ScalarEvolution.cpp revision 8ae38e15161696cae57aa1ec725ec4391d1e4c77
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98static cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104static RegisterPass<ScalarEvolution>
105R("scalar-evolution", "Scalar Evolution Analysis", false, true);
106char ScalarEvolution::ID = 0;
107
108//===----------------------------------------------------------------------===//
109//                           SCEV class definitions
110//===----------------------------------------------------------------------===//
111
112//===----------------------------------------------------------------------===//
113// Implementation of the SCEV class.
114//
115SCEV::~SCEV() {}
116void SCEV::dump() const {
117  print(cerr);
118}
119
120uint32_t SCEV::getBitWidth() const {
121  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
122    return ITy->getBitWidth();
123  return 0;
124}
125
126bool SCEV::isZero() const {
127  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
128    return SC->getValue()->isZero();
129  return false;
130}
131
132
133SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
134
135bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
136  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
137  return false;
138}
139
140const Type *SCEVCouldNotCompute::getType() const {
141  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142  return 0;
143}
144
145bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
146  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147  return false;
148}
149
150SCEVHandle SCEVCouldNotCompute::
151replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
152                                  const SCEVHandle &Conc,
153                                  ScalarEvolution &SE) const {
154  return this;
155}
156
157void SCEVCouldNotCompute::print(std::ostream &OS) const {
158  OS << "***COULDNOTCOMPUTE***";
159}
160
161bool SCEVCouldNotCompute::classof(const SCEV *S) {
162  return S->getSCEVType() == scCouldNotCompute;
163}
164
165
166// SCEVConstants - Only allow the creation of one SCEVConstant for any
167// particular value.  Don't use a SCEVHandle here, or else the object will
168// never be deleted!
169static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
170
171
172SCEVConstant::~SCEVConstant() {
173  SCEVConstants->erase(V);
174}
175
176SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
177  SCEVConstant *&R = (*SCEVConstants)[V];
178  if (R == 0) R = new SCEVConstant(V);
179  return R;
180}
181
182SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
183  return getConstant(ConstantInt::get(Val));
184}
185
186const Type *SCEVConstant::getType() const { return V->getType(); }
187
188void SCEVConstant::print(std::ostream &OS) const {
189  WriteAsOperand(OS, V, false);
190}
191
192// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
193// particular input.  Don't use a SCEVHandle here, or else the object will
194// never be deleted!
195static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
196                     SCEVTruncateExpr*> > SCEVTruncates;
197
198SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
199  : SCEV(scTruncate), Op(op), Ty(ty) {
200  assert(Op->getType()->isInteger() && Ty->isInteger() &&
201         "Cannot truncate non-integer value!");
202  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
203         && "This is not a truncating conversion!");
204}
205
206SCEVTruncateExpr::~SCEVTruncateExpr() {
207  SCEVTruncates->erase(std::make_pair(Op, Ty));
208}
209
210void SCEVTruncateExpr::print(std::ostream &OS) const {
211  OS << "(truncate " << *Op << " to " << *Ty << ")";
212}
213
214// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
215// particular input.  Don't use a SCEVHandle here, or else the object will never
216// be deleted!
217static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
218                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
219
220SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
221  : SCEV(scZeroExtend), Op(op), Ty(ty) {
222  assert(Op->getType()->isInteger() && Ty->isInteger() &&
223         "Cannot zero extend non-integer value!");
224  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
225         && "This is not an extending conversion!");
226}
227
228SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
229  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
230}
231
232void SCEVZeroExtendExpr::print(std::ostream &OS) const {
233  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
234}
235
236// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
237// particular input.  Don't use a SCEVHandle here, or else the object will never
238// be deleted!
239static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
240                     SCEVSignExtendExpr*> > SCEVSignExtends;
241
242SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
243  : SCEV(scSignExtend), Op(op), Ty(ty) {
244  assert(Op->getType()->isInteger() && Ty->isInteger() &&
245         "Cannot sign extend non-integer value!");
246  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
247         && "This is not an extending conversion!");
248}
249
250SCEVSignExtendExpr::~SCEVSignExtendExpr() {
251  SCEVSignExtends->erase(std::make_pair(Op, Ty));
252}
253
254void SCEVSignExtendExpr::print(std::ostream &OS) const {
255  OS << "(signextend " << *Op << " to " << *Ty << ")";
256}
257
258// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
259// particular input.  Don't use a SCEVHandle here, or else the object will never
260// be deleted!
261static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
262                     SCEVCommutativeExpr*> > SCEVCommExprs;
263
264SCEVCommutativeExpr::~SCEVCommutativeExpr() {
265  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
266                                      std::vector<SCEV*>(Operands.begin(),
267                                                         Operands.end())));
268}
269
270void SCEVCommutativeExpr::print(std::ostream &OS) const {
271  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
272  const char *OpStr = getOperationStr();
273  OS << "(" << *Operands[0];
274  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
275    OS << OpStr << *Operands[i];
276  OS << ")";
277}
278
279SCEVHandle SCEVCommutativeExpr::
280replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
281                                  const SCEVHandle &Conc,
282                                  ScalarEvolution &SE) const {
283  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
284    SCEVHandle H =
285      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
286    if (H != getOperand(i)) {
287      std::vector<SCEVHandle> NewOps;
288      NewOps.reserve(getNumOperands());
289      for (unsigned j = 0; j != i; ++j)
290        NewOps.push_back(getOperand(j));
291      NewOps.push_back(H);
292      for (++i; i != e; ++i)
293        NewOps.push_back(getOperand(i)->
294                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
295
296      if (isa<SCEVAddExpr>(this))
297        return SE.getAddExpr(NewOps);
298      else if (isa<SCEVMulExpr>(this))
299        return SE.getMulExpr(NewOps);
300      else if (isa<SCEVSMaxExpr>(this))
301        return SE.getSMaxExpr(NewOps);
302      else if (isa<SCEVUMaxExpr>(this))
303        return SE.getUMaxExpr(NewOps);
304      else
305        assert(0 && "Unknown commutative expr!");
306    }
307  }
308  return this;
309}
310
311
312// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
313// input.  Don't use a SCEVHandle here, or else the object will never be
314// deleted!
315static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
316                     SCEVUDivExpr*> > SCEVUDivs;
317
318SCEVUDivExpr::~SCEVUDivExpr() {
319  SCEVUDivs->erase(std::make_pair(LHS, RHS));
320}
321
322void SCEVUDivExpr::print(std::ostream &OS) const {
323  OS << "(" << *LHS << " /u " << *RHS << ")";
324}
325
326const Type *SCEVUDivExpr::getType() const {
327  return LHS->getType();
328}
329
330// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
331// particular input.  Don't use a SCEVHandle here, or else the object will never
332// be deleted!
333static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
334                     SCEVAddRecExpr*> > SCEVAddRecExprs;
335
336SCEVAddRecExpr::~SCEVAddRecExpr() {
337  SCEVAddRecExprs->erase(std::make_pair(L,
338                                        std::vector<SCEV*>(Operands.begin(),
339                                                           Operands.end())));
340}
341
342SCEVHandle SCEVAddRecExpr::
343replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
344                                  const SCEVHandle &Conc,
345                                  ScalarEvolution &SE) const {
346  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
347    SCEVHandle H =
348      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
349    if (H != getOperand(i)) {
350      std::vector<SCEVHandle> NewOps;
351      NewOps.reserve(getNumOperands());
352      for (unsigned j = 0; j != i; ++j)
353        NewOps.push_back(getOperand(j));
354      NewOps.push_back(H);
355      for (++i; i != e; ++i)
356        NewOps.push_back(getOperand(i)->
357                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
358
359      return SE.getAddRecExpr(NewOps, L);
360    }
361  }
362  return this;
363}
364
365
366bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
367  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
368  // contain L and if the start is invariant.
369  return !QueryLoop->contains(L->getHeader()) &&
370         getOperand(0)->isLoopInvariant(QueryLoop);
371}
372
373
374void SCEVAddRecExpr::print(std::ostream &OS) const {
375  OS << "{" << *Operands[0];
376  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
377    OS << ",+," << *Operands[i];
378  OS << "}<" << L->getHeader()->getName() + ">";
379}
380
381// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
382// value.  Don't use a SCEVHandle here, or else the object will never be
383// deleted!
384static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
385
386SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
387
388bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
389  // All non-instruction values are loop invariant.  All instructions are loop
390  // invariant if they are not contained in the specified loop.
391  if (Instruction *I = dyn_cast<Instruction>(V))
392    return !L->contains(I->getParent());
393  return true;
394}
395
396const Type *SCEVUnknown::getType() const {
397  return V->getType();
398}
399
400void SCEVUnknown::print(std::ostream &OS) const {
401  WriteAsOperand(OS, V, false);
402}
403
404//===----------------------------------------------------------------------===//
405//                               SCEV Utilities
406//===----------------------------------------------------------------------===//
407
408namespace {
409  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
410  /// than the complexity of the RHS.  This comparator is used to canonicalize
411  /// expressions.
412  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
413    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
414      return LHS->getSCEVType() < RHS->getSCEVType();
415    }
416  };
417}
418
419/// GroupByComplexity - Given a list of SCEV objects, order them by their
420/// complexity, and group objects of the same complexity together by value.
421/// When this routine is finished, we know that any duplicates in the vector are
422/// consecutive and that complexity is monotonically increasing.
423///
424/// Note that we go take special precautions to ensure that we get determinstic
425/// results from this routine.  In other words, we don't want the results of
426/// this to depend on where the addresses of various SCEV objects happened to
427/// land in memory.
428///
429static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
430  if (Ops.size() < 2) return;  // Noop
431  if (Ops.size() == 2) {
432    // This is the common case, which also happens to be trivially simple.
433    // Special case it.
434    if (SCEVComplexityCompare()(Ops[1], Ops[0]))
435      std::swap(Ops[0], Ops[1]);
436    return;
437  }
438
439  // Do the rough sort by complexity.
440  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
441
442  // Now that we are sorted by complexity, group elements of the same
443  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
444  // be extremely short in practice.  Note that we take this approach because we
445  // do not want to depend on the addresses of the objects we are grouping.
446  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
447    SCEV *S = Ops[i];
448    unsigned Complexity = S->getSCEVType();
449
450    // If there are any objects of the same complexity and same value as this
451    // one, group them.
452    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
453      if (Ops[j] == S) { // Found a duplicate.
454        // Move it to immediately after i'th element.
455        std::swap(Ops[i+1], Ops[j]);
456        ++i;   // no need to rescan it.
457        if (i == e-2) return;  // Done!
458      }
459    }
460  }
461}
462
463
464
465//===----------------------------------------------------------------------===//
466//                      Simple SCEV method implementations
467//===----------------------------------------------------------------------===//
468
469/// getIntegerSCEV - Given an integer or FP type, create a constant for the
470/// specified signed integer value and return a SCEV for the constant.
471SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
472  Constant *C;
473  if (Val == 0)
474    C = Constant::getNullValue(Ty);
475  else if (Ty->isFloatingPoint())
476    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
477                                APFloat::IEEEdouble, Val));
478  else
479    C = ConstantInt::get(Ty, Val);
480  return getUnknown(C);
481}
482
483/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
484///
485SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
486  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
487    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
488
489  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType())));
490}
491
492/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
493SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
494  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
495    return getUnknown(ConstantExpr::getNot(VC->getValue()));
496
497  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType()));
498  return getMinusSCEV(AllOnes, V);
499}
500
501/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
502///
503SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
504                                         const SCEVHandle &RHS) {
505  // X - Y --> X + -Y
506  return getAddExpr(LHS, getNegativeSCEV(RHS));
507}
508
509
510/// BinomialCoefficient - Compute BC(It, K).  The result is of the same type as
511/// It.  Assume, K > 0.
512static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
513                                      ScalarEvolution &SE) {
514  // We are using the following formula for BC(It, K):
515  //
516  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
517  //
518  // Suppose, W is the bitwidth of It (and of the return value as well).  We
519  // must be prepared for overflow.  Hence, we must assure that the result of
520  // our computation is equal to the accurate one modulo 2^W.  Unfortunately,
521  // division isn't safe in modular arithmetic.  This means we must perform the
522  // whole computation accurately and then truncate the result to W bits.
523  //
524  // The dividend of the formula is a multiplication of K integers of bitwidth
525  // W.  K*W bits suffice to compute it accurately.
526  //
527  // FIXME: We assume the divisor can be accurately computed using 16-bit
528  // unsigned integer type. It is true up to K = 8 (AddRecs of length 9). In
529  // future we may use APInt to use the minimum number of bits necessary to
530  // compute it accurately.
531  //
532  // It is safe to use unsigned division here: the dividend is nonnegative and
533  // the divisor is positive.
534
535  // Handle the simplest case efficiently.
536  if (K == 1)
537    return It;
538
539  assert(K < 9 && "We cannot handle such long AddRecs yet.");
540
541  // FIXME: A temporary hack to remove in future.  Arbitrary precision integers
542  // aren't supported by the code generator yet.  For the dividend, the bitwidth
543  // we use is the smallest power of 2 greater or equal to K*W and less or equal
544  // to 64.  Note that setting the upper bound for bitwidth may still lead to
545  // miscompilation in some cases.
546  unsigned DividendBits = 1U << Log2_32_Ceil(K * It->getBitWidth());
547  if (DividendBits > 64)
548    DividendBits = 64;
549#if 0 // Waiting for the APInt support in the code generator...
550  unsigned DividendBits = K * It->getBitWidth();
551#endif
552
553  const IntegerType *DividendTy = IntegerType::get(DividendBits);
554  const SCEVHandle ExIt = SE.getTruncateOrZeroExtend(It, DividendTy);
555
556  // The final number of bits we need to perform the division is the maximum of
557  // dividend and divisor bitwidths.
558  const IntegerType *DivisionTy =
559    IntegerType::get(std::max(DividendBits, 16U));
560
561  // Compute K!  We know K >= 2 here.
562  unsigned F = 2;
563  for (unsigned i = 3; i <= K; ++i)
564    F *= i;
565  APInt Divisor(DivisionTy->getBitWidth(), F);
566
567  // Handle this case efficiently, it is common to have constant iteration
568  // counts while computing loop exit values.
569  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(ExIt)) {
570    const APInt& N = SC->getValue()->getValue();
571    APInt Dividend(N.getBitWidth(), 1);
572    for (; K; --K)
573      Dividend *= N-(K-1);
574    if (DividendTy != DivisionTy)
575      Dividend = Dividend.zext(DivisionTy->getBitWidth());
576
577    APInt Result = Dividend.udiv(Divisor);
578    if (Result.getBitWidth() != It->getBitWidth())
579      Result = Result.trunc(It->getBitWidth());
580
581    return SE.getConstant(Result);
582  }
583
584  SCEVHandle Dividend = ExIt;
585  for (unsigned i = 1; i != K; ++i)
586    Dividend =
587      SE.getMulExpr(Dividend,
588                    SE.getMinusSCEV(ExIt, SE.getIntegerSCEV(i, DividendTy)));
589
590  return SE.getTruncateOrZeroExtend(
591             SE.getUDivExpr(
592                 SE.getTruncateOrZeroExtend(Dividend, DivisionTy),
593                 SE.getConstant(Divisor)
594             ), It->getType());
595}
596
597/// evaluateAtIteration - Return the value of this chain of recurrences at
598/// the specified iteration number.  We can evaluate this recurrence by
599/// multiplying each element in the chain by the binomial coefficient
600/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
601///
602///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
603///
604/// where BC(It, k) stands for binomial coefficient.
605///
606SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
607                                               ScalarEvolution &SE) const {
608  SCEVHandle Result = getStart();
609  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
610    // The computation is correct in the face of overflow provided that the
611    // multiplication is performed _after_ the evaluation of the binomial
612    // coefficient.
613    SCEVHandle Val = SE.getMulExpr(getOperand(i),
614                                   BinomialCoefficient(It, i, SE));
615    Result = SE.getAddExpr(Result, Val);
616  }
617  return Result;
618}
619
620//===----------------------------------------------------------------------===//
621//                    SCEV Expression folder implementations
622//===----------------------------------------------------------------------===//
623
624SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
625  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
626    return getUnknown(
627        ConstantExpr::getTrunc(SC->getValue(), Ty));
628
629  // If the input value is a chrec scev made out of constants, truncate
630  // all of the constants.
631  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
632    std::vector<SCEVHandle> Operands;
633    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
634      // FIXME: This should allow truncation of other expression types!
635      if (isa<SCEVConstant>(AddRec->getOperand(i)))
636        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
637      else
638        break;
639    if (Operands.size() == AddRec->getNumOperands())
640      return getAddRecExpr(Operands, AddRec->getLoop());
641  }
642
643  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
644  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
645  return Result;
646}
647
648SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
649  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
650    return getUnknown(
651        ConstantExpr::getZExt(SC->getValue(), Ty));
652
653  // FIXME: If the input value is a chrec scev, and we can prove that the value
654  // did not overflow the old, smaller, value, we can zero extend all of the
655  // operands (often constants).  This would allow analysis of something like
656  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
657
658  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
659  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
660  return Result;
661}
662
663SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
664  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
665    return getUnknown(
666        ConstantExpr::getSExt(SC->getValue(), Ty));
667
668  // FIXME: If the input value is a chrec scev, and we can prove that the value
669  // did not overflow the old, smaller, value, we can sign extend all of the
670  // operands (often constants).  This would allow analysis of something like
671  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
672
673  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
674  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
675  return Result;
676}
677
678/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
679/// of the input value to the specified type.  If the type must be
680/// extended, it is zero extended.
681SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
682                                                    const Type *Ty) {
683  const Type *SrcTy = V->getType();
684  assert(SrcTy->isInteger() && Ty->isInteger() &&
685         "Cannot truncate or zero extend with non-integer arguments!");
686  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
687    return V;  // No conversion
688  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
689    return getTruncateExpr(V, Ty);
690  return getZeroExtendExpr(V, Ty);
691}
692
693// get - Get a canonical add expression, or something simpler if possible.
694SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
695  assert(!Ops.empty() && "Cannot get empty add!");
696  if (Ops.size() == 1) return Ops[0];
697
698  // Sort by complexity, this groups all similar expression types together.
699  GroupByComplexity(Ops);
700
701  // If there are any constants, fold them together.
702  unsigned Idx = 0;
703  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
704    ++Idx;
705    assert(Idx < Ops.size());
706    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
707      // We found two constants, fold them together!
708      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
709                                           RHSC->getValue()->getValue());
710      Ops[0] = getConstant(Fold);
711      Ops.erase(Ops.begin()+1);  // Erase the folded element
712      if (Ops.size() == 1) return Ops[0];
713      LHSC = cast<SCEVConstant>(Ops[0]);
714    }
715
716    // If we are left with a constant zero being added, strip it off.
717    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
718      Ops.erase(Ops.begin());
719      --Idx;
720    }
721  }
722
723  if (Ops.size() == 1) return Ops[0];
724
725  // Okay, check to see if the same value occurs in the operand list twice.  If
726  // so, merge them together into an multiply expression.  Since we sorted the
727  // list, these values are required to be adjacent.
728  const Type *Ty = Ops[0]->getType();
729  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
730    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
731      // Found a match, merge the two values into a multiply, and add any
732      // remaining values to the result.
733      SCEVHandle Two = getIntegerSCEV(2, Ty);
734      SCEVHandle Mul = getMulExpr(Ops[i], Two);
735      if (Ops.size() == 2)
736        return Mul;
737      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
738      Ops.push_back(Mul);
739      return getAddExpr(Ops);
740    }
741
742  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
743  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
744    ++Idx;
745
746  // If there are add operands they would be next.
747  if (Idx < Ops.size()) {
748    bool DeletedAdd = false;
749    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
750      // If we have an add, expand the add operands onto the end of the operands
751      // list.
752      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
753      Ops.erase(Ops.begin()+Idx);
754      DeletedAdd = true;
755    }
756
757    // If we deleted at least one add, we added operands to the end of the list,
758    // and they are not necessarily sorted.  Recurse to resort and resimplify
759    // any operands we just aquired.
760    if (DeletedAdd)
761      return getAddExpr(Ops);
762  }
763
764  // Skip over the add expression until we get to a multiply.
765  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
766    ++Idx;
767
768  // If we are adding something to a multiply expression, make sure the
769  // something is not already an operand of the multiply.  If so, merge it into
770  // the multiply.
771  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
772    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
773    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
774      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
775      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
776        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
777          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
778          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
779          if (Mul->getNumOperands() != 2) {
780            // If the multiply has more than two operands, we must get the
781            // Y*Z term.
782            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
783            MulOps.erase(MulOps.begin()+MulOp);
784            InnerMul = getMulExpr(MulOps);
785          }
786          SCEVHandle One = getIntegerSCEV(1, Ty);
787          SCEVHandle AddOne = getAddExpr(InnerMul, One);
788          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
789          if (Ops.size() == 2) return OuterMul;
790          if (AddOp < Idx) {
791            Ops.erase(Ops.begin()+AddOp);
792            Ops.erase(Ops.begin()+Idx-1);
793          } else {
794            Ops.erase(Ops.begin()+Idx);
795            Ops.erase(Ops.begin()+AddOp-1);
796          }
797          Ops.push_back(OuterMul);
798          return getAddExpr(Ops);
799        }
800
801      // Check this multiply against other multiplies being added together.
802      for (unsigned OtherMulIdx = Idx+1;
803           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
804           ++OtherMulIdx) {
805        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
806        // If MulOp occurs in OtherMul, we can fold the two multiplies
807        // together.
808        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
809             OMulOp != e; ++OMulOp)
810          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
811            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
812            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
813            if (Mul->getNumOperands() != 2) {
814              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
815              MulOps.erase(MulOps.begin()+MulOp);
816              InnerMul1 = getMulExpr(MulOps);
817            }
818            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
819            if (OtherMul->getNumOperands() != 2) {
820              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
821                                             OtherMul->op_end());
822              MulOps.erase(MulOps.begin()+OMulOp);
823              InnerMul2 = getMulExpr(MulOps);
824            }
825            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
826            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
827            if (Ops.size() == 2) return OuterMul;
828            Ops.erase(Ops.begin()+Idx);
829            Ops.erase(Ops.begin()+OtherMulIdx-1);
830            Ops.push_back(OuterMul);
831            return getAddExpr(Ops);
832          }
833      }
834    }
835  }
836
837  // If there are any add recurrences in the operands list, see if any other
838  // added values are loop invariant.  If so, we can fold them into the
839  // recurrence.
840  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
841    ++Idx;
842
843  // Scan over all recurrences, trying to fold loop invariants into them.
844  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
845    // Scan all of the other operands to this add and add them to the vector if
846    // they are loop invariant w.r.t. the recurrence.
847    std::vector<SCEVHandle> LIOps;
848    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
849    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
850      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
851        LIOps.push_back(Ops[i]);
852        Ops.erase(Ops.begin()+i);
853        --i; --e;
854      }
855
856    // If we found some loop invariants, fold them into the recurrence.
857    if (!LIOps.empty()) {
858      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
859      LIOps.push_back(AddRec->getStart());
860
861      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
862      AddRecOps[0] = getAddExpr(LIOps);
863
864      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
865      // If all of the other operands were loop invariant, we are done.
866      if (Ops.size() == 1) return NewRec;
867
868      // Otherwise, add the folded AddRec by the non-liv parts.
869      for (unsigned i = 0;; ++i)
870        if (Ops[i] == AddRec) {
871          Ops[i] = NewRec;
872          break;
873        }
874      return getAddExpr(Ops);
875    }
876
877    // Okay, if there weren't any loop invariants to be folded, check to see if
878    // there are multiple AddRec's with the same loop induction variable being
879    // added together.  If so, we can fold them.
880    for (unsigned OtherIdx = Idx+1;
881         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
882      if (OtherIdx != Idx) {
883        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
884        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
885          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
886          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
887          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
888            if (i >= NewOps.size()) {
889              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
890                            OtherAddRec->op_end());
891              break;
892            }
893            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
894          }
895          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
896
897          if (Ops.size() == 2) return NewAddRec;
898
899          Ops.erase(Ops.begin()+Idx);
900          Ops.erase(Ops.begin()+OtherIdx-1);
901          Ops.push_back(NewAddRec);
902          return getAddExpr(Ops);
903        }
904      }
905
906    // Otherwise couldn't fold anything into this recurrence.  Move onto the
907    // next one.
908  }
909
910  // Okay, it looks like we really DO need an add expr.  Check to see if we
911  // already have one, otherwise create a new one.
912  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
913  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
914                                                                 SCEVOps)];
915  if (Result == 0) Result = new SCEVAddExpr(Ops);
916  return Result;
917}
918
919
920SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
921  assert(!Ops.empty() && "Cannot get empty mul!");
922
923  // Sort by complexity, this groups all similar expression types together.
924  GroupByComplexity(Ops);
925
926  // If there are any constants, fold them together.
927  unsigned Idx = 0;
928  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
929
930    // C1*(C2+V) -> C1*C2 + C1*V
931    if (Ops.size() == 2)
932      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
933        if (Add->getNumOperands() == 2 &&
934            isa<SCEVConstant>(Add->getOperand(0)))
935          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
936                            getMulExpr(LHSC, Add->getOperand(1)));
937
938
939    ++Idx;
940    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
941      // We found two constants, fold them together!
942      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
943                                           RHSC->getValue()->getValue());
944      Ops[0] = getConstant(Fold);
945      Ops.erase(Ops.begin()+1);  // Erase the folded element
946      if (Ops.size() == 1) return Ops[0];
947      LHSC = cast<SCEVConstant>(Ops[0]);
948    }
949
950    // If we are left with a constant one being multiplied, strip it off.
951    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
952      Ops.erase(Ops.begin());
953      --Idx;
954    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
955      // If we have a multiply of zero, it will always be zero.
956      return Ops[0];
957    }
958  }
959
960  // Skip over the add expression until we get to a multiply.
961  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
962    ++Idx;
963
964  if (Ops.size() == 1)
965    return Ops[0];
966
967  // If there are mul operands inline them all into this expression.
968  if (Idx < Ops.size()) {
969    bool DeletedMul = false;
970    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
971      // If we have an mul, expand the mul operands onto the end of the operands
972      // list.
973      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
974      Ops.erase(Ops.begin()+Idx);
975      DeletedMul = true;
976    }
977
978    // If we deleted at least one mul, we added operands to the end of the list,
979    // and they are not necessarily sorted.  Recurse to resort and resimplify
980    // any operands we just aquired.
981    if (DeletedMul)
982      return getMulExpr(Ops);
983  }
984
985  // If there are any add recurrences in the operands list, see if any other
986  // added values are loop invariant.  If so, we can fold them into the
987  // recurrence.
988  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
989    ++Idx;
990
991  // Scan over all recurrences, trying to fold loop invariants into them.
992  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
993    // Scan all of the other operands to this mul and add them to the vector if
994    // they are loop invariant w.r.t. the recurrence.
995    std::vector<SCEVHandle> LIOps;
996    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
997    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
998      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
999        LIOps.push_back(Ops[i]);
1000        Ops.erase(Ops.begin()+i);
1001        --i; --e;
1002      }
1003
1004    // If we found some loop invariants, fold them into the recurrence.
1005    if (!LIOps.empty()) {
1006      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
1007      std::vector<SCEVHandle> NewOps;
1008      NewOps.reserve(AddRec->getNumOperands());
1009      if (LIOps.size() == 1) {
1010        SCEV *Scale = LIOps[0];
1011        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1012          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1013      } else {
1014        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1015          std::vector<SCEVHandle> MulOps(LIOps);
1016          MulOps.push_back(AddRec->getOperand(i));
1017          NewOps.push_back(getMulExpr(MulOps));
1018        }
1019      }
1020
1021      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1022
1023      // If all of the other operands were loop invariant, we are done.
1024      if (Ops.size() == 1) return NewRec;
1025
1026      // Otherwise, multiply the folded AddRec by the non-liv parts.
1027      for (unsigned i = 0;; ++i)
1028        if (Ops[i] == AddRec) {
1029          Ops[i] = NewRec;
1030          break;
1031        }
1032      return getMulExpr(Ops);
1033    }
1034
1035    // Okay, if there weren't any loop invariants to be folded, check to see if
1036    // there are multiple AddRec's with the same loop induction variable being
1037    // multiplied together.  If so, we can fold them.
1038    for (unsigned OtherIdx = Idx+1;
1039         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1040      if (OtherIdx != Idx) {
1041        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1042        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1043          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1044          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1045          SCEVHandle NewStart = getMulExpr(F->getStart(),
1046                                                 G->getStart());
1047          SCEVHandle B = F->getStepRecurrence(*this);
1048          SCEVHandle D = G->getStepRecurrence(*this);
1049          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1050                                          getMulExpr(G, B),
1051                                          getMulExpr(B, D));
1052          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1053                                               F->getLoop());
1054          if (Ops.size() == 2) return NewAddRec;
1055
1056          Ops.erase(Ops.begin()+Idx);
1057          Ops.erase(Ops.begin()+OtherIdx-1);
1058          Ops.push_back(NewAddRec);
1059          return getMulExpr(Ops);
1060        }
1061      }
1062
1063    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1064    // next one.
1065  }
1066
1067  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1068  // already have one, otherwise create a new one.
1069  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1070  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1071                                                                 SCEVOps)];
1072  if (Result == 0)
1073    Result = new SCEVMulExpr(Ops);
1074  return Result;
1075}
1076
1077SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1078  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1079    if (RHSC->getValue()->equalsInt(1))
1080      return LHS;                            // X udiv 1 --> x
1081
1082    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1083      Constant *LHSCV = LHSC->getValue();
1084      Constant *RHSCV = RHSC->getValue();
1085      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1086    }
1087  }
1088
1089  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1090
1091  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1092  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1093  return Result;
1094}
1095
1096
1097/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1098/// specified loop.  Simplify the expression as much as possible.
1099SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1100                               const SCEVHandle &Step, const Loop *L) {
1101  std::vector<SCEVHandle> Operands;
1102  Operands.push_back(Start);
1103  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1104    if (StepChrec->getLoop() == L) {
1105      Operands.insert(Operands.end(), StepChrec->op_begin(),
1106                      StepChrec->op_end());
1107      return getAddRecExpr(Operands, L);
1108    }
1109
1110  Operands.push_back(Step);
1111  return getAddRecExpr(Operands, L);
1112}
1113
1114/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1115/// specified loop.  Simplify the expression as much as possible.
1116SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1117                               const Loop *L) {
1118  if (Operands.size() == 1) return Operands[0];
1119
1120  if (Operands.back()->isZero()) {
1121    Operands.pop_back();
1122    return getAddRecExpr(Operands, L);             // { X,+,0 }  -->  X
1123  }
1124
1125  SCEVAddRecExpr *&Result =
1126    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1127                                                            Operands.end()))];
1128  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1129  return Result;
1130}
1131
1132SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1133                                        const SCEVHandle &RHS) {
1134  std::vector<SCEVHandle> Ops;
1135  Ops.push_back(LHS);
1136  Ops.push_back(RHS);
1137  return getSMaxExpr(Ops);
1138}
1139
1140SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1141  assert(!Ops.empty() && "Cannot get empty smax!");
1142  if (Ops.size() == 1) return Ops[0];
1143
1144  // Sort by complexity, this groups all similar expression types together.
1145  GroupByComplexity(Ops);
1146
1147  // If there are any constants, fold them together.
1148  unsigned Idx = 0;
1149  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1150    ++Idx;
1151    assert(Idx < Ops.size());
1152    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1153      // We found two constants, fold them together!
1154      ConstantInt *Fold = ConstantInt::get(
1155                              APIntOps::smax(LHSC->getValue()->getValue(),
1156                                             RHSC->getValue()->getValue()));
1157      Ops[0] = getConstant(Fold);
1158      Ops.erase(Ops.begin()+1);  // Erase the folded element
1159      if (Ops.size() == 1) return Ops[0];
1160      LHSC = cast<SCEVConstant>(Ops[0]);
1161    }
1162
1163    // If we are left with a constant -inf, strip it off.
1164    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1165      Ops.erase(Ops.begin());
1166      --Idx;
1167    }
1168  }
1169
1170  if (Ops.size() == 1) return Ops[0];
1171
1172  // Find the first SMax
1173  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1174    ++Idx;
1175
1176  // Check to see if one of the operands is an SMax. If so, expand its operands
1177  // onto our operand list, and recurse to simplify.
1178  if (Idx < Ops.size()) {
1179    bool DeletedSMax = false;
1180    while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1181      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1182      Ops.erase(Ops.begin()+Idx);
1183      DeletedSMax = true;
1184    }
1185
1186    if (DeletedSMax)
1187      return getSMaxExpr(Ops);
1188  }
1189
1190  // Okay, check to see if the same value occurs in the operand list twice.  If
1191  // so, delete one.  Since we sorted the list, these values are required to
1192  // be adjacent.
1193  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1194    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1195      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1196      --i; --e;
1197    }
1198
1199  if (Ops.size() == 1) return Ops[0];
1200
1201  assert(!Ops.empty() && "Reduced smax down to nothing!");
1202
1203  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1204  // already have one, otherwise create a new one.
1205  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1206  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1207                                                                 SCEVOps)];
1208  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1209  return Result;
1210}
1211
1212SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1213                                        const SCEVHandle &RHS) {
1214  std::vector<SCEVHandle> Ops;
1215  Ops.push_back(LHS);
1216  Ops.push_back(RHS);
1217  return getUMaxExpr(Ops);
1218}
1219
1220SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1221  assert(!Ops.empty() && "Cannot get empty umax!");
1222  if (Ops.size() == 1) return Ops[0];
1223
1224  // Sort by complexity, this groups all similar expression types together.
1225  GroupByComplexity(Ops);
1226
1227  // If there are any constants, fold them together.
1228  unsigned Idx = 0;
1229  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1230    ++Idx;
1231    assert(Idx < Ops.size());
1232    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1233      // We found two constants, fold them together!
1234      ConstantInt *Fold = ConstantInt::get(
1235                              APIntOps::umax(LHSC->getValue()->getValue(),
1236                                             RHSC->getValue()->getValue()));
1237      Ops[0] = getConstant(Fold);
1238      Ops.erase(Ops.begin()+1);  // Erase the folded element
1239      if (Ops.size() == 1) return Ops[0];
1240      LHSC = cast<SCEVConstant>(Ops[0]);
1241    }
1242
1243    // If we are left with a constant zero, strip it off.
1244    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1245      Ops.erase(Ops.begin());
1246      --Idx;
1247    }
1248  }
1249
1250  if (Ops.size() == 1) return Ops[0];
1251
1252  // Find the first UMax
1253  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1254    ++Idx;
1255
1256  // Check to see if one of the operands is a UMax. If so, expand its operands
1257  // onto our operand list, and recurse to simplify.
1258  if (Idx < Ops.size()) {
1259    bool DeletedUMax = false;
1260    while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1261      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1262      Ops.erase(Ops.begin()+Idx);
1263      DeletedUMax = true;
1264    }
1265
1266    if (DeletedUMax)
1267      return getUMaxExpr(Ops);
1268  }
1269
1270  // Okay, check to see if the same value occurs in the operand list twice.  If
1271  // so, delete one.  Since we sorted the list, these values are required to
1272  // be adjacent.
1273  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1274    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1275      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1276      --i; --e;
1277    }
1278
1279  if (Ops.size() == 1) return Ops[0];
1280
1281  assert(!Ops.empty() && "Reduced umax down to nothing!");
1282
1283  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1284  // already have one, otherwise create a new one.
1285  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1286  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1287                                                                 SCEVOps)];
1288  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1289  return Result;
1290}
1291
1292SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1293  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1294    return getConstant(CI);
1295  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1296  if (Result == 0) Result = new SCEVUnknown(V);
1297  return Result;
1298}
1299
1300
1301//===----------------------------------------------------------------------===//
1302//             ScalarEvolutionsImpl Definition and Implementation
1303//===----------------------------------------------------------------------===//
1304//
1305/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1306/// evolution code.
1307///
1308namespace {
1309  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1310    /// SE - A reference to the public ScalarEvolution object.
1311    ScalarEvolution &SE;
1312
1313    /// F - The function we are analyzing.
1314    ///
1315    Function &F;
1316
1317    /// LI - The loop information for the function we are currently analyzing.
1318    ///
1319    LoopInfo &LI;
1320
1321    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1322    /// things.
1323    SCEVHandle UnknownValue;
1324
1325    /// Scalars - This is a cache of the scalars we have analyzed so far.
1326    ///
1327    std::map<Value*, SCEVHandle> Scalars;
1328
1329    /// IterationCounts - Cache the iteration count of the loops for this
1330    /// function as they are computed.
1331    std::map<const Loop*, SCEVHandle> IterationCounts;
1332
1333    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1334    /// the PHI instructions that we attempt to compute constant evolutions for.
1335    /// This allows us to avoid potentially expensive recomputation of these
1336    /// properties.  An instruction maps to null if we are unable to compute its
1337    /// exit value.
1338    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1339
1340  public:
1341    ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li)
1342      : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1343
1344    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1345    /// expression and create a new one.
1346    SCEVHandle getSCEV(Value *V);
1347
1348    /// hasSCEV - Return true if the SCEV for this value has already been
1349    /// computed.
1350    bool hasSCEV(Value *V) const {
1351      return Scalars.count(V);
1352    }
1353
1354    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1355    /// the specified value.
1356    void setSCEV(Value *V, const SCEVHandle &H) {
1357      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1358      assert(isNew && "This entry already existed!");
1359    }
1360
1361
1362    /// getSCEVAtScope - Compute the value of the specified expression within
1363    /// the indicated loop (which may be null to indicate in no loop).  If the
1364    /// expression cannot be evaluated, return UnknownValue itself.
1365    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1366
1367
1368    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1369    /// an analyzable loop-invariant iteration count.
1370    bool hasLoopInvariantIterationCount(const Loop *L);
1371
1372    /// getIterationCount - If the specified loop has a predictable iteration
1373    /// count, return it.  Note that it is not valid to call this method on a
1374    /// loop without a loop-invariant iteration count.
1375    SCEVHandle getIterationCount(const Loop *L);
1376
1377    /// deleteValueFromRecords - This method should be called by the
1378    /// client before it removes a value from the program, to make sure
1379    /// that no dangling references are left around.
1380    void deleteValueFromRecords(Value *V);
1381
1382  private:
1383    /// createSCEV - We know that there is no SCEV for the specified value.
1384    /// Analyze the expression.
1385    SCEVHandle createSCEV(Value *V);
1386
1387    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1388    /// SCEVs.
1389    SCEVHandle createNodeForPHI(PHINode *PN);
1390
1391    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1392    /// for the specified instruction and replaces any references to the
1393    /// symbolic value SymName with the specified value.  This is used during
1394    /// PHI resolution.
1395    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1396                                          const SCEVHandle &SymName,
1397                                          const SCEVHandle &NewVal);
1398
1399    /// ComputeIterationCount - Compute the number of times the specified loop
1400    /// will iterate.
1401    SCEVHandle ComputeIterationCount(const Loop *L);
1402
1403    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1404    /// 'icmp op load X, cst', try to see if we can compute the trip count.
1405    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1406                                                        Constant *RHS,
1407                                                        const Loop *L,
1408                                                        ICmpInst::Predicate p);
1409
1410    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1411    /// constant number of times (the condition evolves only from constants),
1412    /// try to evaluate a few iterations of the loop until we get the exit
1413    /// condition gets a value of ExitWhen (true or false).  If we cannot
1414    /// evaluate the trip count of the loop, return UnknownValue.
1415    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1416                                                 bool ExitWhen);
1417
1418    /// HowFarToZero - Return the number of times a backedge comparing the
1419    /// specified value to zero will execute.  If not computable, return
1420    /// UnknownValue.
1421    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1422
1423    /// HowFarToNonZero - Return the number of times a backedge checking the
1424    /// specified value for nonzero will execute.  If not computable, return
1425    /// UnknownValue.
1426    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1427
1428    /// HowManyLessThans - Return the number of times a backedge containing the
1429    /// specified less-than comparison will execute.  If not computable, return
1430    /// UnknownValue. isSigned specifies whether the less-than is signed.
1431    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1432                                bool isSigned);
1433
1434    /// executesAtLeastOnce - Test whether entry to the loop is protected by
1435    /// a conditional between LHS and RHS.
1436    bool executesAtLeastOnce(const Loop *L, bool isSigned, SCEV *LHS, SCEV *RHS);
1437
1438    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1439    /// in the header of its containing loop, we know the loop executes a
1440    /// constant number of times, and the PHI node is just a recurrence
1441    /// involving constants, fold it.
1442    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1443                                                const Loop *L);
1444  };
1445}
1446
1447//===----------------------------------------------------------------------===//
1448//            Basic SCEV Analysis and PHI Idiom Recognition Code
1449//
1450
1451/// deleteValueFromRecords - This method should be called by the
1452/// client before it removes an instruction from the program, to make sure
1453/// that no dangling references are left around.
1454void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1455  SmallVector<Value *, 16> Worklist;
1456
1457  if (Scalars.erase(V)) {
1458    if (PHINode *PN = dyn_cast<PHINode>(V))
1459      ConstantEvolutionLoopExitValue.erase(PN);
1460    Worklist.push_back(V);
1461  }
1462
1463  while (!Worklist.empty()) {
1464    Value *VV = Worklist.back();
1465    Worklist.pop_back();
1466
1467    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1468         UI != UE; ++UI) {
1469      Instruction *Inst = cast<Instruction>(*UI);
1470      if (Scalars.erase(Inst)) {
1471        if (PHINode *PN = dyn_cast<PHINode>(VV))
1472          ConstantEvolutionLoopExitValue.erase(PN);
1473        Worklist.push_back(Inst);
1474      }
1475    }
1476  }
1477}
1478
1479
1480/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1481/// expression and create a new one.
1482SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1483  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1484
1485  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1486  if (I != Scalars.end()) return I->second;
1487  SCEVHandle S = createSCEV(V);
1488  Scalars.insert(std::make_pair(V, S));
1489  return S;
1490}
1491
1492/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1493/// the specified instruction and replaces any references to the symbolic value
1494/// SymName with the specified value.  This is used during PHI resolution.
1495void ScalarEvolutionsImpl::
1496ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1497                                 const SCEVHandle &NewVal) {
1498  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1499  if (SI == Scalars.end()) return;
1500
1501  SCEVHandle NV =
1502    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
1503  if (NV == SI->second) return;  // No change.
1504
1505  SI->second = NV;       // Update the scalars map!
1506
1507  // Any instruction values that use this instruction might also need to be
1508  // updated!
1509  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1510       UI != E; ++UI)
1511    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1512}
1513
1514/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1515/// a loop header, making it a potential recurrence, or it doesn't.
1516///
1517SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1518  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1519    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1520      if (L->getHeader() == PN->getParent()) {
1521        // If it lives in the loop header, it has two incoming values, one
1522        // from outside the loop, and one from inside.
1523        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1524        unsigned BackEdge     = IncomingEdge^1;
1525
1526        // While we are analyzing this PHI node, handle its value symbolically.
1527        SCEVHandle SymbolicName = SE.getUnknown(PN);
1528        assert(Scalars.find(PN) == Scalars.end() &&
1529               "PHI node already processed?");
1530        Scalars.insert(std::make_pair(PN, SymbolicName));
1531
1532        // Using this symbolic name for the PHI, analyze the value coming around
1533        // the back-edge.
1534        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1535
1536        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1537        // has a special value for the first iteration of the loop.
1538
1539        // If the value coming around the backedge is an add with the symbolic
1540        // value we just inserted, then we found a simple induction variable!
1541        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1542          // If there is a single occurrence of the symbolic value, replace it
1543          // with a recurrence.
1544          unsigned FoundIndex = Add->getNumOperands();
1545          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1546            if (Add->getOperand(i) == SymbolicName)
1547              if (FoundIndex == e) {
1548                FoundIndex = i;
1549                break;
1550              }
1551
1552          if (FoundIndex != Add->getNumOperands()) {
1553            // Create an add with everything but the specified operand.
1554            std::vector<SCEVHandle> Ops;
1555            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1556              if (i != FoundIndex)
1557                Ops.push_back(Add->getOperand(i));
1558            SCEVHandle Accum = SE.getAddExpr(Ops);
1559
1560            // This is not a valid addrec if the step amount is varying each
1561            // loop iteration, but is not itself an addrec in this loop.
1562            if (Accum->isLoopInvariant(L) ||
1563                (isa<SCEVAddRecExpr>(Accum) &&
1564                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1565              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1566              SCEVHandle PHISCEV  = SE.getAddRecExpr(StartVal, Accum, L);
1567
1568              // Okay, for the entire analysis of this edge we assumed the PHI
1569              // to be symbolic.  We now need to go back and update all of the
1570              // entries for the scalars that use the PHI (except for the PHI
1571              // itself) to use the new analyzed value instead of the "symbolic"
1572              // value.
1573              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1574              return PHISCEV;
1575            }
1576          }
1577        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1578          // Otherwise, this could be a loop like this:
1579          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1580          // In this case, j = {1,+,1}  and BEValue is j.
1581          // Because the other in-value of i (0) fits the evolution of BEValue
1582          // i really is an addrec evolution.
1583          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1584            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1585
1586            // If StartVal = j.start - j.stride, we can use StartVal as the
1587            // initial step of the addrec evolution.
1588            if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1589                                            AddRec->getOperand(1))) {
1590              SCEVHandle PHISCEV =
1591                 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1592
1593              // Okay, for the entire analysis of this edge we assumed the PHI
1594              // to be symbolic.  We now need to go back and update all of the
1595              // entries for the scalars that use the PHI (except for the PHI
1596              // itself) to use the new analyzed value instead of the "symbolic"
1597              // value.
1598              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1599              return PHISCEV;
1600            }
1601          }
1602        }
1603
1604        return SymbolicName;
1605      }
1606
1607  // If it's not a loop phi, we can't handle it yet.
1608  return SE.getUnknown(PN);
1609}
1610
1611/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1612/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1613/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1614/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1615static uint32_t GetMinTrailingZeros(SCEVHandle S) {
1616  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1617    return C->getValue()->getValue().countTrailingZeros();
1618
1619  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1620    return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth());
1621
1622  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1623    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1624    return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1625  }
1626
1627  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1628    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1629    return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1630  }
1631
1632  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1633    // The result is the min of all operands results.
1634    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1635    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1636      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1637    return MinOpRes;
1638  }
1639
1640  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1641    // The result is the sum of all operands results.
1642    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
1643    uint32_t BitWidth = M->getBitWidth();
1644    for (unsigned i = 1, e = M->getNumOperands();
1645         SumOpRes != BitWidth && i != e; ++i)
1646      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
1647                          BitWidth);
1648    return SumOpRes;
1649  }
1650
1651  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1652    // The result is the min of all operands results.
1653    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1654    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1655      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1656    return MinOpRes;
1657  }
1658
1659  if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1660    // The result is the min of all operands results.
1661    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1662    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1663      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1664    return MinOpRes;
1665  }
1666
1667  if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1668    // The result is the min of all operands results.
1669    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1670    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1671      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1672    return MinOpRes;
1673  }
1674
1675  // SCEVUDivExpr, SCEVUnknown
1676  return 0;
1677}
1678
1679/// createSCEV - We know that there is no SCEV for the specified value.
1680/// Analyze the expression.
1681///
1682SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1683  if (!isa<IntegerType>(V->getType()))
1684    return SE.getUnknown(V);
1685
1686  unsigned Opcode = Instruction::UserOp1;
1687  if (Instruction *I = dyn_cast<Instruction>(V))
1688    Opcode = I->getOpcode();
1689  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1690    Opcode = CE->getOpcode();
1691  else
1692    return SE.getUnknown(V);
1693
1694  User *U = cast<User>(V);
1695  switch (Opcode) {
1696  case Instruction::Add:
1697    return SE.getAddExpr(getSCEV(U->getOperand(0)),
1698                         getSCEV(U->getOperand(1)));
1699  case Instruction::Mul:
1700    return SE.getMulExpr(getSCEV(U->getOperand(0)),
1701                         getSCEV(U->getOperand(1)));
1702  case Instruction::UDiv:
1703    return SE.getUDivExpr(getSCEV(U->getOperand(0)),
1704                          getSCEV(U->getOperand(1)));
1705  case Instruction::Sub:
1706    return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
1707                           getSCEV(U->getOperand(1)));
1708  case Instruction::Or:
1709    // If the RHS of the Or is a constant, we may have something like:
1710    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1711    // optimizations will transparently handle this case.
1712    //
1713    // In order for this transformation to be safe, the LHS must be of the
1714    // form X*(2^n) and the Or constant must be less than 2^n.
1715    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1716      SCEVHandle LHS = getSCEV(U->getOperand(0));
1717      const APInt &CIVal = CI->getValue();
1718      if (GetMinTrailingZeros(LHS) >=
1719          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1720        return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
1721    }
1722    break;
1723  case Instruction::Xor:
1724    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1725      // If the RHS of the xor is a signbit, then this is just an add.
1726      // Instcombine turns add of signbit into xor as a strength reduction step.
1727      if (CI->getValue().isSignBit())
1728        return SE.getAddExpr(getSCEV(U->getOperand(0)),
1729                             getSCEV(U->getOperand(1)));
1730
1731      // If the RHS of xor is -1, then this is a not operation.
1732      else if (CI->isAllOnesValue())
1733        return SE.getNotSCEV(getSCEV(U->getOperand(0)));
1734    }
1735    break;
1736
1737  case Instruction::Shl:
1738    // Turn shift left of a constant amount into a multiply.
1739    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1740      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1741      Constant *X = ConstantInt::get(
1742        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1743      return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1744    }
1745    break;
1746
1747  case Instruction::LShr:
1748    // Turn logical shift right of a constant into a unsigned divide.
1749    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1750      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1751      Constant *X = ConstantInt::get(
1752        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1753      return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1754    }
1755    break;
1756
1757  case Instruction::Trunc:
1758    return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1759
1760  case Instruction::ZExt:
1761    return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1762
1763  case Instruction::SExt:
1764    return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1765
1766  case Instruction::BitCast:
1767    // BitCasts are no-op casts so we just eliminate the cast.
1768    if (U->getType()->isInteger() &&
1769        U->getOperand(0)->getType()->isInteger())
1770      return getSCEV(U->getOperand(0));
1771    break;
1772
1773  case Instruction::PHI:
1774    return createNodeForPHI(cast<PHINode>(U));
1775
1776  case Instruction::Select:
1777    // This could be a smax or umax that was lowered earlier.
1778    // Try to recover it.
1779    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
1780      Value *LHS = ICI->getOperand(0);
1781      Value *RHS = ICI->getOperand(1);
1782      switch (ICI->getPredicate()) {
1783      case ICmpInst::ICMP_SLT:
1784      case ICmpInst::ICMP_SLE:
1785        std::swap(LHS, RHS);
1786        // fall through
1787      case ICmpInst::ICMP_SGT:
1788      case ICmpInst::ICMP_SGE:
1789        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1790          return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
1791        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1792          // -smax(-x, -y) == smin(x, y).
1793          return SE.getNegativeSCEV(SE.getSMaxExpr(
1794                                        SE.getNegativeSCEV(getSCEV(LHS)),
1795                                        SE.getNegativeSCEV(getSCEV(RHS))));
1796        break;
1797      case ICmpInst::ICMP_ULT:
1798      case ICmpInst::ICMP_ULE:
1799        std::swap(LHS, RHS);
1800        // fall through
1801      case ICmpInst::ICMP_UGT:
1802      case ICmpInst::ICMP_UGE:
1803        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1804          return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
1805        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1806          // ~umax(~x, ~y) == umin(x, y)
1807          return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
1808                                              SE.getNotSCEV(getSCEV(RHS))));
1809        break;
1810      default:
1811        break;
1812      }
1813    }
1814
1815  default: // We cannot analyze this expression.
1816    break;
1817  }
1818
1819  return SE.getUnknown(V);
1820}
1821
1822
1823
1824//===----------------------------------------------------------------------===//
1825//                   Iteration Count Computation Code
1826//
1827
1828/// getIterationCount - If the specified loop has a predictable iteration
1829/// count, return it.  Note that it is not valid to call this method on a
1830/// loop without a loop-invariant iteration count.
1831SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1832  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1833  if (I == IterationCounts.end()) {
1834    SCEVHandle ItCount = ComputeIterationCount(L);
1835    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1836    if (ItCount != UnknownValue) {
1837      assert(ItCount->isLoopInvariant(L) &&
1838             "Computed trip count isn't loop invariant for loop!");
1839      ++NumTripCountsComputed;
1840    } else if (isa<PHINode>(L->getHeader()->begin())) {
1841      // Only count loops that have phi nodes as not being computable.
1842      ++NumTripCountsNotComputed;
1843    }
1844  }
1845  return I->second;
1846}
1847
1848/// ComputeIterationCount - Compute the number of times the specified loop
1849/// will iterate.
1850SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1851  // If the loop has a non-one exit block count, we can't analyze it.
1852  SmallVector<BasicBlock*, 8> ExitBlocks;
1853  L->getExitBlocks(ExitBlocks);
1854  if (ExitBlocks.size() != 1) return UnknownValue;
1855
1856  // Okay, there is one exit block.  Try to find the condition that causes the
1857  // loop to be exited.
1858  BasicBlock *ExitBlock = ExitBlocks[0];
1859
1860  BasicBlock *ExitingBlock = 0;
1861  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1862       PI != E; ++PI)
1863    if (L->contains(*PI)) {
1864      if (ExitingBlock == 0)
1865        ExitingBlock = *PI;
1866      else
1867        return UnknownValue;   // More than one block exiting!
1868    }
1869  assert(ExitingBlock && "No exits from loop, something is broken!");
1870
1871  // Okay, we've computed the exiting block.  See what condition causes us to
1872  // exit.
1873  //
1874  // FIXME: we should be able to handle switch instructions (with a single exit)
1875  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1876  if (ExitBr == 0) return UnknownValue;
1877  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1878
1879  // At this point, we know we have a conditional branch that determines whether
1880  // the loop is exited.  However, we don't know if the branch is executed each
1881  // time through the loop.  If not, then the execution count of the branch will
1882  // not be equal to the trip count of the loop.
1883  //
1884  // Currently we check for this by checking to see if the Exit branch goes to
1885  // the loop header.  If so, we know it will always execute the same number of
1886  // times as the loop.  We also handle the case where the exit block *is* the
1887  // loop header.  This is common for un-rotated loops.  More extensive analysis
1888  // could be done to handle more cases here.
1889  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1890      ExitBr->getSuccessor(1) != L->getHeader() &&
1891      ExitBr->getParent() != L->getHeader())
1892    return UnknownValue;
1893
1894  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1895
1896  // If it's not an integer comparison then compute it the hard way.
1897  // Note that ICmpInst deals with pointer comparisons too so we must check
1898  // the type of the operand.
1899  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1900    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1901                                          ExitBr->getSuccessor(0) == ExitBlock);
1902
1903  // If the condition was exit on true, convert the condition to exit on false
1904  ICmpInst::Predicate Cond;
1905  if (ExitBr->getSuccessor(1) == ExitBlock)
1906    Cond = ExitCond->getPredicate();
1907  else
1908    Cond = ExitCond->getInversePredicate();
1909
1910  // Handle common loops like: for (X = "string"; *X; ++X)
1911  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1912    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1913      SCEVHandle ItCnt =
1914        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1915      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1916    }
1917
1918  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1919  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1920
1921  // Try to evaluate any dependencies out of the loop.
1922  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1923  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1924  Tmp = getSCEVAtScope(RHS, L);
1925  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1926
1927  // At this point, we would like to compute how many iterations of the
1928  // loop the predicate will return true for these inputs.
1929  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1930    // If there is a constant, force it into the RHS.
1931    std::swap(LHS, RHS);
1932    Cond = ICmpInst::getSwappedPredicate(Cond);
1933  }
1934
1935  // FIXME: think about handling pointer comparisons!  i.e.:
1936  // while (P != P+100) ++P;
1937
1938  // If we have a comparison of a chrec against a constant, try to use value
1939  // ranges to answer this query.
1940  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1941    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1942      if (AddRec->getLoop() == L) {
1943        // Form the comparison range using the constant of the correct type so
1944        // that the ConstantRange class knows to do a signed or unsigned
1945        // comparison.
1946        ConstantInt *CompVal = RHSC->getValue();
1947        const Type *RealTy = ExitCond->getOperand(0)->getType();
1948        CompVal = dyn_cast<ConstantInt>(
1949          ConstantExpr::getBitCast(CompVal, RealTy));
1950        if (CompVal) {
1951          // Form the constant range.
1952          ConstantRange CompRange(
1953              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1954
1955          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
1956          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1957        }
1958      }
1959
1960  switch (Cond) {
1961  case ICmpInst::ICMP_NE: {                     // while (X != Y)
1962    // Convert to: while (X-Y != 0)
1963    SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
1964    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1965    break;
1966  }
1967  case ICmpInst::ICMP_EQ: {
1968    // Convert to: while (X-Y == 0)           // while (X == Y)
1969    SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
1970    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1971    break;
1972  }
1973  case ICmpInst::ICMP_SLT: {
1974    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
1975    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1976    break;
1977  }
1978  case ICmpInst::ICMP_SGT: {
1979    SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS),
1980                                     SE.getNegativeSCEV(RHS), L, true);
1981    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1982    break;
1983  }
1984  case ICmpInst::ICMP_ULT: {
1985    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
1986    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1987    break;
1988  }
1989  case ICmpInst::ICMP_UGT: {
1990    SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
1991                                     SE.getNotSCEV(RHS), L, false);
1992    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1993    break;
1994  }
1995  default:
1996#if 0
1997    cerr << "ComputeIterationCount ";
1998    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1999      cerr << "[unsigned] ";
2000    cerr << *LHS << "   "
2001         << Instruction::getOpcodeName(Instruction::ICmp)
2002         << "   " << *RHS << "\n";
2003#endif
2004    break;
2005  }
2006  return ComputeIterationCountExhaustively(L, ExitCond,
2007                                       ExitBr->getSuccessor(0) == ExitBlock);
2008}
2009
2010static ConstantInt *
2011EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2012                                ScalarEvolution &SE) {
2013  SCEVHandle InVal = SE.getConstant(C);
2014  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2015  assert(isa<SCEVConstant>(Val) &&
2016         "Evaluation of SCEV at constant didn't fold correctly?");
2017  return cast<SCEVConstant>(Val)->getValue();
2018}
2019
2020/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2021/// and a GEP expression (missing the pointer index) indexing into it, return
2022/// the addressed element of the initializer or null if the index expression is
2023/// invalid.
2024static Constant *
2025GetAddressedElementFromGlobal(GlobalVariable *GV,
2026                              const std::vector<ConstantInt*> &Indices) {
2027  Constant *Init = GV->getInitializer();
2028  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2029    uint64_t Idx = Indices[i]->getZExtValue();
2030    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2031      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2032      Init = cast<Constant>(CS->getOperand(Idx));
2033    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2034      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2035      Init = cast<Constant>(CA->getOperand(Idx));
2036    } else if (isa<ConstantAggregateZero>(Init)) {
2037      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2038        assert(Idx < STy->getNumElements() && "Bad struct index!");
2039        Init = Constant::getNullValue(STy->getElementType(Idx));
2040      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2041        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2042        Init = Constant::getNullValue(ATy->getElementType());
2043      } else {
2044        assert(0 && "Unknown constant aggregate type!");
2045      }
2046      return 0;
2047    } else {
2048      return 0; // Unknown initializer type
2049    }
2050  }
2051  return Init;
2052}
2053
2054/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
2055/// 'icmp op load X, cst', try to see if we can compute the trip count.
2056SCEVHandle ScalarEvolutionsImpl::
2057ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
2058                                         const Loop *L,
2059                                         ICmpInst::Predicate predicate) {
2060  if (LI->isVolatile()) return UnknownValue;
2061
2062  // Check to see if the loaded pointer is a getelementptr of a global.
2063  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2064  if (!GEP) return UnknownValue;
2065
2066  // Make sure that it is really a constant global we are gepping, with an
2067  // initializer, and make sure the first IDX is really 0.
2068  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2069  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2070      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2071      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2072    return UnknownValue;
2073
2074  // Okay, we allow one non-constant index into the GEP instruction.
2075  Value *VarIdx = 0;
2076  std::vector<ConstantInt*> Indexes;
2077  unsigned VarIdxNum = 0;
2078  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2079    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2080      Indexes.push_back(CI);
2081    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2082      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2083      VarIdx = GEP->getOperand(i);
2084      VarIdxNum = i-2;
2085      Indexes.push_back(0);
2086    }
2087
2088  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2089  // Check to see if X is a loop variant variable value now.
2090  SCEVHandle Idx = getSCEV(VarIdx);
2091  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2092  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2093
2094  // We can only recognize very limited forms of loop index expressions, in
2095  // particular, only affine AddRec's like {C1,+,C2}.
2096  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2097  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2098      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2099      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2100    return UnknownValue;
2101
2102  unsigned MaxSteps = MaxBruteForceIterations;
2103  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2104    ConstantInt *ItCst =
2105      ConstantInt::get(IdxExpr->getType(), IterationNum);
2106    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
2107
2108    // Form the GEP offset.
2109    Indexes[VarIdxNum] = Val;
2110
2111    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2112    if (Result == 0) break;  // Cannot compute!
2113
2114    // Evaluate the condition for this iteration.
2115    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2116    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2117    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2118#if 0
2119      cerr << "\n***\n*** Computed loop count " << *ItCst
2120           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2121           << "***\n";
2122#endif
2123      ++NumArrayLenItCounts;
2124      return SE.getConstant(ItCst);   // Found terminating iteration!
2125    }
2126  }
2127  return UnknownValue;
2128}
2129
2130
2131/// CanConstantFold - Return true if we can constant fold an instruction of the
2132/// specified type, assuming that all operands were constants.
2133static bool CanConstantFold(const Instruction *I) {
2134  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2135      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2136    return true;
2137
2138  if (const CallInst *CI = dyn_cast<CallInst>(I))
2139    if (const Function *F = CI->getCalledFunction())
2140      return canConstantFoldCallTo(F);
2141  return false;
2142}
2143
2144/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2145/// in the loop that V is derived from.  We allow arbitrary operations along the
2146/// way, but the operands of an operation must either be constants or a value
2147/// derived from a constant PHI.  If this expression does not fit with these
2148/// constraints, return null.
2149static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2150  // If this is not an instruction, or if this is an instruction outside of the
2151  // loop, it can't be derived from a loop PHI.
2152  Instruction *I = dyn_cast<Instruction>(V);
2153  if (I == 0 || !L->contains(I->getParent())) return 0;
2154
2155  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2156    if (L->getHeader() == I->getParent())
2157      return PN;
2158    else
2159      // We don't currently keep track of the control flow needed to evaluate
2160      // PHIs, so we cannot handle PHIs inside of loops.
2161      return 0;
2162  }
2163
2164  // If we won't be able to constant fold this expression even if the operands
2165  // are constants, return early.
2166  if (!CanConstantFold(I)) return 0;
2167
2168  // Otherwise, we can evaluate this instruction if all of its operands are
2169  // constant or derived from a PHI node themselves.
2170  PHINode *PHI = 0;
2171  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2172    if (!(isa<Constant>(I->getOperand(Op)) ||
2173          isa<GlobalValue>(I->getOperand(Op)))) {
2174      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2175      if (P == 0) return 0;  // Not evolving from PHI
2176      if (PHI == 0)
2177        PHI = P;
2178      else if (PHI != P)
2179        return 0;  // Evolving from multiple different PHIs.
2180    }
2181
2182  // This is a expression evolving from a constant PHI!
2183  return PHI;
2184}
2185
2186/// EvaluateExpression - Given an expression that passes the
2187/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2188/// in the loop has the value PHIVal.  If we can't fold this expression for some
2189/// reason, return null.
2190static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2191  if (isa<PHINode>(V)) return PHIVal;
2192  if (Constant *C = dyn_cast<Constant>(V)) return C;
2193  Instruction *I = cast<Instruction>(V);
2194
2195  std::vector<Constant*> Operands;
2196  Operands.resize(I->getNumOperands());
2197
2198  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2199    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2200    if (Operands[i] == 0) return 0;
2201  }
2202
2203  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2204    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2205                                           &Operands[0], Operands.size());
2206  else
2207    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2208                                    &Operands[0], Operands.size());
2209}
2210
2211/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2212/// in the header of its containing loop, we know the loop executes a
2213/// constant number of times, and the PHI node is just a recurrence
2214/// involving constants, fold it.
2215Constant *ScalarEvolutionsImpl::
2216getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
2217  std::map<PHINode*, Constant*>::iterator I =
2218    ConstantEvolutionLoopExitValue.find(PN);
2219  if (I != ConstantEvolutionLoopExitValue.end())
2220    return I->second;
2221
2222  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
2223    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2224
2225  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2226
2227  // Since the loop is canonicalized, the PHI node must have two entries.  One
2228  // entry must be a constant (coming in from outside of the loop), and the
2229  // second must be derived from the same PHI.
2230  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2231  Constant *StartCST =
2232    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2233  if (StartCST == 0)
2234    return RetVal = 0;  // Must be a constant.
2235
2236  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2237  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2238  if (PN2 != PN)
2239    return RetVal = 0;  // Not derived from same PHI.
2240
2241  // Execute the loop symbolically to determine the exit value.
2242  if (Its.getActiveBits() >= 32)
2243    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2244
2245  unsigned NumIterations = Its.getZExtValue(); // must be in range
2246  unsigned IterationNum = 0;
2247  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2248    if (IterationNum == NumIterations)
2249      return RetVal = PHIVal;  // Got exit value!
2250
2251    // Compute the value of the PHI node for the next iteration.
2252    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2253    if (NextPHI == PHIVal)
2254      return RetVal = NextPHI;  // Stopped evolving!
2255    if (NextPHI == 0)
2256      return 0;        // Couldn't evaluate!
2257    PHIVal = NextPHI;
2258  }
2259}
2260
2261/// ComputeIterationCountExhaustively - If the trip is known to execute a
2262/// constant number of times (the condition evolves only from constants),
2263/// try to evaluate a few iterations of the loop until we get the exit
2264/// condition gets a value of ExitWhen (true or false).  If we cannot
2265/// evaluate the trip count of the loop, return UnknownValue.
2266SCEVHandle ScalarEvolutionsImpl::
2267ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2268  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2269  if (PN == 0) return UnknownValue;
2270
2271  // Since the loop is canonicalized, the PHI node must have two entries.  One
2272  // entry must be a constant (coming in from outside of the loop), and the
2273  // second must be derived from the same PHI.
2274  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2275  Constant *StartCST =
2276    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2277  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2278
2279  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2280  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2281  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2282
2283  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2284  // the loop symbolically to determine when the condition gets a value of
2285  // "ExitWhen".
2286  unsigned IterationNum = 0;
2287  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2288  for (Constant *PHIVal = StartCST;
2289       IterationNum != MaxIterations; ++IterationNum) {
2290    ConstantInt *CondVal =
2291      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2292
2293    // Couldn't symbolically evaluate.
2294    if (!CondVal) return UnknownValue;
2295
2296    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2297      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2298      ++NumBruteForceTripCountsComputed;
2299      return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2300    }
2301
2302    // Compute the value of the PHI node for the next iteration.
2303    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2304    if (NextPHI == 0 || NextPHI == PHIVal)
2305      return UnknownValue;  // Couldn't evaluate or not making progress...
2306    PHIVal = NextPHI;
2307  }
2308
2309  // Too many iterations were needed to evaluate.
2310  return UnknownValue;
2311}
2312
2313/// getSCEVAtScope - Compute the value of the specified expression within the
2314/// indicated loop (which may be null to indicate in no loop).  If the
2315/// expression cannot be evaluated, return UnknownValue.
2316SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2317  // FIXME: this should be turned into a virtual method on SCEV!
2318
2319  if (isa<SCEVConstant>(V)) return V;
2320
2321  // If this instruction is evolved from a constant-evolving PHI, compute the
2322  // exit value from the loop without using SCEVs.
2323  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2324    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2325      const Loop *LI = this->LI[I->getParent()];
2326      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2327        if (PHINode *PN = dyn_cast<PHINode>(I))
2328          if (PN->getParent() == LI->getHeader()) {
2329            // Okay, there is no closed form solution for the PHI node.  Check
2330            // to see if the loop that contains it has a known iteration count.
2331            // If so, we may be able to force computation of the exit value.
2332            SCEVHandle IterationCount = getIterationCount(LI);
2333            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2334              // Okay, we know how many times the containing loop executes.  If
2335              // this is a constant evolving PHI node, get the final value at
2336              // the specified iteration number.
2337              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2338                                                    ICC->getValue()->getValue(),
2339                                                               LI);
2340              if (RV) return SE.getUnknown(RV);
2341            }
2342          }
2343
2344      // Okay, this is an expression that we cannot symbolically evaluate
2345      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2346      // the arguments into constants, and if so, try to constant propagate the
2347      // result.  This is particularly useful for computing loop exit values.
2348      if (CanConstantFold(I)) {
2349        std::vector<Constant*> Operands;
2350        Operands.reserve(I->getNumOperands());
2351        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2352          Value *Op = I->getOperand(i);
2353          if (Constant *C = dyn_cast<Constant>(Op)) {
2354            Operands.push_back(C);
2355          } else {
2356            // If any of the operands is non-constant and if they are
2357            // non-integer, don't even try to analyze them with scev techniques.
2358            if (!isa<IntegerType>(Op->getType()))
2359              return V;
2360
2361            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2362            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2363              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2364                                                              Op->getType(),
2365                                                              false));
2366            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2367              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2368                Operands.push_back(ConstantExpr::getIntegerCast(C,
2369                                                                Op->getType(),
2370                                                                false));
2371              else
2372                return V;
2373            } else {
2374              return V;
2375            }
2376          }
2377        }
2378
2379        Constant *C;
2380        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2381          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2382                                              &Operands[0], Operands.size());
2383        else
2384          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2385                                       &Operands[0], Operands.size());
2386        return SE.getUnknown(C);
2387      }
2388    }
2389
2390    // This is some other type of SCEVUnknown, just return it.
2391    return V;
2392  }
2393
2394  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2395    // Avoid performing the look-up in the common case where the specified
2396    // expression has no loop-variant portions.
2397    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2398      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2399      if (OpAtScope != Comm->getOperand(i)) {
2400        if (OpAtScope == UnknownValue) return UnknownValue;
2401        // Okay, at least one of these operands is loop variant but might be
2402        // foldable.  Build a new instance of the folded commutative expression.
2403        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2404        NewOps.push_back(OpAtScope);
2405
2406        for (++i; i != e; ++i) {
2407          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2408          if (OpAtScope == UnknownValue) return UnknownValue;
2409          NewOps.push_back(OpAtScope);
2410        }
2411        if (isa<SCEVAddExpr>(Comm))
2412          return SE.getAddExpr(NewOps);
2413        if (isa<SCEVMulExpr>(Comm))
2414          return SE.getMulExpr(NewOps);
2415        if (isa<SCEVSMaxExpr>(Comm))
2416          return SE.getSMaxExpr(NewOps);
2417        if (isa<SCEVUMaxExpr>(Comm))
2418          return SE.getUMaxExpr(NewOps);
2419        assert(0 && "Unknown commutative SCEV type!");
2420      }
2421    }
2422    // If we got here, all operands are loop invariant.
2423    return Comm;
2424  }
2425
2426  if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2427    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2428    if (LHS == UnknownValue) return LHS;
2429    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2430    if (RHS == UnknownValue) return RHS;
2431    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2432      return Div;   // must be loop invariant
2433    return SE.getUDivExpr(LHS, RHS);
2434  }
2435
2436  // If this is a loop recurrence for a loop that does not contain L, then we
2437  // are dealing with the final value computed by the loop.
2438  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2439    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2440      // To evaluate this recurrence, we need to know how many times the AddRec
2441      // loop iterates.  Compute this now.
2442      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2443      if (IterationCount == UnknownValue) return UnknownValue;
2444      IterationCount = SE.getTruncateOrZeroExtend(IterationCount,
2445                                                  AddRec->getType());
2446
2447      // If the value is affine, simplify the expression evaluation to just
2448      // Start + Step*IterationCount.
2449      if (AddRec->isAffine())
2450        return SE.getAddExpr(AddRec->getStart(),
2451                             SE.getMulExpr(IterationCount,
2452                                           AddRec->getOperand(1)));
2453
2454      // Otherwise, evaluate it the hard way.
2455      return AddRec->evaluateAtIteration(IterationCount, SE);
2456    }
2457    return UnknownValue;
2458  }
2459
2460  //assert(0 && "Unknown SCEV type!");
2461  return UnknownValue;
2462}
2463
2464
2465/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2466/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2467/// might be the same) or two SCEVCouldNotCompute objects.
2468///
2469static std::pair<SCEVHandle,SCEVHandle>
2470SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2471  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2472  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2473  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2474  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2475
2476  // We currently can only solve this if the coefficients are constants.
2477  if (!LC || !MC || !NC) {
2478    SCEV *CNC = new SCEVCouldNotCompute();
2479    return std::make_pair(CNC, CNC);
2480  }
2481
2482  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2483  const APInt &L = LC->getValue()->getValue();
2484  const APInt &M = MC->getValue()->getValue();
2485  const APInt &N = NC->getValue()->getValue();
2486  APInt Two(BitWidth, 2);
2487  APInt Four(BitWidth, 4);
2488
2489  {
2490    using namespace APIntOps;
2491    const APInt& C = L;
2492    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2493    // The B coefficient is M-N/2
2494    APInt B(M);
2495    B -= sdiv(N,Two);
2496
2497    // The A coefficient is N/2
2498    APInt A(N.sdiv(Two));
2499
2500    // Compute the B^2-4ac term.
2501    APInt SqrtTerm(B);
2502    SqrtTerm *= B;
2503    SqrtTerm -= Four * (A * C);
2504
2505    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2506    // integer value or else APInt::sqrt() will assert.
2507    APInt SqrtVal(SqrtTerm.sqrt());
2508
2509    // Compute the two solutions for the quadratic formula.
2510    // The divisions must be performed as signed divisions.
2511    APInt NegB(-B);
2512    APInt TwoA( A << 1 );
2513    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2514    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2515
2516    return std::make_pair(SE.getConstant(Solution1),
2517                          SE.getConstant(Solution2));
2518    } // end APIntOps namespace
2519}
2520
2521/// HowFarToZero - Return the number of times a backedge comparing the specified
2522/// value to zero will execute.  If not computable, return UnknownValue
2523SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2524  // If the value is a constant
2525  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2526    // If the value is already zero, the branch will execute zero times.
2527    if (C->getValue()->isZero()) return C;
2528    return UnknownValue;  // Otherwise it will loop infinitely.
2529  }
2530
2531  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2532  if (!AddRec || AddRec->getLoop() != L)
2533    return UnknownValue;
2534
2535  if (AddRec->isAffine()) {
2536    // If this is an affine expression the execution count of this branch is
2537    // equal to:
2538    //
2539    //     (0 - Start/Step)    iff   Start % Step == 0
2540    //
2541    // Get the initial value for the loop.
2542    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2543    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2544    SCEVHandle Step = AddRec->getOperand(1);
2545
2546    Step = getSCEVAtScope(Step, L->getParentLoop());
2547
2548    // Figure out if Start % Step == 0.
2549    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2550    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2551      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2552        return SE.getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2553      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2554        return Start;                   // 0 - Start/-1 == Start
2555
2556      // Check to see if Start is divisible by SC with no remainder.
2557      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2558        ConstantInt *StartCC = StartC->getValue();
2559        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2560        Constant *Rem = ConstantExpr::getURem(StartNegC, StepC->getValue());
2561        if (Rem->isNullValue()) {
2562          Constant *Result = ConstantExpr::getUDiv(StartNegC,StepC->getValue());
2563          return SE.getUnknown(Result);
2564        }
2565      }
2566    }
2567  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2568    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2569    // the quadratic equation to solve it.
2570    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
2571    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2572    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2573    if (R1) {
2574#if 0
2575      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2576           << "  sol#2: " << *R2 << "\n";
2577#endif
2578      // Pick the smallest positive root value.
2579      if (ConstantInt *CB =
2580          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2581                                   R1->getValue(), R2->getValue()))) {
2582        if (CB->getZExtValue() == false)
2583          std::swap(R1, R2);   // R1 is the minimum root now.
2584
2585        // We can only use this value if the chrec ends up with an exact zero
2586        // value at this index.  When solving for "X*X != 5", for example, we
2587        // should not accept a root of 2.
2588        SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
2589        if (Val->isZero())
2590          return R1;  // We found a quadratic root!
2591      }
2592    }
2593  }
2594
2595  return UnknownValue;
2596}
2597
2598/// HowFarToNonZero - Return the number of times a backedge checking the
2599/// specified value for nonzero will execute.  If not computable, return
2600/// UnknownValue
2601SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2602  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2603  // handle them yet except for the trivial case.  This could be expanded in the
2604  // future as needed.
2605
2606  // If the value is a constant, check to see if it is known to be non-zero
2607  // already.  If so, the backedge will execute zero times.
2608  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2609    if (!C->getValue()->isNullValue())
2610      return SE.getIntegerSCEV(0, C->getType());
2611    return UnknownValue;  // Otherwise it will loop infinitely.
2612  }
2613
2614  // We could implement others, but I really doubt anyone writes loops like
2615  // this, and if they did, they would already be constant folded.
2616  return UnknownValue;
2617}
2618
2619/// executesAtLeastOnce - Test whether entry to the loop is protected by
2620/// a conditional between LHS and RHS.
2621bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
2622                                               SCEV *LHS, SCEV *RHS) {
2623  BasicBlock *Preheader = L->getLoopPreheader();
2624  BasicBlock *PreheaderDest = L->getHeader();
2625  if (Preheader == 0) return false;
2626
2627  BranchInst *LoopEntryPredicate =
2628    dyn_cast<BranchInst>(Preheader->getTerminator());
2629  if (!LoopEntryPredicate) return false;
2630
2631  // This might be a critical edge broken out.  If the loop preheader ends in
2632  // an unconditional branch to the loop, check to see if the preheader has a
2633  // single predecessor, and if so, look for its terminator.
2634  while (LoopEntryPredicate->isUnconditional()) {
2635    PreheaderDest = Preheader;
2636    Preheader = Preheader->getSinglePredecessor();
2637    if (!Preheader) return false;  // Multiple preds.
2638
2639    LoopEntryPredicate =
2640      dyn_cast<BranchInst>(Preheader->getTerminator());
2641    if (!LoopEntryPredicate) return false;
2642  }
2643
2644  ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2645  if (!ICI) return false;
2646
2647  // Now that we found a conditional branch that dominates the loop, check to
2648  // see if it is the comparison we are looking for.
2649  Value *PreCondLHS = ICI->getOperand(0);
2650  Value *PreCondRHS = ICI->getOperand(1);
2651  ICmpInst::Predicate Cond;
2652  if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2653    Cond = ICI->getPredicate();
2654  else
2655    Cond = ICI->getInversePredicate();
2656
2657  switch (Cond) {
2658  case ICmpInst::ICMP_UGT:
2659    if (isSigned) return false;
2660    std::swap(PreCondLHS, PreCondRHS);
2661    Cond = ICmpInst::ICMP_ULT;
2662    break;
2663  case ICmpInst::ICMP_SGT:
2664    if (!isSigned) return false;
2665    std::swap(PreCondLHS, PreCondRHS);
2666    Cond = ICmpInst::ICMP_SLT;
2667    break;
2668  case ICmpInst::ICMP_ULT:
2669    if (isSigned) return false;
2670    break;
2671  case ICmpInst::ICMP_SLT:
2672    if (!isSigned) return false;
2673    break;
2674  default:
2675    return false;
2676  }
2677
2678  if (!PreCondLHS->getType()->isInteger()) return false;
2679
2680  return LHS == getSCEV(PreCondLHS) && RHS == getSCEV(PreCondRHS);
2681}
2682
2683/// HowManyLessThans - Return the number of times a backedge containing the
2684/// specified less-than comparison will execute.  If not computable, return
2685/// UnknownValue.
2686SCEVHandle ScalarEvolutionsImpl::
2687HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
2688  // Only handle:  "ADDREC < LoopInvariant".
2689  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2690
2691  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2692  if (!AddRec || AddRec->getLoop() != L)
2693    return UnknownValue;
2694
2695  if (AddRec->isAffine()) {
2696    // FORNOW: We only support unit strides.
2697    SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
2698    if (AddRec->getOperand(1) != One)
2699      return UnknownValue;
2700
2701    // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
2702    // m.  So, we count the number of iterations in which {n,+,1} < m is true.
2703    // Note that we cannot simply return max(m-n,0) because it's not safe to
2704    // treat m-n as signed nor unsigned due to overflow possibility.
2705
2706    // First, we get the value of the LHS in the first iteration: n
2707    SCEVHandle Start = AddRec->getOperand(0);
2708
2709    if (executesAtLeastOnce(L, isSigned,
2710                            SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
2711      // Since we know that the condition is true in order to enter the loop,
2712      // we know that it will run exactly m-n times.
2713      return SE.getMinusSCEV(RHS, Start);
2714    } else {
2715      // Then, we get the value of the LHS in the first iteration in which the
2716      // above condition doesn't hold.  This equals to max(m,n).
2717      SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
2718                                : SE.getUMaxExpr(RHS, Start);
2719
2720      // Finally, we subtract these two values to get the number of times the
2721      // backedge is executed: max(m,n)-n.
2722      return SE.getMinusSCEV(End, Start);
2723    }
2724  }
2725
2726  return UnknownValue;
2727}
2728
2729/// getNumIterationsInRange - Return the number of iterations of this loop that
2730/// produce values in the specified constant range.  Another way of looking at
2731/// this is that it returns the first iteration number where the value is not in
2732/// the condition, thus computing the exit count. If the iteration count can't
2733/// be computed, an instance of SCEVCouldNotCompute is returned.
2734SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2735                                                   ScalarEvolution &SE) const {
2736  if (Range.isFullSet())  // Infinite loop.
2737    return new SCEVCouldNotCompute();
2738
2739  // If the start is a non-zero constant, shift the range to simplify things.
2740  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2741    if (!SC->getValue()->isZero()) {
2742      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2743      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
2744      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
2745      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2746        return ShiftedAddRec->getNumIterationsInRange(
2747                           Range.subtract(SC->getValue()->getValue()), SE);
2748      // This is strange and shouldn't happen.
2749      return new SCEVCouldNotCompute();
2750    }
2751
2752  // The only time we can solve this is when we have all constant indices.
2753  // Otherwise, we cannot determine the overflow conditions.
2754  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2755    if (!isa<SCEVConstant>(getOperand(i)))
2756      return new SCEVCouldNotCompute();
2757
2758
2759  // Okay at this point we know that all elements of the chrec are constants and
2760  // that the start element is zero.
2761
2762  // First check to see if the range contains zero.  If not, the first
2763  // iteration exits.
2764  if (!Range.contains(APInt(getBitWidth(),0)))
2765    return SE.getConstant(ConstantInt::get(getType(),0));
2766
2767  if (isAffine()) {
2768    // If this is an affine expression then we have this situation:
2769    //   Solve {0,+,A} in Range  ===  Ax in Range
2770
2771    // We know that zero is in the range.  If A is positive then we know that
2772    // the upper value of the range must be the first possible exit value.
2773    // If A is negative then the lower of the range is the last possible loop
2774    // value.  Also note that we already checked for a full range.
2775    APInt One(getBitWidth(),1);
2776    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2777    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
2778
2779    // The exit value should be (End+A)/A.
2780    APInt ExitVal = (End + A).udiv(A);
2781    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2782
2783    // Evaluate at the exit value.  If we really did fall out of the valid
2784    // range, then we computed our trip count, otherwise wrap around or other
2785    // things must have happened.
2786    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
2787    if (Range.contains(Val->getValue()))
2788      return new SCEVCouldNotCompute();  // Something strange happened
2789
2790    // Ensure that the previous value is in the range.  This is a sanity check.
2791    assert(Range.contains(
2792           EvaluateConstantChrecAtConstant(this,
2793           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
2794           "Linear scev computation is off in a bad way!");
2795    return SE.getConstant(ExitValue);
2796  } else if (isQuadratic()) {
2797    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2798    // quadratic equation to solve it.  To do this, we must frame our problem in
2799    // terms of figuring out when zero is crossed, instead of when
2800    // Range.getUpper() is crossed.
2801    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2802    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
2803    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
2804
2805    // Next, solve the constructed addrec
2806    std::pair<SCEVHandle,SCEVHandle> Roots =
2807      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
2808    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2809    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2810    if (R1) {
2811      // Pick the smallest positive root value.
2812      if (ConstantInt *CB =
2813          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2814                                   R1->getValue(), R2->getValue()))) {
2815        if (CB->getZExtValue() == false)
2816          std::swap(R1, R2);   // R1 is the minimum root now.
2817
2818        // Make sure the root is not off by one.  The returned iteration should
2819        // not be in the range, but the previous one should be.  When solving
2820        // for "X*X < 5", for example, we should not return a root of 2.
2821        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2822                                                             R1->getValue(),
2823                                                             SE);
2824        if (Range.contains(R1Val->getValue())) {
2825          // The next iteration must be out of the range...
2826          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2827
2828          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
2829          if (!Range.contains(R1Val->getValue()))
2830            return SE.getConstant(NextVal);
2831          return new SCEVCouldNotCompute();  // Something strange happened
2832        }
2833
2834        // If R1 was not in the range, then it is a good return value.  Make
2835        // sure that R1-1 WAS in the range though, just in case.
2836        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
2837        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
2838        if (Range.contains(R1Val->getValue()))
2839          return R1;
2840        return new SCEVCouldNotCompute();  // Something strange happened
2841      }
2842    }
2843  }
2844
2845  // Fallback, if this is a general polynomial, figure out the progression
2846  // through brute force: evaluate until we find an iteration that fails the
2847  // test.  This is likely to be slow, but getting an accurate trip count is
2848  // incredibly important, we will be able to simplify the exit test a lot, and
2849  // we are almost guaranteed to get a trip count in this case.
2850  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2851  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2852  do {
2853    ++NumBruteForceEvaluations;
2854    SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE);
2855    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2856      return new SCEVCouldNotCompute();
2857
2858    // Check to see if we found the value!
2859    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
2860      return SE.getConstant(TestVal);
2861
2862    // Increment to test the next index.
2863    TestVal = ConstantInt::get(TestVal->getValue()+1);
2864  } while (TestVal != EndVal);
2865
2866  return new SCEVCouldNotCompute();
2867}
2868
2869
2870
2871//===----------------------------------------------------------------------===//
2872//                   ScalarEvolution Class Implementation
2873//===----------------------------------------------------------------------===//
2874
2875bool ScalarEvolution::runOnFunction(Function &F) {
2876  Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>());
2877  return false;
2878}
2879
2880void ScalarEvolution::releaseMemory() {
2881  delete (ScalarEvolutionsImpl*)Impl;
2882  Impl = 0;
2883}
2884
2885void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2886  AU.setPreservesAll();
2887  AU.addRequiredTransitive<LoopInfo>();
2888}
2889
2890SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2891  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2892}
2893
2894/// hasSCEV - Return true if the SCEV for this value has already been
2895/// computed.
2896bool ScalarEvolution::hasSCEV(Value *V) const {
2897  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2898}
2899
2900
2901/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2902/// the specified value.
2903void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2904  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2905}
2906
2907
2908SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2909  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2910}
2911
2912bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2913  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2914}
2915
2916SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2917  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2918}
2919
2920void ScalarEvolution::deleteValueFromRecords(Value *V) const {
2921  return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
2922}
2923
2924static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2925                          const Loop *L) {
2926  // Print all inner loops first
2927  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2928    PrintLoopInfo(OS, SE, *I);
2929
2930  OS << "Loop " << L->getHeader()->getName() << ": ";
2931
2932  SmallVector<BasicBlock*, 8> ExitBlocks;
2933  L->getExitBlocks(ExitBlocks);
2934  if (ExitBlocks.size() != 1)
2935    OS << "<multiple exits> ";
2936
2937  if (SE->hasLoopInvariantIterationCount(L)) {
2938    OS << *SE->getIterationCount(L) << " iterations! ";
2939  } else {
2940    OS << "Unpredictable iteration count. ";
2941  }
2942
2943  OS << "\n";
2944}
2945
2946void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2947  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2948  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2949
2950  OS << "Classifying expressions for: " << F.getName() << "\n";
2951  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2952    if (I->getType()->isInteger()) {
2953      OS << *I;
2954      OS << "  --> ";
2955      SCEVHandle SV = getSCEV(&*I);
2956      SV->print(OS);
2957      OS << "\t\t";
2958
2959      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2960        OS << "Exits: ";
2961        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2962        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2963          OS << "<<Unknown>>";
2964        } else {
2965          OS << *ExitValue;
2966        }
2967      }
2968
2969
2970      OS << "\n";
2971    }
2972
2973  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2974  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2975    PrintLoopInfo(OS, this, *I);
2976}
2977