496      // Lexicographically compare udiv expressions.
497      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
498        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
499        if (operator()(LC->getLHS(), RC->getLHS()))
500          return true;
501        if (operator()(RC->getLHS(), LC->getLHS()))
502          return false;
503        if (operator()(LC->getRHS(), RC->getRHS()))
504          return true;
505        if (operator()(RC->getRHS(), LC->getRHS()))
506          return false;
507        return false;
508      }
509
510      // Compare cast expressions by operand.
511      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
512        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
513        return operator()(LC->getOperand(), RC->getOperand());
514      }
515
516      // Compare offsetof expressions.
517      if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
518        const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
519        if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
520            CompareTypes(RA->getStructType(), LA->getStructType()))
521          return CompareTypes(LA->getStructType(), RA->getStructType());
522        return LA->getFieldNo() < RA->getFieldNo();
523      }
524
525      // Compare sizeof expressions by the allocation type.
526      if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
527        const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
528        return CompareTypes(LA->getAllocType(), RA->getAllocType());
529      }
530
531      llvm_unreachable("Unknown SCEV kind!");
532      return false;
533    }
534  };
535}
536
537/// GroupByComplexity - Given a list of SCEV objects, order them by their
538/// complexity, and group objects of the same complexity together by value.
539/// When this routine is finished, we know that any duplicates in the vector are
540/// consecutive and that complexity is monotonically increasing.
541///
542/// Note that we go take special precautions to ensure that we get determinstic
543/// results from this routine.  In other words, we don't want the results of
544/// this to depend on where the addresses of various SCEV objects happened to
545/// land in memory.
546///
547static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
548                              LoopInfo *LI) {
549  if (Ops.size() < 2) return;  // Noop
550  if (Ops.size() == 2) {
551    // This is the common case, which also happens to be trivially simple.
552    // Special case it.
553    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
554      std::swap(Ops[0], Ops[1]);
555    return;
556  }
557
558  // Do the rough sort by complexity.
559  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
560
561  // Now that we are sorted by complexity, group elements of the same
562  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
563  // be extremely short in practice.  Note that we take this approach because we
564  // do not want to depend on the addresses of the objects we are grouping.
565  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
566    const SCEV *S = Ops[i];
567    unsigned Complexity = S->getSCEVType();
568
569    // If there are any objects of the same complexity and same value as this
570    // one, group them.
571    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
572      if (Ops[j] == S) { // Found a duplicate.
573        // Move it to immediately after i'th element.
574        std::swap(Ops[i+1], Ops[j]);
575        ++i;   // no need to rescan it.
576        if (i == e-2) return;  // Done!
577      }
578    }
579  }
580}
581
582
583
584//===----------------------------------------------------------------------===//
585//                      Simple SCEV method implementations
586//===----------------------------------------------------------------------===//
587
588/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
589/// Assume, K > 0.
590static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
591                                       ScalarEvolution &SE,
592                                       const Type* ResultTy) {
593  // Handle the simplest case efficiently.
594  if (K == 1)
595    return SE.getTruncateOrZeroExtend(It, ResultTy);
596
597  // We are using the following formula for BC(It, K):
598  //
599  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
600  //
601  // Suppose, W is the bitwidth of the return value.  We must be prepared for
602  // overflow.  Hence, we must assure that the result of our computation is
603  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
604  // safe in modular arithmetic.
605  //
606  // However, this code doesn't use exactly that formula; the formula it uses
607  // is something like the following, where T is the number of factors of 2 in
608  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
609  // exponentiation:
610  //
611  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
612  //
613  // This formula is trivially equivalent to the previous formula.  However,
614  // this formula can be implemented much more efficiently.  The trick is that
615  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
616  // arithmetic.  To do exact division in modular arithmetic, all we have
617  // to do is multiply by the inverse.  Therefore, this step can be done at
618  // width W.
619  //
620  // The next issue is how to safely do the division by 2^T.  The way this
621  // is done is by doing the multiplication step at a width of at least W + T
622  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
623  // when we perform the division by 2^T (which is equivalent to a right shift
624  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
625  // truncated out after the division by 2^T.
626  //
627  // In comparison to just directly using the first formula, this technique
628  // is much more efficient; using the first formula requires W * K bits,
629  // but this formula less than W + K bits. Also, the first formula requires
630  // a division step, whereas this formula only requires multiplies and shifts.
631  //
632  // It doesn't matter whether the subtraction step is done in the calculation
633  // width or the input iteration count's width; if the subtraction overflows,
634  // the result must be zero anyway.  We prefer here to do it in the width of
635  // the induction variable because it helps a lot for certain cases; CodeGen
636  // isn't smart enough to ignore the overflow, which leads to much less
637  // efficient code if the width of the subtraction is wider than the native
638  // register width.
639  //
640  // (It's possible to not widen at all by pulling out factors of 2 before
641  // the multiplication; for example, K=2 can be calculated as
642  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
643  // extra arithmetic, so it's not an obvious win, and it gets
644  // much more complicated for K > 3.)
645
646  // Protection from insane SCEVs; this bound is conservative,
647  // but it probably doesn't matter.
648  if (K > 1000)
649    return SE.getCouldNotCompute();
650
651  unsigned W = SE.getTypeSizeInBits(ResultTy);
652
653  // Calculate K! / 2^T and T; we divide out the factors of two before
654  // multiplying for calculating K! / 2^T to avoid overflow.
655  // Other overflow doesn't matter because we only care about the bottom
656  // W bits of the result.
657  APInt OddFactorial(W, 1);
658  unsigned T = 1;
659  for (unsigned i = 3; i <= K; ++i) {
660    APInt Mult(W, i);
661    unsigned TwoFactors = Mult.countTrailingZeros();
662    T += TwoFactors;
663    Mult = Mult.lshr(TwoFactors);
664    OddFactorial *= Mult;
665  }
666
667  // We need at least W + T bits for the multiplication step
668  unsigned CalculationBits = W + T;
669
670  // Calcuate 2^T, at width T+W.
671  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
672
673  // Calculate the multiplicative inverse of K! / 2^T;
674  // this multiplication factor will perform the exact division by
675  // K! / 2^T.
676  APInt Mod = APInt::getSignedMinValue(W+1);
677  APInt MultiplyFactor = OddFactorial.zext(W+1);
678  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
679  MultiplyFactor = MultiplyFactor.trunc(W);
680
681  // Calculate the product, at width T+W
682  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
683                                                      CalculationBits);
684  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
685  for (unsigned i = 1; i != K; ++i) {
686    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
687    Dividend = SE.getMulExpr(Dividend,
688                             SE.getTruncateOrZeroExtend(S, CalculationTy));
689  }
690
691  // Divide by 2^T
692  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
693
694  // Truncate the result, and divide by K! / 2^T.
695
696  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
697                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
698}
699
700/// evaluateAtIteration - Return the value of this chain of recurrences at
701/// the specified iteration number.  We can evaluate this recurrence by
702/// multiplying each element in the chain by the binomial coefficient
703/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
704///
705///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
706///
707/// where BC(It, k) stands for binomial coefficient.
708///
709const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
710                                                ScalarEvolution &SE) const {
711  const SCEV *Result = getStart();
712  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
713    // The computation is correct in the face of overflow provided that the
714    // multiplication is performed _after_ the evaluation of the binomial
715    // coefficient.
716    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
717    if (isa<SCEVCouldNotCompute>(Coeff))
718      return Coeff;
719
720    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
721  }
722  return Result;
723}
724
725//===----------------------------------------------------------------------===//
726//                    SCEV Expression folder implementations
727//===----------------------------------------------------------------------===//
728
729const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
730                                             const Type *Ty) {
731  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
732         "This is not a truncating conversion!");
733  assert(isSCEVable(Ty) &&
734         "This is not a conversion to a SCEVable type!");
735  Ty = getEffectiveSCEVType(Ty);
736
737  FoldingSetNodeID ID;
738  ID.AddInteger(scTruncate);
739  ID.AddPointer(Op);
740  ID.AddPointer(Ty);
741  void *IP = 0;
742  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
743
744  // Fold if the operand is constant.
745  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
746    return getConstant(
747      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
748
749  // trunc(trunc(x)) --> trunc(x)
750  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
751    return getTruncateExpr(ST->getOperand(), Ty);
752
753  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
754  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
755    return getTruncateOrSignExtend(SS->getOperand(), Ty);
756
757  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
758  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
759    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
760
761  // If the input value is a chrec scev, truncate the chrec's operands.
762  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
763    SmallVector<const SCEV *, 4> Operands;
764    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
765      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
766    return getAddRecExpr(Operands, AddRec->getLoop());
767  }
768
769  // The cast wasn't folded; create an explicit cast node.
770  // Recompute the insert position, as it may have been invalidated.
771  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
772  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
773  new (S) SCEVTruncateExpr(ID, Op, Ty);
774  UniqueSCEVs.InsertNode(S, IP);
775  return S;
776}
777
778const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
779                                               const Type *Ty) {
780  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
781         "This is not an extending conversion!");
782  assert(isSCEVable(Ty) &&
783         "This is not a conversion to a SCEVable type!");
784  Ty = getEffectiveSCEVType(Ty);
785
786  // Fold if the operand is constant.
787  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
788    const Type *IntTy = getEffectiveSCEVType(Ty);
789    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
790    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
791    return getConstant(cast<ConstantInt>(C));
792  }
793
794  // zext(zext(x)) --> zext(x)
795  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
796    return getZeroExtendExpr(SZ->getOperand(), Ty);
797
798  // Before doing any expensive analysis, check to see if we've already
799  // computed a SCEV for this Op and Ty.
800  FoldingSetNodeID ID;
801  ID.AddInteger(scZeroExtend);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // If the input value is a chrec scev, and we can prove that the value
808  // did not overflow the old, smaller, value, we can zero extend all of the
809  // operands (often constants).  This allows analysis of something like
810  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
811  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
812    if (AR->isAffine()) {
813      const SCEV *Start = AR->getStart();
814      const SCEV *Step = AR->getStepRecurrence(*this);
815      unsigned BitWidth = getTypeSizeInBits(AR->getType());
816      const Loop *L = AR->getLoop();
817
818      // If we have special knowledge that this addrec won't overflow,
819      // we don't need to do any further analysis.
820      if (AR->hasNoUnsignedWrap())
821        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
822                             getZeroExtendExpr(Step, Ty),
823                             L);
824
825      // Check whether the backedge-taken count is SCEVCouldNotCompute.
826      // Note that this serves two purposes: It filters out loops that are
827      // simply not analyzable, and it covers the case where this code is
828      // being called from within backedge-taken count analysis, such that
829      // attempting to ask for the backedge-taken count would likely result
830      // in infinite recursion. In the later case, the analysis code will
831      // cope with a conservative value, and it will take care to purge
832      // that value once it has finished.
833      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
834      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
835        // Manually compute the final value for AR, checking for
836        // overflow.
837
838        // Check whether the backedge-taken count can be losslessly casted to
839        // the addrec's type. The count is always unsigned.
840        const SCEV *CastedMaxBECount =
841          getTruncateOrZeroExtend(MaxBECount, Start->getType());
842        const SCEV *RecastedMaxBECount =
843          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
844        if (MaxBECount == RecastedMaxBECount) {
845          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
846          // Check whether Start+Step*MaxBECount has no unsigned overflow.
847          const SCEV *ZMul =
848            getMulExpr(CastedMaxBECount,
849                       getTruncateOrZeroExtend(Step, Start->getType()));
850          const SCEV *Add = getAddExpr(Start, ZMul);
851          const SCEV *OperandExtendedAdd =
852            getAddExpr(getZeroExtendExpr(Start, WideTy),
853                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
854                                  getZeroExtendExpr(Step, WideTy)));
855          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
856            // Return the expression with the addrec on the outside.
857            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
858                                 getZeroExtendExpr(Step, Ty),
859                                 L);
860
861          // Similar to above, only this time treat the step value as signed.
862          // This covers loops that count down.
863          const SCEV *SMul =
864            getMulExpr(CastedMaxBECount,
865                       getTruncateOrSignExtend(Step, Start->getType()));
866          Add = getAddExpr(Start, SMul);
867          OperandExtendedAdd =
868            getAddExpr(getZeroExtendExpr(Start, WideTy),
869                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
870                                  getSignExtendExpr(Step, WideTy)));
871          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
872            // Return the expression with the addrec on the outside.
873            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
874                                 getSignExtendExpr(Step, Ty),
875                                 L);
876        }
877
878        // If the backedge is guarded by a comparison with the pre-inc value
879        // the addrec is safe. Also, if the entry is guarded by a comparison
880        // with the start value and the backedge is guarded by a comparison
881        // with the post-inc value, the addrec is safe.
882        if (isKnownPositive(Step)) {
883          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
884                                      getUnsignedRange(Step).getUnsignedMax());
885          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
886              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
887               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
888                                           AR->getPostIncExpr(*this), N)))
889            // Return the expression with the addrec on the outside.
890            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
891                                 getZeroExtendExpr(Step, Ty),
892                                 L);
893        } else if (isKnownNegative(Step)) {
894          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
895                                      getSignedRange(Step).getSignedMin());
896          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
897              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
898               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
899                                           AR->getPostIncExpr(*this), N)))
900            // Return the expression with the addrec on the outside.
901            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
902                                 getSignExtendExpr(Step, Ty),
903                                 L);
904        }
905      }
906    }
907
908  // The cast wasn't folded; create an explicit cast node.
909  // Recompute the insert position, as it may have been invalidated.
910  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
911  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
912  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
913  UniqueSCEVs.InsertNode(S, IP);
914  return S;
915}
916
917const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
918                                               const Type *Ty) {
919  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
920         "This is not an extending conversion!");
921  assert(isSCEVable(Ty) &&
922         "This is not a conversion to a SCEVable type!");
923  Ty = getEffectiveSCEVType(Ty);
924
925  // Fold if the operand is constant.
926  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
927    const Type *IntTy = getEffectiveSCEVType(Ty);
928    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
929    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
930    return getConstant(cast<ConstantInt>(C));
931  }
932
933  // sext(sext(x)) --> sext(x)
934  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
935    return getSignExtendExpr(SS->getOperand(), Ty);
936
937  // Before doing any expensive analysis, check to see if we've already
938  // computed a SCEV for this Op and Ty.
939  FoldingSetNodeID ID;
940  ID.AddInteger(scSignExtend);
941  ID.AddPointer(Op);
942  ID.AddPointer(Ty);
943  void *IP = 0;
944  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
945
946  // If the input value is a chrec scev, and we can prove that the value
947  // did not overflow the old, smaller, value, we can sign extend all of the
948  // operands (often constants).  This allows analysis of something like
949  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
950  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
951    if (AR->isAffine()) {
952      const SCEV *Start = AR->getStart();
953      const SCEV *Step = AR->getStepRecurrence(*this);
954      unsigned BitWidth = getTypeSizeInBits(AR->getType());
955      const Loop *L = AR->getLoop();
956
957      // If we have special knowledge that this addrec won't overflow,
958      // we don't need to do any further analysis.
959      if (AR->hasNoSignedWrap())
960        return getAddRecExpr(getSignExtendExpr(Start, Ty),
961                             getSignExtendExpr(Step, Ty),
962                             L);
963
964      // Check whether the backedge-taken count is SCEVCouldNotCompute.
965      // Note that this serves two purposes: It filters out loops that are
966      // simply not analyzable, and it covers the case where this code is
967      // being called from within backedge-taken count analysis, such that
968      // attempting to ask for the backedge-taken count would likely result
969      // in infinite recursion. In the later case, the analysis code will
970      // cope with a conservative value, and it will take care to purge
971      // that value once it has finished.
972      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
973      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
974        // Manually compute the final value for AR, checking for
975        // overflow.
976
977        // Check whether the backedge-taken count can be losslessly casted to
978        // the addrec's type. The count is always unsigned.
979        const SCEV *CastedMaxBECount =
980          getTruncateOrZeroExtend(MaxBECount, Start->getType());
981        const SCEV *RecastedMaxBECount =
982          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
983        if (MaxBECount == RecastedMaxBECount) {
984          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
985          // Check whether Start+Step*MaxBECount has no signed overflow.
986          const SCEV *SMul =
987            getMulExpr(CastedMaxBECount,
988                       getTruncateOrSignExtend(Step, Start->getType()));
989          const SCEV *Add = getAddExpr(Start, SMul);
990          const SCEV *OperandExtendedAdd =
991            getAddExpr(getSignExtendExpr(Start, WideTy),
992                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
993                                  getSignExtendExpr(Step, WideTy)));
994          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
995            // Return the expression with the addrec on the outside.
996            return getAddRecExpr(getSignExtendExpr(Start, Ty),
997                                 getSignExtendExpr(Step, Ty),
998                                 L);
999
1000          // Similar to above, only this time treat the step value as unsigned.
1001          // This covers loops that count up with an unsigned step.
1002          const SCEV *UMul =
1003            getMulExpr(CastedMaxBECount,
1004                       getTruncateOrZeroExtend(Step, Start->getType()));
1005          Add = getAddExpr(Start, UMul);
1006          OperandExtendedAdd =
1007            getAddExpr(getSignExtendExpr(Start, WideTy),
1008                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1009                                  getZeroExtendExpr(Step, WideTy)));
1010          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1011            // Return the expression with the addrec on the outside.
1012            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1013                                 getZeroExtendExpr(Step, Ty),
1014                                 L);
1015        }
1016
1017        // If the backedge is guarded by a comparison with the pre-inc value
1018        // the addrec is safe. Also, if the entry is guarded by a comparison
1019        // with the start value and the backedge is guarded by a comparison
1020        // with the post-inc value, the addrec is safe.
1021        if (isKnownPositive(Step)) {
1022          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1023                                      getSignedRange(Step).getSignedMax());
1024          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1025              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1026               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1027                                           AR->getPostIncExpr(*this), N)))
1028            // Return the expression with the addrec on the outside.
1029            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1030                                 getSignExtendExpr(Step, Ty),
1031                                 L);
1032        } else if (isKnownNegative(Step)) {
1033          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1034                                      getSignedRange(Step).getSignedMin());
1035          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1036              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1037               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1038                                           AR->getPostIncExpr(*this), N)))
1039            // Return the expression with the addrec on the outside.
1040            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1041                                 getSignExtendExpr(Step, Ty),
1042                                 L);
1043        }
1044      }
1045    }
1046
1047  // The cast wasn't folded; create an explicit cast node.
1048  // Recompute the insert position, as it may have been invalidated.
1049  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1050  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1051  new (S) SCEVSignExtendExpr(ID, Op, Ty);
1052  UniqueSCEVs.InsertNode(S, IP);
1053  return S;
1054}
1055
1056/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1057/// unspecified bits out to the given type.
1058///
1059const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1060                                              const Type *Ty) {
1061  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1062         "This is not an extending conversion!");
1063  assert(isSCEVable(Ty) &&
1064         "This is not a conversion to a SCEVable type!");
1065  Ty = getEffectiveSCEVType(Ty);
1066
1067  // Sign-extend negative constants.
1068  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1069    if (SC->getValue()->getValue().isNegative())
1070      return getSignExtendExpr(Op, Ty);
1071
1072  // Peel off a truncate cast.
1073  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1074    const SCEV *NewOp = T->getOperand();
1075    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1076      return getAnyExtendExpr(NewOp, Ty);
1077    return getTruncateOrNoop(NewOp, Ty);
1078  }
1079
1080  // Next try a zext cast. If the cast is folded, use it.
1081  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1082  if (!isa<SCEVZeroExtendExpr>(ZExt))
1083    return ZExt;
1084
1085  // Next try a sext cast. If the cast is folded, use it.
1086  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1087  if (!isa<SCEVSignExtendExpr>(SExt))
1088    return SExt;
1089
1090  // If the expression is obviously signed, use the sext cast value.
1091  if (isa<SCEVSMaxExpr>(Op))
1092    return SExt;
1093
1094  // Absent any other information, use the zext cast value.
1095  return ZExt;
1096}
1097
1098/// CollectAddOperandsWithScales - Process the given Ops list, which is
1099/// a list of operands to be added under the given scale, update the given
1100/// map. This is a helper function for getAddRecExpr. As an example of
1101/// what it does, given a sequence of operands that would form an add
1102/// expression like this:
1103///
1104///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1105///
1106/// where A and B are constants, update the map with these values:
1107///
1108///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1109///
1110/// and add 13 + A*B*29 to AccumulatedConstant.
1111/// This will allow getAddRecExpr to produce this:
1112///
1113///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1114///
1115/// This form often exposes folding opportunities that are hidden in
1116/// the original operand list.
1117///
1118/// Return true iff it appears that any interesting folding opportunities
1119/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1120/// the common case where no interesting opportunities are present, and
1121/// is also used as a check to avoid infinite recursion.
1122///
1123static bool
1124CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1125                             SmallVector<const SCEV *, 8> &NewOps,
1126                             APInt &AccumulatedConstant,
1127                             const SmallVectorImpl<const SCEV *> &Ops,
1128                             const APInt &Scale,
1129                             ScalarEvolution &SE) {
1130  bool Interesting = false;
1131
1132  // Iterate over the add operands.
1133  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1134    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1135    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1136      APInt NewScale =
1137        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1138      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1139        // A multiplication of a constant with another add; recurse.
1140        Interesting |=
1141          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1142                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1143                                         ->getOperands(),
1144                                       NewScale, SE);
1145      } else {
1146        // A multiplication of a constant with some other value. Update
1147        // the map.
1148        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1149        const SCEV *Key = SE.getMulExpr(MulOps);
1150        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1151          M.insert(std::make_pair(Key, NewScale));
1152        if (Pair.second) {
1153          NewOps.push_back(Pair.first->first);
1154        } else {
1155          Pair.first->second += NewScale;
1156          // The map already had an entry for this value, which may indicate
1157          // a folding opportunity.
1158          Interesting = true;
1159        }
1160      }
1161    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1162      // Pull a buried constant out to the outside.
1163      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1164        Interesting = true;
1165      AccumulatedConstant += Scale * C->getValue()->getValue();
1166    } else {
1167      // An ordinary operand. Update the map.
1168      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1169        M.insert(std::make_pair(Ops[i], Scale));
1170      if (Pair.second) {
1171        NewOps.push_back(Pair.first->first);
1172      } else {
1173        Pair.first->second += Scale;
1174        // The map already had an entry for this value, which may indicate
1175        // a folding opportunity.
1176        Interesting = true;
1177      }
1178    }
1179  }
1180
1181  return Interesting;
1182}
1183
1184namespace {
1185  struct APIntCompare {
1186    bool operator()(const APInt &LHS, const APInt &RHS) const {
1187      return LHS.ult(RHS);
1188    }
1189  };
1190}
1191
1192/// getAddExpr - Get a canonical add expression, or something simpler if
1193/// possible.
1194const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1195                                        bool HasNUW, bool HasNSW) {
1196  assert(!Ops.empty() && "Cannot get empty add!");
1197  if (Ops.size() == 1) return Ops[0];
1198#ifndef NDEBUG
1199  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1200    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1201           getEffectiveSCEVType(Ops[0]->getType()) &&
1202           "SCEVAddExpr operand types don't match!");
1203#endif
1204
1205  // Sort by complexity, this groups all similar expression types together.
1206  GroupByComplexity(Ops, LI);
1207
1208  // If there are any constants, fold them together.
1209  unsigned Idx = 0;
1210  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1211    ++Idx;
1212    assert(Idx < Ops.size());
1213    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1214      // We found two constants, fold them together!
1215      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1216                           RHSC->getValue()->getValue());
1217      if (Ops.size() == 2) return Ops[0];
1218      Ops.erase(Ops.begin()+1);  // Erase the folded element
1219      LHSC = cast<SCEVConstant>(Ops[0]);
1220    }
1221
1222    // If we are left with a constant zero being added, strip it off.
1223    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1224      Ops.erase(Ops.begin());
1225      --Idx;
1226    }
1227  }
1228
1229  if (Ops.size() == 1) return Ops[0];
1230
1231  // Okay, check to see if the same value occurs in the operand list twice.  If
1232  // so, merge them together into an multiply expression.  Since we sorted the
1233  // list, these values are required to be adjacent.
1234  const Type *Ty = Ops[0]->getType();
1235  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1236    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1237      // Found a match, merge the two values into a multiply, and add any
1238      // remaining values to the result.
1239      const SCEV *Two = getIntegerSCEV(2, Ty);
1240      const SCEV *Mul = getMulExpr(Ops[i], Two);
1241      if (Ops.size() == 2)
1242        return Mul;
1243      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1244      Ops.push_back(Mul);
1245      return getAddExpr(Ops, HasNUW, HasNSW);
1246    }
1247
1248  // Check for truncates. If all the operands are truncated from the same
1249  // type, see if factoring out the truncate would permit the result to be
1250  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1251  // if the contents of the resulting outer trunc fold to something simple.
1252  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1253    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1254    const Type *DstType = Trunc->getType();
1255    const Type *SrcType = Trunc->getOperand()->getType();
1256    SmallVector<const SCEV *, 8> LargeOps;
1257    bool Ok = true;
1258    // Check all the operands to see if they can be represented in the
1259    // source type of the truncate.
1260    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1261      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1262        if (T->getOperand()->getType() != SrcType) {
1263          Ok = false;
1264          break;
1265        }
1266        LargeOps.push_back(T->getOperand());
1267      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1268        // This could be either sign or zero extension, but sign extension
1269        // is much more likely to be foldable here.
1270        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1271      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1272        SmallVector<const SCEV *, 8> LargeMulOps;
1273        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1274          if (const SCEVTruncateExpr *T =
1275                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1276            if (T->getOperand()->getType() != SrcType) {
1277              Ok = false;
1278              break;
1279            }
1280            LargeMulOps.push_back(T->getOperand());
1281          } else if (const SCEVConstant *C =
1282                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1283            // This could be either sign or zero extension, but sign extension
1284            // is much more likely to be foldable here.
1285            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1286          } else {
1287            Ok = false;
1288            break;
1289          }
1290        }
1291        if (Ok)
1292          LargeOps.push_back(getMulExpr(LargeMulOps));
1293      } else {
1294        Ok = false;
1295        break;
1296      }
1297    }
1298    if (Ok) {
1299      // Evaluate the expression in the larger type.
1300      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1301      // If it folds to something simple, use it. Otherwise, don't.
1302      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1303        return getTruncateExpr(Fold, DstType);
1304    }
1305  }
1306
1307  // Skip past any other cast SCEVs.
1308  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1309    ++Idx;
1310
1311  // If there are add operands they would be next.
1312  if (Idx < Ops.size()) {
1313    bool DeletedAdd = false;
1314    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1315      // If we have an add, expand the add operands onto the end of the operands
1316      // list.
1317      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1318      Ops.erase(Ops.begin()+Idx);
1319      DeletedAdd = true;
1320    }
1321
1322    // If we deleted at least one add, we added operands to the end of the list,
1323    // and they are not necessarily sorted.  Recurse to resort and resimplify
1324    // any operands we just aquired.
1325    if (DeletedAdd)
1326      return getAddExpr(Ops);
1327  }
1328
1329  // Skip over the add expression until we get to a multiply.
1330  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1331    ++Idx;
1332
1333  // Check to see if there are any folding opportunities present with
1334  // operands multiplied by constant values.
1335  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1336    uint64_t BitWidth = getTypeSizeInBits(Ty);
1337    DenseMap<const SCEV *, APInt> M;
1338    SmallVector<const SCEV *, 8> NewOps;
1339    APInt AccumulatedConstant(BitWidth, 0);
1340    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1341                                     Ops, APInt(BitWidth, 1), *this)) {
1342      // Some interesting folding opportunity is present, so its worthwhile to
1343      // re-generate the operands list. Group the operands by constant scale,
1344      // to avoid multiplying by the same constant scale multiple times.
1345      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1346      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1347           E = NewOps.end(); I != E; ++I)
1348        MulOpLists[M.find(*I)->second].push_back(*I);
1349      // Re-generate the operands list.
1350      Ops.clear();
1351      if (AccumulatedConstant != 0)
1352        Ops.push_back(getConstant(AccumulatedConstant));
1353      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1354           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1355        if (I->first != 0)
1356          Ops.push_back(getMulExpr(getConstant(I->first),
1357                                   getAddExpr(I->second)));
1358      if (Ops.empty())
1359        return getIntegerSCEV(0, Ty);
1360      if (Ops.size() == 1)
1361        return Ops[0];
1362      return getAddExpr(Ops);
1363    }
1364  }
1365
1366  // If we are adding something to a multiply expression, make sure the
1367  // something is not already an operand of the multiply.  If so, merge it into
1368  // the multiply.
1369  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1370    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1371    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1372      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1373      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1374        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1375          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1376          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1377          if (Mul->getNumOperands() != 2) {
1378            // If the multiply has more than two operands, we must get the
1379            // Y*Z term.
1380            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1381            MulOps.erase(MulOps.begin()+MulOp);
1382            InnerMul = getMulExpr(MulOps);
1383          }
1384          const SCEV *One = getIntegerSCEV(1, Ty);
1385          const SCEV *AddOne = getAddExpr(InnerMul, One);
1386          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1387          if (Ops.size() == 2) return OuterMul;
1388          if (AddOp < Idx) {
1389            Ops.erase(Ops.begin()+AddOp);
1390            Ops.erase(Ops.begin()+Idx-1);
1391          } else {
1392            Ops.erase(Ops.begin()+Idx);
1393            Ops.erase(Ops.begin()+AddOp-1);
1394          }
1395          Ops.push_back(OuterMul);
1396          return getAddExpr(Ops);
1397        }
1398
1399      // Check this multiply against other multiplies being added together.
1400      for (unsigned OtherMulIdx = Idx+1;
1401           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1402           ++OtherMulIdx) {
1403        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1404        // If MulOp occurs in OtherMul, we can fold the two multiplies
1405        // together.
1406        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1407             OMulOp != e; ++OMulOp)
1408          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1409            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1410            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1411            if (Mul->getNumOperands() != 2) {
1412              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1413                                                  Mul->op_end());
1414              MulOps.erase(MulOps.begin()+MulOp);
1415              InnerMul1 = getMulExpr(MulOps);
1416            }
1417            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1418            if (OtherMul->getNumOperands() != 2) {
1419              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1420                                                  OtherMul->op_end());
1421              MulOps.erase(MulOps.begin()+OMulOp);
1422              InnerMul2 = getMulExpr(MulOps);
1423            }
1424            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1425            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1426            if (Ops.size() == 2) return OuterMul;
1427            Ops.erase(Ops.begin()+Idx);
1428            Ops.erase(Ops.begin()+OtherMulIdx-1);
1429            Ops.push_back(OuterMul);
1430            return getAddExpr(Ops);
1431          }
1432      }
1433    }
1434  }
1435
1436  // If there are any add recurrences in the operands list, see if any other
1437  // added values are loop invariant.  If so, we can fold them into the
1438  // recurrence.
1439  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1440    ++Idx;
1441
1442  // Scan over all recurrences, trying to fold loop invariants into them.
1443  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1444    // Scan all of the other operands to this add and add them to the vector if
1445    // they are loop invariant w.r.t. the recurrence.
1446    SmallVector<const SCEV *, 8> LIOps;
1447    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1448    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1449      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1450        LIOps.push_back(Ops[i]);
1451        Ops.erase(Ops.begin()+i);
1452        --i; --e;
1453      }
1454
1455    // If we found some loop invariants, fold them into the recurrence.
1456    if (!LIOps.empty()) {
1457      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1458      LIOps.push_back(AddRec->getStart());
1459
1460      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1461                                           AddRec->op_end());
1462      AddRecOps[0] = getAddExpr(LIOps);
1463
1464      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1465      // If all of the other operands were loop invariant, we are done.
1466      if (Ops.size() == 1) return NewRec;
1467
1468      // Otherwise, add the folded AddRec by the non-liv parts.
1469      for (unsigned i = 0;; ++i)
1470        if (Ops[i] == AddRec) {
1471          Ops[i] = NewRec;
1472          break;
1473        }
1474      return getAddExpr(Ops);
1475    }
1476
1477    // Okay, if there weren't any loop invariants to be folded, check to see if
1478    // there are multiple AddRec's with the same loop induction variable being
1479    // added together.  If so, we can fold them.
1480    for (unsigned OtherIdx = Idx+1;
1481         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1482      if (OtherIdx != Idx) {
1483        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1484        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1485          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1486          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1487                                              AddRec->op_end());
1488          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1489            if (i >= NewOps.size()) {
1490              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1491                            OtherAddRec->op_end());
1492              break;
1493            }
1494            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1495          }
1496          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1497
1498          if (Ops.size() == 2) return NewAddRec;
1499
1500          Ops.erase(Ops.begin()+Idx);
1501          Ops.erase(Ops.begin()+OtherIdx-1);
1502          Ops.push_back(NewAddRec);
1503          return getAddExpr(Ops);
1504        }
1505      }
1506
1507    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1508    // next one.
1509  }
1510
1511  // Okay, it looks like we really DO need an add expr.  Check to see if we
1512  // already have one, otherwise create a new one.
1513  FoldingSetNodeID ID;
1514  ID.AddInteger(scAddExpr);
1515  ID.AddInteger(Ops.size());
1516  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1517    ID.AddPointer(Ops[i]);
1518  void *IP = 0;
1519  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1520  SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1521  new (S) SCEVAddExpr(ID, Ops);
1522  UniqueSCEVs.InsertNode(S, IP);
1523  if (HasNUW) S->setHasNoUnsignedWrap(true);
1524  if (HasNSW) S->setHasNoSignedWrap(true);
1525  return S;
1526}
1527
1528
1529/// getMulExpr - Get a canonical multiply expression, or something simpler if
1530/// possible.
1531const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1532                                        bool HasNUW, bool HasNSW) {
1533  assert(!Ops.empty() && "Cannot get empty mul!");
1534#ifndef NDEBUG
1535  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1536    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1537           getEffectiveSCEVType(Ops[0]->getType()) &&
1538           "SCEVMulExpr operand types don't match!");
1539#endif
1540
1541  // Sort by complexity, this groups all similar expression types together.
1542  GroupByComplexity(Ops, LI);
1543
1544  // If there are any constants, fold them together.
1545  unsigned Idx = 0;
1546  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1547
1548    // C1*(C2+V) -> C1*C2 + C1*V
1549    if (Ops.size() == 2)
1550      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1551        if (Add->getNumOperands() == 2 &&
1552            isa<SCEVConstant>(Add->getOperand(0)))
1553          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1554                            getMulExpr(LHSC, Add->getOperand(1)));
1555
1556
1557    ++Idx;
1558    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1559      // We found two constants, fold them together!
1560      ConstantInt *Fold = ConstantInt::get(getContext(),
1561                                           LHSC->getValue()->getValue() *
1562                                           RHSC->getValue()->getValue());
1563      Ops[0] = getConstant(Fold);
1564      Ops.erase(Ops.begin()+1);  // Erase the folded element
1565      if (Ops.size() == 1) return Ops[0];
1566      LHSC = cast<SCEVConstant>(Ops[0]);
1567    }
1568
1569    // If we are left with a constant one being multiplied, strip it off.
1570    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1571      Ops.erase(Ops.begin());
1572      --Idx;
1573    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1574      // If we have a multiply of zero, it will always be zero.
1575      return Ops[0];
1576    }
1577  }
1578
1579  // Skip over the add expression until we get to a multiply.
1580  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1581    ++Idx;
1582
1583  if (Ops.size() == 1)
1584    return Ops[0];
1585
1586  // If there are mul operands inline them all into this expression.
1587  if (Idx < Ops.size()) {
1588    bool DeletedMul = false;
1589    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1590      // If we have an mul, expand the mul operands onto the end of the operands
1591      // list.
1592      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1593      Ops.erase(Ops.begin()+Idx);
1594      DeletedMul = true;
1595    }
1596
1597    // If we deleted at least one mul, we added operands to the end of the list,
1598    // and they are not necessarily sorted.  Recurse to resort and resimplify
1599    // any operands we just aquired.
1600    if (DeletedMul)
1601      return getMulExpr(Ops);
1602  }
1603
1604  // If there are any add recurrences in the operands list, see if any other
1605  // added values are loop invariant.  If so, we can fold them into the
1606  // recurrence.
1607  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1608    ++Idx;
1609
1610  // Scan over all recurrences, trying to fold loop invariants into them.
1611  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1612    // Scan all of the other operands to this mul and add them to the vector if
1613    // they are loop invariant w.r.t. the recurrence.
1614    SmallVector<const SCEV *, 8> LIOps;
1615    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1616    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1617      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1618        LIOps.push_back(Ops[i]);
1619        Ops.erase(Ops.begin()+i);
1620        --i; --e;
1621      }
1622
1623    // If we found some loop invariants, fold them into the recurrence.
1624    if (!LIOps.empty()) {
1625      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1626      SmallVector<const SCEV *, 4> NewOps;
1627      NewOps.reserve(AddRec->getNumOperands());
1628      if (LIOps.size() == 1) {
1629        const SCEV *Scale = LIOps[0];
1630        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1631          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1632      } else {
1633        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1634          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1635          MulOps.push_back(AddRec->getOperand(i));
1636          NewOps.push_back(getMulExpr(MulOps));
1637        }
1638      }
1639
1640      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1641
1642      // If all of the other operands were loop invariant, we are done.
1643      if (Ops.size() == 1) return NewRec;
1644
1645      // Otherwise, multiply the folded AddRec by the non-liv parts.
1646      for (unsigned i = 0;; ++i)
1647        if (Ops[i] == AddRec) {
1648          Ops[i] = NewRec;
1649          break;
1650        }
1651      return getMulExpr(Ops);
1652    }
1653
1654    // Okay, if there weren't any loop invariants to be folded, check to see if
1655    // there are multiple AddRec's with the same loop induction variable being
1656    // multiplied together.  If so, we can fold them.
1657    for (unsigned OtherIdx = Idx+1;
1658         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1659      if (OtherIdx != Idx) {
1660        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1661        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1662          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1663          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1664          const SCEV *NewStart = getMulExpr(F->getStart(),
1665                                                 G->getStart());
1666          const SCEV *B = F->getStepRecurrence(*this);
1667          const SCEV *D = G->getStepRecurrence(*this);
1668          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1669                                          getMulExpr(G, B),
1670                                          getMulExpr(B, D));
1671          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1672                                               F->getLoop());
1673          if (Ops.size() == 2) return NewAddRec;
1674
1675          Ops.erase(Ops.begin()+Idx);
1676          Ops.erase(Ops.begin()+OtherIdx-1);
1677          Ops.push_back(NewAddRec);
1678          return getMulExpr(Ops);
1679        }
1680      }
1681
1682    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1683    // next one.
1684  }
1685
1686  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1687  // already have one, otherwise create a new one.
1688  FoldingSetNodeID ID;
1689  ID.AddInteger(scMulExpr);
1690  ID.AddInteger(Ops.size());
1691  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1692    ID.AddPointer(Ops[i]);
1693  void *IP = 0;
1694  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1695  SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1696  new (S) SCEVMulExpr(ID, Ops);
1697  UniqueSCEVs.InsertNode(S, IP);
1698  if (HasNUW) S->setHasNoUnsignedWrap(true);
1699  if (HasNSW) S->setHasNoSignedWrap(true);
1700  return S;
1701}
1702
1703/// getUDivExpr - Get a canonical unsigned division expression, or something
1704/// simpler if possible.
1705const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1706                                         const SCEV *RHS) {
1707  assert(getEffectiveSCEVType(LHS->getType()) ==
1708         getEffectiveSCEVType(RHS->getType()) &&
1709         "SCEVUDivExpr operand types don't match!");
1710
1711  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1712    if (RHSC->getValue()->equalsInt(1))
1713      return LHS;                               // X udiv 1 --> x
1714    if (RHSC->isZero())
1715      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1716
1717    // Determine if the division can be folded into the operands of
1718    // its operands.
1719    // TODO: Generalize this to non-constants by using known-bits information.
1720    const Type *Ty = LHS->getType();
1721    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1722    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1723    // For non-power-of-two values, effectively round the value up to the
1724    // nearest power of two.
1725    if (!RHSC->getValue()->getValue().isPowerOf2())
1726      ++MaxShiftAmt;
1727    const IntegerType *ExtTy =
1728      IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1729    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1730    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1731      if (const SCEVConstant *Step =
1732            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1733        if (!Step->getValue()->getValue()
1734              .urem(RHSC->getValue()->getValue()) &&
1735            getZeroExtendExpr(AR, ExtTy) ==
1736            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1737                          getZeroExtendExpr(Step, ExtTy),
1738                          AR->getLoop())) {
1739          SmallVector<const SCEV *, 4> Operands;
1740          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1741            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1742          return getAddRecExpr(Operands, AR->getLoop());
1743        }
1744    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1745    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1746      SmallVector<const SCEV *, 4> Operands;
1747      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1748        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1749      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1750        // Find an operand that's safely divisible.
1751        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1752          const SCEV *Op = M->getOperand(i);
1753          const SCEV *Div = getUDivExpr(Op, RHSC);
1754          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1755            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1756            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1757                                                  MOperands.end());
1758            Operands[i] = Div;
1759            return getMulExpr(Operands);
1760          }
1761        }
1762    }
1763    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1764    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1765      SmallVector<const SCEV *, 4> Operands;
1766      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1767        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1768      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1769        Operands.clear();
1770        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1771          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1772          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1773            break;
1774          Operands.push_back(Op);
1775        }
1776        if (Operands.size() == A->getNumOperands())
1777          return getAddExpr(Operands);
1778      }
1779    }
1780
1781    // Fold if both operands are constant.
1782    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1783      Constant *LHSCV = LHSC->getValue();
1784      Constant *RHSCV = RHSC->getValue();
1785      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1786                                                                 RHSCV)));
1787    }
1788  }
1789
1790  FoldingSetNodeID ID;
1791  ID.AddInteger(scUDivExpr);
1792  ID.AddPointer(LHS);
1793  ID.AddPointer(RHS);
1794  void *IP = 0;
1795  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1796  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1797  new (S) SCEVUDivExpr(ID, LHS, RHS);
1798  UniqueSCEVs.InsertNode(S, IP);
1799  return S;
1800}
1801
1802
1803/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1804/// Simplify the expression as much as possible.
1805const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1806                                           const SCEV *Step, const Loop *L,
1807                                           bool HasNUW, bool HasNSW) {
1808  SmallVector<const SCEV *, 4> Operands;
1809  Operands.push_back(Start);
1810  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1811    if (StepChrec->getLoop() == L) {
1812      Operands.insert(Operands.end(), StepChrec->op_begin(),
1813                      StepChrec->op_end());
1814      return getAddRecExpr(Operands, L);
1815    }
1816
1817  Operands.push_back(Step);
1818  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1819}
1820
1821/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1822/// Simplify the expression as much as possible.
1823const SCEV *
1824ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1825                               const Loop *L,
1826                               bool HasNUW, bool HasNSW) {
1827  if (Operands.size() == 1) return Operands[0];
1828#ifndef NDEBUG
1829  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1830    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1831           getEffectiveSCEVType(Operands[0]->getType()) &&
1832           "SCEVAddRecExpr operand types don't match!");
1833#endif
1834
1835  if (Operands.back()->isZero()) {
1836    Operands.pop_back();
1837    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1838  }
1839
1840  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1841  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1842    const Loop* NestedLoop = NestedAR->getLoop();
1843    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1844      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1845                                                NestedAR->op_end());
1846      Operands[0] = NestedAR->getStart();
1847      // AddRecs require their operands be loop-invariant with respect to their
1848      // loops. Don't perform this transformation if it would break this
1849      // requirement.
1850      bool AllInvariant = true;
1851      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1852        if (!Operands[i]->isLoopInvariant(L)) {
1853          AllInvariant = false;
1854          break;
1855        }
1856      if (AllInvariant) {
1857        NestedOperands[0] = getAddRecExpr(Operands, L);
1858        AllInvariant = true;
1859        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1860          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1861            AllInvariant = false;
1862            break;
1863          }
1864        if (AllInvariant)
1865          // Ok, both add recurrences are valid after the transformation.
1866          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
1867      }
1868      // Reset Operands to its original state.
1869      Operands[0] = NestedAR;
1870    }
1871  }
1872
1873  FoldingSetNodeID ID;
1874  ID.AddInteger(scAddRecExpr);
1875  ID.AddInteger(Operands.size());
1876  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1877    ID.AddPointer(Operands[i]);
1878  ID.AddPointer(L);
1879  void *IP = 0;
1880  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1881  SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1882  new (S) SCEVAddRecExpr(ID, Operands, L);
1883  UniqueSCEVs.InsertNode(S, IP);
1884  if (HasNUW) S->setHasNoUnsignedWrap(true);
1885  if (HasNSW) S->setHasNoSignedWrap(true);
1886  return S;
1887}
1888
1889const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1890                                         const SCEV *RHS) {
1891  SmallVector<const SCEV *, 2> Ops;
1892  Ops.push_back(LHS);
1893  Ops.push_back(RHS);
1894  return getSMaxExpr(Ops);
1895}
1896
1897const SCEV *
1898ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1899  assert(!Ops.empty() && "Cannot get empty smax!");
1900  if (Ops.size() == 1) return Ops[0];
1901#ifndef NDEBUG
1902  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1903    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1904           getEffectiveSCEVType(Ops[0]->getType()) &&
1905           "SCEVSMaxExpr operand types don't match!");
1906#endif
1907
1908  // Sort by complexity, this groups all similar expression types together.
1909  GroupByComplexity(Ops, LI);
1910
1911  // If there are any constants, fold them together.
1912  unsigned Idx = 0;
1913  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1914    ++Idx;
1915    assert(Idx < Ops.size());
1916    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1917      // We found two constants, fold them together!
1918      ConstantInt *Fold = ConstantInt::get(getContext(),
1919                              APIntOps::smax(LHSC->getValue()->getValue(),
1920                                             RHSC->getValue()->getValue()));
1921      Ops[0] = getConstant(Fold);
1922      Ops.erase(Ops.begin()+1);  // Erase the folded element
1923      if (Ops.size() == 1) return Ops[0];
1924      LHSC = cast<SCEVConstant>(Ops[0]);
1925    }
1926
1927    // If we are left with a constant minimum-int, strip it off.
1928    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1929      Ops.erase(Ops.begin());
1930      --Idx;
1931    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1932      // If we have an smax with a constant maximum-int, it will always be
1933      // maximum-int.
1934      return Ops[0];
1935    }
1936  }
1937
1938  if (Ops.size() == 1) return Ops[0];
1939
1940  // Find the first SMax
1941  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1942    ++Idx;
1943
1944  // Check to see if one of the operands is an SMax. If so, expand its operands
1945  // onto our operand list, and recurse to simplify.
1946  if (Idx < Ops.size()) {
1947    bool DeletedSMax = false;
1948    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1949      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1950      Ops.erase(Ops.begin()+Idx);
1951      DeletedSMax = true;
1952    }
1953
1954    if (DeletedSMax)
1955      return getSMaxExpr(Ops);
1956  }
1957
1958  // Okay, check to see if the same value occurs in the operand list twice.  If
1959  // so, delete one.  Since we sorted the list, these values are required to
1960  // be adjacent.
1961  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1962    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1963      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1964      --i; --e;
1965    }
1966
1967  if (Ops.size() == 1) return Ops[0];
1968
1969  assert(!Ops.empty() && "Reduced smax down to nothing!");
1970
1971  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1972  // already have one, otherwise create a new one.
1973  FoldingSetNodeID ID;
1974  ID.AddInteger(scSMaxExpr);
1975  ID.AddInteger(Ops.size());
1976  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1977    ID.AddPointer(Ops[i]);
1978  void *IP = 0;
1979  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1980  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1981  new (S) SCEVSMaxExpr(ID, Ops);
1982  UniqueSCEVs.InsertNode(S, IP);
1983  return S;
1984}
1985
1986const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1987                                         const SCEV *RHS) {
1988  SmallVector<const SCEV *, 2> Ops;
1989  Ops.push_back(LHS);
1990  Ops.push_back(RHS);
1991  return getUMaxExpr(Ops);
1992}
1993
1994const SCEV *
1995ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1996  assert(!Ops.empty() && "Cannot get empty umax!");
1997  if (Ops.size() == 1) return Ops[0];
1998#ifndef NDEBUG
1999  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2000    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2001           getEffectiveSCEVType(Ops[0]->getType()) &&
2002           "SCEVUMaxExpr operand types don't match!");
2003#endif
2004
2005  // Sort by complexity, this groups all similar expression types together.
2006  GroupByComplexity(Ops, LI);
2007
2008  // If there are any constants, fold them together.
2009  unsigned Idx = 0;
2010  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2011    ++Idx;
2012    assert(Idx < Ops.size());
2013    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2014      // We found two constants, fold them together!
2015      ConstantInt *Fold = ConstantInt::get(getContext(),
2016                              APIntOps::umax(LHSC->getValue()->getValue(),
2017                                             RHSC->getValue()->getValue()));
2018      Ops[0] = getConstant(Fold);
2019      Ops.erase(Ops.begin()+1);  // Erase the folded element
2020      if (Ops.size() == 1) return Ops[0];
2021      LHSC = cast<SCEVConstant>(Ops[0]);
2022    }
2023
2024    // If we are left with a constant minimum-int, strip it off.
2025    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2026      Ops.erase(Ops.begin());
2027      --Idx;
2028    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2029      // If we have an umax with a constant maximum-int, it will always be
2030      // maximum-int.
2031      return Ops[0];
2032    }
2033  }
2034
2035  if (Ops.size() == 1) return Ops[0];
2036
2037  // Find the first UMax
2038  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2039    ++Idx;
2040
2041  // Check to see if one of the operands is a UMax. If so, expand its operands
2042  // onto our operand list, and recurse to simplify.
2043  if (Idx < Ops.size()) {
2044    bool DeletedUMax = false;
2045    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2046      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2047      Ops.erase(Ops.begin()+Idx);
2048      DeletedUMax = true;
2049    }
2050
2051    if (DeletedUMax)
2052      return getUMaxExpr(Ops);
2053  }
2054
2055  // Okay, check to see if the same value occurs in the operand list twice.  If
2056  // so, delete one.  Since we sorted the list, these values are required to
2057  // be adjacent.
2058  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2059    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
2060      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2061      --i; --e;
2062    }
2063
2064  if (Ops.size() == 1) return Ops[0];
2065
2066  assert(!Ops.empty() && "Reduced umax down to nothing!");
2067
2068  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2069  // already have one, otherwise create a new one.
2070  FoldingSetNodeID ID;
2071  ID.AddInteger(scUMaxExpr);
2072  ID.AddInteger(Ops.size());
2073  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2074    ID.AddPointer(Ops[i]);
2075  void *IP = 0;
2076  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2077  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2078  new (S) SCEVUMaxExpr(ID, Ops);
2079  UniqueSCEVs.InsertNode(S, IP);
2080  return S;
2081}
2082
2083const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2084                                         const SCEV *RHS) {
2085  // ~smax(~x, ~y) == smin(x, y).
2086  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2087}
2088
2089const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2090                                         const SCEV *RHS) {
2091  // ~umax(~x, ~y) == umin(x, y)
2092  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2093}
2094
2095const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
2096                                                unsigned FieldNo) {
2097  // If we have TargetData we can determine the constant offset.
2098  if (TD) {
2099    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2100    const StructLayout &SL = *TD->getStructLayout(STy);
2101    uint64_t Offset = SL.getElementOffset(FieldNo);
2102    return getIntegerSCEV(Offset, IntPtrTy);
2103  }
2104
2105  // Field 0 is always at offset 0.
2106  if (FieldNo == 0) {
2107    const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2108    return getIntegerSCEV(0, Ty);
2109  }
2110
2111  // Okay, it looks like we really DO need an offsetof expr.  Check to see if we
2112  // already have one, otherwise create a new one.
2113  FoldingSetNodeID ID;
2114  ID.AddInteger(scFieldOffset);
2115  ID.AddPointer(STy);
2116  ID.AddInteger(FieldNo);
2117  void *IP = 0;
2118  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2119  SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
2120  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2121  new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
2122  UniqueSCEVs.InsertNode(S, IP);
2123  return S;
2124}
2125
2126const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
2127  // If we have TargetData we can determine the constant size.
2128  if (TD && AllocTy->isSized()) {
2129    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2130    return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
2131  }
2132
2133  // Expand an array size into the element size times the number
2134  // of elements.
2135  if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
2136    const SCEV *E = getAllocSizeExpr(ATy->getElementType());
2137    return getMulExpr(
2138      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2139                                      ATy->getNumElements())));
2140  }
2141
2142  // Expand a vector size into the element size times the number
2143  // of elements.
2144  if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
2145    const SCEV *E = getAllocSizeExpr(VTy->getElementType());
2146    return getMulExpr(
2147      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2148                                      VTy->getNumElements())));
2149  }
2150
2151  // Okay, it looks like we really DO need a sizeof expr.  Check to see if we
2152  // already have one, otherwise create a new one.
2153  FoldingSetNodeID ID;
2154  ID.AddInteger(scAllocSize);
2155  ID.AddPointer(AllocTy);
2156  void *IP = 0;
2157  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2158  SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
2159  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2160  new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
2161  UniqueSCEVs.InsertNode(S, IP);
2162  return S;
2163}
2164
2165const SCEV *ScalarEvolution::getUnknown(Value *V) {
2166  // Don't attempt to do anything other than create a SCEVUnknown object
2167  // here.  createSCEV only calls getUnknown after checking for all other
2168  // interesting possibilities, and any other code that calls getUnknown
2169  // is doing so in order to hide a value from SCEV canonicalization.
2170
2171  FoldingSetNodeID ID;
2172  ID.AddInteger(scUnknown);
2173  ID.AddPointer(V);
2174  void *IP = 0;
2175  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2176  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2177  new (S) SCEVUnknown(ID, V);
2178  UniqueSCEVs.InsertNode(S, IP);
2179  return S;
2180}
2181
2182//===----------------------------------------------------------------------===//
2183//            Basic SCEV Analysis and PHI Idiom Recognition Code
2184//
2185
2186/// isSCEVable - Test if values of the given type are analyzable within
2187/// the SCEV framework. This primarily includes integer types, and it
2188/// can optionally include pointer types if the ScalarEvolution class
2189/// has access to target-specific information.
2190bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2191  // Integers and pointers are always SCEVable.
2192  return Ty->isInteger() || isa<PointerType>(Ty);
2193}
2194
2195/// getTypeSizeInBits - Return the size in bits of the specified type,
2196/// for which isSCEVable must return true.
2197uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2198  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2199
2200  // If we have a TargetData, use it!
2201  if (TD)
2202    return TD->getTypeSizeInBits(Ty);
2203
2204  // Integer types have fixed sizes.
2205  if (Ty->isInteger())
2206    return Ty->getPrimitiveSizeInBits();
2207
2208  // The only other support type is pointer. Without TargetData, conservatively
2209  // assume pointers are 64-bit.
2210  assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2211  return 64;
2212}
2213
2214/// getEffectiveSCEVType - Return a type with the same bitwidth as
2215/// the given type and which represents how SCEV will treat the given
2216/// type, for which isSCEVable must return true. For pointer types,
2217/// this is the pointer-sized integer type.
2218const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2219  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2220
2221  if (Ty->isInteger())
2222    return Ty;
2223
2224  // The only other support type is pointer.
2225  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2226  if (TD) return TD->getIntPtrType(getContext());
2227
2228  // Without TargetData, conservatively assume pointers are 64-bit.
2229  return Type::getInt64Ty(getContext());
2230}
2231
2232const SCEV *ScalarEvolution::getCouldNotCompute() {
2233  return &CouldNotCompute;
2234}
2235
2236/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2237/// expression and create a new one.
2238const SCEV *ScalarEvolution::getSCEV(Value *V) {
2239  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2240
2241  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2242  if (I != Scalars.end()) return I->second;
2243  const SCEV *S = createSCEV(V);
2244  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2245  return S;
2246}
2247
2248/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2249/// specified signed integer value and return a SCEV for the constant.
2250const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2251  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2252  return getConstant(ConstantInt::get(ITy, Val));
2253}
2254
2255/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2256///
2257const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2258  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2259    return getConstant(
2260               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2261
2262  const Type *Ty = V->getType();
2263  Ty = getEffectiveSCEVType(Ty);
2264  return getMulExpr(V,
2265                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2266}
2267
2268/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2269const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2270  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2271    return getConstant(
2272                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2273
2274  const Type *Ty = V->getType();
2275  Ty = getEffectiveSCEVType(Ty);
2276  const SCEV *AllOnes =
2277                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2278  return getMinusSCEV(AllOnes, V);
2279}
2280
2281/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2282///
2283const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2284                                          const SCEV *RHS) {
2285  // X - Y --> X + -Y
2286  return getAddExpr(LHS, getNegativeSCEV(RHS));
2287}
2288
2289/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2290/// input value to the specified type.  If the type must be extended, it is zero
2291/// extended.
2292const SCEV *
2293ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2294                                         const Type *Ty) {
2295  const Type *SrcTy = V->getType();
2296  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2297         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2298         "Cannot truncate or zero extend with non-integer arguments!");
2299  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2300    return V;  // No conversion
2301  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2302    return getTruncateExpr(V, Ty);
2303  return getZeroExtendExpr(V, Ty);
2304}
2305
2306/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2307/// input value to the specified type.  If the type must be extended, it is sign
2308/// extended.
2309const SCEV *
2310ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2311                                         const Type *Ty) {
2312  const Type *SrcTy = V->getType();
2313  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2314         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2315         "Cannot truncate or zero extend with non-integer arguments!");
2316  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2317    return V;  // No conversion
2318  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2319    return getTruncateExpr(V, Ty);
2320  return getSignExtendExpr(V, Ty);
2321}
2322
2323/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2324/// input value to the specified type.  If the type must be extended, it is zero
2325/// extended.  The conversion must not be narrowing.
2326const SCEV *
2327ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2328  const Type *SrcTy = V->getType();
2329  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2330         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2331         "Cannot noop or zero extend with non-integer arguments!");
2332  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2333         "getNoopOrZeroExtend cannot truncate!");
2334  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2335    return V;  // No conversion
2336  return getZeroExtendExpr(V, Ty);
2337}
2338
2339/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2340/// input value to the specified type.  If the type must be extended, it is sign
2341/// extended.  The conversion must not be narrowing.
2342const SCEV *
2343ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2344  const Type *SrcTy = V->getType();
2345  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2346         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2347         "Cannot noop or sign extend with non-integer arguments!");
2348  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2349         "getNoopOrSignExtend cannot truncate!");
2350  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2351    return V;  // No conversion
2352  return getSignExtendExpr(V, Ty);
2353}
2354
2355/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2356/// the input value to the specified type. If the type must be extended,
2357/// it is extended with unspecified bits. The conversion must not be
2358/// narrowing.
2359const SCEV *
2360ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2361  const Type *SrcTy = V->getType();
2362  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2363         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2364         "Cannot noop or any extend with non-integer arguments!");
2365  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2366         "getNoopOrAnyExtend cannot truncate!");
2367  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2368    return V;  // No conversion
2369  return getAnyExtendExpr(V, Ty);
2370}
2371
2372/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2373/// input value to the specified type.  The conversion must not be widening.
2374const SCEV *
2375ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2376  const Type *SrcTy = V->getType();
2377  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2378         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2379         "Cannot truncate or noop with non-integer arguments!");
2380  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2381         "getTruncateOrNoop cannot extend!");
2382  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2383    return V;  // No conversion
2384  return getTruncateExpr(V, Ty);
2385}
2386
2387/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2388/// the types using zero-extension, and then perform a umax operation
2389/// with them.
2390const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2391                                                        const SCEV *RHS) {
2392  const SCEV *PromotedLHS = LHS;
2393  const SCEV *PromotedRHS = RHS;
2394
2395  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2396    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2397  else
2398    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2399
2400  return getUMaxExpr(PromotedLHS, PromotedRHS);
2401}
2402
2403/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2404/// the types using zero-extension, and then perform a umin operation
2405/// with them.
2406const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2407                                                        const SCEV *RHS) {
2408  const SCEV *PromotedLHS = LHS;
2409  const SCEV *PromotedRHS = RHS;
2410
2411  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2412    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2413  else
2414    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2415
2416  return getUMinExpr(PromotedLHS, PromotedRHS);
2417}
2418
2419/// PushDefUseChildren - Push users of the given Instruction
2420/// onto the given Worklist.
2421static void
2422PushDefUseChildren(Instruction *I,
2423                   SmallVectorImpl<Instruction *> &Worklist) {
2424  // Push the def-use children onto the Worklist stack.
2425  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2426       UI != UE; ++UI)
2427    Worklist.push_back(cast<Instruction>(UI));
2428}
2429
2430/// ForgetSymbolicValue - This looks up computed SCEV values for all
2431/// instructions that depend on the given instruction and removes them from
2432/// the Scalars map if they reference SymName. This is used during PHI
2433/// resolution.
2434void
2435ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2436  SmallVector<Instruction *, 16> Worklist;
2437  PushDefUseChildren(I, Worklist);
2438
2439  SmallPtrSet<Instruction *, 8> Visited;
2440  Visited.insert(I);
2441  while (!Worklist.empty()) {
2442    Instruction *I = Worklist.pop_back_val();
2443    if (!Visited.insert(I)) continue;
2444
2445    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2446      Scalars.find(static_cast<Value *>(I));
2447    if (It != Scalars.end()) {
2448      // Short-circuit the def-use traversal if the symbolic name
2449      // ceases to appear in expressions.
2450      if (!It->second->hasOperand(SymName))
2451        continue;
2452
2453      // SCEVUnknown for a PHI either means that it has an unrecognized
2454      // structure, or it's a PHI that's in the progress of being computed
2455      // by createNodeForPHI.  In the former case, additional loop trip
2456      // count information isn't going to change anything. In the later
2457      // case, createNodeForPHI will perform the necessary updates on its
2458      // own when it gets to that point.
2459      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2460        ValuesAtScopes.erase(It->second);
2461        Scalars.erase(It);
2462      }
2463    }
2464
2465    PushDefUseChildren(I, Worklist);
2466  }
2467}
2468
2469/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2470/// a loop header, making it a potential recurrence, or it doesn't.
2471///
2472const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2473  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2474    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2475      if (L->getHeader() == PN->getParent()) {
2476        // If it lives in the loop header, it has two incoming values, one
2477        // from outside the loop, and one from inside.
2478        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2479        unsigned BackEdge     = IncomingEdge^1;
2480
2481        // While we are analyzing this PHI node, handle its value symbolically.
2482        const SCEV *SymbolicName = getUnknown(PN);
2483        assert(Scalars.find(PN) == Scalars.end() &&
2484               "PHI node already processed?");
2485        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2486
2487        // Using this symbolic name for the PHI, analyze the value coming around
2488        // the back-edge.
2489        Value *BEValueV = PN->getIncomingValue(BackEdge);
2490        const SCEV *BEValue = getSCEV(BEValueV);
2491
2492        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2493        // has a special value for the first iteration of the loop.
2494
2495        // If the value coming around the backedge is an add with the symbolic
2496        // value we just inserted, then we found a simple induction variable!
2497        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2498          // If there is a single occurrence of the symbolic value, replace it
2499          // with a recurrence.
2500          unsigned FoundIndex = Add->getNumOperands();
2501          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2502            if (Add->getOperand(i) == SymbolicName)
2503              if (FoundIndex == e) {
2504                FoundIndex = i;
2505                break;
2506              }
2507
2508          if (FoundIndex != Add->getNumOperands()) {
2509            // Create an add with everything but the specified operand.
2510            SmallVector<const SCEV *, 8> Ops;
2511            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2512              if (i != FoundIndex)
2513                Ops.push_back(Add->getOperand(i));
2514            const SCEV *Accum = getAddExpr(Ops);
2515
2516            // This is not a valid addrec if the step amount is varying each
2517            // loop iteration, but is not itself an addrec in this loop.
2518            if (Accum->isLoopInvariant(L) ||
2519                (isa<SCEVAddRecExpr>(Accum) &&
2520                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2521              const SCEV *StartVal =
2522                getSCEV(PN->getIncomingValue(IncomingEdge));
2523              const SCEVAddRecExpr *PHISCEV =
2524                cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2525
2526              // If the increment doesn't overflow, then neither the addrec nor the
2527              // post-increment will overflow.
2528              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2529                if (OBO->getOperand(0) == PN &&
2530                    getSCEV(OBO->getOperand(1)) ==
2531                      PHISCEV->getStepRecurrence(*this)) {
2532                  const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
2533                  if (OBO->hasNoUnsignedWrap()) {
2534                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2535                      ->setHasNoUnsignedWrap(true);
2536                    const_cast<SCEVAddRecExpr *>(PostInc)
2537                      ->setHasNoUnsignedWrap(true);
2538                  }
2539                  if (OBO->hasNoSignedWrap()) {
2540                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2541                      ->setHasNoSignedWrap(true);
2542                    const_cast<SCEVAddRecExpr *>(PostInc)
2543                      ->setHasNoSignedWrap(true);
2544                  }
2545                }
2546
2547              // Okay, for the entire analysis of this edge we assumed the PHI
2548              // to be symbolic.  We now need to go back and purge all of the
2549              // entries for the scalars that use the symbolic expression.
2550              ForgetSymbolicName(PN, SymbolicName);
2551              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2552              return PHISCEV;
2553            }
2554          }
2555        } else if (const SCEVAddRecExpr *AddRec =
2556                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2557          // Otherwise, this could be a loop like this:
2558          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2559          // In this case, j = {1,+,1}  and BEValue is j.
2560          // Because the other in-value of i (0) fits the evolution of BEValue
2561          // i really is an addrec evolution.
2562          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2563            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2564
2565            // If StartVal = j.start - j.stride, we can use StartVal as the
2566            // initial step of the addrec evolution.
2567            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2568                                            AddRec->getOperand(1))) {
2569              const SCEV *PHISCEV =
2570                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2571
2572              // Okay, for the entire analysis of this edge we assumed the PHI
2573              // to be symbolic.  We now need to go back and purge all of the
2574              // entries for the scalars that use the symbolic expression.
2575              ForgetSymbolicName(PN, SymbolicName);
2576              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2577              return PHISCEV;
2578            }
2579          }
2580        }
2581
2582        return SymbolicName;
2583      }
2584
2585  // It's tempting to recognize PHIs with a unique incoming value, however
2586  // this leads passes like indvars to break LCSSA form. Fortunately, such
2587  // PHIs are rare, as instcombine zaps them.
2588
2589  // If it's not a loop phi, we can't handle it yet.
2590  return getUnknown(PN);
2591}
2592
2593/// createNodeForGEP - Expand GEP instructions into add and multiply
2594/// operations. This allows them to be analyzed by regular SCEV code.
2595///
2596const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
2597
2598  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2599  Value *Base = GEP->getOperand(0);
2600  // Don't attempt to analyze GEPs over unsized objects.
2601  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2602    return getUnknown(GEP);
2603  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2604  gep_type_iterator GTI = gep_type_begin(GEP);
2605  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2606                                      E = GEP->op_end();
2607       I != E; ++I) {
2608    Value *Index = *I;
2609    // Compute the (potentially symbolic) offset in bytes for this index.
2610    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2611      // For a struct, add the member offset.
2612      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2613      TotalOffset = getAddExpr(TotalOffset,
2614                               getFieldOffsetExpr(STy, FieldNo));
2615    } else {
2616      // For an array, add the element offset, explicitly scaled.
2617      const SCEV *LocalOffset = getSCEV(Index);
2618      if (!isa<PointerType>(LocalOffset->getType()))
2619        // Getelementptr indicies are signed.
2620        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2621      LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI));
2622      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2623    }
2624  }
2625  return getAddExpr(getSCEV(Base), TotalOffset);
2626}
2627
2628/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2629/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2630/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2631/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2632uint32_t
2633ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2634  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2635    return C->getValue()->getValue().countTrailingZeros();
2636
2637  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2638    return std::min(GetMinTrailingZeros(T->getOperand()),
2639                    (uint32_t)getTypeSizeInBits(T->getType()));
2640
2641  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2642    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2643    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2644             getTypeSizeInBits(E->getType()) : OpRes;
2645  }
2646
2647  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2648    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2649    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2650             getTypeSizeInBits(E->getType()) : OpRes;
2651  }
2652
2653  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2654    // The result is the min of all operands results.
2655    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2656    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2657      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2658    return MinOpRes;
2659  }
2660
2661  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2662    // The result is the sum of all operands results.
2663    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2664    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2665    for (unsigned i = 1, e = M->getNumOperands();
2666         SumOpRes != BitWidth && i != e; ++i)
2667      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2668                          BitWidth);
2669    return SumOpRes;
2670  }
2671
2672  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2673    // The result is the min of all operands results.
2674    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2675    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2676      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2677    return MinOpRes;
2678  }
2679
2680  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2681    // The result is the min of all operands results.
2682    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2683    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2684      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2685    return MinOpRes;
2686  }
2687
2688  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2689    // The result is the min of all operands results.
2690    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2691    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2692      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2693    return MinOpRes;
2694  }
2695
2696  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2697    // For a SCEVUnknown, ask ValueTracking.
2698    unsigned BitWidth = getTypeSizeInBits(U->getType());
2699    APInt Mask = APInt::getAllOnesValue(BitWidth);
2700    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2701    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2702    return Zeros.countTrailingOnes();
2703  }
2704
2705  // SCEVUDivExpr
2706  return 0;
2707}
2708
2709/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2710///
2711ConstantRange
2712ScalarEvolution::getUnsignedRange(const SCEV *S) {
2713
2714  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2715    return ConstantRange(C->getValue()->getValue());
2716
2717  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2718    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2719    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2720      X = X.add(getUnsignedRange(Add->getOperand(i)));
2721    return X;
2722  }
2723
2724  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2725    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2726    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2727      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2728    return X;
2729  }
2730
2731  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2732    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2733    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2734      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2735    return X;
2736  }
2737
2738  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2739    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2740    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2741      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2742    return X;
2743  }
2744
2745  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2746    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2747    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2748    return X.udiv(Y);
2749  }
2750
2751  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2752    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2753    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2754  }
2755
2756  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2757    ConstantRange X = getUnsignedRange(SExt->getOperand());
2758    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2759  }
2760
2761  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2762    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2763    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2764  }
2765
2766  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2767
2768  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2769    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2770    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2771    if (!Trip) return FullSet;
2772
2773    // TODO: non-affine addrec
2774    if (AddRec->isAffine()) {
2775      const Type *Ty = AddRec->getType();
2776      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2777      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2778        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2779
2780        const SCEV *Start = AddRec->getStart();
2781        const SCEV *Step = AddRec->getStepRecurrence(*this);
2782        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2783
2784        // Check for overflow.
2785        // TODO: This is very conservative.
2786        if (!(Step->isOne() &&
2787              isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2788            !(Step->isAllOnesValue() &&
2789              isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
2790          return FullSet;
2791
2792        ConstantRange StartRange = getUnsignedRange(Start);
2793        ConstantRange EndRange = getUnsignedRange(End);
2794        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2795                                   EndRange.getUnsignedMin());
2796        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2797                                   EndRange.getUnsignedMax());
2798        if (Min.isMinValue() && Max.isMaxValue())
2799          return FullSet;
2800        return ConstantRange(Min, Max+1);
2801      }
2802    }
2803  }
2804
2805  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2806    // For a SCEVUnknown, ask ValueTracking.
2807    unsigned BitWidth = getTypeSizeInBits(U->getType());
2808    APInt Mask = APInt::getAllOnesValue(BitWidth);
2809    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2810    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2811    if (Ones == ~Zeros + 1)
2812      return FullSet;
2813    return ConstantRange(Ones, ~Zeros + 1);
2814  }
2815
2816  return FullSet;
2817}
2818
2819/// getSignedRange - Determine the signed range for a particular SCEV.
2820///
2821ConstantRange
2822ScalarEvolution::getSignedRange(const SCEV *S) {
2823
2824  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2825    return ConstantRange(C->getValue()->getValue());
2826
2827  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2828    ConstantRange X = getSignedRange(Add->getOperand(0));
2829    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2830      X = X.add(getSignedRange(Add->getOperand(i)));
2831    return X;
2832  }
2833
2834  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2835    ConstantRange X = getSignedRange(Mul->getOperand(0));
2836    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2837      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2838    return X;
2839  }
2840
2841  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2842    ConstantRange X = getSignedRange(SMax->getOperand(0));
2843    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2844      X = X.smax(getSignedRange(SMax->getOperand(i)));
2845    return X;
2846  }
2847
2848  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2849    ConstantRange X = getSignedRange(UMax->getOperand(0));
2850    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2851      X = X.umax(getSignedRange(UMax->getOperand(i)));
2852    return X;
2853  }
2854
2855  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2856    ConstantRange X = getSignedRange(UDiv->getLHS());
2857    ConstantRange Y = getSignedRange(UDiv->getRHS());
2858    return X.udiv(Y);
2859  }
2860
2861  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2862    ConstantRange X = getSignedRange(ZExt->getOperand());
2863    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2864  }
2865
2866  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2867    ConstantRange X = getSignedRange(SExt->getOperand());
2868    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2869  }
2870
2871  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2872    ConstantRange X = getSignedRange(Trunc->getOperand());
2873    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2874  }
2875
2876  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2877
2878  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2879    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2880    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2881    if (!Trip) return FullSet;
2882
2883    // TODO: non-affine addrec
2884    if (AddRec->isAffine()) {
2885      const Type *Ty = AddRec->getType();
2886      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2887      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2888        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2889
2890        const SCEV *Start = AddRec->getStart();
2891        const SCEV *Step = AddRec->getStepRecurrence(*this);
2892        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2893
2894        // Check for overflow.
2895        // TODO: This is very conservative.
2896        if (!(Step->isOne() &&
2897              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2898            !(Step->isAllOnesValue() &&
2899              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2900          return FullSet;
2901
2902        ConstantRange StartRange = getSignedRange(Start);
2903        ConstantRange EndRange = getSignedRange(End);
2904        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2905                                   EndRange.getSignedMin());
2906        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2907                                   EndRange.getSignedMax());
2908        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2909          return FullSet;
2910        return ConstantRange(Min, Max+1);
2911      }
2912    }
2913  }
2914
2915  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2916    // For a SCEVUnknown, ask ValueTracking.
2917    unsigned BitWidth = getTypeSizeInBits(U->getType());
2918    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2919    if (NS == 1)
2920      return FullSet;
2921    return
2922      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2923                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2924  }
2925
2926  return FullSet;
2927}
2928
2929/// createSCEV - We know that there is no SCEV for the specified value.
2930/// Analyze the expression.
2931///
2932const SCEV *ScalarEvolution::createSCEV(Value *V) {
2933  if (!isSCEVable(V->getType()))
2934    return getUnknown(V);
2935
2936  unsigned Opcode = Instruction::UserOp1;
2937  if (Instruction *I = dyn_cast<Instruction>(V))
2938    Opcode = I->getOpcode();
2939  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2940    Opcode = CE->getOpcode();
2941  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2942    return getConstant(CI);
2943  else if (isa<ConstantPointerNull>(V))
2944    return getIntegerSCEV(0, V->getType());
2945  else if (isa<UndefValue>(V))
2946    return getIntegerSCEV(0, V->getType());
2947  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
2948    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
2949  else
2950    return getUnknown(V);
2951
2952  Operator *U = cast<Operator>(V);
2953  switch (Opcode) {
2954  case Instruction::Add: {
2955    AddOperator *A = cast<AddOperator>(U);
2956    return getAddExpr(getSCEV(U->getOperand(0)),
2957                      getSCEV(U->getOperand(1)),
2958                      A->hasNoUnsignedWrap(),
2959                      A->hasNoSignedWrap());
2960  }
2961  case Instruction::Mul: {
2962    MulOperator *M = cast<MulOperator>(U);
2963    return getMulExpr(getSCEV(U->getOperand(0)),
2964                      getSCEV(U->getOperand(1)),
2965                      M->hasNoUnsignedWrap(),
2966                      M->hasNoSignedWrap());
2967  }
2968  case Instruction::UDiv:
2969    return getUDivExpr(getSCEV(U->getOperand(0)),
2970                       getSCEV(U->getOperand(1)));
2971  case Instruction::Sub:
2972    return getMinusSCEV(getSCEV(U->getOperand(0)),
2973                        getSCEV(U->getOperand(1)));
2974  case Instruction::And:
2975    // For an expression like x&255 that merely masks off the high bits,
2976    // use zext(trunc(x)) as the SCEV expression.
2977    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2978      if (CI->isNullValue())
2979        return getSCEV(U->getOperand(1));
2980      if (CI->isAllOnesValue())
2981        return getSCEV(U->getOperand(0));
2982      const APInt &A = CI->getValue();
2983
2984      // Instcombine's ShrinkDemandedConstant may strip bits out of
2985      // constants, obscuring what would otherwise be a low-bits mask.
2986      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2987      // knew about to reconstruct a low-bits mask value.
2988      unsigned LZ = A.countLeadingZeros();
2989      unsigned BitWidth = A.getBitWidth();
2990      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2991      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2992      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2993
2994      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2995
2996      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2997        return
2998          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2999                                IntegerType::get(getContext(), BitWidth - LZ)),
3000                            U->getType());
3001    }
3002    break;
3003
3004  case Instruction::Or:
3005    // If the RHS of the Or is a constant, we may have something like:
3006    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3007    // optimizations will transparently handle this case.
3008    //
3009    // In order for this transformation to be safe, the LHS must be of the
3010    // form X*(2^n) and the Or constant must be less than 2^n.
3011    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3012      const SCEV *LHS = getSCEV(U->getOperand(0));
3013      const APInt &CIVal = CI->getValue();
3014      if (GetMinTrailingZeros(LHS) >=
3015          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3016        // Build a plain add SCEV.
3017        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3018        // If the LHS of the add was an addrec and it has no-wrap flags,
3019        // transfer the no-wrap flags, since an or won't introduce a wrap.
3020        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3021          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3022          if (OldAR->hasNoUnsignedWrap())
3023            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3024          if (OldAR->hasNoSignedWrap())
3025            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3026        }
3027        return S;
3028      }
3029    }
3030    break;
3031  case Instruction::Xor:
3032    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3033      // If the RHS of the xor is a signbit, then this is just an add.
3034      // Instcombine turns add of signbit into xor as a strength reduction step.
3035      if (CI->getValue().isSignBit())
3036        return getAddExpr(getSCEV(U->getOperand(0)),
3037                          getSCEV(U->getOperand(1)));
3038
3039      // If the RHS of xor is -1, then this is a not operation.
3040      if (CI->isAllOnesValue())
3041        return getNotSCEV(getSCEV(U->getOperand(0)));
3042
3043      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3044      // This is a variant of the check for xor with -1, and it handles
3045      // the case where instcombine has trimmed non-demanded bits out
3046      // of an xor with -1.
3047      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3048        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3049          if (BO->getOpcode() == Instruction::And &&
3050              LCI->getValue() == CI->getValue())
3051            if (const SCEVZeroExtendExpr *Z =
3052                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3053              const Type *UTy = U->getType();
3054              const SCEV *Z0 = Z->getOperand();
3055              const Type *Z0Ty = Z0->getType();
3056              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3057
3058              // If C is a low-bits mask, the zero extend is zerving to
3059              // mask off the high bits. Complement the operand and
3060              // re-apply the zext.
3061              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3062                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3063
3064              // If C is a single bit, it may be in the sign-bit position
3065              // before the zero-extend. In this case, represent the xor
3066              // using an add, which is equivalent, and re-apply the zext.
3067              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3068              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3069                  Trunc.isSignBit())
3070                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3071                                         UTy);
3072            }
3073    }
3074    break;
3075
3076  case Instruction::Shl:
3077    // Turn shift left of a constant amount into a multiply.
3078    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3079      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3080      Constant *X = ConstantInt::get(getContext(),
3081        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3082      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3083    }
3084    break;
3085
3086  case Instruction::LShr:
3087    // Turn logical shift right of a constant into a unsigned divide.
3088    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3089      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3090      Constant *X = ConstantInt::get(getContext(),
3091        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3092      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3093    }
3094    break;
3095
3096  case Instruction::AShr:
3097    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3098    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3099      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3100        if (L->getOpcode() == Instruction::Shl &&
3101            L->getOperand(1) == U->getOperand(1)) {
3102          unsigned BitWidth = getTypeSizeInBits(U->getType());
3103          uint64_t Amt = BitWidth - CI->getZExtValue();
3104          if (Amt == BitWidth)
3105            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3106          if (Amt > BitWidth)
3107            return getIntegerSCEV(0, U->getType()); // value is undefined
3108          return
3109            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3110                                           IntegerType::get(getContext(), Amt)),
3111                                 U->getType());
3112        }
3113    break;
3114
3115  case Instruction::Trunc:
3116    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3117
3118  case Instruction::ZExt:
3119    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3120
3121  case Instruction::SExt:
3122    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3123
3124  case Instruction::BitCast:
3125    // BitCasts are no-op casts so we just eliminate the cast.
3126    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3127      return getSCEV(U->getOperand(0));
3128    break;
3129
3130    // It's tempting to handle inttoptr and ptrtoint, however this can
3131    // lead to pointer expressions which cannot be expanded to GEPs
3132    // (because they may overflow). For now, the only pointer-typed
3133    // expressions we handle are GEPs and address literals.
3134
3135  case Instruction::GetElementPtr:
3136    return createNodeForGEP(U);
3137
3138  case Instruction::PHI:
3139    return createNodeForPHI(cast<PHINode>(U));
3140
3141  case Instruction::Select:
3142    // This could be a smax or umax that was lowered earlier.
3143    // Try to recover it.
3144    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3145      Value *LHS = ICI->getOperand(0);
3146      Value *RHS = ICI->getOperand(1);
3147      switch (ICI->getPredicate()) {
3148      case ICmpInst::ICMP_SLT:
3149      case ICmpInst::ICMP_SLE:
3150        std::swap(LHS, RHS);
3151        // fall through
3152      case ICmpInst::ICMP_SGT:
3153      case ICmpInst::ICMP_SGE:
3154        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3155          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
3156        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3157          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
3158        break;
3159      case ICmpInst::ICMP_ULT:
3160      case ICmpInst::ICMP_ULE:
3161        std::swap(LHS, RHS);
3162        // fall through
3163      case ICmpInst::ICMP_UGT:
3164      case ICmpInst::ICMP_UGE:
3165        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3166          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
3167        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3168          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
3169        break;
3170      case ICmpInst::ICMP_NE:
3171        // n != 0 ? n : 1  ->  umax(n, 1)
3172        if (LHS == U->getOperand(1) &&
3173            isa<ConstantInt>(U->getOperand(2)) &&
3174            cast<ConstantInt>(U->getOperand(2))->isOne() &&
3175            isa<ConstantInt>(RHS) &&
3176            cast<ConstantInt>(RHS)->isZero())
3177          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3178        break;
3179      case ICmpInst::ICMP_EQ:
3180        // n == 0 ? 1 : n  ->  umax(n, 1)
3181        if (LHS == U->getOperand(2) &&
3182            isa<ConstantInt>(U->getOperand(1)) &&
3183            cast<ConstantInt>(U->getOperand(1))->isOne() &&
3184            isa<ConstantInt>(RHS) &&
3185            cast<ConstantInt>(RHS)->isZero())
3186          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3187        break;
3188      default:
3189        break;
3190      }
3191    }
3192
3193  default: // We cannot analyze this expression.
3194    break;
3195  }
3196
3197  return getUnknown(V);
3198}
3199
3200
3201
3202//===----------------------------------------------------------------------===//
3203//                   Iteration Count Computation Code
3204//
3205
3206/// getBackedgeTakenCount - If the specified loop has a predictable
3207/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3208/// object. The backedge-taken count is the number of times the loop header
3209/// will be branched to from within the loop. This is one less than the
3210/// trip count of the loop, since it doesn't count the first iteration,
3211/// when the header is branched to from outside the loop.
3212///
3213/// Note that it is not valid to call this method on a loop without a
3214/// loop-invariant backedge-taken count (see
3215/// hasLoopInvariantBackedgeTakenCount).
3216///
3217const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3218  return getBackedgeTakenInfo(L).Exact;
3219}
3220
3221/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3222/// return the least SCEV value that is known never to be less than the
3223/// actual backedge taken count.
3224const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3225  return getBackedgeTakenInfo(L).Max;
3226}
3227
3228/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3229/// onto the given Worklist.
3230static void
3231PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3232  BasicBlock *Header = L->getHeader();
3233
3234  // Push all Loop-header PHIs onto the Worklist stack.
3235  for (BasicBlock::iterator I = Header->begin();
3236       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3237    Worklist.push_back(PN);
3238}
3239
3240const ScalarEvolution::BackedgeTakenInfo &
3241ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3242  // Initially insert a CouldNotCompute for this loop. If the insertion
3243  // succeeds, procede to actually compute a backedge-taken count and
3244  // update the value. The temporary CouldNotCompute value tells SCEV
3245  // code elsewhere that it shouldn't attempt to request a new
3246  // backedge-taken count, which could result in infinite recursion.
3247  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
3248    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3249  if (Pair.second) {
3250    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3251    if (ItCount.Exact != getCouldNotCompute()) {
3252      assert(ItCount.Exact->isLoopInvariant(L) &&
3253             ItCount.Max->isLoopInvariant(L) &&
3254             "Computed trip count isn't loop invariant for loop!");
3255      ++NumTripCountsComputed;
3256
3257      // Update the value in the map.
3258      Pair.first->second = ItCount;
3259    } else {
3260      if (ItCount.Max != getCouldNotCompute())
3261        // Update the value in the map.
3262        Pair.first->second = ItCount;
3263      if (isa<PHINode>(L->getHeader()->begin()))
3264        // Only count loops that have phi nodes as not being computable.
3265        ++NumTripCountsNotComputed;
3266    }
3267
3268    // Now that we know more about the trip count for this loop, forget any
3269    // existing SCEV values for PHI nodes in this loop since they are only
3270    // conservative estimates made without the benefit of trip count
3271    // information. This is similar to the code in
3272    // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3273    // nodes specially.
3274    if (ItCount.hasAnyInfo()) {
3275      SmallVector<Instruction *, 16> Worklist;
3276      PushLoopPHIs(L, Worklist);
3277
3278      SmallPtrSet<Instruction *, 8> Visited;
3279      while (!Worklist.empty()) {
3280        Instruction *I = Worklist.pop_back_val();
3281        if (!Visited.insert(I)) continue;
3282
3283        std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3284          Scalars.find(static_cast<Value *>(I));
3285        if (It != Scalars.end()) {
3286          // SCEVUnknown for a PHI either means that it has an unrecognized
3287          // structure, or it's a PHI that's in the progress of being computed
3288          // by createNodeForPHI.  In the former case, additional loop trip
3289          // count information isn't going to change anything. In the later
3290          // case, createNodeForPHI will perform the necessary updates on its
3291          // own when it gets to that point.
3292          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3293            ValuesAtScopes.erase(It->second);
3294            Scalars.erase(It);
3295          }
3296          if (PHINode *PN = dyn_cast<PHINode>(I))
3297            ConstantEvolutionLoopExitValue.erase(PN);
3298        }
3299
3300        PushDefUseChildren(I, Worklist);
3301      }
3302    }
3303  }
3304  return Pair.first->second;
3305}
3306
3307/// forgetLoopBackedgeTakenCount - This method should be called by the
3308/// client when it has changed a loop in a way that may effect
3309/// ScalarEvolution's ability to compute a trip count, or if the loop
3310/// is deleted.
3311void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3312  BackedgeTakenCounts.erase(L);
3313
3314  SmallVector<Instruction *, 16> Worklist;
3315  PushLoopPHIs(L, Worklist);
3316
3317  SmallPtrSet<Instruction *, 8> Visited;
3318  while (!Worklist.empty()) {
3319    Instruction *I = Worklist.pop_back_val();
3320    if (!Visited.insert(I)) continue;
3321
3322    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3323      Scalars.find(static_cast<Value *>(I));
3324    if (It != Scalars.end()) {
3325      ValuesAtScopes.erase(It->second);
3326      Scalars.erase(It);
3327      if (PHINode *PN = dyn_cast<PHINode>(I))
3328        ConstantEvolutionLoopExitValue.erase(PN);
3329    }
3330
3331    PushDefUseChildren(I, Worklist);
3332  }
3333}
3334
3335/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3336/// of the specified loop will execute.
3337ScalarEvolution::BackedgeTakenInfo
3338ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3339  SmallVector<BasicBlock*, 8> ExitingBlocks;
3340  L->getExitingBlocks(ExitingBlocks);
3341
3342  // Examine all exits and pick the most conservative values.
3343  const SCEV *BECount = getCouldNotCompute();
3344  const SCEV *MaxBECount = getCouldNotCompute();
3345  bool CouldNotComputeBECount = false;
3346  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3347    BackedgeTakenInfo NewBTI =
3348      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3349
3350    if (NewBTI.Exact == getCouldNotCompute()) {
3351      // We couldn't compute an exact value for this exit, so
3352      // we won't be able to compute an exact value for the loop.
3353      CouldNotComputeBECount = true;
3354      BECount = getCouldNotCompute();
3355    } else if (!CouldNotComputeBECount) {
3356      if (BECount == getCouldNotCompute())
3357        BECount = NewBTI.Exact;
3358      else
3359        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3360    }
3361    if (MaxBECount == getCouldNotCompute())
3362      MaxBECount = NewBTI.Max;
3363    else if (NewBTI.Max != getCouldNotCompute())
3364      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3365  }
3366
3367  return BackedgeTakenInfo(BECount, MaxBECount);
3368}
3369
3370/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3371/// of the specified loop will execute if it exits via the specified block.
3372ScalarEvolution::BackedgeTakenInfo
3373ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3374                                                   BasicBlock *ExitingBlock) {
3375
3376  // Okay, we've chosen an exiting block.  See what condition causes us to
3377  // exit at this block.
3378  //
3379  // FIXME: we should be able to handle switch instructions (with a single exit)
3380  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3381  if (ExitBr == 0) return getCouldNotCompute();
3382  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3383
3384  // At this point, we know we have a conditional branch that determines whether
3385  // the loop is exited.  However, we don't know if the branch is executed each
3386  // time through the loop.  If not, then the execution count of the branch will
3387  // not be equal to the trip count of the loop.
3388  //
3389  // Currently we check for this by checking to see if the Exit branch goes to
3390  // the loop header.  If so, we know it will always execute the same number of
3391  // times as the loop.  We also handle the case where the exit block *is* the
3392  // loop header.  This is common for un-rotated loops.
3393  //
3394  // If both of those tests fail, walk up the unique predecessor chain to the
3395  // header, stopping if there is an edge that doesn't exit the loop. If the
3396  // header is reached, the execution count of the branch will be equal to the
3397  // trip count of the loop.
3398  //
3399  //  More extensive analysis could be done to handle more cases here.
3400  //
3401  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3402      ExitBr->getSuccessor(1) != L->getHeader() &&
3403      ExitBr->getParent() != L->getHeader()) {
3404    // The simple checks failed, try climbing the unique predecessor chain
3405    // up to the header.
3406    bool Ok = false;
3407    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3408      BasicBlock *Pred = BB->getUniquePredecessor();
3409      if (!Pred)
3410        return getCouldNotCompute();
3411      TerminatorInst *PredTerm = Pred->getTerminator();
3412      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3413        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3414        if (PredSucc == BB)
3415          continue;
3416        // If the predecessor has a successor that isn't BB and isn't
3417        // outside the loop, assume the worst.
3418        if (L->contains(PredSucc))
3419          return getCouldNotCompute();
3420      }
3421      if (Pred == L->getHeader()) {
3422        Ok = true;
3423        break;
3424      }
3425      BB = Pred;
3426    }
3427    if (!Ok)
3428      return getCouldNotCompute();
3429  }
3430
3431  // Procede to the next level to examine the exit condition expression.
3432  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3433                                               ExitBr->getSuccessor(0),
3434                                               ExitBr->getSuccessor(1));
3435}
3436
3437/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3438/// backedge of the specified loop will execute if its exit condition
3439/// were a conditional branch of ExitCond, TBB, and FBB.
3440ScalarEvolution::BackedgeTakenInfo
3441ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3442                                                       Value *ExitCond,
3443                                                       BasicBlock *TBB,
3444                                                       BasicBlock *FBB) {
3445  // Check if the controlling expression for this loop is an And or Or.
3446  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3447    if (BO->getOpcode() == Instruction::And) {
3448      // Recurse on the operands of the and.
3449      BackedgeTakenInfo BTI0 =
3450        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3451      BackedgeTakenInfo BTI1 =
3452        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3453      const SCEV *BECount = getCouldNotCompute();
3454      const SCEV *MaxBECount = getCouldNotCompute();
3455      if (L->contains(TBB)) {
3456        // Both conditions must be true for the loop to continue executing.
3457        // Choose the less conservative count.
3458        if (BTI0.Exact == getCouldNotCompute() ||
3459            BTI1.Exact == getCouldNotCompute())
3460          BECount = getCouldNotCompute();
3461        else
3462          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3463        if (BTI0.Max == getCouldNotCompute())
3464          MaxBECount = BTI1.Max;
3465        else if (BTI1.Max == getCouldNotCompute())
3466          MaxBECount = BTI0.Max;
3467        else
3468          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3469      } else {
3470        // Both conditions must be true for the loop to exit.
3471        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3472        if (BTI0.Exact != getCouldNotCompute() &&
3473            BTI1.Exact != getCouldNotCompute())
3474          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3475        if (BTI0.Max != getCouldNotCompute() &&
3476            BTI1.Max != getCouldNotCompute())
3477          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3478      }
3479
3480      return BackedgeTakenInfo(BECount, MaxBECount);
3481    }
3482    if (BO->getOpcode() == Instruction::Or) {
3483      // Recurse on the operands of the or.
3484      BackedgeTakenInfo BTI0 =
3485        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3486      BackedgeTakenInfo BTI1 =
3487        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3488      const SCEV *BECount = getCouldNotCompute();
3489      const SCEV *MaxBECount = getCouldNotCompute();
3490      if (L->contains(FBB)) {
3491        // Both conditions must be false for the loop to continue executing.
3492        // Choose the less conservative count.
3493        if (BTI0.Exact == getCouldNotCompute() ||
3494            BTI1.Exact == getCouldNotCompute())
3495          BECount = getCouldNotCompute();
3496        else
3497          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3498        if (BTI0.Max == getCouldNotCompute())
3499          MaxBECount = BTI1.Max;
3500        else if (BTI1.Max == getCouldNotCompute())
3501          MaxBECount = BTI0.Max;
3502        else
3503          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3504      } else {
3505        // Both conditions must be false for the loop to exit.
3506        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3507        if (BTI0.Exact != getCouldNotCompute() &&
3508            BTI1.Exact != getCouldNotCompute())
3509          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3510        if (BTI0.Max != getCouldNotCompute() &&
3511            BTI1.Max != getCouldNotCompute())
3512          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3513      }
3514
3515      return BackedgeTakenInfo(BECount, MaxBECount);
3516    }
3517  }
3518
3519  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3520  // Procede to the next level to examine the icmp.
3521  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3522    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3523
3524  // If it's not an integer or pointer comparison then compute it the hard way.
3525  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3526}
3527
3528/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3529/// backedge of the specified loop will execute if its exit condition
3530/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3531ScalarEvolution::BackedgeTakenInfo
3532ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3533                                                           ICmpInst *ExitCond,
3534                                                           BasicBlock *TBB,
3535                                                           BasicBlock *FBB) {
3536
3537  // If the condition was exit on true, convert the condition to exit on false
3538  ICmpInst::Predicate Cond;
3539  if (!L->contains(FBB))
3540    Cond = ExitCond->getPredicate();
3541  else
3542    Cond = ExitCond->getInversePredicate();
3543
3544  // Handle common loops like: for (X = "string"; *X; ++X)
3545  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3546    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3547      const SCEV *ItCnt =
3548        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3549      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3550        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3551        return BackedgeTakenInfo(ItCnt,
3552                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3553                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3554      }
3555    }
3556
3557  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3558  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3559
3560  // Try to evaluate any dependencies out of the loop.
3561  LHS = getSCEVAtScope(LHS, L);
3562  RHS = getSCEVAtScope(RHS, L);
3563
3564  // At this point, we would like to compute how many iterations of the
3565  // loop the predicate will return true for these inputs.
3566  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3567    // If there is a loop-invariant, force it into the RHS.
3568    std::swap(LHS, RHS);
3569    Cond = ICmpInst::getSwappedPredicate(Cond);
3570  }
3571
3572  // If we have a comparison of a chrec against a constant, try to use value
3573  // ranges to answer this query.
3574  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3575    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3576      if (AddRec->getLoop() == L) {
3577        // Form the constant range.
3578        ConstantRange CompRange(
3579            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3580
3581        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3582        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3583      }
3584
3585  switch (Cond) {
3586  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3587    // Convert to: while (X-Y != 0)
3588    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3589    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3590    break;
3591  }
3592  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3593    // Convert to: while (X-Y == 0)
3594    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3595    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3596    break;
3597  }
3598  case ICmpInst::ICMP_SLT: {
3599    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3600    if (BTI.hasAnyInfo()) return BTI;
3601    break;
3602  }
3603  case ICmpInst::ICMP_SGT: {
3604    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3605                                             getNotSCEV(RHS), L, true);
3606    if (BTI.hasAnyInfo()) return BTI;
3607    break;
3608  }
3609  case ICmpInst::ICMP_ULT: {
3610    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3611    if (BTI.hasAnyInfo()) return BTI;
3612    break;
3613  }
3614  case ICmpInst::ICMP_UGT: {
3615    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3616                                             getNotSCEV(RHS), L, false);
3617    if (BTI.hasAnyInfo()) return BTI;
3618    break;
3619  }
3620  default:
3621#if 0
3622    errs() << "ComputeBackedgeTakenCount ";
3623    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3624      errs() << "[unsigned] ";
3625    errs() << *LHS << "   "
3626         << Instruction::getOpcodeName(Instruction::ICmp)
3627         << "   " << *RHS << "\n";
3628#endif
3629    break;
3630  }
3631  return
3632    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3633}
3634
3635static ConstantInt *
3636EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3637                                ScalarEvolution &SE) {
3638  const SCEV *InVal = SE.getConstant(C);
3639  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3640  assert(isa<SCEVConstant>(Val) &&
3641         "Evaluation of SCEV at constant didn't fold correctly?");
3642  return cast<SCEVConstant>(Val)->getValue();
3643}
3644
3645/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3646/// and a GEP expression (missing the pointer index) indexing into it, return
3647/// the addressed element of the initializer or null if the index expression is
3648/// invalid.
3649static Constant *
3650GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
3651                              const std::vector<ConstantInt*> &Indices) {
3652  Constant *Init = GV->getInitializer();
3653  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3654    uint64_t Idx = Indices[i]->getZExtValue();
3655    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3656      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3657      Init = cast<Constant>(CS->getOperand(Idx));
3658    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3659      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3660      Init = cast<Constant>(CA->getOperand(Idx));
3661    } else if (isa<ConstantAggregateZero>(Init)) {
3662      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3663        assert(Idx < STy->getNumElements() && "Bad struct index!");
3664        Init = Constant::getNullValue(STy->getElementType(Idx));
3665      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3666        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3667        Init = Constant::getNullValue(ATy->getElementType());
3668      } else {
3669        llvm_unreachable("Unknown constant aggregate type!");
3670      }
3671      return 0;
3672    } else {
3673      return 0; // Unknown initializer type
3674    }
3675  }
3676  return Init;
3677}
3678
3679/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3680/// 'icmp op load X, cst', try to see if we can compute the backedge
3681/// execution count.
3682const SCEV *
3683ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3684                                                LoadInst *LI,
3685                                                Constant *RHS,
3686                                                const Loop *L,
3687                                                ICmpInst::Predicate predicate) {
3688  if (LI->isVolatile()) return getCouldNotCompute();
3689
3690  // Check to see if the loaded pointer is a getelementptr of a global.
3691  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3692  if (!GEP) return getCouldNotCompute();
3693
3694  // Make sure that it is really a constant global we are gepping, with an
3695  // initializer, and make sure the first IDX is really 0.
3696  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3697  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
3698      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3699      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3700    return getCouldNotCompute();
3701
3702  // Okay, we allow one non-constant index into the GEP instruction.
3703  Value *VarIdx = 0;
3704  std::vector<ConstantInt*> Indexes;
3705  unsigned VarIdxNum = 0;
3706  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3707    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3708      Indexes.push_back(CI);
3709    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3710      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3711      VarIdx = GEP->getOperand(i);
3712      VarIdxNum = i-2;
3713      Indexes.push_back(0);
3714    }
3715
3716  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3717  // Check to see if X is a loop variant variable value now.
3718  const SCEV *Idx = getSCEV(VarIdx);
3719  Idx = getSCEVAtScope(Idx, L);
3720
3721  // We can only recognize very limited forms of loop index expressions, in
3722  // particular, only affine AddRec's like {C1,+,C2}.
3723  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3724  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3725      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3726      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3727    return getCouldNotCompute();
3728
3729  unsigned MaxSteps = MaxBruteForceIterations;
3730  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3731    ConstantInt *ItCst = ConstantInt::get(
3732                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
3733    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3734
3735    // Form the GEP offset.
3736    Indexes[VarIdxNum] = Val;
3737
3738    Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
3739    if (Result == 0) break;  // Cannot compute!
3740
3741    // Evaluate the condition for this iteration.
3742    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3743    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3744    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3745#if 0
3746      errs() << "\n***\n*** Computed loop count " << *ItCst
3747             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3748             << "***\n";
3749#endif
3750      ++NumArrayLenItCounts;
3751      return getConstant(ItCst);   // Found terminating iteration!
3752    }
3753  }
3754  return getCouldNotCompute();
3755}
3756
3757
3758/// CanConstantFold - Return true if we can constant fold an instruction of the
3759/// specified type, assuming that all operands were constants.
3760static bool CanConstantFold(const Instruction *I) {
3761  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3762      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3763    return true;
3764
3765  if (const CallInst *CI = dyn_cast<CallInst>(I))
3766    if (const Function *F = CI->getCalledFunction())
3767      return canConstantFoldCallTo(F);
3768  return false;
3769}
3770
3771/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3772/// in the loop that V is derived from.  We allow arbitrary operations along the
3773/// way, but the operands of an operation must either be constants or a value
3774/// derived from a constant PHI.  If this expression does not fit with these
3775/// constraints, return null.
3776static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3777  // If this is not an instruction, or if this is an instruction outside of the
3778  // loop, it can't be derived from a loop PHI.
3779  Instruction *I = dyn_cast<Instruction>(V);
3780  if (I == 0 || !L->contains(I->getParent())) return 0;
3781
3782  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3783    if (L->getHeader() == I->getParent())
3784      return PN;
3785    else
3786      // We don't currently keep track of the control flow needed to evaluate
3787      // PHIs, so we cannot handle PHIs inside of loops.
3788      return 0;
3789  }
3790
3791  // If we won't be able to constant fold this expression even if the operands
3792  // are constants, return early.
3793  if (!CanConstantFold(I)) return 0;
3794
3795  // Otherwise, we can evaluate this instruction if all of its operands are
3796  // constant or derived from a PHI node themselves.
3797  PHINode *PHI = 0;
3798  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3799    if (!(isa<Constant>(I->getOperand(Op)) ||
3800          isa<GlobalValue>(I->getOperand(Op)))) {
3801      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3802      if (P == 0) return 0;  // Not evolving from PHI
3803      if (PHI == 0)
3804        PHI = P;
3805      else if (PHI != P)
3806        return 0;  // Evolving from multiple different PHIs.
3807    }
3808
3809  // This is a expression evolving from a constant PHI!
3810  return PHI;
3811}
3812
3813/// EvaluateExpression - Given an expression that passes the
3814/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3815/// in the loop has the value PHIVal.  If we can't fold this expression for some
3816/// reason, return null.
3817static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3818  if (isa<PHINode>(V)) return PHIVal;
3819  if (Constant *C = dyn_cast<Constant>(V)) return C;
3820  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3821  Instruction *I = cast<Instruction>(V);
3822  LLVMContext &Context = I->getParent()->getContext();
3823
3824  std::vector<Constant*> Operands;
3825  Operands.resize(I->getNumOperands());
3826
3827  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3828    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3829    if (Operands[i] == 0) return 0;
3830  }
3831
3832  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3833    return ConstantFoldCompareInstOperands(CI->getPredicate(),
3834                                           &Operands[0], Operands.size(),
3835                                           Context);
3836  else
3837    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3838                                    &Operands[0], Operands.size(),
3839                                    Context);
3840}
3841
3842/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3843/// in the header of its containing loop, we know the loop executes a
3844/// constant number of times, and the PHI node is just a recurrence
3845/// involving constants, fold it.
3846Constant *
3847ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3848                                                   const APInt& BEs,
3849                                                   const Loop *L) {
3850  std::map<PHINode*, Constant*>::iterator I =
3851    ConstantEvolutionLoopExitValue.find(PN);
3852  if (I != ConstantEvolutionLoopExitValue.end())
3853    return I->second;
3854
3855  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3856    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3857
3858  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3859
3860  // Since the loop is canonicalized, the PHI node must have two entries.  One
3861  // entry must be a constant (coming in from outside of the loop), and the
3862  // second must be derived from the same PHI.
3863  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3864  Constant *StartCST =
3865    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3866  if (StartCST == 0)
3867    return RetVal = 0;  // Must be a constant.
3868
3869  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3870  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3871  if (PN2 != PN)
3872    return RetVal = 0;  // Not derived from same PHI.
3873
3874  // Execute the loop symbolically to determine the exit value.
3875  if (BEs.getActiveBits() >= 32)
3876    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3877
3878  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3879  unsigned IterationNum = 0;
3880  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3881    if (IterationNum == NumIterations)
3882      return RetVal = PHIVal;  // Got exit value!
3883
3884    // Compute the value of the PHI node for the next iteration.
3885    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3886    if (NextPHI == PHIVal)
3887      return RetVal = NextPHI;  // Stopped evolving!
3888    if (NextPHI == 0)
3889      return 0;        // Couldn't evaluate!
3890    PHIVal = NextPHI;
3891  }
3892}
3893
3894/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
3895/// constant number of times (the condition evolves only from constants),
3896/// try to evaluate a few iterations of the loop until we get the exit
3897/// condition gets a value of ExitWhen (true or false).  If we cannot
3898/// evaluate the trip count of the loop, return getCouldNotCompute().
3899const SCEV *
3900ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3901                                                       Value *Cond,
3902                                                       bool ExitWhen) {
3903  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3904  if (PN == 0) return getCouldNotCompute();
3905
3906  // Since the loop is canonicalized, the PHI node must have two entries.  One
3907  // entry must be a constant (coming in from outside of the loop), and the
3908  // second must be derived from the same PHI.
3909  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3910  Constant *StartCST =
3911    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3912  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3913
3914  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3915  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3916  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3917
3918  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3919  // the loop symbolically to determine when the condition gets a value of
3920  // "ExitWhen".
3921  unsigned IterationNum = 0;
3922  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3923  for (Constant *PHIVal = StartCST;
3924       IterationNum != MaxIterations; ++IterationNum) {
3925    ConstantInt *CondVal =
3926      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3927
3928    // Couldn't symbolically evaluate.
3929    if (!CondVal) return getCouldNotCompute();
3930
3931    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3932      ++NumBruteForceTripCountsComputed;
3933      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
3934    }
3935
3936    // Compute the value of the PHI node for the next iteration.
3937    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3938    if (NextPHI == 0 || NextPHI == PHIVal)
3939      return getCouldNotCompute();// Couldn't evaluate or not making progress...
3940    PHIVal = NextPHI;
3941  }
3942
3943  // Too many iterations were needed to evaluate.
3944  return getCouldNotCompute();
3945}
3946
3947/// getSCEVAtScope - Return a SCEV expression for the specified value
3948/// at the specified scope in the program.  The L value specifies a loop
3949/// nest to evaluate the expression at, where null is the top-level or a
3950/// specified loop is immediately inside of the loop.
3951///
3952/// This method can be used to compute the exit value for a variable defined
3953/// in a loop by querying what the value will hold in the parent loop.
3954///
3955/// In the case that a relevant loop exit value cannot be computed, the
3956/// original value V is returned.
3957const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3958  // Check to see if we've folded this expression at this loop before.
3959  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
3960  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
3961    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
3962  if (!Pair.second)
3963    return Pair.first->second ? Pair.first->second : V;
3964
3965  // Otherwise compute it.
3966  const SCEV *C = computeSCEVAtScope(V, L);
3967  ValuesAtScopes[V][L] = C;
3968  return C;
3969}
3970
3971const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
3972  if (isa<SCEVConstant>(V)) return V;
3973
3974  // If this instruction is evolved from a constant-evolving PHI, compute the
3975  // exit value from the loop without using SCEVs.
3976  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3977    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3978      const Loop *LI = (*this->LI)[I->getParent()];
3979      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3980        if (PHINode *PN = dyn_cast<PHINode>(I))
3981          if (PN->getParent() == LI->getHeader()) {
3982            // Okay, there is no closed form solution for the PHI node.  Check
3983            // to see if the loop that contains it has a known backedge-taken
3984            // count.  If so, we may be able to force computation of the exit
3985            // value.
3986            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3987            if (const SCEVConstant *BTCC =
3988                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3989              // Okay, we know how many times the containing loop executes.  If
3990              // this is a constant evolving PHI node, get the final value at
3991              // the specified iteration number.
3992              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3993                                                   BTCC->getValue()->getValue(),
3994                                                               LI);
3995              if (RV) return getSCEV(RV);
3996            }
3997          }
3998
3999      // Okay, this is an expression that we cannot symbolically evaluate
4000      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4001      // the arguments into constants, and if so, try to constant propagate the
4002      // result.  This is particularly useful for computing loop exit values.
4003      if (CanConstantFold(I)) {
4004        std::vector<Constant*> Operands;
4005        Operands.reserve(I->getNumOperands());
4006        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4007          Value *Op = I->getOperand(i);
4008          if (Constant *C = dyn_cast<Constant>(Op)) {
4009            Operands.push_back(C);
4010          } else {
4011            // If any of the operands is non-constant and if they are
4012            // non-integer and non-pointer, don't even try to analyze them
4013            // with scev techniques.
4014            if (!isSCEVable(Op->getType()))
4015              return V;
4016
4017            const SCEV* OpV = getSCEVAtScope(Op, L);
4018            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4019              Constant *C = SC->getValue();
4020              if (C->getType() != Op->getType())
4021                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4022                                                                  Op->getType(),
4023                                                                  false),
4024                                          C, Op->getType());
4025              Operands.push_back(C);
4026            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4027              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4028                if (C->getType() != Op->getType())
4029                  C =
4030                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4031                                                                  Op->getType(),
4032                                                                  false),
4033                                          C, Op->getType());
4034                Operands.push_back(C);
4035              } else
4036                return V;
4037            } else {
4038              return V;
4039            }
4040          }
4041        }
4042
4043        Constant *C;
4044        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4045          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4046                                              &Operands[0], Operands.size(),
4047                                              getContext());
4048        else
4049          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4050                                       &Operands[0], Operands.size(),
4051                                       getContext());
4052        return getSCEV(C);
4053      }
4054    }
4055
4056    // This is some other type of SCEVUnknown, just return it.
4057    return V;
4058  }
4059
4060  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4061    // Avoid performing the look-up in the common case where the specified
4062    // expression has no loop-variant portions.
4063    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4064      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4065      if (OpAtScope != Comm->getOperand(i)) {
4066        // Okay, at least one of these operands is loop variant but might be
4067        // foldable.  Build a new instance of the folded commutative expression.
4068        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4069                                            Comm->op_begin()+i);
4070        NewOps.push_back(OpAtScope);
4071
4072        for (++i; i != e; ++i) {
4073          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4074          NewOps.push_back(OpAtScope);
4075        }
4076        if (isa<SCEVAddExpr>(Comm))
4077          return getAddExpr(NewOps);
4078        if (isa<SCEVMulExpr>(Comm))
4079          return getMulExpr(NewOps);
4080        if (isa<SCEVSMaxExpr>(Comm))
4081          return getSMaxExpr(NewOps);
4082        if (isa<SCEVUMaxExpr>(Comm))
4083          return getUMaxExpr(NewOps);
4084        llvm_unreachable("Unknown commutative SCEV type!");
4085      }
4086    }
4087    // If we got here, all operands are loop invariant.
4088    return Comm;
4089  }
4090
4091  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4092    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4093    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4094    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4095      return Div;   // must be loop invariant
4096    return getUDivExpr(LHS, RHS);
4097  }
4098
4099  // If this is a loop recurrence for a loop that does not contain L, then we
4100  // are dealing with the final value computed by the loop.
4101  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4102    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
4103      // To evaluate this recurrence, we need to know how many times the AddRec
4104      // loop iterates.  Compute this now.
4105      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4106      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4107
4108      // Then, evaluate the AddRec.
4109      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4110    }
4111    return AddRec;
4112  }
4113
4114  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4115    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4116    if (Op == Cast->getOperand())
4117      return Cast;  // must be loop invariant
4118    return getZeroExtendExpr(Op, Cast->getType());
4119  }
4120
4121  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4122    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4123    if (Op == Cast->getOperand())
4124      return Cast;  // must be loop invariant
4125    return getSignExtendExpr(Op, Cast->getType());
4126  }
4127
4128  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4129    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4130    if (Op == Cast->getOperand())
4131      return Cast;  // must be loop invariant
4132    return getTruncateExpr(Op, Cast->getType());
4133  }
4134
4135  if (isa<SCEVTargetDataConstant>(V))
4136    return V;
4137
4138  llvm_unreachable("Unknown SCEV type!");
4139  return 0;
4140}
4141
4142/// getSCEVAtScope - This is a convenience function which does
4143/// getSCEVAtScope(getSCEV(V), L).
4144const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4145  return getSCEVAtScope(getSCEV(V), L);
4146}
4147
4148/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4149/// following equation:
4150///
4151///     A * X = B (mod N)
4152///
4153/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4154/// A and B isn't important.
4155///
4156/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4157static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4158                                               ScalarEvolution &SE) {
4159  uint32_t BW = A.getBitWidth();
4160  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4161  assert(A != 0 && "A must be non-zero.");
4162
4163  // 1. D = gcd(A, N)
4164  //
4165  // The gcd of A and N may have only one prime factor: 2. The number of
4166  // trailing zeros in A is its multiplicity
4167  uint32_t Mult2 = A.countTrailingZeros();
4168  // D = 2^Mult2
4169
4170  // 2. Check if B is divisible by D.
4171  //
4172  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4173  // is not less than multiplicity of this prime factor for D.
4174  if (B.countTrailingZeros() < Mult2)
4175    return SE.getCouldNotCompute();
4176
4177  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4178  // modulo (N / D).
4179  //
4180  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4181  // bit width during computations.
4182  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4183  APInt Mod(BW + 1, 0);
4184  Mod.set(BW - Mult2);  // Mod = N / D
4185  APInt I = AD.multiplicativeInverse(Mod);
4186
4187  // 4. Compute the minimum unsigned root of the equation:
4188  // I * (B / D) mod (N / D)
4189  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4190
4191  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4192  // bits.
4193  return SE.getConstant(Result.trunc(BW));
4194}
4195
4196/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4197/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4198/// might be the same) or two SCEVCouldNotCompute objects.
4199///
4200static std::pair<const SCEV *,const SCEV *>
4201SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4202  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4203  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4204  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4205  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4206
4207  // We currently can only solve this if the coefficients are constants.
4208  if (!LC || !MC || !NC) {
4209    const SCEV *CNC = SE.getCouldNotCompute();
4210    return std::make_pair(CNC, CNC);
4211  }
4212
4213  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4214  const APInt &L = LC->getValue()->getValue();
4215  const APInt &M = MC->getValue()->getValue();
4216  const APInt &N = NC->getValue()->getValue();
4217  APInt Two(BitWidth, 2);
4218  APInt Four(BitWidth, 4);
4219
4220  {
4221    using namespace APIntOps;
4222    const APInt& C = L;
4223    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4224    // The B coefficient is M-N/2
4225    APInt B(M);
4226    B -= sdiv(N,Two);
4227
4228    // The A coefficient is N/2
4229    APInt A(N.sdiv(Two));
4230
4231    // Compute the B^2-4ac term.
4232    APInt SqrtTerm(B);
4233    SqrtTerm *= B;
4234    SqrtTerm -= Four * (A * C);
4235
4236    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4237    // integer value or else APInt::sqrt() will assert.
4238    APInt SqrtVal(SqrtTerm.sqrt());
4239
4240    // Compute the two solutions for the quadratic formula.
4241    // The divisions must be performed as signed divisions.
4242    APInt NegB(-B);
4243    APInt TwoA( A << 1 );
4244    if (TwoA.isMinValue()) {
4245      const SCEV *CNC = SE.getCouldNotCompute();
4246      return std::make_pair(CNC, CNC);
4247    }
4248
4249    LLVMContext &Context = SE.getContext();
4250
4251    ConstantInt *Solution1 =
4252      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4253    ConstantInt *Solution2 =
4254      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4255
4256    return std::make_pair(SE.getConstant(Solution1),
4257                          SE.getConstant(Solution2));
4258    } // end APIntOps namespace
4259}
4260
4261/// HowFarToZero - Return the number of times a backedge comparing the specified
4262/// value to zero will execute.  If not computable, return CouldNotCompute.
4263const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4264  // If the value is a constant
4265  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4266    // If the value is already zero, the branch will execute zero times.
4267    if (C->getValue()->isZero()) return C;
4268    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4269  }
4270
4271  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4272  if (!AddRec || AddRec->getLoop() != L)
4273    return getCouldNotCompute();
4274
4275  if (AddRec->isAffine()) {
4276    // If this is an affine expression, the execution count of this branch is
4277    // the minimum unsigned root of the following equation:
4278    //
4279    //     Start + Step*N = 0 (mod 2^BW)
4280    //
4281    // equivalent to:
4282    //
4283    //             Step*N = -Start (mod 2^BW)
4284    //
4285    // where BW is the common bit width of Start and Step.
4286
4287    // Get the initial value for the loop.
4288    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4289                                       L->getParentLoop());
4290    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4291                                      L->getParentLoop());
4292
4293    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4294      // For now we handle only constant steps.
4295
4296      // First, handle unitary steps.
4297      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4298        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4299      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4300        return Start;                           //    N = Start (as unsigned)
4301
4302      // Then, try to solve the above equation provided that Start is constant.
4303      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4304        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4305                                            -StartC->getValue()->getValue(),
4306                                            *this);
4307    }
4308  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4309    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4310    // the quadratic equation to solve it.
4311    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4312                                                                    *this);
4313    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4314    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4315    if (R1) {
4316#if 0
4317      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4318             << "  sol#2: " << *R2 << "\n";
4319#endif
4320      // Pick the smallest positive root value.
4321      if (ConstantInt *CB =
4322          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4323                                   R1->getValue(), R2->getValue()))) {
4324        if (CB->getZExtValue() == false)
4325          std::swap(R1, R2);   // R1 is the minimum root now.
4326
4327        // We can only use this value if the chrec ends up with an exact zero
4328        // value at this index.  When solving for "X*X != 5", for example, we
4329        // should not accept a root of 2.
4330        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4331        if (Val->isZero())
4332          return R1;  // We found a quadratic root!
4333      }
4334    }
4335  }
4336
4337  return getCouldNotCompute();
4338}
4339
4340/// HowFarToNonZero - Return the number of times a backedge checking the
4341/// specified value for nonzero will execute.  If not computable, return
4342/// CouldNotCompute
4343const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4344  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4345  // handle them yet except for the trivial case.  This could be expanded in the
4346  // future as needed.
4347
4348  // If the value is a constant, check to see if it is known to be non-zero
4349  // already.  If so, the backedge will execute zero times.
4350  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4351    if (!C->getValue()->isNullValue())
4352      return getIntegerSCEV(0, C->getType());
4353    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4354  }
4355
4356  // We could implement others, but I really doubt anyone writes loops like
4357  // this, and if they did, they would already be constant folded.
4358  return getCouldNotCompute();
4359}
4360
4361/// getLoopPredecessor - If the given loop's header has exactly one unique
4362/// predecessor outside the loop, return it. Otherwise return null.
4363///
4364BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4365  BasicBlock *Header = L->getHeader();
4366  BasicBlock *Pred = 0;
4367  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4368       PI != E; ++PI)
4369    if (!L->contains(*PI)) {
4370      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4371      Pred = *PI;
4372    }
4373  return Pred;
4374}
4375
4376/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4377/// (which may not be an immediate predecessor) which has exactly one
4378/// successor from which BB is reachable, or null if no such block is
4379/// found.
4380///
4381BasicBlock *
4382ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4383  // If the block has a unique predecessor, then there is no path from the
4384  // predecessor to the block that does not go through the direct edge
4385  // from the predecessor to the block.
4386  if (BasicBlock *Pred = BB->getSinglePredecessor())
4387    return Pred;
4388
4389  // A loop's header is defined to be a block that dominates the loop.
4390  // If the header has a unique predecessor outside the loop, it must be
4391  // a block that has exactly one successor that can reach the loop.
4392  if (Loop *L = LI->getLoopFor(BB))
4393    return getLoopPredecessor(L);
4394
4395  return 0;
4396}
4397
4398/// HasSameValue - SCEV structural equivalence is usually sufficient for
4399/// testing whether two expressions are equal, however for the purposes of
4400/// looking for a condition guarding a loop, it can be useful to be a little
4401/// more general, since a front-end may have replicated the controlling
4402/// expression.
4403///
4404static bool HasSameValue(const SCEV *A, const SCEV *B) {
4405  // Quick check to see if they are the same SCEV.
4406  if (A == B) return true;
4407
4408  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4409  // two different instructions with the same value. Check for this case.
4410  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4411    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4412      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4413        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4414          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4415            return true;
4416
4417  // Otherwise assume they may have a different value.
4418  return false;
4419}
4420
4421bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4422  return getSignedRange(S).getSignedMax().isNegative();
4423}
4424
4425bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4426  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4427}
4428
4429bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4430  return !getSignedRange(S).getSignedMin().isNegative();
4431}
4432
4433bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4434  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4435}
4436
4437bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4438  return isKnownNegative(S) || isKnownPositive(S);
4439}
4440
4441bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4442                                       const SCEV *LHS, const SCEV *RHS) {
4443
4444  if (HasSameValue(LHS, RHS))
4445    return ICmpInst::isTrueWhenEqual(Pred);
4446
4447  switch (Pred) {
4448  default:
4449    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4450    break;
4451  case ICmpInst::ICMP_SGT:
4452    Pred = ICmpInst::ICMP_SLT;
4453    std::swap(LHS, RHS);
4454  case ICmpInst::ICMP_SLT: {
4455    ConstantRange LHSRange = getSignedRange(LHS);
4456    ConstantRange RHSRange = getSignedRange(RHS);
4457    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4458      return true;
4459    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4460      return false;
4461    break;
4462  }
4463  case ICmpInst::ICMP_SGE:
4464    Pred = ICmpInst::ICMP_SLE;
4465    std::swap(LHS, RHS);
4466  case ICmpInst::ICMP_SLE: {
4467    ConstantRange LHSRange = getSignedRange(LHS);
4468    ConstantRange RHSRange = getSignedRange(RHS);
4469    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4470      return true;
4471    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4472      return false;
4473    break;
4474  }
4475  case ICmpInst::ICMP_UGT:
4476    Pred = ICmpInst::ICMP_ULT;
4477    std::swap(LHS, RHS);
4478  case ICmpInst::ICMP_ULT: {
4479    ConstantRange LHSRange = getUnsignedRange(LHS);
4480    ConstantRange RHSRange = getUnsignedRange(RHS);
4481    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4482      return true;
4483    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4484      return false;
4485    break;
4486  }
4487  case ICmpInst::ICMP_UGE:
4488    Pred = ICmpInst::ICMP_ULE;
4489    std::swap(LHS, RHS);
4490  case ICmpInst::ICMP_ULE: {
4491    ConstantRange LHSRange = getUnsignedRange(LHS);
4492    ConstantRange RHSRange = getUnsignedRange(RHS);
4493    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4494      return true;
4495    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4496      return false;
4497    break;
4498  }
4499  case ICmpInst::ICMP_NE: {
4500    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4501      return true;
4502    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4503      return true;
4504
4505    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4506    if (isKnownNonZero(Diff))
4507      return true;
4508    break;
4509  }
4510  case ICmpInst::ICMP_EQ:
4511    // The check at the top of the function catches the case where
4512    // the values are known to be equal.
4513    break;
4514  }
4515  return false;
4516}
4517
4518/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4519/// protected by a conditional between LHS and RHS.  This is used to
4520/// to eliminate casts.
4521bool
4522ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4523                                             ICmpInst::Predicate Pred,
4524                                             const SCEV *LHS, const SCEV *RHS) {
4525  // Interpret a null as meaning no loop, where there is obviously no guard
4526  // (interprocedural conditions notwithstanding).
4527  if (!L) return true;
4528
4529  BasicBlock *Latch = L->getLoopLatch();
4530  if (!Latch)
4531    return false;
4532
4533  BranchInst *LoopContinuePredicate =
4534    dyn_cast<BranchInst>(Latch->getTerminator());
4535  if (!LoopContinuePredicate ||
4536      LoopContinuePredicate->isUnconditional())
4537    return false;
4538
4539  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4540                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4541}
4542
4543/// isLoopGuardedByCond - Test whether entry to the loop is protected
4544/// by a conditional between LHS and RHS.  This is used to help avoid max
4545/// expressions in loop trip counts, and to eliminate casts.
4546bool
4547ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4548                                     ICmpInst::Predicate Pred,
4549                                     const SCEV *LHS, const SCEV *RHS) {
4550  // Interpret a null as meaning no loop, where there is obviously no guard
4551  // (interprocedural conditions notwithstanding).
4552  if (!L) return false;
4553
4554  BasicBlock *Predecessor = getLoopPredecessor(L);
4555  BasicBlock *PredecessorDest = L->getHeader();
4556
4557  // Starting at the loop predecessor, climb up the predecessor chain, as long
4558  // as there are predecessors that can be found that have unique successors
4559  // leading to the original header.
4560  for (; Predecessor;
4561       PredecessorDest = Predecessor,
4562       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4563
4564    BranchInst *LoopEntryPredicate =
4565      dyn_cast<BranchInst>(Predecessor->getTerminator());
4566    if (!LoopEntryPredicate ||
4567        LoopEntryPredicate->isUnconditional())
4568      continue;
4569
4570    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4571                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4572      return true;
4573  }
4574
4575  return false;
4576}
4577
4578/// isImpliedCond - Test whether the condition described by Pred, LHS,
4579/// and RHS is true whenever the given Cond value evaluates to true.
4580bool ScalarEvolution::isImpliedCond(Value *CondValue,
4581                                    ICmpInst::Predicate Pred,
4582                                    const SCEV *LHS, const SCEV *RHS,
4583                                    bool Inverse) {
4584  // Recursivly handle And and Or conditions.
4585  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4586    if (BO->getOpcode() == Instruction::And) {
4587      if (!Inverse)
4588        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4589               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4590    } else if (BO->getOpcode() == Instruction::Or) {
4591      if (Inverse)
4592        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4593               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4594    }
4595  }
4596
4597  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4598  if (!ICI) return false;
4599
4600  // Bail if the ICmp's operands' types are wider than the needed type
4601  // before attempting to call getSCEV on them. This avoids infinite
4602  // recursion, since the analysis of widening casts can require loop
4603  // exit condition information for overflow checking, which would
4604  // lead back here.
4605  if (getTypeSizeInBits(LHS->getType()) <
4606      getTypeSizeInBits(ICI->getOperand(0)->getType()))
4607    return false;
4608
4609  // Now that we found a conditional branch that dominates the loop, check to
4610  // see if it is the comparison we are looking for.
4611  ICmpInst::Predicate FoundPred;
4612  if (Inverse)
4613    FoundPred = ICI->getInversePredicate();
4614  else
4615    FoundPred = ICI->getPredicate();
4616
4617  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4618  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4619
4620  // Balance the types. The case where FoundLHS' type is wider than
4621  // LHS' type is checked for above.
4622  if (getTypeSizeInBits(LHS->getType()) >
4623      getTypeSizeInBits(FoundLHS->getType())) {
4624    if (CmpInst::isSigned(Pred)) {
4625      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4626      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4627    } else {
4628      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4629      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4630    }
4631  }
4632
4633  // Canonicalize the query to match the way instcombine will have
4634  // canonicalized the comparison.
4635  // First, put a constant operand on the right.
4636  if (isa<SCEVConstant>(LHS)) {
4637    std::swap(LHS, RHS);
4638    Pred = ICmpInst::getSwappedPredicate(Pred);
4639  }
4640  // Then, canonicalize comparisons with boundary cases.
4641  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4642    const APInt &RA = RC->getValue()->getValue();
4643    switch (Pred) {
4644    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4645    case ICmpInst::ICMP_EQ:
4646    case ICmpInst::ICMP_NE:
4647      break;
4648    case ICmpInst::ICMP_UGE:
4649      if ((RA - 1).isMinValue()) {
4650        Pred = ICmpInst::ICMP_NE;
4651        RHS = getConstant(RA - 1);
4652        break;
4653      }
4654      if (RA.isMaxValue()) {
4655        Pred = ICmpInst::ICMP_EQ;
4656        break;
4657      }
4658      if (RA.isMinValue()) return true;
4659      break;
4660    case ICmpInst::ICMP_ULE:
4661      if ((RA + 1).isMaxValue()) {
4662        Pred = ICmpInst::ICMP_NE;
4663        RHS = getConstant(RA + 1);
4664        break;
4665      }
4666      if (RA.isMinValue()) {
4667        Pred = ICmpInst::ICMP_EQ;
4668        break;
4669      }
4670      if (RA.isMaxValue()) return true;
4671      break;
4672    case ICmpInst::ICMP_SGE:
4673      if ((RA - 1).isMinSignedValue()) {
4674        Pred = ICmpInst::ICMP_NE;
4675        RHS = getConstant(RA - 1);
4676        break;
4677      }
4678      if (RA.isMaxSignedValue()) {
4679        Pred = ICmpInst::ICMP_EQ;
4680        break;
4681      }
4682      if (RA.isMinSignedValue()) return true;
4683      break;
4684    case ICmpInst::ICMP_SLE:
4685      if ((RA + 1).isMaxSignedValue()) {
4686        Pred = ICmpInst::ICMP_NE;
4687        RHS = getConstant(RA + 1);
4688        break;
4689      }
4690      if (RA.isMinSignedValue()) {
4691        Pred = ICmpInst::ICMP_EQ;
4692        break;
4693      }
4694      if (RA.isMaxSignedValue()) return true;
4695      break;
4696    case ICmpInst::ICMP_UGT:
4697      if (RA.isMinValue()) {
4698        Pred = ICmpInst::ICMP_NE;
4699        break;
4700      }
4701      if ((RA + 1).isMaxValue()) {
4702        Pred = ICmpInst::ICMP_EQ;
4703        RHS = getConstant(RA + 1);
4704        break;
4705      }
4706      if (RA.isMaxValue()) return false;
4707      break;
4708    case ICmpInst::ICMP_ULT:
4709      if (RA.isMaxValue()) {
4710        Pred = ICmpInst::ICMP_NE;
4711        break;
4712      }
4713      if ((RA - 1).isMinValue()) {
4714        Pred = ICmpInst::ICMP_EQ;
4715        RHS = getConstant(RA - 1);
4716        break;
4717      }
4718      if (RA.isMinValue()) return false;
4719      break;
4720    case ICmpInst::ICMP_SGT:
4721      if (RA.isMinSignedValue()) {
4722        Pred = ICmpInst::ICMP_NE;
4723        break;
4724      }
4725      if ((RA + 1).isMaxSignedValue()) {
4726        Pred = ICmpInst::ICMP_EQ;
4727        RHS = getConstant(RA + 1);
4728        break;
4729      }
4730      if (RA.isMaxSignedValue()) return false;
4731      break;
4732    case ICmpInst::ICMP_SLT:
4733      if (RA.isMaxSignedValue()) {
4734        Pred = ICmpInst::ICMP_NE;
4735        break;
4736      }
4737      if ((RA - 1).isMinSignedValue()) {
4738       Pred = ICmpInst::ICMP_EQ;
4739       RHS = getConstant(RA - 1);
4740       break;
4741      }
4742      if (RA.isMinSignedValue()) return false;
4743      break;
4744    }
4745  }
4746
4747  // Check to see if we can make the LHS or RHS match.
4748  if (LHS == FoundRHS || RHS == FoundLHS) {
4749    if (isa<SCEVConstant>(RHS)) {
4750      std::swap(FoundLHS, FoundRHS);
4751      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4752    } else {
4753      std::swap(LHS, RHS);
4754      Pred = ICmpInst::getSwappedPredicate(Pred);
4755    }
4756  }
4757
4758  // Check whether the found predicate is the same as the desired predicate.
4759  if (FoundPred == Pred)
4760    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4761
4762  // Check whether swapping the found predicate makes it the same as the
4763  // desired predicate.
4764  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4765    if (isa<SCEVConstant>(RHS))
4766      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4767    else
4768      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4769                                   RHS, LHS, FoundLHS, FoundRHS);
4770  }
4771
4772  // Check whether the actual condition is beyond sufficient.
4773  if (FoundPred == ICmpInst::ICMP_EQ)
4774    if (ICmpInst::isTrueWhenEqual(Pred))
4775      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4776        return true;
4777  if (Pred == ICmpInst::ICMP_NE)
4778    if (!ICmpInst::isTrueWhenEqual(FoundPred))
4779      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4780        return true;
4781
4782  // Otherwise assume the worst.
4783  return false;
4784}
4785
4786/// isImpliedCondOperands - Test whether the condition described by Pred,
4787/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4788/// and FoundRHS is true.
4789bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4790                                            const SCEV *LHS, const SCEV *RHS,
4791                                            const SCEV *FoundLHS,
4792                                            const SCEV *FoundRHS) {
4793  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4794                                     FoundLHS, FoundRHS) ||
4795         // ~x < ~y --> x > y
4796         isImpliedCondOperandsHelper(Pred, LHS, RHS,
4797                                     getNotSCEV(FoundRHS),
4798                                     getNotSCEV(FoundLHS));
4799}
4800
4801/// isImpliedCondOperandsHelper - Test whether the condition described by
4802/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4803/// FoundLHS, and FoundRHS is true.
4804bool
4805ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4806                                             const SCEV *LHS, const SCEV *RHS,
4807                                             const SCEV *FoundLHS,
4808                                             const SCEV *FoundRHS) {
4809  switch (Pred) {
4810  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4811  case ICmpInst::ICMP_EQ:
4812  case ICmpInst::ICMP_NE:
4813    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4814      return true;
4815    break;
4816  case ICmpInst::ICMP_SLT:
4817  case ICmpInst::ICMP_SLE:
4818    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4819        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4820      return true;
4821    break;
4822  case ICmpInst::ICMP_SGT:
4823  case ICmpInst::ICMP_SGE:
4824    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4825        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4826      return true;
4827    break;
4828  case ICmpInst::ICMP_ULT:
4829  case ICmpInst::ICMP_ULE:
4830    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4831        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4832      return true;
4833    break;
4834  case ICmpInst::ICMP_UGT:
4835  case ICmpInst::ICMP_UGE:
4836    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4837        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4838      return true;
4839    break;
4840  }
4841
4842  return false;
4843}
4844
4845/// getBECount - Subtract the end and start values and divide by the step,
4846/// rounding up, to get the number of times the backedge is executed. Return
4847/// CouldNotCompute if an intermediate computation overflows.
4848const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4849                                        const SCEV *End,
4850                                        const SCEV *Step,
4851                                        bool NoWrap) {
4852  const Type *Ty = Start->getType();
4853  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4854  const SCEV *Diff = getMinusSCEV(End, Start);
4855  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4856
4857  // Add an adjustment to the difference between End and Start so that
4858  // the division will effectively round up.
4859  const SCEV *Add = getAddExpr(Diff, RoundUp);
4860
4861  if (!NoWrap) {
4862    // Check Add for unsigned overflow.
4863    // TODO: More sophisticated things could be done here.
4864    const Type *WideTy = IntegerType::get(getContext(),
4865                                          getTypeSizeInBits(Ty) + 1);
4866    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4867    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4868    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4869    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4870      return getCouldNotCompute();
4871  }
4872
4873  return getUDivExpr(Add, Step);
4874}
4875
4876/// HowManyLessThans - Return the number of times a backedge containing the
4877/// specified less-than comparison will execute.  If not computable, return
4878/// CouldNotCompute.
4879ScalarEvolution::BackedgeTakenInfo
4880ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4881                                  const Loop *L, bool isSigned) {
4882  // Only handle:  "ADDREC < LoopInvariant".
4883  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4884
4885  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4886  if (!AddRec || AddRec->getLoop() != L)
4887    return getCouldNotCompute();
4888
4889  // Check to see if we have a flag which makes analysis easy.
4890  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
4891                           AddRec->hasNoUnsignedWrap();
4892
4893  if (AddRec->isAffine()) {
4894    // FORNOW: We only support unit strides.
4895    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4896    const SCEV *Step = AddRec->getStepRecurrence(*this);
4897
4898    // TODO: handle non-constant strides.
4899    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4900    if (!CStep || CStep->isZero())
4901      return getCouldNotCompute();
4902    if (CStep->isOne()) {
4903      // With unit stride, the iteration never steps past the limit value.
4904    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4905      if (NoWrap) {
4906        // We know the iteration won't step past the maximum value for its type.
4907        ;
4908      } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4909        // Test whether a positive iteration iteration can step past the limit
4910        // value and past the maximum value for its type in a single step.
4911        if (isSigned) {
4912          APInt Max = APInt::getSignedMaxValue(BitWidth);
4913          if ((Max - CStep->getValue()->getValue())
4914                .slt(CLimit->getValue()->getValue()))
4915            return getCouldNotCompute();
4916        } else {
4917          APInt Max = APInt::getMaxValue(BitWidth);
4918          if ((Max - CStep->getValue()->getValue())
4919                .ult(CLimit->getValue()->getValue()))
4920            return getCouldNotCompute();
4921        }
4922      } else
4923        // TODO: handle non-constant limit values below.
4924        return getCouldNotCompute();
4925    } else
4926      // TODO: handle negative strides below.
4927      return getCouldNotCompute();
4928
4929    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4930    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4931    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4932    // treat m-n as signed nor unsigned due to overflow possibility.
4933
4934    // First, we get the value of the LHS in the first iteration: n
4935    const SCEV *Start = AddRec->getOperand(0);
4936
4937    // Determine the minimum constant start value.
4938    const SCEV *MinStart = getConstant(isSigned ?
4939      getSignedRange(Start).getSignedMin() :
4940      getUnsignedRange(Start).getUnsignedMin());
4941
4942    // If we know that the condition is true in order to enter the loop,
4943    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4944    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4945    // the division must round up.
4946    const SCEV *End = RHS;
4947    if (!isLoopGuardedByCond(L,
4948                             isSigned ? ICmpInst::ICMP_SLT :
4949                                        ICmpInst::ICMP_ULT,
4950                             getMinusSCEV(Start, Step), RHS))
4951      End = isSigned ? getSMaxExpr(RHS, Start)
4952                     : getUMaxExpr(RHS, Start);
4953
4954    // Determine the maximum constant end value.
4955    const SCEV *MaxEnd = getConstant(isSigned ?
4956      getSignedRange(End).getSignedMax() :
4957      getUnsignedRange(End).getUnsignedMax());
4958
4959    // Finally, we subtract these two values and divide, rounding up, to get
4960    // the number of times the backedge is executed.
4961    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
4962
4963    // The maximum backedge count is similar, except using the minimum start
4964    // value and the maximum end value.
4965    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
4966
4967    return BackedgeTakenInfo(BECount, MaxBECount);
4968  }
4969
4970  return getCouldNotCompute();
4971}
4972
4973/// getNumIterationsInRange - Return the number of iterations of this loop that
4974/// produce values in the specified constant range.  Another way of looking at
4975/// this is that it returns the first iteration number where the value is not in
4976/// the condition, thus computing the exit count. If the iteration count can't
4977/// be computed, an instance of SCEVCouldNotCompute is returned.
4978const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4979                                                    ScalarEvolution &SE) const {
4980  if (Range.isFullSet())  // Infinite loop.
4981    return SE.getCouldNotCompute();
4982
4983  // If the start is a non-zero constant, shift the range to simplify things.
4984  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4985    if (!SC->getValue()->isZero()) {
4986      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4987      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4988      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4989      if (const SCEVAddRecExpr *ShiftedAddRec =
4990            dyn_cast<SCEVAddRecExpr>(Shifted))
4991        return ShiftedAddRec->getNumIterationsInRange(
4992                           Range.subtract(SC->getValue()->getValue()), SE);
4993      // This is strange and shouldn't happen.
4994      return SE.getCouldNotCompute();
4995    }
4996
4997  // The only time we can solve this is when we have all constant indices.
4998  // Otherwise, we cannot determine the overflow conditions.
4999  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5000    if (!isa<SCEVConstant>(getOperand(i)))
5001      return SE.getCouldNotCompute();
5002
5003
5004  // Okay at this point we know that all elements of the chrec are constants and
5005  // that the start element is zero.
5006
5007  // First check to see if the range contains zero.  If not, the first
5008  // iteration exits.
5009  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5010  if (!Range.contains(APInt(BitWidth, 0)))
5011    return SE.getIntegerSCEV(0, getType());
5012
5013  if (isAffine()) {
5014    // If this is an affine expression then we have this situation:
5015    //   Solve {0,+,A} in Range  ===  Ax in Range
5016
5017    // We know that zero is in the range.  If A is positive then we know that
5018    // the upper value of the range must be the first possible exit value.
5019    // If A is negative then the lower of the range is the last possible loop
5020    // value.  Also note that we already checked for a full range.
5021    APInt One(BitWidth,1);
5022    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5023    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5024
5025    // The exit value should be (End+A)/A.
5026    APInt ExitVal = (End + A).udiv(A);
5027    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5028
5029    // Evaluate at the exit value.  If we really did fall out of the valid
5030    // range, then we computed our trip count, otherwise wrap around or other
5031    // things must have happened.
5032    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5033    if (Range.contains(Val->getValue()))
5034      return SE.getCouldNotCompute();  // Something strange happened
5035
5036    // Ensure that the previous value is in the range.  This is a sanity check.
5037    assert(Range.contains(
5038           EvaluateConstantChrecAtConstant(this,
5039           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5040           "Linear scev computation is off in a bad way!");
5041    return SE.getConstant(ExitValue);
5042  } else if (isQuadratic()) {
5043    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5044    // quadratic equation to solve it.  To do this, we must frame our problem in
5045    // terms of figuring out when zero is crossed, instead of when
5046    // Range.getUpper() is crossed.
5047    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5048    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5049    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5050
5051    // Next, solve the constructed addrec
5052    std::pair<const SCEV *,const SCEV *> Roots =
5053      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5054    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5055    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5056    if (R1) {
5057      // Pick the smallest positive root value.
5058      if (ConstantInt *CB =
5059          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5060                         R1->getValue(), R2->getValue()))) {
5061        if (CB->getZExtValue() == false)
5062          std::swap(R1, R2);   // R1 is the minimum root now.
5063
5064        // Make sure the root is not off by one.  The returned iteration should
5065        // not be in the range, but the previous one should be.  When solving
5066        // for "X*X < 5", for example, we should not return a root of 2.
5067        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5068                                                             R1->getValue(),
5069                                                             SE);
5070        if (Range.contains(R1Val->getValue())) {
5071          // The next iteration must be out of the range...
5072          ConstantInt *NextVal =
5073                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5074
5075          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5076          if (!Range.contains(R1Val->getValue()))
5077            return SE.getConstant(NextVal);
5078          return SE.getCouldNotCompute();  // Something strange happened
5079        }
5080
5081        // If R1 was not in the range, then it is a good return value.  Make
5082        // sure that R1-1 WAS in the range though, just in case.
5083        ConstantInt *NextVal =
5084               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5085        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5086        if (Range.contains(R1Val->getValue()))
5087          return R1;
5088        return SE.getCouldNotCompute();  // Something strange happened
5089      }
5090    }
5091  }
5092
5093  return SE.getCouldNotCompute();
5094}
5095
5096
5097
5098//===----------------------------------------------------------------------===//
5099//                   SCEVCallbackVH Class Implementation
5100//===----------------------------------------------------------------------===//
5101
5102void ScalarEvolution::SCEVCallbackVH::deleted() {
5103  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5104  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5105    SE->ConstantEvolutionLoopExitValue.erase(PN);
5106  SE->Scalars.erase(getValPtr());
5107  // this now dangles!
5108}
5109
5110void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5111  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5112
5113  // Forget all the expressions associated with users of the old value,
5114  // so that future queries will recompute the expressions using the new
5115  // value.
5116  SmallVector<User *, 16> Worklist;
5117  SmallPtrSet<User *, 8> Visited;
5118  Value *Old = getValPtr();
5119  bool DeleteOld = false;
5120  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5121       UI != UE; ++UI)
5122    Worklist.push_back(*UI);
5123  while (!Worklist.empty()) {
5124    User *U = Worklist.pop_back_val();
5125    // Deleting the Old value will cause this to dangle. Postpone
5126    // that until everything else is done.
5127    if (U == Old) {
5128      DeleteOld = true;
5129      continue;
5130    }
5131    if (!Visited.insert(U))
5132      continue;
5133    if (PHINode *PN = dyn_cast<PHINode>(U))
5134      SE->ConstantEvolutionLoopExitValue.erase(PN);
5135    SE->Scalars.erase(U);
5136    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5137         UI != UE; ++UI)
5138      Worklist.push_back(*UI);
5139  }
5140  // Delete the Old value if it (indirectly) references itself.
5141  if (DeleteOld) {
5142    if (PHINode *PN = dyn_cast<PHINode>(Old))
5143      SE->ConstantEvolutionLoopExitValue.erase(PN);
5144    SE->Scalars.erase(Old);
5145    // this now dangles!
5146  }
5147  // this may dangle!
5148}
5149
5150ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5151  : CallbackVH(V), SE(se) {}
5152
5153//===----------------------------------------------------------------------===//
5154//                   ScalarEvolution Class Implementation
5155//===----------------------------------------------------------------------===//
5156
5157ScalarEvolution::ScalarEvolution()
5158  : FunctionPass(&ID) {
5159}
5160
5161bool ScalarEvolution::runOnFunction(Function &F) {
5162  this->F = &F;
5163  LI = &getAnalysis<LoopInfo>();
5164  TD = getAnalysisIfAvailable<TargetData>();
5165  return false;
5166}
5167
5168void ScalarEvolution::releaseMemory() {
5169  Scalars.clear();
5170  BackedgeTakenCounts.clear();
5171  ConstantEvolutionLoopExitValue.clear();
5172  ValuesAtScopes.clear();
5173  UniqueSCEVs.clear();
5174  SCEVAllocator.Reset();
5175}
5176
5177void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5178  AU.setPreservesAll();
5179  AU.addRequiredTransitive<LoopInfo>();
5180}
5181
5182bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5183  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5184}
5185
5186static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5187                          const Loop *L) {
5188  // Print all inner loops first
5189  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5190    PrintLoopInfo(OS, SE, *I);
5191
5192  OS << "Loop " << L->getHeader()->getName() << ": ";
5193
5194  SmallVector<BasicBlock*, 8> ExitBlocks;
5195  L->getExitBlocks(ExitBlocks);
5196  if (ExitBlocks.size() != 1)
5197    OS << "<multiple exits> ";
5198
5199  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5200    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5201  } else {
5202    OS << "Unpredictable backedge-taken count. ";
5203  }
5204
5205  OS << "\n";
5206  OS << "Loop " << L->getHeader()->getName() << ": ";
5207
5208  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5209    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5210  } else {
5211    OS << "Unpredictable max backedge-taken count. ";
5212  }
5213
5214  OS << "\n";
5215}
5216
5217void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
5218  // ScalarEvolution's implementaiton of the print method is to print
5219  // out SCEV values of all instructions that are interesting. Doing
5220  // this potentially causes it to create new SCEV objects though,
5221  // which technically conflicts with the const qualifier. This isn't
5222  // observable from outside the class though, so casting away the
5223  // const isn't dangerous.
5224  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
5225
5226  OS << "Classifying expressions for: " << F->getName() << "\n";
5227  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5228    if (isSCEVable(I->getType())) {
5229      OS << *I << '\n';
5230      OS << "  -->  ";
5231      const SCEV *SV = SE.getSCEV(&*I);
5232      SV->print(OS);
5233
5234      const Loop *L = LI->getLoopFor((*I).getParent());
5235
5236      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5237      if (AtUse != SV) {
5238        OS << "  -->  ";
5239        AtUse->print(OS);
5240      }
5241
5242      if (L) {
5243        OS << "\t\t" "Exits: ";
5244        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5245        if (!ExitValue->isLoopInvariant(L)) {
5246          OS << "<<Unknown>>";
5247        } else {
5248          OS << *ExitValue;
5249        }
5250      }
5251
5252      OS << "\n";
5253    }
5254
5255  OS << "Determining loop execution counts for: " << F->getName() << "\n";
5256  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5257    PrintLoopInfo(OS, &SE, *I);
5258}
5259
5260