ScalarEvolution.cpp revision 992efb03785f2a368fbb63b09373be1d6a96ce5a
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->hasNoUnsignedWrap())
161      OS << "nuw><";
162    if (AR->hasNoSignedWrap())
163      OS << "nsw><";
164    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165    OS << ">";
166    return;
167  }
168  case scAddExpr:
169  case scMulExpr:
170  case scUMaxExpr:
171  case scSMaxExpr: {
172    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
173    const char *OpStr = 0;
174    switch (NAry->getSCEVType()) {
175    case scAddExpr: OpStr = " + "; break;
176    case scMulExpr: OpStr = " * "; break;
177    case scUMaxExpr: OpStr = " umax "; break;
178    case scSMaxExpr: OpStr = " smax "; break;
179    }
180    OS << "(";
181    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182         I != E; ++I) {
183      OS << **I;
184      if (llvm::next(I) != E)
185        OS << OpStr;
186    }
187    OS << ")";
188    return;
189  }
190  case scUDivExpr: {
191    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193    return;
194  }
195  case scUnknown: {
196    const SCEVUnknown *U = cast<SCEVUnknown>(this);
197    const Type *AllocTy;
198    if (U->isSizeOf(AllocTy)) {
199      OS << "sizeof(" << *AllocTy << ")";
200      return;
201    }
202    if (U->isAlignOf(AllocTy)) {
203      OS << "alignof(" << *AllocTy << ")";
204      return;
205    }
206
207    const Type *CTy;
208    Constant *FieldNo;
209    if (U->isOffsetOf(CTy, FieldNo)) {
210      OS << "offsetof(" << *CTy << ", ";
211      WriteAsOperand(OS, FieldNo, false);
212      OS << ")";
213      return;
214    }
215
216    // Otherwise just print it normally.
217    WriteAsOperand(OS, U->getValue(), false);
218    return;
219  }
220  case scCouldNotCompute:
221    OS << "***COULDNOTCOMPUTE***";
222    return;
223  default: break;
224  }
225  llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229  switch (getSCEVType()) {
230  case scConstant:
231    return cast<SCEVConstant>(this)->getType();
232  case scTruncate:
233  case scZeroExtend:
234  case scSignExtend:
235    return cast<SCEVCastExpr>(this)->getType();
236  case scAddRecExpr:
237  case scMulExpr:
238  case scUMaxExpr:
239  case scSMaxExpr:
240    return cast<SCEVNAryExpr>(this)->getType();
241  case scAddExpr:
242    return cast<SCEVAddExpr>(this)->getType();
243  case scUDivExpr:
244    return cast<SCEVUDivExpr>(this)->getType();
245  case scUnknown:
246    return cast<SCEVUnknown>(this)->getType();
247  case scCouldNotCompute:
248    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249    return 0;
250  default: break;
251  }
252  llvm_unreachable("Unknown SCEV kind!");
253  return 0;
254}
255
256bool SCEV::isZero() const {
257  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258    return SC->getValue()->isZero();
259  return false;
260}
261
262bool SCEV::isOne() const {
263  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264    return SC->getValue()->isOne();
265  return false;
266}
267
268bool SCEV::isAllOnesValue() const {
269  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270    return SC->getValue()->isAllOnesValue();
271  return false;
272}
273
274SCEVCouldNotCompute::SCEVCouldNotCompute() :
275  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
276
277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278  return S->getSCEVType() == scCouldNotCompute;
279}
280
281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
282  FoldingSetNodeID ID;
283  ID.AddInteger(scConstant);
284  ID.AddPointer(V);
285  void *IP = 0;
286  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
287  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
288  UniqueSCEVs.InsertNode(S, IP);
289  return S;
290}
291
292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
293  return getConstant(ConstantInt::get(getContext(), Val));
294}
295
296const SCEV *
297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
298  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299  return getConstant(ConstantInt::get(ITy, V, isSigned));
300}
301
302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
303                           unsigned SCEVTy, const SCEV *op, const Type *ty)
304  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
305
306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
307                                   const SCEV *op, const Type *ty)
308  : SCEVCastExpr(ID, scTruncate, op, ty) {
309  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
311         "Cannot truncate non-integer value!");
312}
313
314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
315                                       const SCEV *op, const Type *ty)
316  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
317  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
319         "Cannot zero extend non-integer value!");
320}
321
322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
323                                       const SCEV *op, const Type *ty)
324  : SCEVCastExpr(ID, scSignExtend, op, ty) {
325  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
327         "Cannot sign extend non-integer value!");
328}
329
330void SCEVUnknown::deleted() {
331  // Clear this SCEVUnknown from various maps.
332  SE->forgetMemoizedResults(this);
333
334  // Remove this SCEVUnknown from the uniquing map.
335  SE->UniqueSCEVs.RemoveNode(this);
336
337  // Release the value.
338  setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
342  // Clear this SCEVUnknown from various maps.
343  SE->forgetMemoizedResults(this);
344
345  // Remove this SCEVUnknown from the uniquing map.
346  SE->UniqueSCEVs.RemoveNode(this);
347
348  // Update this SCEVUnknown to point to the new value. This is needed
349  // because there may still be outstanding SCEVs which still point to
350  // this SCEVUnknown.
351  setValPtr(New);
352}
353
354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
355  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
356    if (VCE->getOpcode() == Instruction::PtrToInt)
357      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
358        if (CE->getOpcode() == Instruction::GetElementPtr &&
359            CE->getOperand(0)->isNullValue() &&
360            CE->getNumOperands() == 2)
361          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362            if (CI->isOne()) {
363              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364                                 ->getElementType();
365              return true;
366            }
367
368  return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
372  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
373    if (VCE->getOpcode() == Instruction::PtrToInt)
374      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
375        if (CE->getOpcode() == Instruction::GetElementPtr &&
376            CE->getOperand(0)->isNullValue()) {
377          const Type *Ty =
378            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379          if (const StructType *STy = dyn_cast<StructType>(Ty))
380            if (!STy->isPacked() &&
381                CE->getNumOperands() == 3 &&
382                CE->getOperand(1)->isNullValue()) {
383              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384                if (CI->isOne() &&
385                    STy->getNumElements() == 2 &&
386                    STy->getElementType(0)->isIntegerTy(1)) {
387                  AllocTy = STy->getElementType(1);
388                  return true;
389                }
390            }
391        }
392
393  return false;
394}
395
396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
397  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
398    if (VCE->getOpcode() == Instruction::PtrToInt)
399      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400        if (CE->getOpcode() == Instruction::GetElementPtr &&
401            CE->getNumOperands() == 3 &&
402            CE->getOperand(0)->isNullValue() &&
403            CE->getOperand(1)->isNullValue()) {
404          const Type *Ty =
405            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406          // Ignore vector types here so that ScalarEvolutionExpander doesn't
407          // emit getelementptrs that index into vectors.
408          if (Ty->isStructTy() || Ty->isArrayTy()) {
409            CTy = Ty;
410            FieldNo = CE->getOperand(2);
411            return true;
412          }
413        }
414
415  return false;
416}
417
418//===----------------------------------------------------------------------===//
419//                               SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424  /// than the complexity of the RHS.  This comparator is used to canonicalize
425  /// expressions.
426  class SCEVComplexityCompare {
427    const LoopInfo *const LI;
428  public:
429    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
430
431    // Return true or false if LHS is less than, or at least RHS, respectively.
432    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
433      return compare(LHS, RHS) < 0;
434    }
435
436    // Return negative, zero, or positive, if LHS is less than, equal to, or
437    // greater than RHS, respectively. A three-way result allows recursive
438    // comparisons to be more efficient.
439    int compare(const SCEV *LHS, const SCEV *RHS) const {
440      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441      if (LHS == RHS)
442        return 0;
443
444      // Primarily, sort the SCEVs by their getSCEVType().
445      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446      if (LType != RType)
447        return (int)LType - (int)RType;
448
449      // Aside from the getSCEVType() ordering, the particular ordering
450      // isn't very important except that it's beneficial to be consistent,
451      // so that (a + b) and (b + a) don't end up as different expressions.
452      switch (LType) {
453      case scUnknown: {
454        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
455        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
456
457        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458        // not as complete as it could be.
459        const Value *LV = LU->getValue(), *RV = RU->getValue();
460
461        // Order pointer values after integer values. This helps SCEVExpander
462        // form GEPs.
463        bool LIsPointer = LV->getType()->isPointerTy(),
464             RIsPointer = RV->getType()->isPointerTy();
465        if (LIsPointer != RIsPointer)
466          return (int)LIsPointer - (int)RIsPointer;
467
468        // Compare getValueID values.
469        unsigned LID = LV->getValueID(),
470                 RID = RV->getValueID();
471        if (LID != RID)
472          return (int)LID - (int)RID;
473
474        // Sort arguments by their position.
475        if (const Argument *LA = dyn_cast<Argument>(LV)) {
476          const Argument *RA = cast<Argument>(RV);
477          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478          return (int)LArgNo - (int)RArgNo;
479        }
480
481        // For instructions, compare their loop depth, and their operand
482        // count.  This is pretty loose.
483        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484          const Instruction *RInst = cast<Instruction>(RV);
485
486          // Compare loop depths.
487          const BasicBlock *LParent = LInst->getParent(),
488                           *RParent = RInst->getParent();
489          if (LParent != RParent) {
490            unsigned LDepth = LI->getLoopDepth(LParent),
491                     RDepth = LI->getLoopDepth(RParent);
492            if (LDepth != RDepth)
493              return (int)LDepth - (int)RDepth;
494          }
495
496          // Compare the number of operands.
497          unsigned LNumOps = LInst->getNumOperands(),
498                   RNumOps = RInst->getNumOperands();
499          return (int)LNumOps - (int)RNumOps;
500        }
501
502        return 0;
503      }
504
505      case scConstant: {
506        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
507        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
508
509        // Compare constant values.
510        const APInt &LA = LC->getValue()->getValue();
511        const APInt &RA = RC->getValue()->getValue();
512        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
513        if (LBitWidth != RBitWidth)
514          return (int)LBitWidth - (int)RBitWidth;
515        return LA.ult(RA) ? -1 : 1;
516      }
517
518      case scAddRecExpr: {
519        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
520        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
521
522        // Compare addrec loop depths.
523        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524        if (LLoop != RLoop) {
525          unsigned LDepth = LLoop->getLoopDepth(),
526                   RDepth = RLoop->getLoopDepth();
527          if (LDepth != RDepth)
528            return (int)LDepth - (int)RDepth;
529        }
530
531        // Addrec complexity grows with operand count.
532        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533        if (LNumOps != RNumOps)
534          return (int)LNumOps - (int)RNumOps;
535
536        // Lexicographically compare.
537        for (unsigned i = 0; i != LNumOps; ++i) {
538          long X = compare(LA->getOperand(i), RA->getOperand(i));
539          if (X != 0)
540            return X;
541        }
542
543        return 0;
544      }
545
546      case scAddExpr:
547      case scMulExpr:
548      case scSMaxExpr:
549      case scUMaxExpr: {
550        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
551        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
552
553        // Lexicographically compare n-ary expressions.
554        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555        for (unsigned i = 0; i != LNumOps; ++i) {
556          if (i >= RNumOps)
557            return 1;
558          long X = compare(LC->getOperand(i), RC->getOperand(i));
559          if (X != 0)
560            return X;
561        }
562        return (int)LNumOps - (int)RNumOps;
563      }
564
565      case scUDivExpr: {
566        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
567        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
568
569        // Lexicographically compare udiv expressions.
570        long X = compare(LC->getLHS(), RC->getLHS());
571        if (X != 0)
572          return X;
573        return compare(LC->getRHS(), RC->getRHS());
574      }
575
576      case scTruncate:
577      case scZeroExtend:
578      case scSignExtend: {
579        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
580        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
581
582        // Compare cast expressions by operand.
583        return compare(LC->getOperand(), RC->getOperand());
584      }
585
586      default:
587        break;
588      }
589
590      llvm_unreachable("Unknown SCEV kind!");
591      return 0;
592    }
593  };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
601/// Note that we go take special precautions to ensure that we get deterministic
602/// results from this routine.  In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
607                              LoopInfo *LI) {
608  if (Ops.size() < 2) return;  // Noop
609  if (Ops.size() == 2) {
610    // This is the common case, which also happens to be trivially simple.
611    // Special case it.
612    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613    if (SCEVComplexityCompare(LI)(RHS, LHS))
614      std::swap(LHS, RHS);
615    return;
616  }
617
618  // Do the rough sort by complexity.
619  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621  // Now that we are sorted by complexity, group elements of the same
622  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
623  // be extremely short in practice.  Note that we take this approach because we
624  // do not want to depend on the addresses of the objects we are grouping.
625  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626    const SCEV *S = Ops[i];
627    unsigned Complexity = S->getSCEVType();
628
629    // If there are any objects of the same complexity and same value as this
630    // one, group them.
631    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632      if (Ops[j] == S) { // Found a duplicate.
633        // Move it to immediately after i'th element.
634        std::swap(Ops[i+1], Ops[j]);
635        ++i;   // no need to rescan it.
636        if (i == e-2) return;  // Done!
637      }
638    }
639  }
640}
641
642
643
644//===----------------------------------------------------------------------===//
645//                      Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
648/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
649/// Assume, K > 0.
650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
651                                       ScalarEvolution &SE,
652                                       const Type* ResultTy) {
653  // Handle the simplest case efficiently.
654  if (K == 1)
655    return SE.getTruncateOrZeroExtend(It, ResultTy);
656
657  // We are using the following formula for BC(It, K):
658  //
659  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660  //
661  // Suppose, W is the bitwidth of the return value.  We must be prepared for
662  // overflow.  Hence, we must assure that the result of our computation is
663  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
664  // safe in modular arithmetic.
665  //
666  // However, this code doesn't use exactly that formula; the formula it uses
667  // is something like the following, where T is the number of factors of 2 in
668  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669  // exponentiation:
670  //
671  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
672  //
673  // This formula is trivially equivalent to the previous formula.  However,
674  // this formula can be implemented much more efficiently.  The trick is that
675  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676  // arithmetic.  To do exact division in modular arithmetic, all we have
677  // to do is multiply by the inverse.  Therefore, this step can be done at
678  // width W.
679  //
680  // The next issue is how to safely do the division by 2^T.  The way this
681  // is done is by doing the multiplication step at a width of at least W + T
682  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
683  // when we perform the division by 2^T (which is equivalent to a right shift
684  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
685  // truncated out after the division by 2^T.
686  //
687  // In comparison to just directly using the first formula, this technique
688  // is much more efficient; using the first formula requires W * K bits,
689  // but this formula less than W + K bits. Also, the first formula requires
690  // a division step, whereas this formula only requires multiplies and shifts.
691  //
692  // It doesn't matter whether the subtraction step is done in the calculation
693  // width or the input iteration count's width; if the subtraction overflows,
694  // the result must be zero anyway.  We prefer here to do it in the width of
695  // the induction variable because it helps a lot for certain cases; CodeGen
696  // isn't smart enough to ignore the overflow, which leads to much less
697  // efficient code if the width of the subtraction is wider than the native
698  // register width.
699  //
700  // (It's possible to not widen at all by pulling out factors of 2 before
701  // the multiplication; for example, K=2 can be calculated as
702  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703  // extra arithmetic, so it's not an obvious win, and it gets
704  // much more complicated for K > 3.)
705
706  // Protection from insane SCEVs; this bound is conservative,
707  // but it probably doesn't matter.
708  if (K > 1000)
709    return SE.getCouldNotCompute();
710
711  unsigned W = SE.getTypeSizeInBits(ResultTy);
712
713  // Calculate K! / 2^T and T; we divide out the factors of two before
714  // multiplying for calculating K! / 2^T to avoid overflow.
715  // Other overflow doesn't matter because we only care about the bottom
716  // W bits of the result.
717  APInt OddFactorial(W, 1);
718  unsigned T = 1;
719  for (unsigned i = 3; i <= K; ++i) {
720    APInt Mult(W, i);
721    unsigned TwoFactors = Mult.countTrailingZeros();
722    T += TwoFactors;
723    Mult = Mult.lshr(TwoFactors);
724    OddFactorial *= Mult;
725  }
726
727  // We need at least W + T bits for the multiplication step
728  unsigned CalculationBits = W + T;
729
730  // Calculate 2^T, at width T+W.
731  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733  // Calculate the multiplicative inverse of K! / 2^T;
734  // this multiplication factor will perform the exact division by
735  // K! / 2^T.
736  APInt Mod = APInt::getSignedMinValue(W+1);
737  APInt MultiplyFactor = OddFactorial.zext(W+1);
738  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739  MultiplyFactor = MultiplyFactor.trunc(W);
740
741  // Calculate the product, at width T+W
742  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743                                                      CalculationBits);
744  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
745  for (unsigned i = 1; i != K; ++i) {
746    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
747    Dividend = SE.getMulExpr(Dividend,
748                             SE.getTruncateOrZeroExtend(S, CalculationTy));
749  }
750
751  // Divide by 2^T
752  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
753
754  // Truncate the result, and divide by K! / 2^T.
755
756  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
758}
759
760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number.  We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
765///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
766///
767/// where BC(It, k) stands for binomial coefficient.
768///
769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
770                                                ScalarEvolution &SE) const {
771  const SCEV *Result = getStart();
772  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
773    // The computation is correct in the face of overflow provided that the
774    // multiplication is performed _after_ the evaluation of the binomial
775    // coefficient.
776    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
777    if (isa<SCEVCouldNotCompute>(Coeff))
778      return Coeff;
779
780    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
781  }
782  return Result;
783}
784
785//===----------------------------------------------------------------------===//
786//                    SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
790                                             const Type *Ty) {
791  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
792         "This is not a truncating conversion!");
793  assert(isSCEVable(Ty) &&
794         "This is not a conversion to a SCEVable type!");
795  Ty = getEffectiveSCEVType(Ty);
796
797  FoldingSetNodeID ID;
798  ID.AddInteger(scTruncate);
799  ID.AddPointer(Op);
800  ID.AddPointer(Ty);
801  void *IP = 0;
802  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
804  // Fold if the operand is constant.
805  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
806    return getConstant(
807      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808                                               getEffectiveSCEVType(Ty))));
809
810  // trunc(trunc(x)) --> trunc(x)
811  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
812    return getTruncateExpr(ST->getOperand(), Ty);
813
814  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
815  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
816    return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
819  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
820    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
822  // If the input value is a chrec scev, truncate the chrec's operands.
823  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
824    SmallVector<const SCEV *, 4> Operands;
825    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
826      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
827    return getAddRecExpr(Operands, AddRec->getLoop());
828  }
829
830  // As a special case, fold trunc(undef) to undef. We don't want to
831  // know too much about SCEVUnknowns, but this special case is handy
832  // and harmless.
833  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
834    if (isa<UndefValue>(U->getValue()))
835      return getSCEV(UndefValue::get(Ty));
836
837  // The cast wasn't folded; create an explicit cast node. We can reuse
838  // the existing insert position since if we get here, we won't have
839  // made any changes which would invalidate it.
840  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
841                                                 Op, Ty);
842  UniqueSCEVs.InsertNode(S, IP);
843  return S;
844}
845
846const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
847                                               const Type *Ty) {
848  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
849         "This is not an extending conversion!");
850  assert(isSCEVable(Ty) &&
851         "This is not a conversion to a SCEVable type!");
852  Ty = getEffectiveSCEVType(Ty);
853
854  // Fold if the operand is constant.
855  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
856    return getConstant(
857      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
858                                              getEffectiveSCEVType(Ty))));
859
860  // zext(zext(x)) --> zext(x)
861  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
862    return getZeroExtendExpr(SZ->getOperand(), Ty);
863
864  // Before doing any expensive analysis, check to see if we've already
865  // computed a SCEV for this Op and Ty.
866  FoldingSetNodeID ID;
867  ID.AddInteger(scZeroExtend);
868  ID.AddPointer(Op);
869  ID.AddPointer(Ty);
870  void *IP = 0;
871  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
872
873  // If the input value is a chrec scev, and we can prove that the value
874  // did not overflow the old, smaller, value, we can zero extend all of the
875  // operands (often constants).  This allows analysis of something like
876  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
877  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
878    if (AR->isAffine()) {
879      const SCEV *Start = AR->getStart();
880      const SCEV *Step = AR->getStepRecurrence(*this);
881      unsigned BitWidth = getTypeSizeInBits(AR->getType());
882      const Loop *L = AR->getLoop();
883
884      // If we have special knowledge that this addrec won't overflow,
885      // we don't need to do any further analysis.
886      if (AR->hasNoUnsignedWrap())
887        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
888                             getZeroExtendExpr(Step, Ty),
889                             L);
890
891      // Check whether the backedge-taken count is SCEVCouldNotCompute.
892      // Note that this serves two purposes: It filters out loops that are
893      // simply not analyzable, and it covers the case where this code is
894      // being called from within backedge-taken count analysis, such that
895      // attempting to ask for the backedge-taken count would likely result
896      // in infinite recursion. In the later case, the analysis code will
897      // cope with a conservative value, and it will take care to purge
898      // that value once it has finished.
899      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
900      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
901        // Manually compute the final value for AR, checking for
902        // overflow.
903
904        // Check whether the backedge-taken count can be losslessly casted to
905        // the addrec's type. The count is always unsigned.
906        const SCEV *CastedMaxBECount =
907          getTruncateOrZeroExtend(MaxBECount, Start->getType());
908        const SCEV *RecastedMaxBECount =
909          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
910        if (MaxBECount == RecastedMaxBECount) {
911          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
912          // Check whether Start+Step*MaxBECount has no unsigned overflow.
913          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
914          const SCEV *Add = getAddExpr(Start, ZMul);
915          const SCEV *OperandExtendedAdd =
916            getAddExpr(getZeroExtendExpr(Start, WideTy),
917                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
918                                  getZeroExtendExpr(Step, WideTy)));
919          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
920            // Return the expression with the addrec on the outside.
921            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
922                                 getZeroExtendExpr(Step, Ty),
923                                 L);
924
925          // Similar to above, only this time treat the step value as signed.
926          // This covers loops that count down.
927          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
928          Add = getAddExpr(Start, SMul);
929          OperandExtendedAdd =
930            getAddExpr(getZeroExtendExpr(Start, WideTy),
931                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
932                                  getSignExtendExpr(Step, WideTy)));
933          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
934            // Return the expression with the addrec on the outside.
935            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
936                                 getSignExtendExpr(Step, Ty),
937                                 L);
938        }
939
940        // If the backedge is guarded by a comparison with the pre-inc value
941        // the addrec is safe. Also, if the entry is guarded by a comparison
942        // with the start value and the backedge is guarded by a comparison
943        // with the post-inc value, the addrec is safe.
944        if (isKnownPositive(Step)) {
945          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
946                                      getUnsignedRange(Step).getUnsignedMax());
947          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
948              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
949               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
950                                           AR->getPostIncExpr(*this), N)))
951            // Return the expression with the addrec on the outside.
952            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953                                 getZeroExtendExpr(Step, Ty),
954                                 L);
955        } else if (isKnownNegative(Step)) {
956          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
957                                      getSignedRange(Step).getSignedMin());
958          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
959              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
960               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
961                                           AR->getPostIncExpr(*this), N)))
962            // Return the expression with the addrec on the outside.
963            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964                                 getSignExtendExpr(Step, Ty),
965                                 L);
966        }
967      }
968    }
969
970  // The cast wasn't folded; create an explicit cast node.
971  // Recompute the insert position, as it may have been invalidated.
972  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
973  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
974                                                   Op, Ty);
975  UniqueSCEVs.InsertNode(S, IP);
976  return S;
977}
978
979const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
980                                               const Type *Ty) {
981  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
982         "This is not an extending conversion!");
983  assert(isSCEVable(Ty) &&
984         "This is not a conversion to a SCEVable type!");
985  Ty = getEffectiveSCEVType(Ty);
986
987  // Fold if the operand is constant.
988  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
989    return getConstant(
990      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
991                                              getEffectiveSCEVType(Ty))));
992
993  // sext(sext(x)) --> sext(x)
994  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
995    return getSignExtendExpr(SS->getOperand(), Ty);
996
997  // Before doing any expensive analysis, check to see if we've already
998  // computed a SCEV for this Op and Ty.
999  FoldingSetNodeID ID;
1000  ID.AddInteger(scSignExtend);
1001  ID.AddPointer(Op);
1002  ID.AddPointer(Ty);
1003  void *IP = 0;
1004  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1005
1006  // If the input value is a chrec scev, and we can prove that the value
1007  // did not overflow the old, smaller, value, we can sign extend all of the
1008  // operands (often constants).  This allows analysis of something like
1009  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1010  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1011    if (AR->isAffine()) {
1012      const SCEV *Start = AR->getStart();
1013      const SCEV *Step = AR->getStepRecurrence(*this);
1014      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1015      const Loop *L = AR->getLoop();
1016
1017      // If we have special knowledge that this addrec won't overflow,
1018      // we don't need to do any further analysis.
1019      if (AR->hasNoSignedWrap())
1020        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1021                             getSignExtendExpr(Step, Ty),
1022                             L);
1023
1024      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1025      // Note that this serves two purposes: It filters out loops that are
1026      // simply not analyzable, and it covers the case where this code is
1027      // being called from within backedge-taken count analysis, such that
1028      // attempting to ask for the backedge-taken count would likely result
1029      // in infinite recursion. In the later case, the analysis code will
1030      // cope with a conservative value, and it will take care to purge
1031      // that value once it has finished.
1032      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1033      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1034        // Manually compute the final value for AR, checking for
1035        // overflow.
1036
1037        // Check whether the backedge-taken count can be losslessly casted to
1038        // the addrec's type. The count is always unsigned.
1039        const SCEV *CastedMaxBECount =
1040          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1041        const SCEV *RecastedMaxBECount =
1042          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1043        if (MaxBECount == RecastedMaxBECount) {
1044          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1045          // Check whether Start+Step*MaxBECount has no signed overflow.
1046          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1047          const SCEV *Add = getAddExpr(Start, SMul);
1048          const SCEV *OperandExtendedAdd =
1049            getAddExpr(getSignExtendExpr(Start, WideTy),
1050                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1051                                  getSignExtendExpr(Step, WideTy)));
1052          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1053            // Return the expression with the addrec on the outside.
1054            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1055                                 getSignExtendExpr(Step, Ty),
1056                                 L);
1057
1058          // Similar to above, only this time treat the step value as unsigned.
1059          // This covers loops that count up with an unsigned step.
1060          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1061          Add = getAddExpr(Start, UMul);
1062          OperandExtendedAdd =
1063            getAddExpr(getSignExtendExpr(Start, WideTy),
1064                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065                                  getZeroExtendExpr(Step, WideTy)));
1066          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1067            // Return the expression with the addrec on the outside.
1068            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069                                 getZeroExtendExpr(Step, Ty),
1070                                 L);
1071        }
1072
1073        // If the backedge is guarded by a comparison with the pre-inc value
1074        // the addrec is safe. Also, if the entry is guarded by a comparison
1075        // with the start value and the backedge is guarded by a comparison
1076        // with the post-inc value, the addrec is safe.
1077        if (isKnownPositive(Step)) {
1078          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1079                                      getSignedRange(Step).getSignedMax());
1080          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1081              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1082               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1083                                           AR->getPostIncExpr(*this), N)))
1084            // Return the expression with the addrec on the outside.
1085            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1086                                 getSignExtendExpr(Step, Ty),
1087                                 L);
1088        } else if (isKnownNegative(Step)) {
1089          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1090                                      getSignedRange(Step).getSignedMin());
1091          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1092              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1093               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1094                                           AR->getPostIncExpr(*this), N)))
1095            // Return the expression with the addrec on the outside.
1096            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1097                                 getSignExtendExpr(Step, Ty),
1098                                 L);
1099        }
1100      }
1101    }
1102
1103  // The cast wasn't folded; create an explicit cast node.
1104  // Recompute the insert position, as it may have been invalidated.
1105  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1106  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1107                                                   Op, Ty);
1108  UniqueSCEVs.InsertNode(S, IP);
1109  return S;
1110}
1111
1112/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1113/// unspecified bits out to the given type.
1114///
1115const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1116                                              const Type *Ty) {
1117  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1118         "This is not an extending conversion!");
1119  assert(isSCEVable(Ty) &&
1120         "This is not a conversion to a SCEVable type!");
1121  Ty = getEffectiveSCEVType(Ty);
1122
1123  // Sign-extend negative constants.
1124  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1125    if (SC->getValue()->getValue().isNegative())
1126      return getSignExtendExpr(Op, Ty);
1127
1128  // Peel off a truncate cast.
1129  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1130    const SCEV *NewOp = T->getOperand();
1131    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1132      return getAnyExtendExpr(NewOp, Ty);
1133    return getTruncateOrNoop(NewOp, Ty);
1134  }
1135
1136  // Next try a zext cast. If the cast is folded, use it.
1137  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1138  if (!isa<SCEVZeroExtendExpr>(ZExt))
1139    return ZExt;
1140
1141  // Next try a sext cast. If the cast is folded, use it.
1142  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1143  if (!isa<SCEVSignExtendExpr>(SExt))
1144    return SExt;
1145
1146  // Force the cast to be folded into the operands of an addrec.
1147  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1148    SmallVector<const SCEV *, 4> Ops;
1149    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1150         I != E; ++I)
1151      Ops.push_back(getAnyExtendExpr(*I, Ty));
1152    return getAddRecExpr(Ops, AR->getLoop());
1153  }
1154
1155  // As a special case, fold anyext(undef) to undef. We don't want to
1156  // know too much about SCEVUnknowns, but this special case is handy
1157  // and harmless.
1158  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1159    if (isa<UndefValue>(U->getValue()))
1160      return getSCEV(UndefValue::get(Ty));
1161
1162  // If the expression is obviously signed, use the sext cast value.
1163  if (isa<SCEVSMaxExpr>(Op))
1164    return SExt;
1165
1166  // Absent any other information, use the zext cast value.
1167  return ZExt;
1168}
1169
1170/// CollectAddOperandsWithScales - Process the given Ops list, which is
1171/// a list of operands to be added under the given scale, update the given
1172/// map. This is a helper function for getAddRecExpr. As an example of
1173/// what it does, given a sequence of operands that would form an add
1174/// expression like this:
1175///
1176///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1177///
1178/// where A and B are constants, update the map with these values:
1179///
1180///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1181///
1182/// and add 13 + A*B*29 to AccumulatedConstant.
1183/// This will allow getAddRecExpr to produce this:
1184///
1185///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1186///
1187/// This form often exposes folding opportunities that are hidden in
1188/// the original operand list.
1189///
1190/// Return true iff it appears that any interesting folding opportunities
1191/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1192/// the common case where no interesting opportunities are present, and
1193/// is also used as a check to avoid infinite recursion.
1194///
1195static bool
1196CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1197                             SmallVector<const SCEV *, 8> &NewOps,
1198                             APInt &AccumulatedConstant,
1199                             const SCEV *const *Ops, size_t NumOperands,
1200                             const APInt &Scale,
1201                             ScalarEvolution &SE) {
1202  bool Interesting = false;
1203
1204  // Iterate over the add operands. They are sorted, with constants first.
1205  unsigned i = 0;
1206  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1207    ++i;
1208    // Pull a buried constant out to the outside.
1209    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1210      Interesting = true;
1211    AccumulatedConstant += Scale * C->getValue()->getValue();
1212  }
1213
1214  // Next comes everything else. We're especially interested in multiplies
1215  // here, but they're in the middle, so just visit the rest with one loop.
1216  for (; i != NumOperands; ++i) {
1217    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1218    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1219      APInt NewScale =
1220        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1221      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1222        // A multiplication of a constant with another add; recurse.
1223        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1224        Interesting |=
1225          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1226                                       Add->op_begin(), Add->getNumOperands(),
1227                                       NewScale, SE);
1228      } else {
1229        // A multiplication of a constant with some other value. Update
1230        // the map.
1231        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1232        const SCEV *Key = SE.getMulExpr(MulOps);
1233        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1234          M.insert(std::make_pair(Key, NewScale));
1235        if (Pair.second) {
1236          NewOps.push_back(Pair.first->first);
1237        } else {
1238          Pair.first->second += NewScale;
1239          // The map already had an entry for this value, which may indicate
1240          // a folding opportunity.
1241          Interesting = true;
1242        }
1243      }
1244    } else {
1245      // An ordinary operand. Update the map.
1246      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1247        M.insert(std::make_pair(Ops[i], Scale));
1248      if (Pair.second) {
1249        NewOps.push_back(Pair.first->first);
1250      } else {
1251        Pair.first->second += Scale;
1252        // The map already had an entry for this value, which may indicate
1253        // a folding opportunity.
1254        Interesting = true;
1255      }
1256    }
1257  }
1258
1259  return Interesting;
1260}
1261
1262namespace {
1263  struct APIntCompare {
1264    bool operator()(const APInt &LHS, const APInt &RHS) const {
1265      return LHS.ult(RHS);
1266    }
1267  };
1268}
1269
1270/// getAddExpr - Get a canonical add expression, or something simpler if
1271/// possible.
1272const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1273                                        bool HasNUW, bool HasNSW) {
1274  assert(!Ops.empty() && "Cannot get empty add!");
1275  if (Ops.size() == 1) return Ops[0];
1276#ifndef NDEBUG
1277  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1278  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1279    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1280           "SCEVAddExpr operand types don't match!");
1281#endif
1282
1283  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1284  if (!HasNUW && HasNSW) {
1285    bool All = true;
1286    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1287         E = Ops.end(); I != E; ++I)
1288      if (!isKnownNonNegative(*I)) {
1289        All = false;
1290        break;
1291      }
1292    if (All) HasNUW = true;
1293  }
1294
1295  // Sort by complexity, this groups all similar expression types together.
1296  GroupByComplexity(Ops, LI);
1297
1298  // If there are any constants, fold them together.
1299  unsigned Idx = 0;
1300  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1301    ++Idx;
1302    assert(Idx < Ops.size());
1303    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1304      // We found two constants, fold them together!
1305      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306                           RHSC->getValue()->getValue());
1307      if (Ops.size() == 2) return Ops[0];
1308      Ops.erase(Ops.begin()+1);  // Erase the folded element
1309      LHSC = cast<SCEVConstant>(Ops[0]);
1310    }
1311
1312    // If we are left with a constant zero being added, strip it off.
1313    if (LHSC->getValue()->isZero()) {
1314      Ops.erase(Ops.begin());
1315      --Idx;
1316    }
1317
1318    if (Ops.size() == 1) return Ops[0];
1319  }
1320
1321  // Okay, check to see if the same value occurs in the operand list more than
1322  // once.  If so, merge them together into an multiply expression.  Since we
1323  // sorted the list, these values are required to be adjacent.
1324  const Type *Ty = Ops[0]->getType();
1325  bool FoundMatch = false;
1326  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1327    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1328      // Scan ahead to count how many equal operands there are.
1329      unsigned Count = 2;
1330      while (i+Count != e && Ops[i+Count] == Ops[i])
1331        ++Count;
1332      // Merge the values into a multiply.
1333      const SCEV *Scale = getConstant(Ty, Count);
1334      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1335      if (Ops.size() == Count)
1336        return Mul;
1337      Ops[i] = Mul;
1338      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1339      --i; e -= Count - 1;
1340      FoundMatch = true;
1341    }
1342  if (FoundMatch)
1343    return getAddExpr(Ops, HasNUW, HasNSW);
1344
1345  // Check for truncates. If all the operands are truncated from the same
1346  // type, see if factoring out the truncate would permit the result to be
1347  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1348  // if the contents of the resulting outer trunc fold to something simple.
1349  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1350    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1351    const Type *DstType = Trunc->getType();
1352    const Type *SrcType = Trunc->getOperand()->getType();
1353    SmallVector<const SCEV *, 8> LargeOps;
1354    bool Ok = true;
1355    // Check all the operands to see if they can be represented in the
1356    // source type of the truncate.
1357    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1358      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1359        if (T->getOperand()->getType() != SrcType) {
1360          Ok = false;
1361          break;
1362        }
1363        LargeOps.push_back(T->getOperand());
1364      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1365        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1366      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1367        SmallVector<const SCEV *, 8> LargeMulOps;
1368        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1369          if (const SCEVTruncateExpr *T =
1370                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1371            if (T->getOperand()->getType() != SrcType) {
1372              Ok = false;
1373              break;
1374            }
1375            LargeMulOps.push_back(T->getOperand());
1376          } else if (const SCEVConstant *C =
1377                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1378            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1379          } else {
1380            Ok = false;
1381            break;
1382          }
1383        }
1384        if (Ok)
1385          LargeOps.push_back(getMulExpr(LargeMulOps));
1386      } else {
1387        Ok = false;
1388        break;
1389      }
1390    }
1391    if (Ok) {
1392      // Evaluate the expression in the larger type.
1393      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1394      // If it folds to something simple, use it. Otherwise, don't.
1395      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1396        return getTruncateExpr(Fold, DstType);
1397    }
1398  }
1399
1400  // Skip past any other cast SCEVs.
1401  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1402    ++Idx;
1403
1404  // If there are add operands they would be next.
1405  if (Idx < Ops.size()) {
1406    bool DeletedAdd = false;
1407    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1408      // If we have an add, expand the add operands onto the end of the operands
1409      // list.
1410      Ops.erase(Ops.begin()+Idx);
1411      Ops.append(Add->op_begin(), Add->op_end());
1412      DeletedAdd = true;
1413    }
1414
1415    // If we deleted at least one add, we added operands to the end of the list,
1416    // and they are not necessarily sorted.  Recurse to resort and resimplify
1417    // any operands we just acquired.
1418    if (DeletedAdd)
1419      return getAddExpr(Ops);
1420  }
1421
1422  // Skip over the add expression until we get to a multiply.
1423  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1424    ++Idx;
1425
1426  // Check to see if there are any folding opportunities present with
1427  // operands multiplied by constant values.
1428  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1429    uint64_t BitWidth = getTypeSizeInBits(Ty);
1430    DenseMap<const SCEV *, APInt> M;
1431    SmallVector<const SCEV *, 8> NewOps;
1432    APInt AccumulatedConstant(BitWidth, 0);
1433    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1434                                     Ops.data(), Ops.size(),
1435                                     APInt(BitWidth, 1), *this)) {
1436      // Some interesting folding opportunity is present, so its worthwhile to
1437      // re-generate the operands list. Group the operands by constant scale,
1438      // to avoid multiplying by the same constant scale multiple times.
1439      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1440      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1441           E = NewOps.end(); I != E; ++I)
1442        MulOpLists[M.find(*I)->second].push_back(*I);
1443      // Re-generate the operands list.
1444      Ops.clear();
1445      if (AccumulatedConstant != 0)
1446        Ops.push_back(getConstant(AccumulatedConstant));
1447      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1448           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1449        if (I->first != 0)
1450          Ops.push_back(getMulExpr(getConstant(I->first),
1451                                   getAddExpr(I->second)));
1452      if (Ops.empty())
1453        return getConstant(Ty, 0);
1454      if (Ops.size() == 1)
1455        return Ops[0];
1456      return getAddExpr(Ops);
1457    }
1458  }
1459
1460  // If we are adding something to a multiply expression, make sure the
1461  // something is not already an operand of the multiply.  If so, merge it into
1462  // the multiply.
1463  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1464    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1465    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1466      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1467      if (isa<SCEVConstant>(MulOpSCEV))
1468        continue;
1469      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1470        if (MulOpSCEV == Ops[AddOp]) {
1471          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1472          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1473          if (Mul->getNumOperands() != 2) {
1474            // If the multiply has more than two operands, we must get the
1475            // Y*Z term.
1476            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1477                                                Mul->op_begin()+MulOp);
1478            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1479            InnerMul = getMulExpr(MulOps);
1480          }
1481          const SCEV *One = getConstant(Ty, 1);
1482          const SCEV *AddOne = getAddExpr(One, InnerMul);
1483          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1484          if (Ops.size() == 2) return OuterMul;
1485          if (AddOp < Idx) {
1486            Ops.erase(Ops.begin()+AddOp);
1487            Ops.erase(Ops.begin()+Idx-1);
1488          } else {
1489            Ops.erase(Ops.begin()+Idx);
1490            Ops.erase(Ops.begin()+AddOp-1);
1491          }
1492          Ops.push_back(OuterMul);
1493          return getAddExpr(Ops);
1494        }
1495
1496      // Check this multiply against other multiplies being added together.
1497      for (unsigned OtherMulIdx = Idx+1;
1498           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1499           ++OtherMulIdx) {
1500        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1501        // If MulOp occurs in OtherMul, we can fold the two multiplies
1502        // together.
1503        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1504             OMulOp != e; ++OMulOp)
1505          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1506            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1507            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1508            if (Mul->getNumOperands() != 2) {
1509              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1510                                                  Mul->op_begin()+MulOp);
1511              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1512              InnerMul1 = getMulExpr(MulOps);
1513            }
1514            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1515            if (OtherMul->getNumOperands() != 2) {
1516              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1517                                                  OtherMul->op_begin()+OMulOp);
1518              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1519              InnerMul2 = getMulExpr(MulOps);
1520            }
1521            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1522            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1523            if (Ops.size() == 2) return OuterMul;
1524            Ops.erase(Ops.begin()+Idx);
1525            Ops.erase(Ops.begin()+OtherMulIdx-1);
1526            Ops.push_back(OuterMul);
1527            return getAddExpr(Ops);
1528          }
1529      }
1530    }
1531  }
1532
1533  // If there are any add recurrences in the operands list, see if any other
1534  // added values are loop invariant.  If so, we can fold them into the
1535  // recurrence.
1536  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1537    ++Idx;
1538
1539  // Scan over all recurrences, trying to fold loop invariants into them.
1540  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1541    // Scan all of the other operands to this add and add them to the vector if
1542    // they are loop invariant w.r.t. the recurrence.
1543    SmallVector<const SCEV *, 8> LIOps;
1544    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1545    const Loop *AddRecLoop = AddRec->getLoop();
1546    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1547      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1548        LIOps.push_back(Ops[i]);
1549        Ops.erase(Ops.begin()+i);
1550        --i; --e;
1551      }
1552
1553    // If we found some loop invariants, fold them into the recurrence.
1554    if (!LIOps.empty()) {
1555      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1556      LIOps.push_back(AddRec->getStart());
1557
1558      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1559                                             AddRec->op_end());
1560      AddRecOps[0] = getAddExpr(LIOps);
1561
1562      // Build the new addrec. Propagate the NUW and NSW flags if both the
1563      // outer add and the inner addrec are guaranteed to have no overflow.
1564      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1565                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1566                                         HasNSW && AddRec->hasNoSignedWrap());
1567
1568      // If all of the other operands were loop invariant, we are done.
1569      if (Ops.size() == 1) return NewRec;
1570
1571      // Otherwise, add the folded AddRec by the non-liv parts.
1572      for (unsigned i = 0;; ++i)
1573        if (Ops[i] == AddRec) {
1574          Ops[i] = NewRec;
1575          break;
1576        }
1577      return getAddExpr(Ops);
1578    }
1579
1580    // Okay, if there weren't any loop invariants to be folded, check to see if
1581    // there are multiple AddRec's with the same loop induction variable being
1582    // added together.  If so, we can fold them.
1583    for (unsigned OtherIdx = Idx+1;
1584         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1585         ++OtherIdx)
1586      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1587        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1588        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1589                                               AddRec->op_end());
1590        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1591             ++OtherIdx)
1592          if (const SCEVAddRecExpr *OtherAddRec =
1593                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1594            if (OtherAddRec->getLoop() == AddRecLoop) {
1595              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1596                   i != e; ++i) {
1597                if (i >= AddRecOps.size()) {
1598                  AddRecOps.append(OtherAddRec->op_begin()+i,
1599                                   OtherAddRec->op_end());
1600                  break;
1601                }
1602                AddRecOps[i] = getAddExpr(AddRecOps[i],
1603                                          OtherAddRec->getOperand(i));
1604              }
1605              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1606            }
1607        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1608        return getAddExpr(Ops);
1609      }
1610
1611    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1612    // next one.
1613  }
1614
1615  // Okay, it looks like we really DO need an add expr.  Check to see if we
1616  // already have one, otherwise create a new one.
1617  FoldingSetNodeID ID;
1618  ID.AddInteger(scAddExpr);
1619  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1620    ID.AddPointer(Ops[i]);
1621  void *IP = 0;
1622  SCEVAddExpr *S =
1623    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1624  if (!S) {
1625    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1626    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1627    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1628                                        O, Ops.size());
1629    UniqueSCEVs.InsertNode(S, IP);
1630  }
1631  if (HasNUW) S->setHasNoUnsignedWrap(true);
1632  if (HasNSW) S->setHasNoSignedWrap(true);
1633  return S;
1634}
1635
1636/// getMulExpr - Get a canonical multiply expression, or something simpler if
1637/// possible.
1638const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1639                                        bool HasNUW, bool HasNSW) {
1640  assert(!Ops.empty() && "Cannot get empty mul!");
1641  if (Ops.size() == 1) return Ops[0];
1642#ifndef NDEBUG
1643  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1644  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1645    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1646           "SCEVMulExpr operand types don't match!");
1647#endif
1648
1649  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1650  if (!HasNUW && HasNSW) {
1651    bool All = true;
1652    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1653         E = Ops.end(); I != E; ++I)
1654      if (!isKnownNonNegative(*I)) {
1655        All = false;
1656        break;
1657      }
1658    if (All) HasNUW = true;
1659  }
1660
1661  // Sort by complexity, this groups all similar expression types together.
1662  GroupByComplexity(Ops, LI);
1663
1664  // If there are any constants, fold them together.
1665  unsigned Idx = 0;
1666  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1667
1668    // C1*(C2+V) -> C1*C2 + C1*V
1669    if (Ops.size() == 2)
1670      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1671        if (Add->getNumOperands() == 2 &&
1672            isa<SCEVConstant>(Add->getOperand(0)))
1673          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1674                            getMulExpr(LHSC, Add->getOperand(1)));
1675
1676    ++Idx;
1677    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1678      // We found two constants, fold them together!
1679      ConstantInt *Fold = ConstantInt::get(getContext(),
1680                                           LHSC->getValue()->getValue() *
1681                                           RHSC->getValue()->getValue());
1682      Ops[0] = getConstant(Fold);
1683      Ops.erase(Ops.begin()+1);  // Erase the folded element
1684      if (Ops.size() == 1) return Ops[0];
1685      LHSC = cast<SCEVConstant>(Ops[0]);
1686    }
1687
1688    // If we are left with a constant one being multiplied, strip it off.
1689    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1690      Ops.erase(Ops.begin());
1691      --Idx;
1692    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1693      // If we have a multiply of zero, it will always be zero.
1694      return Ops[0];
1695    } else if (Ops[0]->isAllOnesValue()) {
1696      // If we have a mul by -1 of an add, try distributing the -1 among the
1697      // add operands.
1698      if (Ops.size() == 2)
1699        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1700          SmallVector<const SCEV *, 4> NewOps;
1701          bool AnyFolded = false;
1702          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1703               I != E; ++I) {
1704            const SCEV *Mul = getMulExpr(Ops[0], *I);
1705            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1706            NewOps.push_back(Mul);
1707          }
1708          if (AnyFolded)
1709            return getAddExpr(NewOps);
1710        }
1711    }
1712
1713    if (Ops.size() == 1)
1714      return Ops[0];
1715  }
1716
1717  // Skip over the add expression until we get to a multiply.
1718  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1719    ++Idx;
1720
1721  // If there are mul operands inline them all into this expression.
1722  if (Idx < Ops.size()) {
1723    bool DeletedMul = false;
1724    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1725      // If we have an mul, expand the mul operands onto the end of the operands
1726      // list.
1727      Ops.erase(Ops.begin()+Idx);
1728      Ops.append(Mul->op_begin(), Mul->op_end());
1729      DeletedMul = true;
1730    }
1731
1732    // If we deleted at least one mul, we added operands to the end of the list,
1733    // and they are not necessarily sorted.  Recurse to resort and resimplify
1734    // any operands we just acquired.
1735    if (DeletedMul)
1736      return getMulExpr(Ops);
1737  }
1738
1739  // If there are any add recurrences in the operands list, see if any other
1740  // added values are loop invariant.  If so, we can fold them into the
1741  // recurrence.
1742  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1743    ++Idx;
1744
1745  // Scan over all recurrences, trying to fold loop invariants into them.
1746  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1747    // Scan all of the other operands to this mul and add them to the vector if
1748    // they are loop invariant w.r.t. the recurrence.
1749    SmallVector<const SCEV *, 8> LIOps;
1750    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1751    const Loop *AddRecLoop = AddRec->getLoop();
1752    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1753      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1754        LIOps.push_back(Ops[i]);
1755        Ops.erase(Ops.begin()+i);
1756        --i; --e;
1757      }
1758
1759    // If we found some loop invariants, fold them into the recurrence.
1760    if (!LIOps.empty()) {
1761      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1762      SmallVector<const SCEV *, 4> NewOps;
1763      NewOps.reserve(AddRec->getNumOperands());
1764      const SCEV *Scale = getMulExpr(LIOps);
1765      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1766        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1767
1768      // Build the new addrec. Propagate the NUW and NSW flags if both the
1769      // outer mul and the inner addrec are guaranteed to have no overflow.
1770      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1771                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1772                                         HasNSW && AddRec->hasNoSignedWrap());
1773
1774      // If all of the other operands were loop invariant, we are done.
1775      if (Ops.size() == 1) return NewRec;
1776
1777      // Otherwise, multiply the folded AddRec by the non-liv parts.
1778      for (unsigned i = 0;; ++i)
1779        if (Ops[i] == AddRec) {
1780          Ops[i] = NewRec;
1781          break;
1782        }
1783      return getMulExpr(Ops);
1784    }
1785
1786    // Okay, if there weren't any loop invariants to be folded, check to see if
1787    // there are multiple AddRec's with the same loop induction variable being
1788    // multiplied together.  If so, we can fold them.
1789    for (unsigned OtherIdx = Idx+1;
1790         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1791         ++OtherIdx)
1792      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1793        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1794        // {A*C,+,F*D + G*B + B*D}<L>
1795        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1796             ++OtherIdx)
1797          if (const SCEVAddRecExpr *OtherAddRec =
1798                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1799            if (OtherAddRec->getLoop() == AddRecLoop) {
1800              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1801              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1802              const SCEV *B = F->getStepRecurrence(*this);
1803              const SCEV *D = G->getStepRecurrence(*this);
1804              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1805                                               getMulExpr(G, B),
1806                                               getMulExpr(B, D));
1807              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1808                                                    F->getLoop());
1809              if (Ops.size() == 2) return NewAddRec;
1810              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1811              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1812            }
1813        return getMulExpr(Ops);
1814      }
1815
1816    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1817    // next one.
1818  }
1819
1820  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1821  // already have one, otherwise create a new one.
1822  FoldingSetNodeID ID;
1823  ID.AddInteger(scMulExpr);
1824  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1825    ID.AddPointer(Ops[i]);
1826  void *IP = 0;
1827  SCEVMulExpr *S =
1828    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1829  if (!S) {
1830    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1831    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1832    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1833                                        O, Ops.size());
1834    UniqueSCEVs.InsertNode(S, IP);
1835  }
1836  if (HasNUW) S->setHasNoUnsignedWrap(true);
1837  if (HasNSW) S->setHasNoSignedWrap(true);
1838  return S;
1839}
1840
1841/// getUDivExpr - Get a canonical unsigned division expression, or something
1842/// simpler if possible.
1843const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1844                                         const SCEV *RHS) {
1845  assert(getEffectiveSCEVType(LHS->getType()) ==
1846         getEffectiveSCEVType(RHS->getType()) &&
1847         "SCEVUDivExpr operand types don't match!");
1848
1849  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1850    if (RHSC->getValue()->equalsInt(1))
1851      return LHS;                               // X udiv 1 --> x
1852    // If the denominator is zero, the result of the udiv is undefined. Don't
1853    // try to analyze it, because the resolution chosen here may differ from
1854    // the resolution chosen in other parts of the compiler.
1855    if (!RHSC->getValue()->isZero()) {
1856      // Determine if the division can be folded into the operands of
1857      // its operands.
1858      // TODO: Generalize this to non-constants by using known-bits information.
1859      const Type *Ty = LHS->getType();
1860      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1861      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1862      // For non-power-of-two values, effectively round the value up to the
1863      // nearest power of two.
1864      if (!RHSC->getValue()->getValue().isPowerOf2())
1865        ++MaxShiftAmt;
1866      const IntegerType *ExtTy =
1867        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1868      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1869      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1870        if (const SCEVConstant *Step =
1871              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1872          if (!Step->getValue()->getValue()
1873                .urem(RHSC->getValue()->getValue()) &&
1874              getZeroExtendExpr(AR, ExtTy) ==
1875              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1876                            getZeroExtendExpr(Step, ExtTy),
1877                            AR->getLoop())) {
1878            SmallVector<const SCEV *, 4> Operands;
1879            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1880              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1881            return getAddRecExpr(Operands, AR->getLoop());
1882          }
1883      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1884      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1885        SmallVector<const SCEV *, 4> Operands;
1886        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1887          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1888        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1889          // Find an operand that's safely divisible.
1890          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1891            const SCEV *Op = M->getOperand(i);
1892            const SCEV *Div = getUDivExpr(Op, RHSC);
1893            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1894              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1895                                                      M->op_end());
1896              Operands[i] = Div;
1897              return getMulExpr(Operands);
1898            }
1899          }
1900      }
1901      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1902      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1903        SmallVector<const SCEV *, 4> Operands;
1904        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1905          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1906        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1907          Operands.clear();
1908          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1909            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1910            if (isa<SCEVUDivExpr>(Op) ||
1911                getMulExpr(Op, RHS) != A->getOperand(i))
1912              break;
1913            Operands.push_back(Op);
1914          }
1915          if (Operands.size() == A->getNumOperands())
1916            return getAddExpr(Operands);
1917        }
1918      }
1919
1920      // Fold if both operands are constant.
1921      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1922        Constant *LHSCV = LHSC->getValue();
1923        Constant *RHSCV = RHSC->getValue();
1924        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1925                                                                   RHSCV)));
1926      }
1927    }
1928  }
1929
1930  FoldingSetNodeID ID;
1931  ID.AddInteger(scUDivExpr);
1932  ID.AddPointer(LHS);
1933  ID.AddPointer(RHS);
1934  void *IP = 0;
1935  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1936  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1937                                             LHS, RHS);
1938  UniqueSCEVs.InsertNode(S, IP);
1939  return S;
1940}
1941
1942
1943/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1944/// Simplify the expression as much as possible.
1945const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1946                                           const SCEV *Step, const Loop *L,
1947                                           bool HasNUW, bool HasNSW) {
1948  SmallVector<const SCEV *, 4> Operands;
1949  Operands.push_back(Start);
1950  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1951    if (StepChrec->getLoop() == L) {
1952      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
1953      return getAddRecExpr(Operands, L);
1954    }
1955
1956  Operands.push_back(Step);
1957  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1958}
1959
1960/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1961/// Simplify the expression as much as possible.
1962const SCEV *
1963ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1964                               const Loop *L,
1965                               bool HasNUW, bool HasNSW) {
1966  if (Operands.size() == 1) return Operands[0];
1967#ifndef NDEBUG
1968  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
1969  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1970    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
1971           "SCEVAddRecExpr operand types don't match!");
1972  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1973    assert(isLoopInvariant(Operands[i], L) &&
1974           "SCEVAddRecExpr operand is not loop-invariant!");
1975#endif
1976
1977  if (Operands.back()->isZero()) {
1978    Operands.pop_back();
1979    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1980  }
1981
1982  // It's tempting to want to call getMaxBackedgeTakenCount count here and
1983  // use that information to infer NUW and NSW flags. However, computing a
1984  // BE count requires calling getAddRecExpr, so we may not yet have a
1985  // meaningful BE count at this point (and if we don't, we'd be stuck
1986  // with a SCEVCouldNotCompute as the cached BE count).
1987
1988  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1989  if (!HasNUW && HasNSW) {
1990    bool All = true;
1991    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
1992         E = Operands.end(); I != E; ++I)
1993      if (!isKnownNonNegative(*I)) {
1994        All = false;
1995        break;
1996      }
1997    if (All) HasNUW = true;
1998  }
1999
2000  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2001  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2002    const Loop *NestedLoop = NestedAR->getLoop();
2003    if (L->contains(NestedLoop) ?
2004        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2005        (!NestedLoop->contains(L) &&
2006         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2007      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2008                                                  NestedAR->op_end());
2009      Operands[0] = NestedAR->getStart();
2010      // AddRecs require their operands be loop-invariant with respect to their
2011      // loops. Don't perform this transformation if it would break this
2012      // requirement.
2013      bool AllInvariant = true;
2014      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2015        if (!isLoopInvariant(Operands[i], L)) {
2016          AllInvariant = false;
2017          break;
2018        }
2019      if (AllInvariant) {
2020        NestedOperands[0] = getAddRecExpr(Operands, L);
2021        AllInvariant = true;
2022        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2023          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2024            AllInvariant = false;
2025            break;
2026          }
2027        if (AllInvariant)
2028          // Ok, both add recurrences are valid after the transformation.
2029          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2030      }
2031      // Reset Operands to its original state.
2032      Operands[0] = NestedAR;
2033    }
2034  }
2035
2036  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2037  // already have one, otherwise create a new one.
2038  FoldingSetNodeID ID;
2039  ID.AddInteger(scAddRecExpr);
2040  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2041    ID.AddPointer(Operands[i]);
2042  ID.AddPointer(L);
2043  void *IP = 0;
2044  SCEVAddRecExpr *S =
2045    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2046  if (!S) {
2047    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2048    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2049    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2050                                           O, Operands.size(), L);
2051    UniqueSCEVs.InsertNode(S, IP);
2052  }
2053  if (HasNUW) S->setHasNoUnsignedWrap(true);
2054  if (HasNSW) S->setHasNoSignedWrap(true);
2055  return S;
2056}
2057
2058const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2059                                         const SCEV *RHS) {
2060  SmallVector<const SCEV *, 2> Ops;
2061  Ops.push_back(LHS);
2062  Ops.push_back(RHS);
2063  return getSMaxExpr(Ops);
2064}
2065
2066const SCEV *
2067ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2068  assert(!Ops.empty() && "Cannot get empty smax!");
2069  if (Ops.size() == 1) return Ops[0];
2070#ifndef NDEBUG
2071  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2072  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2073    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2074           "SCEVSMaxExpr operand types don't match!");
2075#endif
2076
2077  // Sort by complexity, this groups all similar expression types together.
2078  GroupByComplexity(Ops, LI);
2079
2080  // If there are any constants, fold them together.
2081  unsigned Idx = 0;
2082  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2083    ++Idx;
2084    assert(Idx < Ops.size());
2085    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2086      // We found two constants, fold them together!
2087      ConstantInt *Fold = ConstantInt::get(getContext(),
2088                              APIntOps::smax(LHSC->getValue()->getValue(),
2089                                             RHSC->getValue()->getValue()));
2090      Ops[0] = getConstant(Fold);
2091      Ops.erase(Ops.begin()+1);  // Erase the folded element
2092      if (Ops.size() == 1) return Ops[0];
2093      LHSC = cast<SCEVConstant>(Ops[0]);
2094    }
2095
2096    // If we are left with a constant minimum-int, strip it off.
2097    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2098      Ops.erase(Ops.begin());
2099      --Idx;
2100    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2101      // If we have an smax with a constant maximum-int, it will always be
2102      // maximum-int.
2103      return Ops[0];
2104    }
2105
2106    if (Ops.size() == 1) return Ops[0];
2107  }
2108
2109  // Find the first SMax
2110  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2111    ++Idx;
2112
2113  // Check to see if one of the operands is an SMax. If so, expand its operands
2114  // onto our operand list, and recurse to simplify.
2115  if (Idx < Ops.size()) {
2116    bool DeletedSMax = false;
2117    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2118      Ops.erase(Ops.begin()+Idx);
2119      Ops.append(SMax->op_begin(), SMax->op_end());
2120      DeletedSMax = true;
2121    }
2122
2123    if (DeletedSMax)
2124      return getSMaxExpr(Ops);
2125  }
2126
2127  // Okay, check to see if the same value occurs in the operand list twice.  If
2128  // so, delete one.  Since we sorted the list, these values are required to
2129  // be adjacent.
2130  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2131    //  X smax Y smax Y  -->  X smax Y
2132    //  X smax Y         -->  X, if X is always greater than Y
2133    if (Ops[i] == Ops[i+1] ||
2134        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2135      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2136      --i; --e;
2137    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2138      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2139      --i; --e;
2140    }
2141
2142  if (Ops.size() == 1) return Ops[0];
2143
2144  assert(!Ops.empty() && "Reduced smax down to nothing!");
2145
2146  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2147  // already have one, otherwise create a new one.
2148  FoldingSetNodeID ID;
2149  ID.AddInteger(scSMaxExpr);
2150  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2151    ID.AddPointer(Ops[i]);
2152  void *IP = 0;
2153  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2154  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2155  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2156  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2157                                             O, Ops.size());
2158  UniqueSCEVs.InsertNode(S, IP);
2159  return S;
2160}
2161
2162const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2163                                         const SCEV *RHS) {
2164  SmallVector<const SCEV *, 2> Ops;
2165  Ops.push_back(LHS);
2166  Ops.push_back(RHS);
2167  return getUMaxExpr(Ops);
2168}
2169
2170const SCEV *
2171ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2172  assert(!Ops.empty() && "Cannot get empty umax!");
2173  if (Ops.size() == 1) return Ops[0];
2174#ifndef NDEBUG
2175  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2176  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2177    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2178           "SCEVUMaxExpr operand types don't match!");
2179#endif
2180
2181  // Sort by complexity, this groups all similar expression types together.
2182  GroupByComplexity(Ops, LI);
2183
2184  // If there are any constants, fold them together.
2185  unsigned Idx = 0;
2186  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2187    ++Idx;
2188    assert(Idx < Ops.size());
2189    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2190      // We found two constants, fold them together!
2191      ConstantInt *Fold = ConstantInt::get(getContext(),
2192                              APIntOps::umax(LHSC->getValue()->getValue(),
2193                                             RHSC->getValue()->getValue()));
2194      Ops[0] = getConstant(Fold);
2195      Ops.erase(Ops.begin()+1);  // Erase the folded element
2196      if (Ops.size() == 1) return Ops[0];
2197      LHSC = cast<SCEVConstant>(Ops[0]);
2198    }
2199
2200    // If we are left with a constant minimum-int, strip it off.
2201    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2202      Ops.erase(Ops.begin());
2203      --Idx;
2204    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2205      // If we have an umax with a constant maximum-int, it will always be
2206      // maximum-int.
2207      return Ops[0];
2208    }
2209
2210    if (Ops.size() == 1) return Ops[0];
2211  }
2212
2213  // Find the first UMax
2214  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2215    ++Idx;
2216
2217  // Check to see if one of the operands is a UMax. If so, expand its operands
2218  // onto our operand list, and recurse to simplify.
2219  if (Idx < Ops.size()) {
2220    bool DeletedUMax = false;
2221    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2222      Ops.erase(Ops.begin()+Idx);
2223      Ops.append(UMax->op_begin(), UMax->op_end());
2224      DeletedUMax = true;
2225    }
2226
2227    if (DeletedUMax)
2228      return getUMaxExpr(Ops);
2229  }
2230
2231  // Okay, check to see if the same value occurs in the operand list twice.  If
2232  // so, delete one.  Since we sorted the list, these values are required to
2233  // be adjacent.
2234  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2235    //  X umax Y umax Y  -->  X umax Y
2236    //  X umax Y         -->  X, if X is always greater than Y
2237    if (Ops[i] == Ops[i+1] ||
2238        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2239      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2240      --i; --e;
2241    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2242      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2243      --i; --e;
2244    }
2245
2246  if (Ops.size() == 1) return Ops[0];
2247
2248  assert(!Ops.empty() && "Reduced umax down to nothing!");
2249
2250  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2251  // already have one, otherwise create a new one.
2252  FoldingSetNodeID ID;
2253  ID.AddInteger(scUMaxExpr);
2254  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2255    ID.AddPointer(Ops[i]);
2256  void *IP = 0;
2257  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2258  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2259  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2260  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2261                                             O, Ops.size());
2262  UniqueSCEVs.InsertNode(S, IP);
2263  return S;
2264}
2265
2266const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2267                                         const SCEV *RHS) {
2268  // ~smax(~x, ~y) == smin(x, y).
2269  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2270}
2271
2272const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2273                                         const SCEV *RHS) {
2274  // ~umax(~x, ~y) == umin(x, y)
2275  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2276}
2277
2278const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2279  // If we have TargetData, we can bypass creating a target-independent
2280  // constant expression and then folding it back into a ConstantInt.
2281  // This is just a compile-time optimization.
2282  if (TD)
2283    return getConstant(TD->getIntPtrType(getContext()),
2284                       TD->getTypeAllocSize(AllocTy));
2285
2286  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2287  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2288    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2289      C = Folded;
2290  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2291  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2292}
2293
2294const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2295  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2296  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2297    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2298      C = Folded;
2299  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2300  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2301}
2302
2303const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2304                                             unsigned FieldNo) {
2305  // If we have TargetData, we can bypass creating a target-independent
2306  // constant expression and then folding it back into a ConstantInt.
2307  // This is just a compile-time optimization.
2308  if (TD)
2309    return getConstant(TD->getIntPtrType(getContext()),
2310                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2311
2312  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2313  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2314    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2315      C = Folded;
2316  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2317  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2318}
2319
2320const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2321                                             Constant *FieldNo) {
2322  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2323  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2324    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2325      C = Folded;
2326  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2327  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2328}
2329
2330const SCEV *ScalarEvolution::getUnknown(Value *V) {
2331  // Don't attempt to do anything other than create a SCEVUnknown object
2332  // here.  createSCEV only calls getUnknown after checking for all other
2333  // interesting possibilities, and any other code that calls getUnknown
2334  // is doing so in order to hide a value from SCEV canonicalization.
2335
2336  FoldingSetNodeID ID;
2337  ID.AddInteger(scUnknown);
2338  ID.AddPointer(V);
2339  void *IP = 0;
2340  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2341    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2342           "Stale SCEVUnknown in uniquing map!");
2343    return S;
2344  }
2345  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2346                                            FirstUnknown);
2347  FirstUnknown = cast<SCEVUnknown>(S);
2348  UniqueSCEVs.InsertNode(S, IP);
2349  return S;
2350}
2351
2352//===----------------------------------------------------------------------===//
2353//            Basic SCEV Analysis and PHI Idiom Recognition Code
2354//
2355
2356/// isSCEVable - Test if values of the given type are analyzable within
2357/// the SCEV framework. This primarily includes integer types, and it
2358/// can optionally include pointer types if the ScalarEvolution class
2359/// has access to target-specific information.
2360bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2361  // Integers and pointers are always SCEVable.
2362  return Ty->isIntegerTy() || Ty->isPointerTy();
2363}
2364
2365/// getTypeSizeInBits - Return the size in bits of the specified type,
2366/// for which isSCEVable must return true.
2367uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2368  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2369
2370  // If we have a TargetData, use it!
2371  if (TD)
2372    return TD->getTypeSizeInBits(Ty);
2373
2374  // Integer types have fixed sizes.
2375  if (Ty->isIntegerTy())
2376    return Ty->getPrimitiveSizeInBits();
2377
2378  // The only other support type is pointer. Without TargetData, conservatively
2379  // assume pointers are 64-bit.
2380  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2381  return 64;
2382}
2383
2384/// getEffectiveSCEVType - Return a type with the same bitwidth as
2385/// the given type and which represents how SCEV will treat the given
2386/// type, for which isSCEVable must return true. For pointer types,
2387/// this is the pointer-sized integer type.
2388const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2389  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2390
2391  if (Ty->isIntegerTy())
2392    return Ty;
2393
2394  // The only other support type is pointer.
2395  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2396  if (TD) return TD->getIntPtrType(getContext());
2397
2398  // Without TargetData, conservatively assume pointers are 64-bit.
2399  return Type::getInt64Ty(getContext());
2400}
2401
2402const SCEV *ScalarEvolution::getCouldNotCompute() {
2403  return &CouldNotCompute;
2404}
2405
2406/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2407/// expression and create a new one.
2408const SCEV *ScalarEvolution::getSCEV(Value *V) {
2409  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2410
2411  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2412  if (I != ValueExprMap.end()) return I->second;
2413  const SCEV *S = createSCEV(V);
2414
2415  // The process of creating a SCEV for V may have caused other SCEVs
2416  // to have been created, so it's necessary to insert the new entry
2417  // from scratch, rather than trying to remember the insert position
2418  // above.
2419  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2420  return S;
2421}
2422
2423/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2424///
2425const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2426  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2427    return getConstant(
2428               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2429
2430  const Type *Ty = V->getType();
2431  Ty = getEffectiveSCEVType(Ty);
2432  return getMulExpr(V,
2433                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2434}
2435
2436/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2437const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2438  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2439    return getConstant(
2440                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2441
2442  const Type *Ty = V->getType();
2443  Ty = getEffectiveSCEVType(Ty);
2444  const SCEV *AllOnes =
2445                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2446  return getMinusSCEV(AllOnes, V);
2447}
2448
2449/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2450///
2451const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2452                                          bool HasNUW, bool HasNSW) {
2453  // Fast path: X - X --> 0.
2454  if (LHS == RHS)
2455    return getConstant(LHS->getType(), 0);
2456
2457  // X - Y --> X + -Y
2458  return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
2459}
2460
2461/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2462/// input value to the specified type.  If the type must be extended, it is zero
2463/// extended.
2464const SCEV *
2465ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
2466  const Type *SrcTy = V->getType();
2467  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2468         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2469         "Cannot truncate or zero extend with non-integer arguments!");
2470  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2471    return V;  // No conversion
2472  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2473    return getTruncateExpr(V, Ty);
2474  return getZeroExtendExpr(V, Ty);
2475}
2476
2477/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2478/// input value to the specified type.  If the type must be extended, it is sign
2479/// extended.
2480const SCEV *
2481ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2482                                         const Type *Ty) {
2483  const Type *SrcTy = V->getType();
2484  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2485         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2486         "Cannot truncate or zero extend with non-integer arguments!");
2487  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2488    return V;  // No conversion
2489  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2490    return getTruncateExpr(V, Ty);
2491  return getSignExtendExpr(V, Ty);
2492}
2493
2494/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2495/// input value to the specified type.  If the type must be extended, it is zero
2496/// extended.  The conversion must not be narrowing.
2497const SCEV *
2498ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2499  const Type *SrcTy = V->getType();
2500  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2501         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2502         "Cannot noop or zero extend with non-integer arguments!");
2503  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2504         "getNoopOrZeroExtend cannot truncate!");
2505  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2506    return V;  // No conversion
2507  return getZeroExtendExpr(V, Ty);
2508}
2509
2510/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2511/// input value to the specified type.  If the type must be extended, it is sign
2512/// extended.  The conversion must not be narrowing.
2513const SCEV *
2514ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2515  const Type *SrcTy = V->getType();
2516  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2517         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2518         "Cannot noop or sign extend with non-integer arguments!");
2519  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2520         "getNoopOrSignExtend cannot truncate!");
2521  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2522    return V;  // No conversion
2523  return getSignExtendExpr(V, Ty);
2524}
2525
2526/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2527/// the input value to the specified type. If the type must be extended,
2528/// it is extended with unspecified bits. The conversion must not be
2529/// narrowing.
2530const SCEV *
2531ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2532  const Type *SrcTy = V->getType();
2533  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2534         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2535         "Cannot noop or any extend with non-integer arguments!");
2536  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2537         "getNoopOrAnyExtend cannot truncate!");
2538  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2539    return V;  // No conversion
2540  return getAnyExtendExpr(V, Ty);
2541}
2542
2543/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2544/// input value to the specified type.  The conversion must not be widening.
2545const SCEV *
2546ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2547  const Type *SrcTy = V->getType();
2548  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2549         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2550         "Cannot truncate or noop with non-integer arguments!");
2551  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2552         "getTruncateOrNoop cannot extend!");
2553  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2554    return V;  // No conversion
2555  return getTruncateExpr(V, Ty);
2556}
2557
2558/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2559/// the types using zero-extension, and then perform a umax operation
2560/// with them.
2561const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2562                                                        const SCEV *RHS) {
2563  const SCEV *PromotedLHS = LHS;
2564  const SCEV *PromotedRHS = RHS;
2565
2566  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2567    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2568  else
2569    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2570
2571  return getUMaxExpr(PromotedLHS, PromotedRHS);
2572}
2573
2574/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2575/// the types using zero-extension, and then perform a umin operation
2576/// with them.
2577const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2578                                                        const SCEV *RHS) {
2579  const SCEV *PromotedLHS = LHS;
2580  const SCEV *PromotedRHS = RHS;
2581
2582  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2583    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2584  else
2585    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2586
2587  return getUMinExpr(PromotedLHS, PromotedRHS);
2588}
2589
2590/// PushDefUseChildren - Push users of the given Instruction
2591/// onto the given Worklist.
2592static void
2593PushDefUseChildren(Instruction *I,
2594                   SmallVectorImpl<Instruction *> &Worklist) {
2595  // Push the def-use children onto the Worklist stack.
2596  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2597       UI != UE; ++UI)
2598    Worklist.push_back(cast<Instruction>(*UI));
2599}
2600
2601/// ForgetSymbolicValue - This looks up computed SCEV values for all
2602/// instructions that depend on the given instruction and removes them from
2603/// the ValueExprMapType map if they reference SymName. This is used during PHI
2604/// resolution.
2605void
2606ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2607  SmallVector<Instruction *, 16> Worklist;
2608  PushDefUseChildren(PN, Worklist);
2609
2610  SmallPtrSet<Instruction *, 8> Visited;
2611  Visited.insert(PN);
2612  while (!Worklist.empty()) {
2613    Instruction *I = Worklist.pop_back_val();
2614    if (!Visited.insert(I)) continue;
2615
2616    ValueExprMapType::iterator It =
2617      ValueExprMap.find(static_cast<Value *>(I));
2618    if (It != ValueExprMap.end()) {
2619      const SCEV *Old = It->second;
2620
2621      // Short-circuit the def-use traversal if the symbolic name
2622      // ceases to appear in expressions.
2623      if (Old != SymName && !hasOperand(Old, SymName))
2624        continue;
2625
2626      // SCEVUnknown for a PHI either means that it has an unrecognized
2627      // structure, it's a PHI that's in the progress of being computed
2628      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2629      // additional loop trip count information isn't going to change anything.
2630      // In the second case, createNodeForPHI will perform the necessary
2631      // updates on its own when it gets to that point. In the third, we do
2632      // want to forget the SCEVUnknown.
2633      if (!isa<PHINode>(I) ||
2634          !isa<SCEVUnknown>(Old) ||
2635          (I != PN && Old == SymName)) {
2636        forgetMemoizedResults(Old);
2637        ValueExprMap.erase(It);
2638      }
2639    }
2640
2641    PushDefUseChildren(I, Worklist);
2642  }
2643}
2644
2645/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2646/// a loop header, making it a potential recurrence, or it doesn't.
2647///
2648const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2649  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2650    if (L->getHeader() == PN->getParent()) {
2651      // The loop may have multiple entrances or multiple exits; we can analyze
2652      // this phi as an addrec if it has a unique entry value and a unique
2653      // backedge value.
2654      Value *BEValueV = 0, *StartValueV = 0;
2655      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2656        Value *V = PN->getIncomingValue(i);
2657        if (L->contains(PN->getIncomingBlock(i))) {
2658          if (!BEValueV) {
2659            BEValueV = V;
2660          } else if (BEValueV != V) {
2661            BEValueV = 0;
2662            break;
2663          }
2664        } else if (!StartValueV) {
2665          StartValueV = V;
2666        } else if (StartValueV != V) {
2667          StartValueV = 0;
2668          break;
2669        }
2670      }
2671      if (BEValueV && StartValueV) {
2672        // While we are analyzing this PHI node, handle its value symbolically.
2673        const SCEV *SymbolicName = getUnknown(PN);
2674        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2675               "PHI node already processed?");
2676        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2677
2678        // Using this symbolic name for the PHI, analyze the value coming around
2679        // the back-edge.
2680        const SCEV *BEValue = getSCEV(BEValueV);
2681
2682        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2683        // has a special value for the first iteration of the loop.
2684
2685        // If the value coming around the backedge is an add with the symbolic
2686        // value we just inserted, then we found a simple induction variable!
2687        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2688          // If there is a single occurrence of the symbolic value, replace it
2689          // with a recurrence.
2690          unsigned FoundIndex = Add->getNumOperands();
2691          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2692            if (Add->getOperand(i) == SymbolicName)
2693              if (FoundIndex == e) {
2694                FoundIndex = i;
2695                break;
2696              }
2697
2698          if (FoundIndex != Add->getNumOperands()) {
2699            // Create an add with everything but the specified operand.
2700            SmallVector<const SCEV *, 8> Ops;
2701            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2702              if (i != FoundIndex)
2703                Ops.push_back(Add->getOperand(i));
2704            const SCEV *Accum = getAddExpr(Ops);
2705
2706            // This is not a valid addrec if the step amount is varying each
2707            // loop iteration, but is not itself an addrec in this loop.
2708            if (isLoopInvariant(Accum, L) ||
2709                (isa<SCEVAddRecExpr>(Accum) &&
2710                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2711              bool HasNUW = false;
2712              bool HasNSW = false;
2713
2714              // If the increment doesn't overflow, then neither the addrec nor
2715              // the post-increment will overflow.
2716              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2717                if (OBO->hasNoUnsignedWrap())
2718                  HasNUW = true;
2719                if (OBO->hasNoSignedWrap())
2720                  HasNSW = true;
2721              } else if (isa<GEPOperator>(BEValueV)) {
2722                // If the increment is a GEP, then we know it won't perform an
2723                // unsigned overflow, because the address space cannot be
2724                // wrapped around.
2725                HasNUW = true;
2726              }
2727
2728              const SCEV *StartVal = getSCEV(StartValueV);
2729              const SCEV *PHISCEV =
2730                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2731
2732              // Since the no-wrap flags are on the increment, they apply to the
2733              // post-incremented value as well.
2734              if (isLoopInvariant(Accum, L))
2735                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2736                                    Accum, L, HasNUW, HasNSW);
2737
2738              // Okay, for the entire analysis of this edge we assumed the PHI
2739              // to be symbolic.  We now need to go back and purge all of the
2740              // entries for the scalars that use the symbolic expression.
2741              ForgetSymbolicName(PN, SymbolicName);
2742              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2743              return PHISCEV;
2744            }
2745          }
2746        } else if (const SCEVAddRecExpr *AddRec =
2747                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2748          // Otherwise, this could be a loop like this:
2749          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2750          // In this case, j = {1,+,1}  and BEValue is j.
2751          // Because the other in-value of i (0) fits the evolution of BEValue
2752          // i really is an addrec evolution.
2753          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2754            const SCEV *StartVal = getSCEV(StartValueV);
2755
2756            // If StartVal = j.start - j.stride, we can use StartVal as the
2757            // initial step of the addrec evolution.
2758            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2759                                         AddRec->getOperand(1))) {
2760              const SCEV *PHISCEV =
2761                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2762
2763              // Okay, for the entire analysis of this edge we assumed the PHI
2764              // to be symbolic.  We now need to go back and purge all of the
2765              // entries for the scalars that use the symbolic expression.
2766              ForgetSymbolicName(PN, SymbolicName);
2767              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2768              return PHISCEV;
2769            }
2770          }
2771        }
2772      }
2773    }
2774
2775  // If the PHI has a single incoming value, follow that value, unless the
2776  // PHI's incoming blocks are in a different loop, in which case doing so
2777  // risks breaking LCSSA form. Instcombine would normally zap these, but
2778  // it doesn't have DominatorTree information, so it may miss cases.
2779  if (Value *V = SimplifyInstruction(PN, TD, DT))
2780    if (LI->replacementPreservesLCSSAForm(PN, V))
2781      return getSCEV(V);
2782
2783  // If it's not a loop phi, we can't handle it yet.
2784  return getUnknown(PN);
2785}
2786
2787/// createNodeForGEP - Expand GEP instructions into add and multiply
2788/// operations. This allows them to be analyzed by regular SCEV code.
2789///
2790const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2791
2792  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2793  // Add expression, because the Instruction may be guarded by control flow
2794  // and the no-overflow bits may not be valid for the expression in any
2795  // context.
2796
2797  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2798  Value *Base = GEP->getOperand(0);
2799  // Don't attempt to analyze GEPs over unsized objects.
2800  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2801    return getUnknown(GEP);
2802  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2803  gep_type_iterator GTI = gep_type_begin(GEP);
2804  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2805                                      E = GEP->op_end();
2806       I != E; ++I) {
2807    Value *Index = *I;
2808    // Compute the (potentially symbolic) offset in bytes for this index.
2809    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2810      // For a struct, add the member offset.
2811      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2812      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2813
2814      // Add the field offset to the running total offset.
2815      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2816    } else {
2817      // For an array, add the element offset, explicitly scaled.
2818      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2819      const SCEV *IndexS = getSCEV(Index);
2820      // Getelementptr indices are signed.
2821      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2822
2823      // Multiply the index by the element size to compute the element offset.
2824      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2825
2826      // Add the element offset to the running total offset.
2827      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2828    }
2829  }
2830
2831  // Get the SCEV for the GEP base.
2832  const SCEV *BaseS = getSCEV(Base);
2833
2834  // Add the total offset from all the GEP indices to the base.
2835  return getAddExpr(BaseS, TotalOffset);
2836}
2837
2838/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2839/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2840/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2841/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2842uint32_t
2843ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2844  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2845    return C->getValue()->getValue().countTrailingZeros();
2846
2847  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2848    return std::min(GetMinTrailingZeros(T->getOperand()),
2849                    (uint32_t)getTypeSizeInBits(T->getType()));
2850
2851  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2852    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2853    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2854             getTypeSizeInBits(E->getType()) : OpRes;
2855  }
2856
2857  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2858    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2859    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2860             getTypeSizeInBits(E->getType()) : OpRes;
2861  }
2862
2863  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2864    // The result is the min of all operands results.
2865    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2866    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2867      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2868    return MinOpRes;
2869  }
2870
2871  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2872    // The result is the sum of all operands results.
2873    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2874    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2875    for (unsigned i = 1, e = M->getNumOperands();
2876         SumOpRes != BitWidth && i != e; ++i)
2877      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2878                          BitWidth);
2879    return SumOpRes;
2880  }
2881
2882  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2883    // The result is the min of all operands results.
2884    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2885    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2886      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2887    return MinOpRes;
2888  }
2889
2890  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2891    // The result is the min of all operands results.
2892    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2893    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2894      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2895    return MinOpRes;
2896  }
2897
2898  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2899    // The result is the min of all operands results.
2900    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2901    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2902      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2903    return MinOpRes;
2904  }
2905
2906  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2907    // For a SCEVUnknown, ask ValueTracking.
2908    unsigned BitWidth = getTypeSizeInBits(U->getType());
2909    APInt Mask = APInt::getAllOnesValue(BitWidth);
2910    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2911    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2912    return Zeros.countTrailingOnes();
2913  }
2914
2915  // SCEVUDivExpr
2916  return 0;
2917}
2918
2919/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2920///
2921ConstantRange
2922ScalarEvolution::getUnsignedRange(const SCEV *S) {
2923  // See if we've computed this range already.
2924  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2925  if (I != UnsignedRanges.end())
2926    return I->second;
2927
2928  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2929    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
2930
2931  unsigned BitWidth = getTypeSizeInBits(S->getType());
2932  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2933
2934  // If the value has known zeros, the maximum unsigned value will have those
2935  // known zeros as well.
2936  uint32_t TZ = GetMinTrailingZeros(S);
2937  if (TZ != 0)
2938    ConservativeResult =
2939      ConstantRange(APInt::getMinValue(BitWidth),
2940                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2941
2942  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2943    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2944    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2945      X = X.add(getUnsignedRange(Add->getOperand(i)));
2946    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
2947  }
2948
2949  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2950    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2951    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2952      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2953    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
2954  }
2955
2956  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2957    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2958    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2959      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2960    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
2961  }
2962
2963  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2964    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2965    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2966      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2967    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
2968  }
2969
2970  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2971    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2972    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2973    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
2974  }
2975
2976  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2977    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2978    return setUnsignedRange(ZExt,
2979      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
2980  }
2981
2982  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2983    ConstantRange X = getUnsignedRange(SExt->getOperand());
2984    return setUnsignedRange(SExt,
2985      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
2986  }
2987
2988  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2989    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2990    return setUnsignedRange(Trunc,
2991      ConservativeResult.intersectWith(X.truncate(BitWidth)));
2992  }
2993
2994  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2995    // If there's no unsigned wrap, the value will never be less than its
2996    // initial value.
2997    if (AddRec->hasNoUnsignedWrap())
2998      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2999        if (!C->getValue()->isZero())
3000          ConservativeResult =
3001            ConservativeResult.intersectWith(
3002              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3003
3004    // TODO: non-affine addrec
3005    if (AddRec->isAffine()) {
3006      const Type *Ty = AddRec->getType();
3007      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3008      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3009          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3010        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3011
3012        const SCEV *Start = AddRec->getStart();
3013        const SCEV *Step = AddRec->getStepRecurrence(*this);
3014
3015        ConstantRange StartRange = getUnsignedRange(Start);
3016        ConstantRange StepRange = getSignedRange(Step);
3017        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3018        ConstantRange EndRange =
3019          StartRange.add(MaxBECountRange.multiply(StepRange));
3020
3021        // Check for overflow. This must be done with ConstantRange arithmetic
3022        // because we could be called from within the ScalarEvolution overflow
3023        // checking code.
3024        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3025        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3026        ConstantRange ExtMaxBECountRange =
3027          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3028        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3029        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3030            ExtEndRange)
3031          return setUnsignedRange(AddRec, ConservativeResult);
3032
3033        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3034                                   EndRange.getUnsignedMin());
3035        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3036                                   EndRange.getUnsignedMax());
3037        if (Min.isMinValue() && Max.isMaxValue())
3038          return setUnsignedRange(AddRec, ConservativeResult);
3039        return setUnsignedRange(AddRec,
3040          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3041      }
3042    }
3043
3044    return setUnsignedRange(AddRec, ConservativeResult);
3045  }
3046
3047  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3048    // For a SCEVUnknown, ask ValueTracking.
3049    APInt Mask = APInt::getAllOnesValue(BitWidth);
3050    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3051    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3052    if (Ones == ~Zeros + 1)
3053      return setUnsignedRange(U, ConservativeResult);
3054    return setUnsignedRange(U,
3055      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3056  }
3057
3058  return setUnsignedRange(S, ConservativeResult);
3059}
3060
3061/// getSignedRange - Determine the signed range for a particular SCEV.
3062///
3063ConstantRange
3064ScalarEvolution::getSignedRange(const SCEV *S) {
3065  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3066  if (I != SignedRanges.end())
3067    return I->second;
3068
3069  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3070    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3071
3072  unsigned BitWidth = getTypeSizeInBits(S->getType());
3073  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3074
3075  // If the value has known zeros, the maximum signed value will have those
3076  // known zeros as well.
3077  uint32_t TZ = GetMinTrailingZeros(S);
3078  if (TZ != 0)
3079    ConservativeResult =
3080      ConstantRange(APInt::getSignedMinValue(BitWidth),
3081                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3082
3083  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3084    ConstantRange X = getSignedRange(Add->getOperand(0));
3085    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3086      X = X.add(getSignedRange(Add->getOperand(i)));
3087    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3088  }
3089
3090  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3091    ConstantRange X = getSignedRange(Mul->getOperand(0));
3092    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3093      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3094    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3095  }
3096
3097  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3098    ConstantRange X = getSignedRange(SMax->getOperand(0));
3099    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3100      X = X.smax(getSignedRange(SMax->getOperand(i)));
3101    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3102  }
3103
3104  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3105    ConstantRange X = getSignedRange(UMax->getOperand(0));
3106    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3107      X = X.umax(getSignedRange(UMax->getOperand(i)));
3108    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3109  }
3110
3111  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3112    ConstantRange X = getSignedRange(UDiv->getLHS());
3113    ConstantRange Y = getSignedRange(UDiv->getRHS());
3114    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3115  }
3116
3117  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3118    ConstantRange X = getSignedRange(ZExt->getOperand());
3119    return setSignedRange(ZExt,
3120      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3121  }
3122
3123  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3124    ConstantRange X = getSignedRange(SExt->getOperand());
3125    return setSignedRange(SExt,
3126      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3127  }
3128
3129  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3130    ConstantRange X = getSignedRange(Trunc->getOperand());
3131    return setSignedRange(Trunc,
3132      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3133  }
3134
3135  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3136    // If there's no signed wrap, and all the operands have the same sign or
3137    // zero, the value won't ever change sign.
3138    if (AddRec->hasNoSignedWrap()) {
3139      bool AllNonNeg = true;
3140      bool AllNonPos = true;
3141      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3142        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3143        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3144      }
3145      if (AllNonNeg)
3146        ConservativeResult = ConservativeResult.intersectWith(
3147          ConstantRange(APInt(BitWidth, 0),
3148                        APInt::getSignedMinValue(BitWidth)));
3149      else if (AllNonPos)
3150        ConservativeResult = ConservativeResult.intersectWith(
3151          ConstantRange(APInt::getSignedMinValue(BitWidth),
3152                        APInt(BitWidth, 1)));
3153    }
3154
3155    // TODO: non-affine addrec
3156    if (AddRec->isAffine()) {
3157      const Type *Ty = AddRec->getType();
3158      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3159      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3160          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3161        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3162
3163        const SCEV *Start = AddRec->getStart();
3164        const SCEV *Step = AddRec->getStepRecurrence(*this);
3165
3166        ConstantRange StartRange = getSignedRange(Start);
3167        ConstantRange StepRange = getSignedRange(Step);
3168        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3169        ConstantRange EndRange =
3170          StartRange.add(MaxBECountRange.multiply(StepRange));
3171
3172        // Check for overflow. This must be done with ConstantRange arithmetic
3173        // because we could be called from within the ScalarEvolution overflow
3174        // checking code.
3175        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3176        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3177        ConstantRange ExtMaxBECountRange =
3178          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3179        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3180        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3181            ExtEndRange)
3182          return setSignedRange(AddRec, ConservativeResult);
3183
3184        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3185                                   EndRange.getSignedMin());
3186        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3187                                   EndRange.getSignedMax());
3188        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3189          return setSignedRange(AddRec, ConservativeResult);
3190        return setSignedRange(AddRec,
3191          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3192      }
3193    }
3194
3195    return setSignedRange(AddRec, ConservativeResult);
3196  }
3197
3198  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3199    // For a SCEVUnknown, ask ValueTracking.
3200    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3201      return setSignedRange(U, ConservativeResult);
3202    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3203    if (NS == 1)
3204      return setSignedRange(U, ConservativeResult);
3205    return setSignedRange(U, ConservativeResult.intersectWith(
3206      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3207                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3208  }
3209
3210  return setSignedRange(S, ConservativeResult);
3211}
3212
3213/// createSCEV - We know that there is no SCEV for the specified value.
3214/// Analyze the expression.
3215///
3216const SCEV *ScalarEvolution::createSCEV(Value *V) {
3217  if (!isSCEVable(V->getType()))
3218    return getUnknown(V);
3219
3220  unsigned Opcode = Instruction::UserOp1;
3221  if (Instruction *I = dyn_cast<Instruction>(V)) {
3222    Opcode = I->getOpcode();
3223
3224    // Don't attempt to analyze instructions in blocks that aren't
3225    // reachable. Such instructions don't matter, and they aren't required
3226    // to obey basic rules for definitions dominating uses which this
3227    // analysis depends on.
3228    if (!DT->isReachableFromEntry(I->getParent()))
3229      return getUnknown(V);
3230  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3231    Opcode = CE->getOpcode();
3232  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3233    return getConstant(CI);
3234  else if (isa<ConstantPointerNull>(V))
3235    return getConstant(V->getType(), 0);
3236  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3237    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3238  else
3239    return getUnknown(V);
3240
3241  Operator *U = cast<Operator>(V);
3242  switch (Opcode) {
3243  case Instruction::Add: {
3244    // The simple thing to do would be to just call getSCEV on both operands
3245    // and call getAddExpr with the result. However if we're looking at a
3246    // bunch of things all added together, this can be quite inefficient,
3247    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3248    // Instead, gather up all the operands and make a single getAddExpr call.
3249    // LLVM IR canonical form means we need only traverse the left operands.
3250    SmallVector<const SCEV *, 4> AddOps;
3251    AddOps.push_back(getSCEV(U->getOperand(1)));
3252    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3253      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3254      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3255        break;
3256      U = cast<Operator>(Op);
3257      const SCEV *Op1 = getSCEV(U->getOperand(1));
3258      if (Opcode == Instruction::Sub)
3259        AddOps.push_back(getNegativeSCEV(Op1));
3260      else
3261        AddOps.push_back(Op1);
3262    }
3263    AddOps.push_back(getSCEV(U->getOperand(0)));
3264    return getAddExpr(AddOps);
3265  }
3266  case Instruction::Mul: {
3267    // See the Add code above.
3268    SmallVector<const SCEV *, 4> MulOps;
3269    MulOps.push_back(getSCEV(U->getOperand(1)));
3270    for (Value *Op = U->getOperand(0);
3271         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3272         Op = U->getOperand(0)) {
3273      U = cast<Operator>(Op);
3274      MulOps.push_back(getSCEV(U->getOperand(1)));
3275    }
3276    MulOps.push_back(getSCEV(U->getOperand(0)));
3277    return getMulExpr(MulOps);
3278  }
3279  case Instruction::UDiv:
3280    return getUDivExpr(getSCEV(U->getOperand(0)),
3281                       getSCEV(U->getOperand(1)));
3282  case Instruction::Sub:
3283    return getMinusSCEV(getSCEV(U->getOperand(0)),
3284                        getSCEV(U->getOperand(1)));
3285  case Instruction::And:
3286    // For an expression like x&255 that merely masks off the high bits,
3287    // use zext(trunc(x)) as the SCEV expression.
3288    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3289      if (CI->isNullValue())
3290        return getSCEV(U->getOperand(1));
3291      if (CI->isAllOnesValue())
3292        return getSCEV(U->getOperand(0));
3293      const APInt &A = CI->getValue();
3294
3295      // Instcombine's ShrinkDemandedConstant may strip bits out of
3296      // constants, obscuring what would otherwise be a low-bits mask.
3297      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3298      // knew about to reconstruct a low-bits mask value.
3299      unsigned LZ = A.countLeadingZeros();
3300      unsigned BitWidth = A.getBitWidth();
3301      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3302      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3303      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3304
3305      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3306
3307      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3308        return
3309          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3310                                IntegerType::get(getContext(), BitWidth - LZ)),
3311                            U->getType());
3312    }
3313    break;
3314
3315  case Instruction::Or:
3316    // If the RHS of the Or is a constant, we may have something like:
3317    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3318    // optimizations will transparently handle this case.
3319    //
3320    // In order for this transformation to be safe, the LHS must be of the
3321    // form X*(2^n) and the Or constant must be less than 2^n.
3322    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3323      const SCEV *LHS = getSCEV(U->getOperand(0));
3324      const APInt &CIVal = CI->getValue();
3325      if (GetMinTrailingZeros(LHS) >=
3326          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3327        // Build a plain add SCEV.
3328        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3329        // If the LHS of the add was an addrec and it has no-wrap flags,
3330        // transfer the no-wrap flags, since an or won't introduce a wrap.
3331        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3332          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3333          if (OldAR->hasNoUnsignedWrap())
3334            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3335          if (OldAR->hasNoSignedWrap())
3336            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3337        }
3338        return S;
3339      }
3340    }
3341    break;
3342  case Instruction::Xor:
3343    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3344      // If the RHS of the xor is a signbit, then this is just an add.
3345      // Instcombine turns add of signbit into xor as a strength reduction step.
3346      if (CI->getValue().isSignBit())
3347        return getAddExpr(getSCEV(U->getOperand(0)),
3348                          getSCEV(U->getOperand(1)));
3349
3350      // If the RHS of xor is -1, then this is a not operation.
3351      if (CI->isAllOnesValue())
3352        return getNotSCEV(getSCEV(U->getOperand(0)));
3353
3354      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3355      // This is a variant of the check for xor with -1, and it handles
3356      // the case where instcombine has trimmed non-demanded bits out
3357      // of an xor with -1.
3358      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3359        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3360          if (BO->getOpcode() == Instruction::And &&
3361              LCI->getValue() == CI->getValue())
3362            if (const SCEVZeroExtendExpr *Z =
3363                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3364              const Type *UTy = U->getType();
3365              const SCEV *Z0 = Z->getOperand();
3366              const Type *Z0Ty = Z0->getType();
3367              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3368
3369              // If C is a low-bits mask, the zero extend is serving to
3370              // mask off the high bits. Complement the operand and
3371              // re-apply the zext.
3372              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3373                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3374
3375              // If C is a single bit, it may be in the sign-bit position
3376              // before the zero-extend. In this case, represent the xor
3377              // using an add, which is equivalent, and re-apply the zext.
3378              APInt Trunc = CI->getValue().trunc(Z0TySize);
3379              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3380                  Trunc.isSignBit())
3381                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3382                                         UTy);
3383            }
3384    }
3385    break;
3386
3387  case Instruction::Shl:
3388    // Turn shift left of a constant amount into a multiply.
3389    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3390      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3391
3392      // If the shift count is not less than the bitwidth, the result of
3393      // the shift is undefined. Don't try to analyze it, because the
3394      // resolution chosen here may differ from the resolution chosen in
3395      // other parts of the compiler.
3396      if (SA->getValue().uge(BitWidth))
3397        break;
3398
3399      Constant *X = ConstantInt::get(getContext(),
3400        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3401      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3402    }
3403    break;
3404
3405  case Instruction::LShr:
3406    // Turn logical shift right of a constant into a unsigned divide.
3407    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3408      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3409
3410      // If the shift count is not less than the bitwidth, the result of
3411      // the shift is undefined. Don't try to analyze it, because the
3412      // resolution chosen here may differ from the resolution chosen in
3413      // other parts of the compiler.
3414      if (SA->getValue().uge(BitWidth))
3415        break;
3416
3417      Constant *X = ConstantInt::get(getContext(),
3418        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3419      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3420    }
3421    break;
3422
3423  case Instruction::AShr:
3424    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3425    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3426      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3427        if (L->getOpcode() == Instruction::Shl &&
3428            L->getOperand(1) == U->getOperand(1)) {
3429          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3430
3431          // If the shift count is not less than the bitwidth, the result of
3432          // the shift is undefined. Don't try to analyze it, because the
3433          // resolution chosen here may differ from the resolution chosen in
3434          // other parts of the compiler.
3435          if (CI->getValue().uge(BitWidth))
3436            break;
3437
3438          uint64_t Amt = BitWidth - CI->getZExtValue();
3439          if (Amt == BitWidth)
3440            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3441          return
3442            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3443                                              IntegerType::get(getContext(),
3444                                                               Amt)),
3445                              U->getType());
3446        }
3447    break;
3448
3449  case Instruction::Trunc:
3450    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3451
3452  case Instruction::ZExt:
3453    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3454
3455  case Instruction::SExt:
3456    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3457
3458  case Instruction::BitCast:
3459    // BitCasts are no-op casts so we just eliminate the cast.
3460    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3461      return getSCEV(U->getOperand(0));
3462    break;
3463
3464  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3465  // lead to pointer expressions which cannot safely be expanded to GEPs,
3466  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3467  // simplifying integer expressions.
3468
3469  case Instruction::GetElementPtr:
3470    return createNodeForGEP(cast<GEPOperator>(U));
3471
3472  case Instruction::PHI:
3473    return createNodeForPHI(cast<PHINode>(U));
3474
3475  case Instruction::Select:
3476    // This could be a smax or umax that was lowered earlier.
3477    // Try to recover it.
3478    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3479      Value *LHS = ICI->getOperand(0);
3480      Value *RHS = ICI->getOperand(1);
3481      switch (ICI->getPredicate()) {
3482      case ICmpInst::ICMP_SLT:
3483      case ICmpInst::ICMP_SLE:
3484        std::swap(LHS, RHS);
3485        // fall through
3486      case ICmpInst::ICMP_SGT:
3487      case ICmpInst::ICMP_SGE:
3488        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3489        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3490        if (LHS->getType() == U->getType()) {
3491          const SCEV *LS = getSCEV(LHS);
3492          const SCEV *RS = getSCEV(RHS);
3493          const SCEV *LA = getSCEV(U->getOperand(1));
3494          const SCEV *RA = getSCEV(U->getOperand(2));
3495          const SCEV *LDiff = getMinusSCEV(LA, LS);
3496          const SCEV *RDiff = getMinusSCEV(RA, RS);
3497          if (LDiff == RDiff)
3498            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3499          LDiff = getMinusSCEV(LA, RS);
3500          RDiff = getMinusSCEV(RA, LS);
3501          if (LDiff == RDiff)
3502            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3503        }
3504        break;
3505      case ICmpInst::ICMP_ULT:
3506      case ICmpInst::ICMP_ULE:
3507        std::swap(LHS, RHS);
3508        // fall through
3509      case ICmpInst::ICMP_UGT:
3510      case ICmpInst::ICMP_UGE:
3511        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3512        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3513        if (LHS->getType() == U->getType()) {
3514          const SCEV *LS = getSCEV(LHS);
3515          const SCEV *RS = getSCEV(RHS);
3516          const SCEV *LA = getSCEV(U->getOperand(1));
3517          const SCEV *RA = getSCEV(U->getOperand(2));
3518          const SCEV *LDiff = getMinusSCEV(LA, LS);
3519          const SCEV *RDiff = getMinusSCEV(RA, RS);
3520          if (LDiff == RDiff)
3521            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3522          LDiff = getMinusSCEV(LA, RS);
3523          RDiff = getMinusSCEV(RA, LS);
3524          if (LDiff == RDiff)
3525            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3526        }
3527        break;
3528      case ICmpInst::ICMP_NE:
3529        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3530        if (LHS->getType() == U->getType() &&
3531            isa<ConstantInt>(RHS) &&
3532            cast<ConstantInt>(RHS)->isZero()) {
3533          const SCEV *One = getConstant(LHS->getType(), 1);
3534          const SCEV *LS = getSCEV(LHS);
3535          const SCEV *LA = getSCEV(U->getOperand(1));
3536          const SCEV *RA = getSCEV(U->getOperand(2));
3537          const SCEV *LDiff = getMinusSCEV(LA, LS);
3538          const SCEV *RDiff = getMinusSCEV(RA, One);
3539          if (LDiff == RDiff)
3540            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3541        }
3542        break;
3543      case ICmpInst::ICMP_EQ:
3544        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3545        if (LHS->getType() == U->getType() &&
3546            isa<ConstantInt>(RHS) &&
3547            cast<ConstantInt>(RHS)->isZero()) {
3548          const SCEV *One = getConstant(LHS->getType(), 1);
3549          const SCEV *LS = getSCEV(LHS);
3550          const SCEV *LA = getSCEV(U->getOperand(1));
3551          const SCEV *RA = getSCEV(U->getOperand(2));
3552          const SCEV *LDiff = getMinusSCEV(LA, One);
3553          const SCEV *RDiff = getMinusSCEV(RA, LS);
3554          if (LDiff == RDiff)
3555            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3556        }
3557        break;
3558      default:
3559        break;
3560      }
3561    }
3562
3563  default: // We cannot analyze this expression.
3564    break;
3565  }
3566
3567  return getUnknown(V);
3568}
3569
3570
3571
3572//===----------------------------------------------------------------------===//
3573//                   Iteration Count Computation Code
3574//
3575
3576/// getBackedgeTakenCount - If the specified loop has a predictable
3577/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3578/// object. The backedge-taken count is the number of times the loop header
3579/// will be branched to from within the loop. This is one less than the
3580/// trip count of the loop, since it doesn't count the first iteration,
3581/// when the header is branched to from outside the loop.
3582///
3583/// Note that it is not valid to call this method on a loop without a
3584/// loop-invariant backedge-taken count (see
3585/// hasLoopInvariantBackedgeTakenCount).
3586///
3587const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3588  return getBackedgeTakenInfo(L).Exact;
3589}
3590
3591/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3592/// return the least SCEV value that is known never to be less than the
3593/// actual backedge taken count.
3594const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3595  return getBackedgeTakenInfo(L).Max;
3596}
3597
3598/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3599/// onto the given Worklist.
3600static void
3601PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3602  BasicBlock *Header = L->getHeader();
3603
3604  // Push all Loop-header PHIs onto the Worklist stack.
3605  for (BasicBlock::iterator I = Header->begin();
3606       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3607    Worklist.push_back(PN);
3608}
3609
3610const ScalarEvolution::BackedgeTakenInfo &
3611ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3612  // Initially insert a CouldNotCompute for this loop. If the insertion
3613  // succeeds, proceed to actually compute a backedge-taken count and
3614  // update the value. The temporary CouldNotCompute value tells SCEV
3615  // code elsewhere that it shouldn't attempt to request a new
3616  // backedge-taken count, which could result in infinite recursion.
3617  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3618    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3619  if (!Pair.second)
3620    return Pair.first->second;
3621
3622  BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3623  if (BECount.Exact != getCouldNotCompute()) {
3624    assert(isLoopInvariant(BECount.Exact, L) &&
3625           isLoopInvariant(BECount.Max, L) &&
3626           "Computed backedge-taken count isn't loop invariant for loop!");
3627    ++NumTripCountsComputed;
3628
3629    // Update the value in the map.
3630    Pair.first->second = BECount;
3631  } else {
3632    if (BECount.Max != getCouldNotCompute())
3633      // Update the value in the map.
3634      Pair.first->second = BECount;
3635    if (isa<PHINode>(L->getHeader()->begin()))
3636      // Only count loops that have phi nodes as not being computable.
3637      ++NumTripCountsNotComputed;
3638  }
3639
3640  // Now that we know more about the trip count for this loop, forget any
3641  // existing SCEV values for PHI nodes in this loop since they are only
3642  // conservative estimates made without the benefit of trip count
3643  // information. This is similar to the code in forgetLoop, except that
3644  // it handles SCEVUnknown PHI nodes specially.
3645  if (BECount.hasAnyInfo()) {
3646    SmallVector<Instruction *, 16> Worklist;
3647    PushLoopPHIs(L, Worklist);
3648
3649    SmallPtrSet<Instruction *, 8> Visited;
3650    while (!Worklist.empty()) {
3651      Instruction *I = Worklist.pop_back_val();
3652      if (!Visited.insert(I)) continue;
3653
3654      ValueExprMapType::iterator It =
3655        ValueExprMap.find(static_cast<Value *>(I));
3656      if (It != ValueExprMap.end()) {
3657        const SCEV *Old = It->second;
3658
3659        // SCEVUnknown for a PHI either means that it has an unrecognized
3660        // structure, or it's a PHI that's in the progress of being computed
3661        // by createNodeForPHI.  In the former case, additional loop trip
3662        // count information isn't going to change anything. In the later
3663        // case, createNodeForPHI will perform the necessary updates on its
3664        // own when it gets to that point.
3665        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3666          forgetMemoizedResults(Old);
3667          ValueExprMap.erase(It);
3668        }
3669        if (PHINode *PN = dyn_cast<PHINode>(I))
3670          ConstantEvolutionLoopExitValue.erase(PN);
3671      }
3672
3673      PushDefUseChildren(I, Worklist);
3674    }
3675  }
3676  return Pair.first->second;
3677}
3678
3679/// forgetLoop - This method should be called by the client when it has
3680/// changed a loop in a way that may effect ScalarEvolution's ability to
3681/// compute a trip count, or if the loop is deleted.
3682void ScalarEvolution::forgetLoop(const Loop *L) {
3683  // Drop any stored trip count value.
3684  BackedgeTakenCounts.erase(L);
3685
3686  // Drop information about expressions based on loop-header PHIs.
3687  SmallVector<Instruction *, 16> Worklist;
3688  PushLoopPHIs(L, Worklist);
3689
3690  SmallPtrSet<Instruction *, 8> Visited;
3691  while (!Worklist.empty()) {
3692    Instruction *I = Worklist.pop_back_val();
3693    if (!Visited.insert(I)) continue;
3694
3695    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3696    if (It != ValueExprMap.end()) {
3697      forgetMemoizedResults(It->second);
3698      ValueExprMap.erase(It);
3699      if (PHINode *PN = dyn_cast<PHINode>(I))
3700        ConstantEvolutionLoopExitValue.erase(PN);
3701    }
3702
3703    PushDefUseChildren(I, Worklist);
3704  }
3705
3706  // Forget all contained loops too, to avoid dangling entries in the
3707  // ValuesAtScopes map.
3708  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3709    forgetLoop(*I);
3710}
3711
3712/// forgetValue - This method should be called by the client when it has
3713/// changed a value in a way that may effect its value, or which may
3714/// disconnect it from a def-use chain linking it to a loop.
3715void ScalarEvolution::forgetValue(Value *V) {
3716  Instruction *I = dyn_cast<Instruction>(V);
3717  if (!I) return;
3718
3719  // Drop information about expressions based on loop-header PHIs.
3720  SmallVector<Instruction *, 16> Worklist;
3721  Worklist.push_back(I);
3722
3723  SmallPtrSet<Instruction *, 8> Visited;
3724  while (!Worklist.empty()) {
3725    I = Worklist.pop_back_val();
3726    if (!Visited.insert(I)) continue;
3727
3728    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3729    if (It != ValueExprMap.end()) {
3730      forgetMemoizedResults(It->second);
3731      ValueExprMap.erase(It);
3732      if (PHINode *PN = dyn_cast<PHINode>(I))
3733        ConstantEvolutionLoopExitValue.erase(PN);
3734    }
3735
3736    PushDefUseChildren(I, Worklist);
3737  }
3738}
3739
3740/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3741/// of the specified loop will execute.
3742ScalarEvolution::BackedgeTakenInfo
3743ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3744  SmallVector<BasicBlock *, 8> ExitingBlocks;
3745  L->getExitingBlocks(ExitingBlocks);
3746
3747  // Examine all exits and pick the most conservative values.
3748  const SCEV *BECount = getCouldNotCompute();
3749  const SCEV *MaxBECount = getCouldNotCompute();
3750  bool CouldNotComputeBECount = false;
3751  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3752    BackedgeTakenInfo NewBTI =
3753      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3754
3755    if (NewBTI.Exact == getCouldNotCompute()) {
3756      // We couldn't compute an exact value for this exit, so
3757      // we won't be able to compute an exact value for the loop.
3758      CouldNotComputeBECount = true;
3759      BECount = getCouldNotCompute();
3760    } else if (!CouldNotComputeBECount) {
3761      if (BECount == getCouldNotCompute())
3762        BECount = NewBTI.Exact;
3763      else
3764        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3765    }
3766    if (MaxBECount == getCouldNotCompute())
3767      MaxBECount = NewBTI.Max;
3768    else if (NewBTI.Max != getCouldNotCompute())
3769      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3770  }
3771
3772  return BackedgeTakenInfo(BECount, MaxBECount);
3773}
3774
3775/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3776/// of the specified loop will execute if it exits via the specified block.
3777ScalarEvolution::BackedgeTakenInfo
3778ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3779                                                   BasicBlock *ExitingBlock) {
3780
3781  // Okay, we've chosen an exiting block.  See what condition causes us to
3782  // exit at this block.
3783  //
3784  // FIXME: we should be able to handle switch instructions (with a single exit)
3785  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3786  if (ExitBr == 0) return getCouldNotCompute();
3787  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3788
3789  // At this point, we know we have a conditional branch that determines whether
3790  // the loop is exited.  However, we don't know if the branch is executed each
3791  // time through the loop.  If not, then the execution count of the branch will
3792  // not be equal to the trip count of the loop.
3793  //
3794  // Currently we check for this by checking to see if the Exit branch goes to
3795  // the loop header.  If so, we know it will always execute the same number of
3796  // times as the loop.  We also handle the case where the exit block *is* the
3797  // loop header.  This is common for un-rotated loops.
3798  //
3799  // If both of those tests fail, walk up the unique predecessor chain to the
3800  // header, stopping if there is an edge that doesn't exit the loop. If the
3801  // header is reached, the execution count of the branch will be equal to the
3802  // trip count of the loop.
3803  //
3804  //  More extensive analysis could be done to handle more cases here.
3805  //
3806  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3807      ExitBr->getSuccessor(1) != L->getHeader() &&
3808      ExitBr->getParent() != L->getHeader()) {
3809    // The simple checks failed, try climbing the unique predecessor chain
3810    // up to the header.
3811    bool Ok = false;
3812    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3813      BasicBlock *Pred = BB->getUniquePredecessor();
3814      if (!Pred)
3815        return getCouldNotCompute();
3816      TerminatorInst *PredTerm = Pred->getTerminator();
3817      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3818        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3819        if (PredSucc == BB)
3820          continue;
3821        // If the predecessor has a successor that isn't BB and isn't
3822        // outside the loop, assume the worst.
3823        if (L->contains(PredSucc))
3824          return getCouldNotCompute();
3825      }
3826      if (Pred == L->getHeader()) {
3827        Ok = true;
3828        break;
3829      }
3830      BB = Pred;
3831    }
3832    if (!Ok)
3833      return getCouldNotCompute();
3834  }
3835
3836  // Proceed to the next level to examine the exit condition expression.
3837  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3838                                               ExitBr->getSuccessor(0),
3839                                               ExitBr->getSuccessor(1));
3840}
3841
3842/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3843/// backedge of the specified loop will execute if its exit condition
3844/// were a conditional branch of ExitCond, TBB, and FBB.
3845ScalarEvolution::BackedgeTakenInfo
3846ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3847                                                       Value *ExitCond,
3848                                                       BasicBlock *TBB,
3849                                                       BasicBlock *FBB) {
3850  // Check if the controlling expression for this loop is an And or Or.
3851  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3852    if (BO->getOpcode() == Instruction::And) {
3853      // Recurse on the operands of the and.
3854      BackedgeTakenInfo BTI0 =
3855        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3856      BackedgeTakenInfo BTI1 =
3857        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3858      const SCEV *BECount = getCouldNotCompute();
3859      const SCEV *MaxBECount = getCouldNotCompute();
3860      if (L->contains(TBB)) {
3861        // Both conditions must be true for the loop to continue executing.
3862        // Choose the less conservative count.
3863        if (BTI0.Exact == getCouldNotCompute() ||
3864            BTI1.Exact == getCouldNotCompute())
3865          BECount = getCouldNotCompute();
3866        else
3867          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3868        if (BTI0.Max == getCouldNotCompute())
3869          MaxBECount = BTI1.Max;
3870        else if (BTI1.Max == getCouldNotCompute())
3871          MaxBECount = BTI0.Max;
3872        else
3873          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3874      } else {
3875        // Both conditions must be true at the same time for the loop to exit.
3876        // For now, be conservative.
3877        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3878        if (BTI0.Max == BTI1.Max)
3879          MaxBECount = BTI0.Max;
3880        if (BTI0.Exact == BTI1.Exact)
3881          BECount = BTI0.Exact;
3882      }
3883
3884      return BackedgeTakenInfo(BECount, MaxBECount);
3885    }
3886    if (BO->getOpcode() == Instruction::Or) {
3887      // Recurse on the operands of the or.
3888      BackedgeTakenInfo BTI0 =
3889        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3890      BackedgeTakenInfo BTI1 =
3891        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3892      const SCEV *BECount = getCouldNotCompute();
3893      const SCEV *MaxBECount = getCouldNotCompute();
3894      if (L->contains(FBB)) {
3895        // Both conditions must be false for the loop to continue executing.
3896        // Choose the less conservative count.
3897        if (BTI0.Exact == getCouldNotCompute() ||
3898            BTI1.Exact == getCouldNotCompute())
3899          BECount = getCouldNotCompute();
3900        else
3901          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3902        if (BTI0.Max == getCouldNotCompute())
3903          MaxBECount = BTI1.Max;
3904        else if (BTI1.Max == getCouldNotCompute())
3905          MaxBECount = BTI0.Max;
3906        else
3907          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3908      } else {
3909        // Both conditions must be false at the same time for the loop to exit.
3910        // For now, be conservative.
3911        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3912        if (BTI0.Max == BTI1.Max)
3913          MaxBECount = BTI0.Max;
3914        if (BTI0.Exact == BTI1.Exact)
3915          BECount = BTI0.Exact;
3916      }
3917
3918      return BackedgeTakenInfo(BECount, MaxBECount);
3919    }
3920  }
3921
3922  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3923  // Proceed to the next level to examine the icmp.
3924  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3925    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3926
3927  // Check for a constant condition. These are normally stripped out by
3928  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3929  // preserve the CFG and is temporarily leaving constant conditions
3930  // in place.
3931  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3932    if (L->contains(FBB) == !CI->getZExtValue())
3933      // The backedge is always taken.
3934      return getCouldNotCompute();
3935    else
3936      // The backedge is never taken.
3937      return getConstant(CI->getType(), 0);
3938  }
3939
3940  // If it's not an integer or pointer comparison then compute it the hard way.
3941  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3942}
3943
3944static const SCEVAddRecExpr *
3945isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3946  const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3947
3948  // The SCEV must be an addrec of this loop.
3949  if (!SA || SA->getLoop() != L || !SA->isAffine())
3950    return 0;
3951
3952  // The SCEV must be known to not wrap in some way to be interesting.
3953  if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3954    return 0;
3955
3956  // The stride must be a constant so that we know if it is striding up or down.
3957  if (!isa<SCEVConstant>(SA->getOperand(1)))
3958    return 0;
3959  return SA;
3960}
3961
3962/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3963/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3964/// and this function returns the expression to use for x-y.  We know and take
3965/// advantage of the fact that this subtraction is only being used in a
3966/// comparison by zero context.
3967///
3968static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
3969                                           const Loop *L, ScalarEvolution &SE) {
3970  // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
3971  // wrap (either NSW or NUW), then we know that the value will either become
3972  // the other one (and thus the loop terminates), that the loop will terminate
3973  // through some other exit condition first, or that the loop has undefined
3974  // behavior.  This information is useful when the addrec has a stride that is
3975  // != 1 or -1, because it means we can't "miss" the exit value.
3976  //
3977  // In any of these three cases, it is safe to turn the exit condition into a
3978  // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
3979  // but since we know that the "end cannot be missed" we can force the
3980  // resulting AddRec to be a NUW addrec.  Since it is counting down, this means
3981  // that the AddRec *cannot* pass zero.
3982
3983  // See if LHS and RHS are addrec's we can handle.
3984  const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
3985  const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
3986
3987  // If neither addrec is interesting, just return a minus.
3988  if (RHSA == 0 && LHSA == 0)
3989    return SE.getMinusSCEV(LHS, RHS);
3990
3991  // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
3992  if (RHSA && LHSA == 0) {
3993    // Safe because a-b === b-a for comparisons against zero.
3994    std::swap(LHS, RHS);
3995    std::swap(LHSA, RHSA);
3996  }
3997
3998  // Handle the case when only one is advancing in a non-overflowing way.
3999  if (RHSA == 0) {
4000    // If RHS is loop varying, then we can't predict when LHS will cross it.
4001    if (!SE.isLoopInvariant(RHS, L))
4002      return SE.getMinusSCEV(LHS, RHS);
4003
4004    // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4005    // is counting up until it crosses RHS (which must be larger than LHS).  If
4006    // it is negative, we compute LHS-RHS because we're counting down to RHS.
4007    const ConstantInt *Stride =
4008      cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4009    if (Stride->getValue().isNegative())
4010      std::swap(LHS, RHS);
4011
4012    return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4013  }
4014
4015  // If both LHS and RHS are interesting, we have something like:
4016  //  a+i*4 != b+i*8.
4017  const ConstantInt *LHSStride =
4018    cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4019  const ConstantInt *RHSStride =
4020    cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4021
4022  // If the strides are equal, then this is just a (complex) loop invariant
4023  // comparison of a/b.
4024  if (LHSStride == RHSStride)
4025    return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4026
4027  // If the signs of the strides differ, then the negative stride is counting
4028  // down to the positive stride.
4029  if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4030    if (RHSStride->getValue().isNegative())
4031      std::swap(LHS, RHS);
4032  } else {
4033    // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4034    // "a" and "b" is RHS is counting up (catching up) to LHS.  This is true
4035    // whether the strides are positive or negative.
4036    if (RHSStride->getValue().slt(LHSStride->getValue()))
4037      std::swap(LHS, RHS);
4038  }
4039
4040  return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4041}
4042
4043/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4044/// backedge of the specified loop will execute if its exit condition
4045/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4046ScalarEvolution::BackedgeTakenInfo
4047ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4048                                                           ICmpInst *ExitCond,
4049                                                           BasicBlock *TBB,
4050                                                           BasicBlock *FBB) {
4051
4052  // If the condition was exit on true, convert the condition to exit on false
4053  ICmpInst::Predicate Cond;
4054  if (!L->contains(FBB))
4055    Cond = ExitCond->getPredicate();
4056  else
4057    Cond = ExitCond->getInversePredicate();
4058
4059  // Handle common loops like: for (X = "string"; *X; ++X)
4060  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4061    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4062      BackedgeTakenInfo ItCnt =
4063        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4064      if (ItCnt.hasAnyInfo())
4065        return ItCnt;
4066    }
4067
4068  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4069  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4070
4071  // Try to evaluate any dependencies out of the loop.
4072  LHS = getSCEVAtScope(LHS, L);
4073  RHS = getSCEVAtScope(RHS, L);
4074
4075  // At this point, we would like to compute how many iterations of the
4076  // loop the predicate will return true for these inputs.
4077  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4078    // If there is a loop-invariant, force it into the RHS.
4079    std::swap(LHS, RHS);
4080    Cond = ICmpInst::getSwappedPredicate(Cond);
4081  }
4082
4083  // Simplify the operands before analyzing them.
4084  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4085
4086  // If we have a comparison of a chrec against a constant, try to use value
4087  // ranges to answer this query.
4088  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4089    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4090      if (AddRec->getLoop() == L) {
4091        // Form the constant range.
4092        ConstantRange CompRange(
4093            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4094
4095        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4096        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4097      }
4098
4099  switch (Cond) {
4100  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4101    // Convert to: while (X-Y != 0)
4102    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4103                                                                 *this), L);
4104    if (BTI.hasAnyInfo()) return BTI;
4105    break;
4106  }
4107  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4108    // Convert to: while (X-Y == 0)
4109    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4110    if (BTI.hasAnyInfo()) return BTI;
4111    break;
4112  }
4113  case ICmpInst::ICMP_SLT: {
4114    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4115    if (BTI.hasAnyInfo()) return BTI;
4116    break;
4117  }
4118  case ICmpInst::ICMP_SGT: {
4119    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4120                                             getNotSCEV(RHS), L, true);
4121    if (BTI.hasAnyInfo()) return BTI;
4122    break;
4123  }
4124  case ICmpInst::ICMP_ULT: {
4125    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4126    if (BTI.hasAnyInfo()) return BTI;
4127    break;
4128  }
4129  case ICmpInst::ICMP_UGT: {
4130    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4131                                             getNotSCEV(RHS), L, false);
4132    if (BTI.hasAnyInfo()) return BTI;
4133    break;
4134  }
4135  default:
4136#if 0
4137    dbgs() << "ComputeBackedgeTakenCount ";
4138    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4139      dbgs() << "[unsigned] ";
4140    dbgs() << *LHS << "   "
4141         << Instruction::getOpcodeName(Instruction::ICmp)
4142         << "   " << *RHS << "\n";
4143#endif
4144    break;
4145  }
4146  return
4147    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4148}
4149
4150static ConstantInt *
4151EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4152                                ScalarEvolution &SE) {
4153  const SCEV *InVal = SE.getConstant(C);
4154  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4155  assert(isa<SCEVConstant>(Val) &&
4156         "Evaluation of SCEV at constant didn't fold correctly?");
4157  return cast<SCEVConstant>(Val)->getValue();
4158}
4159
4160/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4161/// and a GEP expression (missing the pointer index) indexing into it, return
4162/// the addressed element of the initializer or null if the index expression is
4163/// invalid.
4164static Constant *
4165GetAddressedElementFromGlobal(GlobalVariable *GV,
4166                              const std::vector<ConstantInt*> &Indices) {
4167  Constant *Init = GV->getInitializer();
4168  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4169    uint64_t Idx = Indices[i]->getZExtValue();
4170    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4171      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4172      Init = cast<Constant>(CS->getOperand(Idx));
4173    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4174      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4175      Init = cast<Constant>(CA->getOperand(Idx));
4176    } else if (isa<ConstantAggregateZero>(Init)) {
4177      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4178        assert(Idx < STy->getNumElements() && "Bad struct index!");
4179        Init = Constant::getNullValue(STy->getElementType(Idx));
4180      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4181        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4182        Init = Constant::getNullValue(ATy->getElementType());
4183      } else {
4184        llvm_unreachable("Unknown constant aggregate type!");
4185      }
4186      return 0;
4187    } else {
4188      return 0; // Unknown initializer type
4189    }
4190  }
4191  return Init;
4192}
4193
4194/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4195/// 'icmp op load X, cst', try to see if we can compute the backedge
4196/// execution count.
4197ScalarEvolution::BackedgeTakenInfo
4198ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4199                                                LoadInst *LI,
4200                                                Constant *RHS,
4201                                                const Loop *L,
4202                                                ICmpInst::Predicate predicate) {
4203  if (LI->isVolatile()) return getCouldNotCompute();
4204
4205  // Check to see if the loaded pointer is a getelementptr of a global.
4206  // TODO: Use SCEV instead of manually grubbing with GEPs.
4207  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4208  if (!GEP) return getCouldNotCompute();
4209
4210  // Make sure that it is really a constant global we are gepping, with an
4211  // initializer, and make sure the first IDX is really 0.
4212  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4213  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4214      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4215      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4216    return getCouldNotCompute();
4217
4218  // Okay, we allow one non-constant index into the GEP instruction.
4219  Value *VarIdx = 0;
4220  std::vector<ConstantInt*> Indexes;
4221  unsigned VarIdxNum = 0;
4222  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4223    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4224      Indexes.push_back(CI);
4225    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4226      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4227      VarIdx = GEP->getOperand(i);
4228      VarIdxNum = i-2;
4229      Indexes.push_back(0);
4230    }
4231
4232  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4233  // Check to see if X is a loop variant variable value now.
4234  const SCEV *Idx = getSCEV(VarIdx);
4235  Idx = getSCEVAtScope(Idx, L);
4236
4237  // We can only recognize very limited forms of loop index expressions, in
4238  // particular, only affine AddRec's like {C1,+,C2}.
4239  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4240  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4241      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4242      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4243    return getCouldNotCompute();
4244
4245  unsigned MaxSteps = MaxBruteForceIterations;
4246  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4247    ConstantInt *ItCst = ConstantInt::get(
4248                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4249    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4250
4251    // Form the GEP offset.
4252    Indexes[VarIdxNum] = Val;
4253
4254    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4255    if (Result == 0) break;  // Cannot compute!
4256
4257    // Evaluate the condition for this iteration.
4258    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4259    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4260    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4261#if 0
4262      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4263             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4264             << "***\n";
4265#endif
4266      ++NumArrayLenItCounts;
4267      return getConstant(ItCst);   // Found terminating iteration!
4268    }
4269  }
4270  return getCouldNotCompute();
4271}
4272
4273
4274/// CanConstantFold - Return true if we can constant fold an instruction of the
4275/// specified type, assuming that all operands were constants.
4276static bool CanConstantFold(const Instruction *I) {
4277  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4278      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4279    return true;
4280
4281  if (const CallInst *CI = dyn_cast<CallInst>(I))
4282    if (const Function *F = CI->getCalledFunction())
4283      return canConstantFoldCallTo(F);
4284  return false;
4285}
4286
4287/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4288/// in the loop that V is derived from.  We allow arbitrary operations along the
4289/// way, but the operands of an operation must either be constants or a value
4290/// derived from a constant PHI.  If this expression does not fit with these
4291/// constraints, return null.
4292static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4293  // If this is not an instruction, or if this is an instruction outside of the
4294  // loop, it can't be derived from a loop PHI.
4295  Instruction *I = dyn_cast<Instruction>(V);
4296  if (I == 0 || !L->contains(I)) return 0;
4297
4298  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4299    if (L->getHeader() == I->getParent())
4300      return PN;
4301    else
4302      // We don't currently keep track of the control flow needed to evaluate
4303      // PHIs, so we cannot handle PHIs inside of loops.
4304      return 0;
4305  }
4306
4307  // If we won't be able to constant fold this expression even if the operands
4308  // are constants, return early.
4309  if (!CanConstantFold(I)) return 0;
4310
4311  // Otherwise, we can evaluate this instruction if all of its operands are
4312  // constant or derived from a PHI node themselves.
4313  PHINode *PHI = 0;
4314  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4315    if (!isa<Constant>(I->getOperand(Op))) {
4316      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4317      if (P == 0) return 0;  // Not evolving from PHI
4318      if (PHI == 0)
4319        PHI = P;
4320      else if (PHI != P)
4321        return 0;  // Evolving from multiple different PHIs.
4322    }
4323
4324  // This is a expression evolving from a constant PHI!
4325  return PHI;
4326}
4327
4328/// EvaluateExpression - Given an expression that passes the
4329/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4330/// in the loop has the value PHIVal.  If we can't fold this expression for some
4331/// reason, return null.
4332static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4333                                    const TargetData *TD) {
4334  if (isa<PHINode>(V)) return PHIVal;
4335  if (Constant *C = dyn_cast<Constant>(V)) return C;
4336  Instruction *I = cast<Instruction>(V);
4337
4338  std::vector<Constant*> Operands(I->getNumOperands());
4339
4340  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4341    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4342    if (Operands[i] == 0) return 0;
4343  }
4344
4345  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4346    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4347                                           Operands[1], TD);
4348  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4349                                  &Operands[0], Operands.size(), TD);
4350}
4351
4352/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4353/// in the header of its containing loop, we know the loop executes a
4354/// constant number of times, and the PHI node is just a recurrence
4355/// involving constants, fold it.
4356Constant *
4357ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4358                                                   const APInt &BEs,
4359                                                   const Loop *L) {
4360  std::map<PHINode*, Constant*>::const_iterator I =
4361    ConstantEvolutionLoopExitValue.find(PN);
4362  if (I != ConstantEvolutionLoopExitValue.end())
4363    return I->second;
4364
4365  if (BEs.ugt(MaxBruteForceIterations))
4366    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4367
4368  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4369
4370  // Since the loop is canonicalized, the PHI node must have two entries.  One
4371  // entry must be a constant (coming in from outside of the loop), and the
4372  // second must be derived from the same PHI.
4373  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4374  Constant *StartCST =
4375    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4376  if (StartCST == 0)
4377    return RetVal = 0;  // Must be a constant.
4378
4379  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4380  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4381      !isa<Constant>(BEValue))
4382    return RetVal = 0;  // Not derived from same PHI.
4383
4384  // Execute the loop symbolically to determine the exit value.
4385  if (BEs.getActiveBits() >= 32)
4386    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4387
4388  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4389  unsigned IterationNum = 0;
4390  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4391    if (IterationNum == NumIterations)
4392      return RetVal = PHIVal;  // Got exit value!
4393
4394    // Compute the value of the PHI node for the next iteration.
4395    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4396    if (NextPHI == PHIVal)
4397      return RetVal = NextPHI;  // Stopped evolving!
4398    if (NextPHI == 0)
4399      return 0;        // Couldn't evaluate!
4400    PHIVal = NextPHI;
4401  }
4402}
4403
4404/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4405/// constant number of times (the condition evolves only from constants),
4406/// try to evaluate a few iterations of the loop until we get the exit
4407/// condition gets a value of ExitWhen (true or false).  If we cannot
4408/// evaluate the trip count of the loop, return getCouldNotCompute().
4409const SCEV *
4410ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4411                                                       Value *Cond,
4412                                                       bool ExitWhen) {
4413  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4414  if (PN == 0) return getCouldNotCompute();
4415
4416  // If the loop is canonicalized, the PHI will have exactly two entries.
4417  // That's the only form we support here.
4418  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4419
4420  // One entry must be a constant (coming in from outside of the loop), and the
4421  // second must be derived from the same PHI.
4422  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4423  Constant *StartCST =
4424    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4425  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4426
4427  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4428  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4429      !isa<Constant>(BEValue))
4430    return getCouldNotCompute();  // Not derived from same PHI.
4431
4432  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4433  // the loop symbolically to determine when the condition gets a value of
4434  // "ExitWhen".
4435  unsigned IterationNum = 0;
4436  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4437  for (Constant *PHIVal = StartCST;
4438       IterationNum != MaxIterations; ++IterationNum) {
4439    ConstantInt *CondVal =
4440      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4441
4442    // Couldn't symbolically evaluate.
4443    if (!CondVal) return getCouldNotCompute();
4444
4445    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4446      ++NumBruteForceTripCountsComputed;
4447      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4448    }
4449
4450    // Compute the value of the PHI node for the next iteration.
4451    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4452    if (NextPHI == 0 || NextPHI == PHIVal)
4453      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4454    PHIVal = NextPHI;
4455  }
4456
4457  // Too many iterations were needed to evaluate.
4458  return getCouldNotCompute();
4459}
4460
4461/// getSCEVAtScope - Return a SCEV expression for the specified value
4462/// at the specified scope in the program.  The L value specifies a loop
4463/// nest to evaluate the expression at, where null is the top-level or a
4464/// specified loop is immediately inside of the loop.
4465///
4466/// This method can be used to compute the exit value for a variable defined
4467/// in a loop by querying what the value will hold in the parent loop.
4468///
4469/// In the case that a relevant loop exit value cannot be computed, the
4470/// original value V is returned.
4471const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4472  // Check to see if we've folded this expression at this loop before.
4473  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4474  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4475    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4476  if (!Pair.second)
4477    return Pair.first->second ? Pair.first->second : V;
4478
4479  // Otherwise compute it.
4480  const SCEV *C = computeSCEVAtScope(V, L);
4481  ValuesAtScopes[V][L] = C;
4482  return C;
4483}
4484
4485const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4486  if (isa<SCEVConstant>(V)) return V;
4487
4488  // If this instruction is evolved from a constant-evolving PHI, compute the
4489  // exit value from the loop without using SCEVs.
4490  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4491    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4492      const Loop *LI = (*this->LI)[I->getParent()];
4493      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4494        if (PHINode *PN = dyn_cast<PHINode>(I))
4495          if (PN->getParent() == LI->getHeader()) {
4496            // Okay, there is no closed form solution for the PHI node.  Check
4497            // to see if the loop that contains it has a known backedge-taken
4498            // count.  If so, we may be able to force computation of the exit
4499            // value.
4500            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4501            if (const SCEVConstant *BTCC =
4502                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4503              // Okay, we know how many times the containing loop executes.  If
4504              // this is a constant evolving PHI node, get the final value at
4505              // the specified iteration number.
4506              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4507                                                   BTCC->getValue()->getValue(),
4508                                                               LI);
4509              if (RV) return getSCEV(RV);
4510            }
4511          }
4512
4513      // Okay, this is an expression that we cannot symbolically evaluate
4514      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4515      // the arguments into constants, and if so, try to constant propagate the
4516      // result.  This is particularly useful for computing loop exit values.
4517      if (CanConstantFold(I)) {
4518        SmallVector<Constant *, 4> Operands;
4519        bool MadeImprovement = false;
4520        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4521          Value *Op = I->getOperand(i);
4522          if (Constant *C = dyn_cast<Constant>(Op)) {
4523            Operands.push_back(C);
4524            continue;
4525          }
4526
4527          // If any of the operands is non-constant and if they are
4528          // non-integer and non-pointer, don't even try to analyze them
4529          // with scev techniques.
4530          if (!isSCEVable(Op->getType()))
4531            return V;
4532
4533          const SCEV *OrigV = getSCEV(Op);
4534          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4535          MadeImprovement |= OrigV != OpV;
4536
4537          Constant *C = 0;
4538          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4539            C = SC->getValue();
4540          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4541            C = dyn_cast<Constant>(SU->getValue());
4542          if (!C) return V;
4543          if (C->getType() != Op->getType())
4544            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4545                                                              Op->getType(),
4546                                                              false),
4547                                      C, Op->getType());
4548          Operands.push_back(C);
4549        }
4550
4551        // Check to see if getSCEVAtScope actually made an improvement.
4552        if (MadeImprovement) {
4553          Constant *C = 0;
4554          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4555            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4556                                                Operands[0], Operands[1], TD);
4557          else
4558            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4559                                         &Operands[0], Operands.size(), TD);
4560          if (!C) return V;
4561          return getSCEV(C);
4562        }
4563      }
4564    }
4565
4566    // This is some other type of SCEVUnknown, just return it.
4567    return V;
4568  }
4569
4570  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4571    // Avoid performing the look-up in the common case where the specified
4572    // expression has no loop-variant portions.
4573    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4574      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4575      if (OpAtScope != Comm->getOperand(i)) {
4576        // Okay, at least one of these operands is loop variant but might be
4577        // foldable.  Build a new instance of the folded commutative expression.
4578        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4579                                            Comm->op_begin()+i);
4580        NewOps.push_back(OpAtScope);
4581
4582        for (++i; i != e; ++i) {
4583          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4584          NewOps.push_back(OpAtScope);
4585        }
4586        if (isa<SCEVAddExpr>(Comm))
4587          return getAddExpr(NewOps);
4588        if (isa<SCEVMulExpr>(Comm))
4589          return getMulExpr(NewOps);
4590        if (isa<SCEVSMaxExpr>(Comm))
4591          return getSMaxExpr(NewOps);
4592        if (isa<SCEVUMaxExpr>(Comm))
4593          return getUMaxExpr(NewOps);
4594        llvm_unreachable("Unknown commutative SCEV type!");
4595      }
4596    }
4597    // If we got here, all operands are loop invariant.
4598    return Comm;
4599  }
4600
4601  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4602    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4603    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4604    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4605      return Div;   // must be loop invariant
4606    return getUDivExpr(LHS, RHS);
4607  }
4608
4609  // If this is a loop recurrence for a loop that does not contain L, then we
4610  // are dealing with the final value computed by the loop.
4611  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4612    // First, attempt to evaluate each operand.
4613    // Avoid performing the look-up in the common case where the specified
4614    // expression has no loop-variant portions.
4615    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4616      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4617      if (OpAtScope == AddRec->getOperand(i))
4618        continue;
4619
4620      // Okay, at least one of these operands is loop variant but might be
4621      // foldable.  Build a new instance of the folded commutative expression.
4622      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4623                                          AddRec->op_begin()+i);
4624      NewOps.push_back(OpAtScope);
4625      for (++i; i != e; ++i)
4626        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4627
4628      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4629      break;
4630    }
4631
4632    // If the scope is outside the addrec's loop, evaluate it by using the
4633    // loop exit value of the addrec.
4634    if (!AddRec->getLoop()->contains(L)) {
4635      // To evaluate this recurrence, we need to know how many times the AddRec
4636      // loop iterates.  Compute this now.
4637      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4638      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4639
4640      // Then, evaluate the AddRec.
4641      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4642    }
4643
4644    return AddRec;
4645  }
4646
4647  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4648    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4649    if (Op == Cast->getOperand())
4650      return Cast;  // must be loop invariant
4651    return getZeroExtendExpr(Op, Cast->getType());
4652  }
4653
4654  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4655    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4656    if (Op == Cast->getOperand())
4657      return Cast;  // must be loop invariant
4658    return getSignExtendExpr(Op, Cast->getType());
4659  }
4660
4661  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4662    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4663    if (Op == Cast->getOperand())
4664      return Cast;  // must be loop invariant
4665    return getTruncateExpr(Op, Cast->getType());
4666  }
4667
4668  llvm_unreachable("Unknown SCEV type!");
4669  return 0;
4670}
4671
4672/// getSCEVAtScope - This is a convenience function which does
4673/// getSCEVAtScope(getSCEV(V), L).
4674const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4675  return getSCEVAtScope(getSCEV(V), L);
4676}
4677
4678/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4679/// following equation:
4680///
4681///     A * X = B (mod N)
4682///
4683/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4684/// A and B isn't important.
4685///
4686/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4687static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4688                                               ScalarEvolution &SE) {
4689  uint32_t BW = A.getBitWidth();
4690  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4691  assert(A != 0 && "A must be non-zero.");
4692
4693  // 1. D = gcd(A, N)
4694  //
4695  // The gcd of A and N may have only one prime factor: 2. The number of
4696  // trailing zeros in A is its multiplicity
4697  uint32_t Mult2 = A.countTrailingZeros();
4698  // D = 2^Mult2
4699
4700  // 2. Check if B is divisible by D.
4701  //
4702  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4703  // is not less than multiplicity of this prime factor for D.
4704  if (B.countTrailingZeros() < Mult2)
4705    return SE.getCouldNotCompute();
4706
4707  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4708  // modulo (N / D).
4709  //
4710  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4711  // bit width during computations.
4712  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4713  APInt Mod(BW + 1, 0);
4714  Mod.setBit(BW - Mult2);  // Mod = N / D
4715  APInt I = AD.multiplicativeInverse(Mod);
4716
4717  // 4. Compute the minimum unsigned root of the equation:
4718  // I * (B / D) mod (N / D)
4719  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4720
4721  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4722  // bits.
4723  return SE.getConstant(Result.trunc(BW));
4724}
4725
4726/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4727/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4728/// might be the same) or two SCEVCouldNotCompute objects.
4729///
4730static std::pair<const SCEV *,const SCEV *>
4731SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4732  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4733  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4734  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4735  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4736
4737  // We currently can only solve this if the coefficients are constants.
4738  if (!LC || !MC || !NC) {
4739    const SCEV *CNC = SE.getCouldNotCompute();
4740    return std::make_pair(CNC, CNC);
4741  }
4742
4743  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4744  const APInt &L = LC->getValue()->getValue();
4745  const APInt &M = MC->getValue()->getValue();
4746  const APInt &N = NC->getValue()->getValue();
4747  APInt Two(BitWidth, 2);
4748  APInt Four(BitWidth, 4);
4749
4750  {
4751    using namespace APIntOps;
4752    const APInt& C = L;
4753    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4754    // The B coefficient is M-N/2
4755    APInt B(M);
4756    B -= sdiv(N,Two);
4757
4758    // The A coefficient is N/2
4759    APInt A(N.sdiv(Two));
4760
4761    // Compute the B^2-4ac term.
4762    APInt SqrtTerm(B);
4763    SqrtTerm *= B;
4764    SqrtTerm -= Four * (A * C);
4765
4766    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4767    // integer value or else APInt::sqrt() will assert.
4768    APInt SqrtVal(SqrtTerm.sqrt());
4769
4770    // Compute the two solutions for the quadratic formula.
4771    // The divisions must be performed as signed divisions.
4772    APInt NegB(-B);
4773    APInt TwoA( A << 1 );
4774    if (TwoA.isMinValue()) {
4775      const SCEV *CNC = SE.getCouldNotCompute();
4776      return std::make_pair(CNC, CNC);
4777    }
4778
4779    LLVMContext &Context = SE.getContext();
4780
4781    ConstantInt *Solution1 =
4782      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4783    ConstantInt *Solution2 =
4784      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4785
4786    return std::make_pair(SE.getConstant(Solution1),
4787                          SE.getConstant(Solution2));
4788    } // end APIntOps namespace
4789}
4790
4791/// HowFarToZero - Return the number of times a backedge comparing the specified
4792/// value to zero will execute.  If not computable, return CouldNotCompute.
4793ScalarEvolution::BackedgeTakenInfo
4794ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4795  // If the value is a constant
4796  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4797    // If the value is already zero, the branch will execute zero times.
4798    if (C->getValue()->isZero()) return C;
4799    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4800  }
4801
4802  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4803  if (!AddRec || AddRec->getLoop() != L)
4804    return getCouldNotCompute();
4805
4806  if (AddRec->isAffine()) {
4807    // If this is an affine expression, the execution count of this branch is
4808    // the minimum unsigned root of the following equation:
4809    //
4810    //     Start + Step*N = 0 (mod 2^BW)
4811    //
4812    // equivalent to:
4813    //
4814    //             Step*N = -Start (mod 2^BW)
4815    //
4816    // where BW is the common bit width of Start and Step.
4817
4818    // Get the initial value for the loop.
4819    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4820                                       L->getParentLoop());
4821    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4822                                      L->getParentLoop());
4823
4824    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4825      // For now we handle only constant steps.
4826
4827      // First, handle unitary steps.
4828      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4829        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4830      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4831        return Start;                           //    N = Start (as unsigned)
4832
4833      // Then, try to solve the above equation provided that Start is constant.
4834      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4835        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4836                                            -StartC->getValue()->getValue(),
4837                                            *this);
4838    }
4839  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4840    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4841    // the quadratic equation to solve it.
4842    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4843                                                                    *this);
4844    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4845    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4846    if (R1) {
4847#if 0
4848      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4849             << "  sol#2: " << *R2 << "\n";
4850#endif
4851      // Pick the smallest positive root value.
4852      if (ConstantInt *CB =
4853          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4854                                   R1->getValue(), R2->getValue()))) {
4855        if (CB->getZExtValue() == false)
4856          std::swap(R1, R2);   // R1 is the minimum root now.
4857
4858        // We can only use this value if the chrec ends up with an exact zero
4859        // value at this index.  When solving for "X*X != 5", for example, we
4860        // should not accept a root of 2.
4861        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4862        if (Val->isZero())
4863          return R1;  // We found a quadratic root!
4864      }
4865    }
4866  }
4867
4868  return getCouldNotCompute();
4869}
4870
4871/// HowFarToNonZero - Return the number of times a backedge checking the
4872/// specified value for nonzero will execute.  If not computable, return
4873/// CouldNotCompute
4874ScalarEvolution::BackedgeTakenInfo
4875ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4876  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4877  // handle them yet except for the trivial case.  This could be expanded in the
4878  // future as needed.
4879
4880  // If the value is a constant, check to see if it is known to be non-zero
4881  // already.  If so, the backedge will execute zero times.
4882  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4883    if (!C->getValue()->isNullValue())
4884      return getConstant(C->getType(), 0);
4885    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4886  }
4887
4888  // We could implement others, but I really doubt anyone writes loops like
4889  // this, and if they did, they would already be constant folded.
4890  return getCouldNotCompute();
4891}
4892
4893/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4894/// (which may not be an immediate predecessor) which has exactly one
4895/// successor from which BB is reachable, or null if no such block is
4896/// found.
4897///
4898std::pair<BasicBlock *, BasicBlock *>
4899ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4900  // If the block has a unique predecessor, then there is no path from the
4901  // predecessor to the block that does not go through the direct edge
4902  // from the predecessor to the block.
4903  if (BasicBlock *Pred = BB->getSinglePredecessor())
4904    return std::make_pair(Pred, BB);
4905
4906  // A loop's header is defined to be a block that dominates the loop.
4907  // If the header has a unique predecessor outside the loop, it must be
4908  // a block that has exactly one successor that can reach the loop.
4909  if (Loop *L = LI->getLoopFor(BB))
4910    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4911
4912  return std::pair<BasicBlock *, BasicBlock *>();
4913}
4914
4915/// HasSameValue - SCEV structural equivalence is usually sufficient for
4916/// testing whether two expressions are equal, however for the purposes of
4917/// looking for a condition guarding a loop, it can be useful to be a little
4918/// more general, since a front-end may have replicated the controlling
4919/// expression.
4920///
4921static bool HasSameValue(const SCEV *A, const SCEV *B) {
4922  // Quick check to see if they are the same SCEV.
4923  if (A == B) return true;
4924
4925  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4926  // two different instructions with the same value. Check for this case.
4927  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4928    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4929      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4930        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4931          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4932            return true;
4933
4934  // Otherwise assume they may have a different value.
4935  return false;
4936}
4937
4938/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4939/// predicate Pred. Return true iff any changes were made.
4940///
4941bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4942                                           const SCEV *&LHS, const SCEV *&RHS) {
4943  bool Changed = false;
4944
4945  // Canonicalize a constant to the right side.
4946  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4947    // Check for both operands constant.
4948    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4949      if (ConstantExpr::getICmp(Pred,
4950                                LHSC->getValue(),
4951                                RHSC->getValue())->isNullValue())
4952        goto trivially_false;
4953      else
4954        goto trivially_true;
4955    }
4956    // Otherwise swap the operands to put the constant on the right.
4957    std::swap(LHS, RHS);
4958    Pred = ICmpInst::getSwappedPredicate(Pred);
4959    Changed = true;
4960  }
4961
4962  // If we're comparing an addrec with a value which is loop-invariant in the
4963  // addrec's loop, put the addrec on the left. Also make a dominance check,
4964  // as both operands could be addrecs loop-invariant in each other's loop.
4965  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4966    const Loop *L = AR->getLoop();
4967    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
4968      std::swap(LHS, RHS);
4969      Pred = ICmpInst::getSwappedPredicate(Pred);
4970      Changed = true;
4971    }
4972  }
4973
4974  // If there's a constant operand, canonicalize comparisons with boundary
4975  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4976  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4977    const APInt &RA = RC->getValue()->getValue();
4978    switch (Pred) {
4979    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4980    case ICmpInst::ICMP_EQ:
4981    case ICmpInst::ICMP_NE:
4982      break;
4983    case ICmpInst::ICMP_UGE:
4984      if ((RA - 1).isMinValue()) {
4985        Pred = ICmpInst::ICMP_NE;
4986        RHS = getConstant(RA - 1);
4987        Changed = true;
4988        break;
4989      }
4990      if (RA.isMaxValue()) {
4991        Pred = ICmpInst::ICMP_EQ;
4992        Changed = true;
4993        break;
4994      }
4995      if (RA.isMinValue()) goto trivially_true;
4996
4997      Pred = ICmpInst::ICMP_UGT;
4998      RHS = getConstant(RA - 1);
4999      Changed = true;
5000      break;
5001    case ICmpInst::ICMP_ULE:
5002      if ((RA + 1).isMaxValue()) {
5003        Pred = ICmpInst::ICMP_NE;
5004        RHS = getConstant(RA + 1);
5005        Changed = true;
5006        break;
5007      }
5008      if (RA.isMinValue()) {
5009        Pred = ICmpInst::ICMP_EQ;
5010        Changed = true;
5011        break;
5012      }
5013      if (RA.isMaxValue()) goto trivially_true;
5014
5015      Pred = ICmpInst::ICMP_ULT;
5016      RHS = getConstant(RA + 1);
5017      Changed = true;
5018      break;
5019    case ICmpInst::ICMP_SGE:
5020      if ((RA - 1).isMinSignedValue()) {
5021        Pred = ICmpInst::ICMP_NE;
5022        RHS = getConstant(RA - 1);
5023        Changed = true;
5024        break;
5025      }
5026      if (RA.isMaxSignedValue()) {
5027        Pred = ICmpInst::ICMP_EQ;
5028        Changed = true;
5029        break;
5030      }
5031      if (RA.isMinSignedValue()) goto trivially_true;
5032
5033      Pred = ICmpInst::ICMP_SGT;
5034      RHS = getConstant(RA - 1);
5035      Changed = true;
5036      break;
5037    case ICmpInst::ICMP_SLE:
5038      if ((RA + 1).isMaxSignedValue()) {
5039        Pred = ICmpInst::ICMP_NE;
5040        RHS = getConstant(RA + 1);
5041        Changed = true;
5042        break;
5043      }
5044      if (RA.isMinSignedValue()) {
5045        Pred = ICmpInst::ICMP_EQ;
5046        Changed = true;
5047        break;
5048      }
5049      if (RA.isMaxSignedValue()) goto trivially_true;
5050
5051      Pred = ICmpInst::ICMP_SLT;
5052      RHS = getConstant(RA + 1);
5053      Changed = true;
5054      break;
5055    case ICmpInst::ICMP_UGT:
5056      if (RA.isMinValue()) {
5057        Pred = ICmpInst::ICMP_NE;
5058        Changed = true;
5059        break;
5060      }
5061      if ((RA + 1).isMaxValue()) {
5062        Pred = ICmpInst::ICMP_EQ;
5063        RHS = getConstant(RA + 1);
5064        Changed = true;
5065        break;
5066      }
5067      if (RA.isMaxValue()) goto trivially_false;
5068      break;
5069    case ICmpInst::ICMP_ULT:
5070      if (RA.isMaxValue()) {
5071        Pred = ICmpInst::ICMP_NE;
5072        Changed = true;
5073        break;
5074      }
5075      if ((RA - 1).isMinValue()) {
5076        Pred = ICmpInst::ICMP_EQ;
5077        RHS = getConstant(RA - 1);
5078        Changed = true;
5079        break;
5080      }
5081      if (RA.isMinValue()) goto trivially_false;
5082      break;
5083    case ICmpInst::ICMP_SGT:
5084      if (RA.isMinSignedValue()) {
5085        Pred = ICmpInst::ICMP_NE;
5086        Changed = true;
5087        break;
5088      }
5089      if ((RA + 1).isMaxSignedValue()) {
5090        Pred = ICmpInst::ICMP_EQ;
5091        RHS = getConstant(RA + 1);
5092        Changed = true;
5093        break;
5094      }
5095      if (RA.isMaxSignedValue()) goto trivially_false;
5096      break;
5097    case ICmpInst::ICMP_SLT:
5098      if (RA.isMaxSignedValue()) {
5099        Pred = ICmpInst::ICMP_NE;
5100        Changed = true;
5101        break;
5102      }
5103      if ((RA - 1).isMinSignedValue()) {
5104       Pred = ICmpInst::ICMP_EQ;
5105       RHS = getConstant(RA - 1);
5106        Changed = true;
5107       break;
5108      }
5109      if (RA.isMinSignedValue()) goto trivially_false;
5110      break;
5111    }
5112  }
5113
5114  // Check for obvious equality.
5115  if (HasSameValue(LHS, RHS)) {
5116    if (ICmpInst::isTrueWhenEqual(Pred))
5117      goto trivially_true;
5118    if (ICmpInst::isFalseWhenEqual(Pred))
5119      goto trivially_false;
5120  }
5121
5122  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5123  // adding or subtracting 1 from one of the operands.
5124  switch (Pred) {
5125  case ICmpInst::ICMP_SLE:
5126    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5127      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5128                       /*HasNUW=*/false, /*HasNSW=*/true);
5129      Pred = ICmpInst::ICMP_SLT;
5130      Changed = true;
5131    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5132      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5133                       /*HasNUW=*/false, /*HasNSW=*/true);
5134      Pred = ICmpInst::ICMP_SLT;
5135      Changed = true;
5136    }
5137    break;
5138  case ICmpInst::ICMP_SGE:
5139    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5140      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5141                       /*HasNUW=*/false, /*HasNSW=*/true);
5142      Pred = ICmpInst::ICMP_SGT;
5143      Changed = true;
5144    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5145      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5146                       /*HasNUW=*/false, /*HasNSW=*/true);
5147      Pred = ICmpInst::ICMP_SGT;
5148      Changed = true;
5149    }
5150    break;
5151  case ICmpInst::ICMP_ULE:
5152    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5153      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5154                       /*HasNUW=*/true, /*HasNSW=*/false);
5155      Pred = ICmpInst::ICMP_ULT;
5156      Changed = true;
5157    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5158      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5159                       /*HasNUW=*/true, /*HasNSW=*/false);
5160      Pred = ICmpInst::ICMP_ULT;
5161      Changed = true;
5162    }
5163    break;
5164  case ICmpInst::ICMP_UGE:
5165    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5166      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5167                       /*HasNUW=*/true, /*HasNSW=*/false);
5168      Pred = ICmpInst::ICMP_UGT;
5169      Changed = true;
5170    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5171      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5172                       /*HasNUW=*/true, /*HasNSW=*/false);
5173      Pred = ICmpInst::ICMP_UGT;
5174      Changed = true;
5175    }
5176    break;
5177  default:
5178    break;
5179  }
5180
5181  // TODO: More simplifications are possible here.
5182
5183  return Changed;
5184
5185trivially_true:
5186  // Return 0 == 0.
5187  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5188  Pred = ICmpInst::ICMP_EQ;
5189  return true;
5190
5191trivially_false:
5192  // Return 0 != 0.
5193  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5194  Pred = ICmpInst::ICMP_NE;
5195  return true;
5196}
5197
5198bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5199  return getSignedRange(S).getSignedMax().isNegative();
5200}
5201
5202bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5203  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5204}
5205
5206bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5207  return !getSignedRange(S).getSignedMin().isNegative();
5208}
5209
5210bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5211  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5212}
5213
5214bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5215  return isKnownNegative(S) || isKnownPositive(S);
5216}
5217
5218bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5219                                       const SCEV *LHS, const SCEV *RHS) {
5220  // Canonicalize the inputs first.
5221  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5222
5223  // If LHS or RHS is an addrec, check to see if the condition is true in
5224  // every iteration of the loop.
5225  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5226    if (isLoopEntryGuardedByCond(
5227          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5228        isLoopBackedgeGuardedByCond(
5229          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5230      return true;
5231  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5232    if (isLoopEntryGuardedByCond(
5233          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5234        isLoopBackedgeGuardedByCond(
5235          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5236      return true;
5237
5238  // Otherwise see what can be done with known constant ranges.
5239  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5240}
5241
5242bool
5243ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5244                                            const SCEV *LHS, const SCEV *RHS) {
5245  if (HasSameValue(LHS, RHS))
5246    return ICmpInst::isTrueWhenEqual(Pred);
5247
5248  // This code is split out from isKnownPredicate because it is called from
5249  // within isLoopEntryGuardedByCond.
5250  switch (Pred) {
5251  default:
5252    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5253    break;
5254  case ICmpInst::ICMP_SGT:
5255    Pred = ICmpInst::ICMP_SLT;
5256    std::swap(LHS, RHS);
5257  case ICmpInst::ICMP_SLT: {
5258    ConstantRange LHSRange = getSignedRange(LHS);
5259    ConstantRange RHSRange = getSignedRange(RHS);
5260    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5261      return true;
5262    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5263      return false;
5264    break;
5265  }
5266  case ICmpInst::ICMP_SGE:
5267    Pred = ICmpInst::ICMP_SLE;
5268    std::swap(LHS, RHS);
5269  case ICmpInst::ICMP_SLE: {
5270    ConstantRange LHSRange = getSignedRange(LHS);
5271    ConstantRange RHSRange = getSignedRange(RHS);
5272    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5273      return true;
5274    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5275      return false;
5276    break;
5277  }
5278  case ICmpInst::ICMP_UGT:
5279    Pred = ICmpInst::ICMP_ULT;
5280    std::swap(LHS, RHS);
5281  case ICmpInst::ICMP_ULT: {
5282    ConstantRange LHSRange = getUnsignedRange(LHS);
5283    ConstantRange RHSRange = getUnsignedRange(RHS);
5284    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5285      return true;
5286    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5287      return false;
5288    break;
5289  }
5290  case ICmpInst::ICMP_UGE:
5291    Pred = ICmpInst::ICMP_ULE;
5292    std::swap(LHS, RHS);
5293  case ICmpInst::ICMP_ULE: {
5294    ConstantRange LHSRange = getUnsignedRange(LHS);
5295    ConstantRange RHSRange = getUnsignedRange(RHS);
5296    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5297      return true;
5298    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5299      return false;
5300    break;
5301  }
5302  case ICmpInst::ICMP_NE: {
5303    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5304      return true;
5305    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5306      return true;
5307
5308    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5309    if (isKnownNonZero(Diff))
5310      return true;
5311    break;
5312  }
5313  case ICmpInst::ICMP_EQ:
5314    // The check at the top of the function catches the case where
5315    // the values are known to be equal.
5316    break;
5317  }
5318  return false;
5319}
5320
5321/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5322/// protected by a conditional between LHS and RHS.  This is used to
5323/// to eliminate casts.
5324bool
5325ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5326                                             ICmpInst::Predicate Pred,
5327                                             const SCEV *LHS, const SCEV *RHS) {
5328  // Interpret a null as meaning no loop, where there is obviously no guard
5329  // (interprocedural conditions notwithstanding).
5330  if (!L) return true;
5331
5332  BasicBlock *Latch = L->getLoopLatch();
5333  if (!Latch)
5334    return false;
5335
5336  BranchInst *LoopContinuePredicate =
5337    dyn_cast<BranchInst>(Latch->getTerminator());
5338  if (!LoopContinuePredicate ||
5339      LoopContinuePredicate->isUnconditional())
5340    return false;
5341
5342  return isImpliedCond(Pred, LHS, RHS,
5343                       LoopContinuePredicate->getCondition(),
5344                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5345}
5346
5347/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5348/// by a conditional between LHS and RHS.  This is used to help avoid max
5349/// expressions in loop trip counts, and to eliminate casts.
5350bool
5351ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5352                                          ICmpInst::Predicate Pred,
5353                                          const SCEV *LHS, const SCEV *RHS) {
5354  // Interpret a null as meaning no loop, where there is obviously no guard
5355  // (interprocedural conditions notwithstanding).
5356  if (!L) return false;
5357
5358  // Starting at the loop predecessor, climb up the predecessor chain, as long
5359  // as there are predecessors that can be found that have unique successors
5360  // leading to the original header.
5361  for (std::pair<BasicBlock *, BasicBlock *>
5362         Pair(L->getLoopPredecessor(), L->getHeader());
5363       Pair.first;
5364       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5365
5366    BranchInst *LoopEntryPredicate =
5367      dyn_cast<BranchInst>(Pair.first->getTerminator());
5368    if (!LoopEntryPredicate ||
5369        LoopEntryPredicate->isUnconditional())
5370      continue;
5371
5372    if (isImpliedCond(Pred, LHS, RHS,
5373                      LoopEntryPredicate->getCondition(),
5374                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5375      return true;
5376  }
5377
5378  return false;
5379}
5380
5381/// isImpliedCond - Test whether the condition described by Pred, LHS,
5382/// and RHS is true whenever the given Cond value evaluates to true.
5383bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5384                                    const SCEV *LHS, const SCEV *RHS,
5385                                    Value *FoundCondValue,
5386                                    bool Inverse) {
5387  // Recursively handle And and Or conditions.
5388  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5389    if (BO->getOpcode() == Instruction::And) {
5390      if (!Inverse)
5391        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5392               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5393    } else if (BO->getOpcode() == Instruction::Or) {
5394      if (Inverse)
5395        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5396               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5397    }
5398  }
5399
5400  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5401  if (!ICI) return false;
5402
5403  // Bail if the ICmp's operands' types are wider than the needed type
5404  // before attempting to call getSCEV on them. This avoids infinite
5405  // recursion, since the analysis of widening casts can require loop
5406  // exit condition information for overflow checking, which would
5407  // lead back here.
5408  if (getTypeSizeInBits(LHS->getType()) <
5409      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5410    return false;
5411
5412  // Now that we found a conditional branch that dominates the loop, check to
5413  // see if it is the comparison we are looking for.
5414  ICmpInst::Predicate FoundPred;
5415  if (Inverse)
5416    FoundPred = ICI->getInversePredicate();
5417  else
5418    FoundPred = ICI->getPredicate();
5419
5420  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5421  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5422
5423  // Balance the types. The case where FoundLHS' type is wider than
5424  // LHS' type is checked for above.
5425  if (getTypeSizeInBits(LHS->getType()) >
5426      getTypeSizeInBits(FoundLHS->getType())) {
5427    if (CmpInst::isSigned(Pred)) {
5428      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5429      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5430    } else {
5431      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5432      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5433    }
5434  }
5435
5436  // Canonicalize the query to match the way instcombine will have
5437  // canonicalized the comparison.
5438  if (SimplifyICmpOperands(Pred, LHS, RHS))
5439    if (LHS == RHS)
5440      return CmpInst::isTrueWhenEqual(Pred);
5441  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5442    if (FoundLHS == FoundRHS)
5443      return CmpInst::isFalseWhenEqual(Pred);
5444
5445  // Check to see if we can make the LHS or RHS match.
5446  if (LHS == FoundRHS || RHS == FoundLHS) {
5447    if (isa<SCEVConstant>(RHS)) {
5448      std::swap(FoundLHS, FoundRHS);
5449      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5450    } else {
5451      std::swap(LHS, RHS);
5452      Pred = ICmpInst::getSwappedPredicate(Pred);
5453    }
5454  }
5455
5456  // Check whether the found predicate is the same as the desired predicate.
5457  if (FoundPred == Pred)
5458    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5459
5460  // Check whether swapping the found predicate makes it the same as the
5461  // desired predicate.
5462  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5463    if (isa<SCEVConstant>(RHS))
5464      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5465    else
5466      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5467                                   RHS, LHS, FoundLHS, FoundRHS);
5468  }
5469
5470  // Check whether the actual condition is beyond sufficient.
5471  if (FoundPred == ICmpInst::ICMP_EQ)
5472    if (ICmpInst::isTrueWhenEqual(Pred))
5473      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5474        return true;
5475  if (Pred == ICmpInst::ICMP_NE)
5476    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5477      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5478        return true;
5479
5480  // Otherwise assume the worst.
5481  return false;
5482}
5483
5484/// isImpliedCondOperands - Test whether the condition described by Pred,
5485/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5486/// and FoundRHS is true.
5487bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5488                                            const SCEV *LHS, const SCEV *RHS,
5489                                            const SCEV *FoundLHS,
5490                                            const SCEV *FoundRHS) {
5491  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5492                                     FoundLHS, FoundRHS) ||
5493         // ~x < ~y --> x > y
5494         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5495                                     getNotSCEV(FoundRHS),
5496                                     getNotSCEV(FoundLHS));
5497}
5498
5499/// isImpliedCondOperandsHelper - Test whether the condition described by
5500/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5501/// FoundLHS, and FoundRHS is true.
5502bool
5503ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5504                                             const SCEV *LHS, const SCEV *RHS,
5505                                             const SCEV *FoundLHS,
5506                                             const SCEV *FoundRHS) {
5507  switch (Pred) {
5508  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5509  case ICmpInst::ICMP_EQ:
5510  case ICmpInst::ICMP_NE:
5511    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5512      return true;
5513    break;
5514  case ICmpInst::ICMP_SLT:
5515  case ICmpInst::ICMP_SLE:
5516    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5517        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5518      return true;
5519    break;
5520  case ICmpInst::ICMP_SGT:
5521  case ICmpInst::ICMP_SGE:
5522    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5523        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5524      return true;
5525    break;
5526  case ICmpInst::ICMP_ULT:
5527  case ICmpInst::ICMP_ULE:
5528    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5529        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5530      return true;
5531    break;
5532  case ICmpInst::ICMP_UGT:
5533  case ICmpInst::ICMP_UGE:
5534    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5535        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5536      return true;
5537    break;
5538  }
5539
5540  return false;
5541}
5542
5543/// getBECount - Subtract the end and start values and divide by the step,
5544/// rounding up, to get the number of times the backedge is executed. Return
5545/// CouldNotCompute if an intermediate computation overflows.
5546const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5547                                        const SCEV *End,
5548                                        const SCEV *Step,
5549                                        bool NoWrap) {
5550  assert(!isKnownNegative(Step) &&
5551         "This code doesn't handle negative strides yet!");
5552
5553  const Type *Ty = Start->getType();
5554  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5555  const SCEV *Diff = getMinusSCEV(End, Start);
5556  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5557
5558  // Add an adjustment to the difference between End and Start so that
5559  // the division will effectively round up.
5560  const SCEV *Add = getAddExpr(Diff, RoundUp);
5561
5562  if (!NoWrap) {
5563    // Check Add for unsigned overflow.
5564    // TODO: More sophisticated things could be done here.
5565    const Type *WideTy = IntegerType::get(getContext(),
5566                                          getTypeSizeInBits(Ty) + 1);
5567    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5568    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5569    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5570    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5571      return getCouldNotCompute();
5572  }
5573
5574  return getUDivExpr(Add, Step);
5575}
5576
5577/// HowManyLessThans - Return the number of times a backedge containing the
5578/// specified less-than comparison will execute.  If not computable, return
5579/// CouldNotCompute.
5580ScalarEvolution::BackedgeTakenInfo
5581ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5582                                  const Loop *L, bool isSigned) {
5583  // Only handle:  "ADDREC < LoopInvariant".
5584  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5585
5586  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5587  if (!AddRec || AddRec->getLoop() != L)
5588    return getCouldNotCompute();
5589
5590  // Check to see if we have a flag which makes analysis easy.
5591  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5592                           AddRec->hasNoUnsignedWrap();
5593
5594  if (AddRec->isAffine()) {
5595    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5596    const SCEV *Step = AddRec->getStepRecurrence(*this);
5597
5598    if (Step->isZero())
5599      return getCouldNotCompute();
5600    if (Step->isOne()) {
5601      // With unit stride, the iteration never steps past the limit value.
5602    } else if (isKnownPositive(Step)) {
5603      // Test whether a positive iteration can step past the limit
5604      // value and past the maximum value for its type in a single step.
5605      // Note that it's not sufficient to check NoWrap here, because even
5606      // though the value after a wrap is undefined, it's not undefined
5607      // behavior, so if wrap does occur, the loop could either terminate or
5608      // loop infinitely, but in either case, the loop is guaranteed to
5609      // iterate at least until the iteration where the wrapping occurs.
5610      const SCEV *One = getConstant(Step->getType(), 1);
5611      if (isSigned) {
5612        APInt Max = APInt::getSignedMaxValue(BitWidth);
5613        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5614              .slt(getSignedRange(RHS).getSignedMax()))
5615          return getCouldNotCompute();
5616      } else {
5617        APInt Max = APInt::getMaxValue(BitWidth);
5618        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5619              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5620          return getCouldNotCompute();
5621      }
5622    } else
5623      // TODO: Handle negative strides here and below.
5624      return getCouldNotCompute();
5625
5626    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5627    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5628    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5629    // treat m-n as signed nor unsigned due to overflow possibility.
5630
5631    // First, we get the value of the LHS in the first iteration: n
5632    const SCEV *Start = AddRec->getOperand(0);
5633
5634    // Determine the minimum constant start value.
5635    const SCEV *MinStart = getConstant(isSigned ?
5636      getSignedRange(Start).getSignedMin() :
5637      getUnsignedRange(Start).getUnsignedMin());
5638
5639    // If we know that the condition is true in order to enter the loop,
5640    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5641    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5642    // the division must round up.
5643    const SCEV *End = RHS;
5644    if (!isLoopEntryGuardedByCond(L,
5645                                  isSigned ? ICmpInst::ICMP_SLT :
5646                                             ICmpInst::ICMP_ULT,
5647                                  getMinusSCEV(Start, Step), RHS))
5648      End = isSigned ? getSMaxExpr(RHS, Start)
5649                     : getUMaxExpr(RHS, Start);
5650
5651    // Determine the maximum constant end value.
5652    const SCEV *MaxEnd = getConstant(isSigned ?
5653      getSignedRange(End).getSignedMax() :
5654      getUnsignedRange(End).getUnsignedMax());
5655
5656    // If MaxEnd is within a step of the maximum integer value in its type,
5657    // adjust it down to the minimum value which would produce the same effect.
5658    // This allows the subsequent ceiling division of (N+(step-1))/step to
5659    // compute the correct value.
5660    const SCEV *StepMinusOne = getMinusSCEV(Step,
5661                                            getConstant(Step->getType(), 1));
5662    MaxEnd = isSigned ?
5663      getSMinExpr(MaxEnd,
5664                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5665                               StepMinusOne)) :
5666      getUMinExpr(MaxEnd,
5667                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5668                               StepMinusOne));
5669
5670    // Finally, we subtract these two values and divide, rounding up, to get
5671    // the number of times the backedge is executed.
5672    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5673
5674    // The maximum backedge count is similar, except using the minimum start
5675    // value and the maximum end value.
5676    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5677
5678    return BackedgeTakenInfo(BECount, MaxBECount);
5679  }
5680
5681  return getCouldNotCompute();
5682}
5683
5684/// getNumIterationsInRange - Return the number of iterations of this loop that
5685/// produce values in the specified constant range.  Another way of looking at
5686/// this is that it returns the first iteration number where the value is not in
5687/// the condition, thus computing the exit count. If the iteration count can't
5688/// be computed, an instance of SCEVCouldNotCompute is returned.
5689const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5690                                                    ScalarEvolution &SE) const {
5691  if (Range.isFullSet())  // Infinite loop.
5692    return SE.getCouldNotCompute();
5693
5694  // If the start is a non-zero constant, shift the range to simplify things.
5695  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5696    if (!SC->getValue()->isZero()) {
5697      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5698      Operands[0] = SE.getConstant(SC->getType(), 0);
5699      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5700      if (const SCEVAddRecExpr *ShiftedAddRec =
5701            dyn_cast<SCEVAddRecExpr>(Shifted))
5702        return ShiftedAddRec->getNumIterationsInRange(
5703                           Range.subtract(SC->getValue()->getValue()), SE);
5704      // This is strange and shouldn't happen.
5705      return SE.getCouldNotCompute();
5706    }
5707
5708  // The only time we can solve this is when we have all constant indices.
5709  // Otherwise, we cannot determine the overflow conditions.
5710  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5711    if (!isa<SCEVConstant>(getOperand(i)))
5712      return SE.getCouldNotCompute();
5713
5714
5715  // Okay at this point we know that all elements of the chrec are constants and
5716  // that the start element is zero.
5717
5718  // First check to see if the range contains zero.  If not, the first
5719  // iteration exits.
5720  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5721  if (!Range.contains(APInt(BitWidth, 0)))
5722    return SE.getConstant(getType(), 0);
5723
5724  if (isAffine()) {
5725    // If this is an affine expression then we have this situation:
5726    //   Solve {0,+,A} in Range  ===  Ax in Range
5727
5728    // We know that zero is in the range.  If A is positive then we know that
5729    // the upper value of the range must be the first possible exit value.
5730    // If A is negative then the lower of the range is the last possible loop
5731    // value.  Also note that we already checked for a full range.
5732    APInt One(BitWidth,1);
5733    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5734    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5735
5736    // The exit value should be (End+A)/A.
5737    APInt ExitVal = (End + A).udiv(A);
5738    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5739
5740    // Evaluate at the exit value.  If we really did fall out of the valid
5741    // range, then we computed our trip count, otherwise wrap around or other
5742    // things must have happened.
5743    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5744    if (Range.contains(Val->getValue()))
5745      return SE.getCouldNotCompute();  // Something strange happened
5746
5747    // Ensure that the previous value is in the range.  This is a sanity check.
5748    assert(Range.contains(
5749           EvaluateConstantChrecAtConstant(this,
5750           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5751           "Linear scev computation is off in a bad way!");
5752    return SE.getConstant(ExitValue);
5753  } else if (isQuadratic()) {
5754    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5755    // quadratic equation to solve it.  To do this, we must frame our problem in
5756    // terms of figuring out when zero is crossed, instead of when
5757    // Range.getUpper() is crossed.
5758    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5759    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5760    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5761
5762    // Next, solve the constructed addrec
5763    std::pair<const SCEV *,const SCEV *> Roots =
5764      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5765    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5766    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5767    if (R1) {
5768      // Pick the smallest positive root value.
5769      if (ConstantInt *CB =
5770          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5771                         R1->getValue(), R2->getValue()))) {
5772        if (CB->getZExtValue() == false)
5773          std::swap(R1, R2);   // R1 is the minimum root now.
5774
5775        // Make sure the root is not off by one.  The returned iteration should
5776        // not be in the range, but the previous one should be.  When solving
5777        // for "X*X < 5", for example, we should not return a root of 2.
5778        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5779                                                             R1->getValue(),
5780                                                             SE);
5781        if (Range.contains(R1Val->getValue())) {
5782          // The next iteration must be out of the range...
5783          ConstantInt *NextVal =
5784                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5785
5786          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5787          if (!Range.contains(R1Val->getValue()))
5788            return SE.getConstant(NextVal);
5789          return SE.getCouldNotCompute();  // Something strange happened
5790        }
5791
5792        // If R1 was not in the range, then it is a good return value.  Make
5793        // sure that R1-1 WAS in the range though, just in case.
5794        ConstantInt *NextVal =
5795               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5796        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5797        if (Range.contains(R1Val->getValue()))
5798          return R1;
5799        return SE.getCouldNotCompute();  // Something strange happened
5800      }
5801    }
5802  }
5803
5804  return SE.getCouldNotCompute();
5805}
5806
5807
5808
5809//===----------------------------------------------------------------------===//
5810//                   SCEVCallbackVH Class Implementation
5811//===----------------------------------------------------------------------===//
5812
5813void ScalarEvolution::SCEVCallbackVH::deleted() {
5814  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5815  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5816    SE->ConstantEvolutionLoopExitValue.erase(PN);
5817  SE->ValueExprMap.erase(getValPtr());
5818  // this now dangles!
5819}
5820
5821void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5822  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5823
5824  // Forget all the expressions associated with users of the old value,
5825  // so that future queries will recompute the expressions using the new
5826  // value.
5827  Value *Old = getValPtr();
5828  SmallVector<User *, 16> Worklist;
5829  SmallPtrSet<User *, 8> Visited;
5830  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5831       UI != UE; ++UI)
5832    Worklist.push_back(*UI);
5833  while (!Worklist.empty()) {
5834    User *U = Worklist.pop_back_val();
5835    // Deleting the Old value will cause this to dangle. Postpone
5836    // that until everything else is done.
5837    if (U == Old)
5838      continue;
5839    if (!Visited.insert(U))
5840      continue;
5841    if (PHINode *PN = dyn_cast<PHINode>(U))
5842      SE->ConstantEvolutionLoopExitValue.erase(PN);
5843    SE->ValueExprMap.erase(U);
5844    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5845         UI != UE; ++UI)
5846      Worklist.push_back(*UI);
5847  }
5848  // Delete the Old value.
5849  if (PHINode *PN = dyn_cast<PHINode>(Old))
5850    SE->ConstantEvolutionLoopExitValue.erase(PN);
5851  SE->ValueExprMap.erase(Old);
5852  // this now dangles!
5853}
5854
5855ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5856  : CallbackVH(V), SE(se) {}
5857
5858//===----------------------------------------------------------------------===//
5859//                   ScalarEvolution Class Implementation
5860//===----------------------------------------------------------------------===//
5861
5862ScalarEvolution::ScalarEvolution()
5863  : FunctionPass(ID), FirstUnknown(0) {
5864  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5865}
5866
5867bool ScalarEvolution::runOnFunction(Function &F) {
5868  this->F = &F;
5869  LI = &getAnalysis<LoopInfo>();
5870  TD = getAnalysisIfAvailable<TargetData>();
5871  DT = &getAnalysis<DominatorTree>();
5872  return false;
5873}
5874
5875void ScalarEvolution::releaseMemory() {
5876  // Iterate through all the SCEVUnknown instances and call their
5877  // destructors, so that they release their references to their values.
5878  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5879    U->~SCEVUnknown();
5880  FirstUnknown = 0;
5881
5882  ValueExprMap.clear();
5883  BackedgeTakenCounts.clear();
5884  ConstantEvolutionLoopExitValue.clear();
5885  ValuesAtScopes.clear();
5886  LoopDispositions.clear();
5887  BlockDispositions.clear();
5888  UnsignedRanges.clear();
5889  SignedRanges.clear();
5890  UniqueSCEVs.clear();
5891  SCEVAllocator.Reset();
5892}
5893
5894void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5895  AU.setPreservesAll();
5896  AU.addRequiredTransitive<LoopInfo>();
5897  AU.addRequiredTransitive<DominatorTree>();
5898}
5899
5900bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5901  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5902}
5903
5904static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5905                          const Loop *L) {
5906  // Print all inner loops first
5907  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5908    PrintLoopInfo(OS, SE, *I);
5909
5910  OS << "Loop ";
5911  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5912  OS << ": ";
5913
5914  SmallVector<BasicBlock *, 8> ExitBlocks;
5915  L->getExitBlocks(ExitBlocks);
5916  if (ExitBlocks.size() != 1)
5917    OS << "<multiple exits> ";
5918
5919  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5920    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5921  } else {
5922    OS << "Unpredictable backedge-taken count. ";
5923  }
5924
5925  OS << "\n"
5926        "Loop ";
5927  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5928  OS << ": ";
5929
5930  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5931    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5932  } else {
5933    OS << "Unpredictable max backedge-taken count. ";
5934  }
5935
5936  OS << "\n";
5937}
5938
5939void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5940  // ScalarEvolution's implementation of the print method is to print
5941  // out SCEV values of all instructions that are interesting. Doing
5942  // this potentially causes it to create new SCEV objects though,
5943  // which technically conflicts with the const qualifier. This isn't
5944  // observable from outside the class though, so casting away the
5945  // const isn't dangerous.
5946  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5947
5948  OS << "Classifying expressions for: ";
5949  WriteAsOperand(OS, F, /*PrintType=*/false);
5950  OS << "\n";
5951  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5952    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5953      OS << *I << '\n';
5954      OS << "  -->  ";
5955      const SCEV *SV = SE.getSCEV(&*I);
5956      SV->print(OS);
5957
5958      const Loop *L = LI->getLoopFor((*I).getParent());
5959
5960      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5961      if (AtUse != SV) {
5962        OS << "  -->  ";
5963        AtUse->print(OS);
5964      }
5965
5966      if (L) {
5967        OS << "\t\t" "Exits: ";
5968        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5969        if (!SE.isLoopInvariant(ExitValue, L)) {
5970          OS << "<<Unknown>>";
5971        } else {
5972          OS << *ExitValue;
5973        }
5974      }
5975
5976      OS << "\n";
5977    }
5978
5979  OS << "Determining loop execution counts for: ";
5980  WriteAsOperand(OS, F, /*PrintType=*/false);
5981  OS << "\n";
5982  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5983    PrintLoopInfo(OS, &SE, *I);
5984}
5985
5986ScalarEvolution::LoopDisposition
5987ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
5988  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
5989  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
5990    Values.insert(std::make_pair(L, LoopVariant));
5991  if (!Pair.second)
5992    return Pair.first->second;
5993
5994  LoopDisposition D = computeLoopDisposition(S, L);
5995  return LoopDispositions[S][L] = D;
5996}
5997
5998ScalarEvolution::LoopDisposition
5999ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6000  switch (S->getSCEVType()) {
6001  case scConstant:
6002    return LoopInvariant;
6003  case scTruncate:
6004  case scZeroExtend:
6005  case scSignExtend:
6006    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6007  case scAddRecExpr: {
6008    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6009
6010    // If L is the addrec's loop, it's computable.
6011    if (AR->getLoop() == L)
6012      return LoopComputable;
6013
6014    // Add recurrences are never invariant in the function-body (null loop).
6015    if (!L)
6016      return LoopVariant;
6017
6018    // This recurrence is variant w.r.t. L if L contains AR's loop.
6019    if (L->contains(AR->getLoop()))
6020      return LoopVariant;
6021
6022    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6023    if (AR->getLoop()->contains(L))
6024      return LoopInvariant;
6025
6026    // This recurrence is variant w.r.t. L if any of its operands
6027    // are variant.
6028    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6029         I != E; ++I)
6030      if (!isLoopInvariant(*I, L))
6031        return LoopVariant;
6032
6033    // Otherwise it's loop-invariant.
6034    return LoopInvariant;
6035  }
6036  case scAddExpr:
6037  case scMulExpr:
6038  case scUMaxExpr:
6039  case scSMaxExpr: {
6040    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6041    bool HasVarying = false;
6042    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6043         I != E; ++I) {
6044      LoopDisposition D = getLoopDisposition(*I, L);
6045      if (D == LoopVariant)
6046        return LoopVariant;
6047      if (D == LoopComputable)
6048        HasVarying = true;
6049    }
6050    return HasVarying ? LoopComputable : LoopInvariant;
6051  }
6052  case scUDivExpr: {
6053    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6054    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6055    if (LD == LoopVariant)
6056      return LoopVariant;
6057    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6058    if (RD == LoopVariant)
6059      return LoopVariant;
6060    return (LD == LoopInvariant && RD == LoopInvariant) ?
6061           LoopInvariant : LoopComputable;
6062  }
6063  case scUnknown:
6064    // All non-instruction values are loop invariant.  All instructions are loop
6065    // invariant if they are not contained in the specified loop.
6066    // Instructions are never considered invariant in the function body
6067    // (null loop) because they are defined within the "loop".
6068    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6069      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6070    return LoopInvariant;
6071  case scCouldNotCompute:
6072    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6073    return LoopVariant;
6074  default: break;
6075  }
6076  llvm_unreachable("Unknown SCEV kind!");
6077  return LoopVariant;
6078}
6079
6080bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6081  return getLoopDisposition(S, L) == LoopInvariant;
6082}
6083
6084bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6085  return getLoopDisposition(S, L) == LoopComputable;
6086}
6087
6088ScalarEvolution::BlockDisposition
6089ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6090  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6091  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6092    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6093  if (!Pair.second)
6094    return Pair.first->second;
6095
6096  BlockDisposition D = computeBlockDisposition(S, BB);
6097  return BlockDispositions[S][BB] = D;
6098}
6099
6100ScalarEvolution::BlockDisposition
6101ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6102  switch (S->getSCEVType()) {
6103  case scConstant:
6104    return ProperlyDominatesBlock;
6105  case scTruncate:
6106  case scZeroExtend:
6107  case scSignExtend:
6108    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6109  case scAddRecExpr: {
6110    // This uses a "dominates" query instead of "properly dominates" query
6111    // to test for proper dominance too, because the instruction which
6112    // produces the addrec's value is a PHI, and a PHI effectively properly
6113    // dominates its entire containing block.
6114    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6115    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6116      return DoesNotDominateBlock;
6117  }
6118  // FALL THROUGH into SCEVNAryExpr handling.
6119  case scAddExpr:
6120  case scMulExpr:
6121  case scUMaxExpr:
6122  case scSMaxExpr: {
6123    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6124    bool Proper = true;
6125    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6126         I != E; ++I) {
6127      BlockDisposition D = getBlockDisposition(*I, BB);
6128      if (D == DoesNotDominateBlock)
6129        return DoesNotDominateBlock;
6130      if (D == DominatesBlock)
6131        Proper = false;
6132    }
6133    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6134  }
6135  case scUDivExpr: {
6136    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6137    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6138    BlockDisposition LD = getBlockDisposition(LHS, BB);
6139    if (LD == DoesNotDominateBlock)
6140      return DoesNotDominateBlock;
6141    BlockDisposition RD = getBlockDisposition(RHS, BB);
6142    if (RD == DoesNotDominateBlock)
6143      return DoesNotDominateBlock;
6144    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6145      ProperlyDominatesBlock : DominatesBlock;
6146  }
6147  case scUnknown:
6148    if (Instruction *I =
6149          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6150      if (I->getParent() == BB)
6151        return DominatesBlock;
6152      if (DT->properlyDominates(I->getParent(), BB))
6153        return ProperlyDominatesBlock;
6154      return DoesNotDominateBlock;
6155    }
6156    return ProperlyDominatesBlock;
6157  case scCouldNotCompute:
6158    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6159    return DoesNotDominateBlock;
6160  default: break;
6161  }
6162  llvm_unreachable("Unknown SCEV kind!");
6163  return DoesNotDominateBlock;
6164}
6165
6166bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6167  return getBlockDisposition(S, BB) >= DominatesBlock;
6168}
6169
6170bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6171  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6172}
6173
6174bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6175  switch (S->getSCEVType()) {
6176  case scConstant:
6177    return false;
6178  case scTruncate:
6179  case scZeroExtend:
6180  case scSignExtend: {
6181    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6182    const SCEV *CastOp = Cast->getOperand();
6183    return Op == CastOp || hasOperand(CastOp, Op);
6184  }
6185  case scAddRecExpr:
6186  case scAddExpr:
6187  case scMulExpr:
6188  case scUMaxExpr:
6189  case scSMaxExpr: {
6190    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6191    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6192         I != E; ++I) {
6193      const SCEV *NAryOp = *I;
6194      if (NAryOp == Op || hasOperand(NAryOp, Op))
6195        return true;
6196    }
6197    return false;
6198  }
6199  case scUDivExpr: {
6200    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6201    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6202    return LHS == Op || hasOperand(LHS, Op) ||
6203           RHS == Op || hasOperand(RHS, Op);
6204  }
6205  case scUnknown:
6206    return false;
6207  case scCouldNotCompute:
6208    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6209    return false;
6210  default: break;
6211  }
6212  llvm_unreachable("Unknown SCEV kind!");
6213  return false;
6214}
6215
6216void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6217  ValuesAtScopes.erase(S);
6218  LoopDispositions.erase(S);
6219  BlockDispositions.erase(S);
6220  UnsignedRanges.erase(S);
6221  SignedRanges.erase(S);
6222}
6223