ScalarEvolution.cpp revision b2840fdcd8a98de32e86e70a267b54cf0af35140
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->getNoWrapFlags(FlagNUW))
161      OS << "nuw><";
162    if (AR->getNoWrapFlags(FlagNSW))
163      OS << "nsw><";
164    if (AR->getNoWrapFlags(FlagNW) &&
165        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166      OS << "nw><";
167    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168    OS << ">";
169    return;
170  }
171  case scAddExpr:
172  case scMulExpr:
173  case scUMaxExpr:
174  case scSMaxExpr: {
175    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
176    const char *OpStr = 0;
177    switch (NAry->getSCEVType()) {
178    case scAddExpr: OpStr = " + "; break;
179    case scMulExpr: OpStr = " * "; break;
180    case scUMaxExpr: OpStr = " umax "; break;
181    case scSMaxExpr: OpStr = " smax "; break;
182    }
183    OS << "(";
184    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185         I != E; ++I) {
186      OS << **I;
187      if (llvm::next(I) != E)
188        OS << OpStr;
189    }
190    OS << ")";
191    return;
192  }
193  case scUDivExpr: {
194    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196    return;
197  }
198  case scUnknown: {
199    const SCEVUnknown *U = cast<SCEVUnknown>(this);
200    Type *AllocTy;
201    if (U->isSizeOf(AllocTy)) {
202      OS << "sizeof(" << *AllocTy << ")";
203      return;
204    }
205    if (U->isAlignOf(AllocTy)) {
206      OS << "alignof(" << *AllocTy << ")";
207      return;
208    }
209
210    Type *CTy;
211    Constant *FieldNo;
212    if (U->isOffsetOf(CTy, FieldNo)) {
213      OS << "offsetof(" << *CTy << ", ";
214      WriteAsOperand(OS, FieldNo, false);
215      OS << ")";
216      return;
217    }
218
219    // Otherwise just print it normally.
220    WriteAsOperand(OS, U->getValue(), false);
221    return;
222  }
223  case scCouldNotCompute:
224    OS << "***COULDNOTCOMPUTE***";
225    return;
226  default: break;
227  }
228  llvm_unreachable("Unknown SCEV kind!");
229}
230
231Type *SCEV::getType() const {
232  switch (getSCEVType()) {
233  case scConstant:
234    return cast<SCEVConstant>(this)->getType();
235  case scTruncate:
236  case scZeroExtend:
237  case scSignExtend:
238    return cast<SCEVCastExpr>(this)->getType();
239  case scAddRecExpr:
240  case scMulExpr:
241  case scUMaxExpr:
242  case scSMaxExpr:
243    return cast<SCEVNAryExpr>(this)->getType();
244  case scAddExpr:
245    return cast<SCEVAddExpr>(this)->getType();
246  case scUDivExpr:
247    return cast<SCEVUDivExpr>(this)->getType();
248  case scUnknown:
249    return cast<SCEVUnknown>(this)->getType();
250  case scCouldNotCompute:
251    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252    return 0;
253  default: break;
254  }
255  llvm_unreachable("Unknown SCEV kind!");
256  return 0;
257}
258
259bool SCEV::isZero() const {
260  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261    return SC->getValue()->isZero();
262  return false;
263}
264
265bool SCEV::isOne() const {
266  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267    return SC->getValue()->isOne();
268  return false;
269}
270
271bool SCEV::isAllOnesValue() const {
272  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273    return SC->getValue()->isAllOnesValue();
274  return false;
275}
276
277SCEVCouldNotCompute::SCEVCouldNotCompute() :
278  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
279
280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281  return S->getSCEVType() == scCouldNotCompute;
282}
283
284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
285  FoldingSetNodeID ID;
286  ID.AddInteger(scConstant);
287  ID.AddPointer(V);
288  void *IP = 0;
289  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
290  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
291  UniqueSCEVs.InsertNode(S, IP);
292  return S;
293}
294
295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
296  return getConstant(ConstantInt::get(getContext(), Val));
297}
298
299const SCEV *
300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
302  return getConstant(ConstantInt::get(ITy, V, isSigned));
303}
304
305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
306                           unsigned SCEVTy, const SCEV *op, Type *ty)
307  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
308
309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
310                                   const SCEV *op, Type *ty)
311  : SCEVCastExpr(ID, scTruncate, op, ty) {
312  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
314         "Cannot truncate non-integer value!");
315}
316
317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
318                                       const SCEV *op, Type *ty)
319  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
320  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
322         "Cannot zero extend non-integer value!");
323}
324
325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
326                                       const SCEV *op, Type *ty)
327  : SCEVCastExpr(ID, scSignExtend, op, ty) {
328  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
330         "Cannot sign extend non-integer value!");
331}
332
333void SCEVUnknown::deleted() {
334  // Clear this SCEVUnknown from various maps.
335  SE->forgetMemoizedResults(this);
336
337  // Remove this SCEVUnknown from the uniquing map.
338  SE->UniqueSCEVs.RemoveNode(this);
339
340  // Release the value.
341  setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
345  // Clear this SCEVUnknown from various maps.
346  SE->forgetMemoizedResults(this);
347
348  // Remove this SCEVUnknown from the uniquing map.
349  SE->UniqueSCEVs.RemoveNode(this);
350
351  // Update this SCEVUnknown to point to the new value. This is needed
352  // because there may still be outstanding SCEVs which still point to
353  // this SCEVUnknown.
354  setValPtr(New);
355}
356
357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
358  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
359    if (VCE->getOpcode() == Instruction::PtrToInt)
360      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
361        if (CE->getOpcode() == Instruction::GetElementPtr &&
362            CE->getOperand(0)->isNullValue() &&
363            CE->getNumOperands() == 2)
364          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365            if (CI->isOne()) {
366              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367                                 ->getElementType();
368              return true;
369            }
370
371  return false;
372}
373
374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
375  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
376    if (VCE->getOpcode() == Instruction::PtrToInt)
377      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
378        if (CE->getOpcode() == Instruction::GetElementPtr &&
379            CE->getOperand(0)->isNullValue()) {
380          Type *Ty =
381            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
382          if (StructType *STy = dyn_cast<StructType>(Ty))
383            if (!STy->isPacked() &&
384                CE->getNumOperands() == 3 &&
385                CE->getOperand(1)->isNullValue()) {
386              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387                if (CI->isOne() &&
388                    STy->getNumElements() == 2 &&
389                    STy->getElementType(0)->isIntegerTy(1)) {
390                  AllocTy = STy->getElementType(1);
391                  return true;
392                }
393            }
394        }
395
396  return false;
397}
398
399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
400  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401    if (VCE->getOpcode() == Instruction::PtrToInt)
402      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403        if (CE->getOpcode() == Instruction::GetElementPtr &&
404            CE->getNumOperands() == 3 &&
405            CE->getOperand(0)->isNullValue() &&
406            CE->getOperand(1)->isNullValue()) {
407          Type *Ty =
408            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409          // Ignore vector types here so that ScalarEvolutionExpander doesn't
410          // emit getelementptrs that index into vectors.
411          if (Ty->isStructTy() || Ty->isArrayTy()) {
412            CTy = Ty;
413            FieldNo = CE->getOperand(2);
414            return true;
415          }
416        }
417
418  return false;
419}
420
421//===----------------------------------------------------------------------===//
422//                               SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427  /// than the complexity of the RHS.  This comparator is used to canonicalize
428  /// expressions.
429  class SCEVComplexityCompare {
430    const LoopInfo *const LI;
431  public:
432    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
433
434    // Return true or false if LHS is less than, or at least RHS, respectively.
435    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
436      return compare(LHS, RHS) < 0;
437    }
438
439    // Return negative, zero, or positive, if LHS is less than, equal to, or
440    // greater than RHS, respectively. A three-way result allows recursive
441    // comparisons to be more efficient.
442    int compare(const SCEV *LHS, const SCEV *RHS) const {
443      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444      if (LHS == RHS)
445        return 0;
446
447      // Primarily, sort the SCEVs by their getSCEVType().
448      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449      if (LType != RType)
450        return (int)LType - (int)RType;
451
452      // Aside from the getSCEVType() ordering, the particular ordering
453      // isn't very important except that it's beneficial to be consistent,
454      // so that (a + b) and (b + a) don't end up as different expressions.
455      switch (LType) {
456      case scUnknown: {
457        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
458        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
459
460        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461        // not as complete as it could be.
462        const Value *LV = LU->getValue(), *RV = RU->getValue();
463
464        // Order pointer values after integer values. This helps SCEVExpander
465        // form GEPs.
466        bool LIsPointer = LV->getType()->isPointerTy(),
467             RIsPointer = RV->getType()->isPointerTy();
468        if (LIsPointer != RIsPointer)
469          return (int)LIsPointer - (int)RIsPointer;
470
471        // Compare getValueID values.
472        unsigned LID = LV->getValueID(),
473                 RID = RV->getValueID();
474        if (LID != RID)
475          return (int)LID - (int)RID;
476
477        // Sort arguments by their position.
478        if (const Argument *LA = dyn_cast<Argument>(LV)) {
479          const Argument *RA = cast<Argument>(RV);
480          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481          return (int)LArgNo - (int)RArgNo;
482        }
483
484        // For instructions, compare their loop depth, and their operand
485        // count.  This is pretty loose.
486        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487          const Instruction *RInst = cast<Instruction>(RV);
488
489          // Compare loop depths.
490          const BasicBlock *LParent = LInst->getParent(),
491                           *RParent = RInst->getParent();
492          if (LParent != RParent) {
493            unsigned LDepth = LI->getLoopDepth(LParent),
494                     RDepth = LI->getLoopDepth(RParent);
495            if (LDepth != RDepth)
496              return (int)LDepth - (int)RDepth;
497          }
498
499          // Compare the number of operands.
500          unsigned LNumOps = LInst->getNumOperands(),
501                   RNumOps = RInst->getNumOperands();
502          return (int)LNumOps - (int)RNumOps;
503        }
504
505        return 0;
506      }
507
508      case scConstant: {
509        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
510        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
511
512        // Compare constant values.
513        const APInt &LA = LC->getValue()->getValue();
514        const APInt &RA = RC->getValue()->getValue();
515        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
516        if (LBitWidth != RBitWidth)
517          return (int)LBitWidth - (int)RBitWidth;
518        return LA.ult(RA) ? -1 : 1;
519      }
520
521      case scAddRecExpr: {
522        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
523        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
524
525        // Compare addrec loop depths.
526        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527        if (LLoop != RLoop) {
528          unsigned LDepth = LLoop->getLoopDepth(),
529                   RDepth = RLoop->getLoopDepth();
530          if (LDepth != RDepth)
531            return (int)LDepth - (int)RDepth;
532        }
533
534        // Addrec complexity grows with operand count.
535        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536        if (LNumOps != RNumOps)
537          return (int)LNumOps - (int)RNumOps;
538
539        // Lexicographically compare.
540        for (unsigned i = 0; i != LNumOps; ++i) {
541          long X = compare(LA->getOperand(i), RA->getOperand(i));
542          if (X != 0)
543            return X;
544        }
545
546        return 0;
547      }
548
549      case scAddExpr:
550      case scMulExpr:
551      case scSMaxExpr:
552      case scUMaxExpr: {
553        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
554        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
555
556        // Lexicographically compare n-ary expressions.
557        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558        for (unsigned i = 0; i != LNumOps; ++i) {
559          if (i >= RNumOps)
560            return 1;
561          long X = compare(LC->getOperand(i), RC->getOperand(i));
562          if (X != 0)
563            return X;
564        }
565        return (int)LNumOps - (int)RNumOps;
566      }
567
568      case scUDivExpr: {
569        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
570        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
571
572        // Lexicographically compare udiv expressions.
573        long X = compare(LC->getLHS(), RC->getLHS());
574        if (X != 0)
575          return X;
576        return compare(LC->getRHS(), RC->getRHS());
577      }
578
579      case scTruncate:
580      case scZeroExtend:
581      case scSignExtend: {
582        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
583        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
584
585        // Compare cast expressions by operand.
586        return compare(LC->getOperand(), RC->getOperand());
587      }
588
589      default:
590        break;
591      }
592
593      llvm_unreachable("Unknown SCEV kind!");
594      return 0;
595    }
596  };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get deterministic
605/// results from this routine.  In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610                              LoopInfo *LI) {
611  if (Ops.size() < 2) return;  // Noop
612  if (Ops.size() == 2) {
613    // This is the common case, which also happens to be trivially simple.
614    // Special case it.
615    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616    if (SCEVComplexityCompare(LI)(RHS, LHS))
617      std::swap(LHS, RHS);
618    return;
619  }
620
621  // Do the rough sort by complexity.
622  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624  // Now that we are sorted by complexity, group elements of the same
625  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
626  // be extremely short in practice.  Note that we take this approach because we
627  // do not want to depend on the addresses of the objects we are grouping.
628  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629    const SCEV *S = Ops[i];
630    unsigned Complexity = S->getSCEVType();
631
632    // If there are any objects of the same complexity and same value as this
633    // one, group them.
634    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635      if (Ops[j] == S) { // Found a duplicate.
636        // Move it to immediately after i'th element.
637        std::swap(Ops[i+1], Ops[j]);
638        ++i;   // no need to rescan it.
639        if (i == e-2) return;  // Done!
640      }
641    }
642  }
643}
644
645
646
647//===----------------------------------------------------------------------===//
648//                      Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
651/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
652/// Assume, K > 0.
653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
654                                       ScalarEvolution &SE,
655                                       Type* ResultTy) {
656  // Handle the simplest case efficiently.
657  if (K == 1)
658    return SE.getTruncateOrZeroExtend(It, ResultTy);
659
660  // We are using the following formula for BC(It, K):
661  //
662  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663  //
664  // Suppose, W is the bitwidth of the return value.  We must be prepared for
665  // overflow.  Hence, we must assure that the result of our computation is
666  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
667  // safe in modular arithmetic.
668  //
669  // However, this code doesn't use exactly that formula; the formula it uses
670  // is something like the following, where T is the number of factors of 2 in
671  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672  // exponentiation:
673  //
674  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
675  //
676  // This formula is trivially equivalent to the previous formula.  However,
677  // this formula can be implemented much more efficiently.  The trick is that
678  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679  // arithmetic.  To do exact division in modular arithmetic, all we have
680  // to do is multiply by the inverse.  Therefore, this step can be done at
681  // width W.
682  //
683  // The next issue is how to safely do the division by 2^T.  The way this
684  // is done is by doing the multiplication step at a width of at least W + T
685  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
686  // when we perform the division by 2^T (which is equivalent to a right shift
687  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
688  // truncated out after the division by 2^T.
689  //
690  // In comparison to just directly using the first formula, this technique
691  // is much more efficient; using the first formula requires W * K bits,
692  // but this formula less than W + K bits. Also, the first formula requires
693  // a division step, whereas this formula only requires multiplies and shifts.
694  //
695  // It doesn't matter whether the subtraction step is done in the calculation
696  // width or the input iteration count's width; if the subtraction overflows,
697  // the result must be zero anyway.  We prefer here to do it in the width of
698  // the induction variable because it helps a lot for certain cases; CodeGen
699  // isn't smart enough to ignore the overflow, which leads to much less
700  // efficient code if the width of the subtraction is wider than the native
701  // register width.
702  //
703  // (It's possible to not widen at all by pulling out factors of 2 before
704  // the multiplication; for example, K=2 can be calculated as
705  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706  // extra arithmetic, so it's not an obvious win, and it gets
707  // much more complicated for K > 3.)
708
709  // Protection from insane SCEVs; this bound is conservative,
710  // but it probably doesn't matter.
711  if (K > 1000)
712    return SE.getCouldNotCompute();
713
714  unsigned W = SE.getTypeSizeInBits(ResultTy);
715
716  // Calculate K! / 2^T and T; we divide out the factors of two before
717  // multiplying for calculating K! / 2^T to avoid overflow.
718  // Other overflow doesn't matter because we only care about the bottom
719  // W bits of the result.
720  APInt OddFactorial(W, 1);
721  unsigned T = 1;
722  for (unsigned i = 3; i <= K; ++i) {
723    APInt Mult(W, i);
724    unsigned TwoFactors = Mult.countTrailingZeros();
725    T += TwoFactors;
726    Mult = Mult.lshr(TwoFactors);
727    OddFactorial *= Mult;
728  }
729
730  // We need at least W + T bits for the multiplication step
731  unsigned CalculationBits = W + T;
732
733  // Calculate 2^T, at width T+W.
734  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736  // Calculate the multiplicative inverse of K! / 2^T;
737  // this multiplication factor will perform the exact division by
738  // K! / 2^T.
739  APInt Mod = APInt::getSignedMinValue(W+1);
740  APInt MultiplyFactor = OddFactorial.zext(W+1);
741  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742  MultiplyFactor = MultiplyFactor.trunc(W);
743
744  // Calculate the product, at width T+W
745  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
746                                                      CalculationBits);
747  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
748  for (unsigned i = 1; i != K; ++i) {
749    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
750    Dividend = SE.getMulExpr(Dividend,
751                             SE.getTruncateOrZeroExtend(S, CalculationTy));
752  }
753
754  // Divide by 2^T
755  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
756
757  // Truncate the result, and divide by K! / 2^T.
758
759  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
761}
762
763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number.  We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
768///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
769///
770/// where BC(It, k) stands for binomial coefficient.
771///
772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
773                                                ScalarEvolution &SE) const {
774  const SCEV *Result = getStart();
775  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
776    // The computation is correct in the face of overflow provided that the
777    // multiplication is performed _after_ the evaluation of the binomial
778    // coefficient.
779    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
780    if (isa<SCEVCouldNotCompute>(Coeff))
781      return Coeff;
782
783    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
784  }
785  return Result;
786}
787
788//===----------------------------------------------------------------------===//
789//                    SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
793                                             Type *Ty) {
794  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
795         "This is not a truncating conversion!");
796  assert(isSCEVable(Ty) &&
797         "This is not a conversion to a SCEVable type!");
798  Ty = getEffectiveSCEVType(Ty);
799
800  FoldingSetNodeID ID;
801  ID.AddInteger(scTruncate);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // Fold if the operand is constant.
808  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
809    return getConstant(
810      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811                                               getEffectiveSCEVType(Ty))));
812
813  // trunc(trunc(x)) --> trunc(x)
814  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
815    return getTruncateExpr(ST->getOperand(), Ty);
816
817  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
818  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
819    return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
822  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
823    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
825  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826  // eliminate all the truncates.
827  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828    SmallVector<const SCEV *, 4> Operands;
829    bool hasTrunc = false;
830    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832      hasTrunc = isa<SCEVTruncateExpr>(S);
833      Operands.push_back(S);
834    }
835    if (!hasTrunc)
836      return getAddExpr(Operands);
837    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
838  }
839
840  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841  // eliminate all the truncates.
842  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843    SmallVector<const SCEV *, 4> Operands;
844    bool hasTrunc = false;
845    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847      hasTrunc = isa<SCEVTruncateExpr>(S);
848      Operands.push_back(S);
849    }
850    if (!hasTrunc)
851      return getMulExpr(Operands);
852    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
853  }
854
855  // If the input value is a chrec scev, truncate the chrec's operands.
856  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
857    SmallVector<const SCEV *, 4> Operands;
858    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
859      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
860    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
861  }
862
863  // As a special case, fold trunc(undef) to undef. We don't want to
864  // know too much about SCEVUnknowns, but this special case is handy
865  // and harmless.
866  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867    if (isa<UndefValue>(U->getValue()))
868      return getSCEV(UndefValue::get(Ty));
869
870  // The cast wasn't folded; create an explicit cast node. We can reuse
871  // the existing insert position since if we get here, we won't have
872  // made any changes which would invalidate it.
873  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874                                                 Op, Ty);
875  UniqueSCEVs.InsertNode(S, IP);
876  return S;
877}
878
879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
880                                               Type *Ty) {
881  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
882         "This is not an extending conversion!");
883  assert(isSCEVable(Ty) &&
884         "This is not a conversion to a SCEVable type!");
885  Ty = getEffectiveSCEVType(Ty);
886
887  // Fold if the operand is constant.
888  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889    return getConstant(
890      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891                                              getEffectiveSCEVType(Ty))));
892
893  // zext(zext(x)) --> zext(x)
894  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
895    return getZeroExtendExpr(SZ->getOperand(), Ty);
896
897  // Before doing any expensive analysis, check to see if we've already
898  // computed a SCEV for this Op and Ty.
899  FoldingSetNodeID ID;
900  ID.AddInteger(scZeroExtend);
901  ID.AddPointer(Op);
902  ID.AddPointer(Ty);
903  void *IP = 0;
904  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
906  // zext(trunc(x)) --> zext(x) or x or trunc(x)
907  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908    // It's possible the bits taken off by the truncate were all zero bits. If
909    // so, we should be able to simplify this further.
910    const SCEV *X = ST->getOperand();
911    ConstantRange CR = getUnsignedRange(X);
912    unsigned TruncBits = getTypeSizeInBits(ST->getType());
913    unsigned NewBits = getTypeSizeInBits(Ty);
914    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
915            CR.zextOrTrunc(NewBits)))
916      return getTruncateOrZeroExtend(X, Ty);
917  }
918
919  // If the input value is a chrec scev, and we can prove that the value
920  // did not overflow the old, smaller, value, we can zero extend all of the
921  // operands (often constants).  This allows analysis of something like
922  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
924    if (AR->isAffine()) {
925      const SCEV *Start = AR->getStart();
926      const SCEV *Step = AR->getStepRecurrence(*this);
927      unsigned BitWidth = getTypeSizeInBits(AR->getType());
928      const Loop *L = AR->getLoop();
929
930      // If we have special knowledge that this addrec won't overflow,
931      // we don't need to do any further analysis.
932      if (AR->getNoWrapFlags(SCEV::FlagNUW))
933        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                             getZeroExtendExpr(Step, Ty),
935                             L, AR->getNoWrapFlags());
936
937      // Check whether the backedge-taken count is SCEVCouldNotCompute.
938      // Note that this serves two purposes: It filters out loops that are
939      // simply not analyzable, and it covers the case where this code is
940      // being called from within backedge-taken count analysis, such that
941      // attempting to ask for the backedge-taken count would likely result
942      // in infinite recursion. In the later case, the analysis code will
943      // cope with a conservative value, and it will take care to purge
944      // that value once it has finished.
945      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
946      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
947        // Manually compute the final value for AR, checking for
948        // overflow.
949
950        // Check whether the backedge-taken count can be losslessly casted to
951        // the addrec's type. The count is always unsigned.
952        const SCEV *CastedMaxBECount =
953          getTruncateOrZeroExtend(MaxBECount, Start->getType());
954        const SCEV *RecastedMaxBECount =
955          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956        if (MaxBECount == RecastedMaxBECount) {
957          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
958          // Check whether Start+Step*MaxBECount has no unsigned overflow.
959          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
960          const SCEV *Add = getAddExpr(Start, ZMul);
961          const SCEV *OperandExtendedAdd =
962            getAddExpr(getZeroExtendExpr(Start, WideTy),
963                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964                                  getZeroExtendExpr(Step, WideTy)));
965          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966            // Cache knowledge of AR NUW, which is propagated to this AddRec.
967            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
968            // Return the expression with the addrec on the outside.
969            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970                                 getZeroExtendExpr(Step, Ty),
971                                 L, AR->getNoWrapFlags());
972          }
973          // Similar to above, only this time treat the step value as signed.
974          // This covers loops that count down.
975          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
976          Add = getAddExpr(Start, SMul);
977          OperandExtendedAdd =
978            getAddExpr(getZeroExtendExpr(Start, WideTy),
979                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980                                  getSignExtendExpr(Step, WideTy)));
981          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982            // Cache knowledge of AR NW, which is propagated to this AddRec.
983            // Negative step causes unsigned wrap, but it still can't self-wrap.
984            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
985            // Return the expression with the addrec on the outside.
986            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987                                 getSignExtendExpr(Step, Ty),
988                                 L, AR->getNoWrapFlags());
989          }
990        }
991
992        // If the backedge is guarded by a comparison with the pre-inc value
993        // the addrec is safe. Also, if the entry is guarded by a comparison
994        // with the start value and the backedge is guarded by a comparison
995        // with the post-inc value, the addrec is safe.
996        if (isKnownPositive(Step)) {
997          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998                                      getUnsignedRange(Step).getUnsignedMax());
999          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1000              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1001               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1002                                           AR->getPostIncExpr(*this), N))) {
1003            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1005            // Return the expression with the addrec on the outside.
1006            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007                                 getZeroExtendExpr(Step, Ty),
1008                                 L, AR->getNoWrapFlags());
1009          }
1010        } else if (isKnownNegative(Step)) {
1011          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012                                      getSignedRange(Step).getSignedMin());
1013          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1015               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1016                                           AR->getPostIncExpr(*this), N))) {
1017            // Cache knowledge of AR NW, which is propagated to this AddRec.
1018            // Negative step causes unsigned wrap, but it still can't self-wrap.
1019            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020            // Return the expression with the addrec on the outside.
1021            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022                                 getSignExtendExpr(Step, Ty),
1023                                 L, AR->getNoWrapFlags());
1024          }
1025        }
1026      }
1027    }
1028
1029  // The cast wasn't folded; create an explicit cast node.
1030  // Recompute the insert position, as it may have been invalidated.
1031  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1032  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033                                                   Op, Ty);
1034  UniqueSCEVs.InsertNode(S, IP);
1035  return S;
1036}
1037
1038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042                                           ICmpInst::Predicate *Pred,
1043                                           ScalarEvolution *SE) {
1044  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045  if (SE->isKnownPositive(Step)) {
1046    *Pred = ICmpInst::ICMP_SLT;
1047    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048                           SE->getSignedRange(Step).getSignedMax());
1049  }
1050  if (SE->isKnownNegative(Step)) {
1051    *Pred = ICmpInst::ICMP_SGT;
1052    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053                       SE->getSignedRange(Step).getSignedMin());
1054  }
1055  return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1065                                            Type *Ty,
1066                                            ScalarEvolution *SE) {
1067  const Loop *L = AR->getLoop();
1068  const SCEV *Start = AR->getStart();
1069  const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071  // Check for a simple looking step prior to loop entry.
1072  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073  if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step)
1074    return 0;
1075
1076  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077  // same three conditions that getSignExtendedExpr checks.
1078
1079  // 1. NSW flags on the step increment.
1080  const SCEV *PreStart = SA->getOperand(1);
1081  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1082    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1083
1084  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1085    return PreStart;
1086
1087  // 2. Direct overflow check on the step operation's expression.
1088  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1089  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1090  const SCEV *OperandExtendedStart =
1091    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1092                   SE->getSignExtendExpr(Step, WideTy));
1093  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1094    // Cache knowledge of PreAR NSW.
1095    if (PreAR)
1096      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1097    // FIXME: this optimization needs a unit test
1098    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1099    return PreStart;
1100  }
1101
1102  // 3. Loop precondition.
1103  ICmpInst::Predicate Pred;
1104  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1105
1106  if (OverflowLimit &&
1107      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1108    return PreStart;
1109  }
1110  return 0;
1111}
1112
1113// Get the normalized sign-extended expression for this AddRec's Start.
1114static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1115                                            Type *Ty,
1116                                            ScalarEvolution *SE) {
1117  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1118  if (!PreStart)
1119    return SE->getSignExtendExpr(AR->getStart(), Ty);
1120
1121  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1122                        SE->getSignExtendExpr(PreStart, Ty));
1123}
1124
1125const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1126                                               Type *Ty) {
1127  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1128         "This is not an extending conversion!");
1129  assert(isSCEVable(Ty) &&
1130         "This is not a conversion to a SCEVable type!");
1131  Ty = getEffectiveSCEVType(Ty);
1132
1133  // Fold if the operand is constant.
1134  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1135    return getConstant(
1136      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1137                                              getEffectiveSCEVType(Ty))));
1138
1139  // sext(sext(x)) --> sext(x)
1140  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1141    return getSignExtendExpr(SS->getOperand(), Ty);
1142
1143  // sext(zext(x)) --> zext(x)
1144  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1145    return getZeroExtendExpr(SZ->getOperand(), Ty);
1146
1147  // Before doing any expensive analysis, check to see if we've already
1148  // computed a SCEV for this Op and Ty.
1149  FoldingSetNodeID ID;
1150  ID.AddInteger(scSignExtend);
1151  ID.AddPointer(Op);
1152  ID.AddPointer(Ty);
1153  void *IP = 0;
1154  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155
1156  // If the input value is provably positive, build a zext instead.
1157  if (isKnownNonNegative(Op))
1158    return getZeroExtendExpr(Op, Ty);
1159
1160  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1162    // It's possible the bits taken off by the truncate were all sign bits. If
1163    // so, we should be able to simplify this further.
1164    const SCEV *X = ST->getOperand();
1165    ConstantRange CR = getSignedRange(X);
1166    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1167    unsigned NewBits = getTypeSizeInBits(Ty);
1168    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1169            CR.sextOrTrunc(NewBits)))
1170      return getTruncateOrSignExtend(X, Ty);
1171  }
1172
1173  // If the input value is a chrec scev, and we can prove that the value
1174  // did not overflow the old, smaller, value, we can sign extend all of the
1175  // operands (often constants).  This allows analysis of something like
1176  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1177  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1178    if (AR->isAffine()) {
1179      const SCEV *Start = AR->getStart();
1180      const SCEV *Step = AR->getStepRecurrence(*this);
1181      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1182      const Loop *L = AR->getLoop();
1183
1184      // If we have special knowledge that this addrec won't overflow,
1185      // we don't need to do any further analysis.
1186      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1187        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1188                             getSignExtendExpr(Step, Ty),
1189                             L, SCEV::FlagNSW);
1190
1191      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192      // Note that this serves two purposes: It filters out loops that are
1193      // simply not analyzable, and it covers the case where this code is
1194      // being called from within backedge-taken count analysis, such that
1195      // attempting to ask for the backedge-taken count would likely result
1196      // in infinite recursion. In the later case, the analysis code will
1197      // cope with a conservative value, and it will take care to purge
1198      // that value once it has finished.
1199      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1200      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1201        // Manually compute the final value for AR, checking for
1202        // overflow.
1203
1204        // Check whether the backedge-taken count can be losslessly casted to
1205        // the addrec's type. The count is always unsigned.
1206        const SCEV *CastedMaxBECount =
1207          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1208        const SCEV *RecastedMaxBECount =
1209          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1210        if (MaxBECount == RecastedMaxBECount) {
1211          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1212          // Check whether Start+Step*MaxBECount has no signed overflow.
1213          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1214          const SCEV *Add = getAddExpr(Start, SMul);
1215          const SCEV *OperandExtendedAdd =
1216            getAddExpr(getSignExtendExpr(Start, WideTy),
1217                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1218                                  getSignExtendExpr(Step, WideTy)));
1219          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1220            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1222            // Return the expression with the addrec on the outside.
1223            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1224                                 getSignExtendExpr(Step, Ty),
1225                                 L, AR->getNoWrapFlags());
1226          }
1227          // Similar to above, only this time treat the step value as unsigned.
1228          // This covers loops that count up with an unsigned step.
1229          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1230          Add = getAddExpr(Start, UMul);
1231          OperandExtendedAdd =
1232            getAddExpr(getSignExtendExpr(Start, WideTy),
1233                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1234                                  getZeroExtendExpr(Step, WideTy)));
1235          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1236            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1238            // Return the expression with the addrec on the outside.
1239            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1240                                 getZeroExtendExpr(Step, Ty),
1241                                 L, AR->getNoWrapFlags());
1242          }
1243        }
1244
1245        // If the backedge is guarded by a comparison with the pre-inc value
1246        // the addrec is safe. Also, if the entry is guarded by a comparison
1247        // with the start value and the backedge is guarded by a comparison
1248        // with the post-inc value, the addrec is safe.
1249        ICmpInst::Predicate Pred;
1250        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1251        if (OverflowLimit &&
1252            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1253             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1254              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1255                                          OverflowLimit)))) {
1256          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1259                               getSignExtendExpr(Step, Ty),
1260                               L, AR->getNoWrapFlags());
1261        }
1262      }
1263    }
1264
1265  // The cast wasn't folded; create an explicit cast node.
1266  // Recompute the insert position, as it may have been invalidated.
1267  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1268  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1269                                                   Op, Ty);
1270  UniqueSCEVs.InsertNode(S, IP);
1271  return S;
1272}
1273
1274/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275/// unspecified bits out to the given type.
1276///
1277const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1278                                              Type *Ty) {
1279  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1280         "This is not an extending conversion!");
1281  assert(isSCEVable(Ty) &&
1282         "This is not a conversion to a SCEVable type!");
1283  Ty = getEffectiveSCEVType(Ty);
1284
1285  // Sign-extend negative constants.
1286  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1287    if (SC->getValue()->getValue().isNegative())
1288      return getSignExtendExpr(Op, Ty);
1289
1290  // Peel off a truncate cast.
1291  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1292    const SCEV *NewOp = T->getOperand();
1293    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1294      return getAnyExtendExpr(NewOp, Ty);
1295    return getTruncateOrNoop(NewOp, Ty);
1296  }
1297
1298  // Next try a zext cast. If the cast is folded, use it.
1299  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1300  if (!isa<SCEVZeroExtendExpr>(ZExt))
1301    return ZExt;
1302
1303  // Next try a sext cast. If the cast is folded, use it.
1304  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1305  if (!isa<SCEVSignExtendExpr>(SExt))
1306    return SExt;
1307
1308  // Force the cast to be folded into the operands of an addrec.
1309  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1310    SmallVector<const SCEV *, 4> Ops;
1311    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1312         I != E; ++I)
1313      Ops.push_back(getAnyExtendExpr(*I, Ty));
1314    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1315  }
1316
1317  // As a special case, fold anyext(undef) to undef. We don't want to
1318  // know too much about SCEVUnknowns, but this special case is handy
1319  // and harmless.
1320  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1321    if (isa<UndefValue>(U->getValue()))
1322      return getSCEV(UndefValue::get(Ty));
1323
1324  // If the expression is obviously signed, use the sext cast value.
1325  if (isa<SCEVSMaxExpr>(Op))
1326    return SExt;
1327
1328  // Absent any other information, use the zext cast value.
1329  return ZExt;
1330}
1331
1332/// CollectAddOperandsWithScales - Process the given Ops list, which is
1333/// a list of operands to be added under the given scale, update the given
1334/// map. This is a helper function for getAddRecExpr. As an example of
1335/// what it does, given a sequence of operands that would form an add
1336/// expression like this:
1337///
1338///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1339///
1340/// where A and B are constants, update the map with these values:
1341///
1342///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1343///
1344/// and add 13 + A*B*29 to AccumulatedConstant.
1345/// This will allow getAddRecExpr to produce this:
1346///
1347///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1348///
1349/// This form often exposes folding opportunities that are hidden in
1350/// the original operand list.
1351///
1352/// Return true iff it appears that any interesting folding opportunities
1353/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354/// the common case where no interesting opportunities are present, and
1355/// is also used as a check to avoid infinite recursion.
1356///
1357static bool
1358CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1359                             SmallVector<const SCEV *, 8> &NewOps,
1360                             APInt &AccumulatedConstant,
1361                             const SCEV *const *Ops, size_t NumOperands,
1362                             const APInt &Scale,
1363                             ScalarEvolution &SE) {
1364  bool Interesting = false;
1365
1366  // Iterate over the add operands. They are sorted, with constants first.
1367  unsigned i = 0;
1368  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1369    ++i;
1370    // Pull a buried constant out to the outside.
1371    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1372      Interesting = true;
1373    AccumulatedConstant += Scale * C->getValue()->getValue();
1374  }
1375
1376  // Next comes everything else. We're especially interested in multiplies
1377  // here, but they're in the middle, so just visit the rest with one loop.
1378  for (; i != NumOperands; ++i) {
1379    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1380    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1381      APInt NewScale =
1382        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1383      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1384        // A multiplication of a constant with another add; recurse.
1385        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1386        Interesting |=
1387          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1388                                       Add->op_begin(), Add->getNumOperands(),
1389                                       NewScale, SE);
1390      } else {
1391        // A multiplication of a constant with some other value. Update
1392        // the map.
1393        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1394        const SCEV *Key = SE.getMulExpr(MulOps);
1395        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1396          M.insert(std::make_pair(Key, NewScale));
1397        if (Pair.second) {
1398          NewOps.push_back(Pair.first->first);
1399        } else {
1400          Pair.first->second += NewScale;
1401          // The map already had an entry for this value, which may indicate
1402          // a folding opportunity.
1403          Interesting = true;
1404        }
1405      }
1406    } else {
1407      // An ordinary operand. Update the map.
1408      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1409        M.insert(std::make_pair(Ops[i], Scale));
1410      if (Pair.second) {
1411        NewOps.push_back(Pair.first->first);
1412      } else {
1413        Pair.first->second += Scale;
1414        // The map already had an entry for this value, which may indicate
1415        // a folding opportunity.
1416        Interesting = true;
1417      }
1418    }
1419  }
1420
1421  return Interesting;
1422}
1423
1424namespace {
1425  struct APIntCompare {
1426    bool operator()(const APInt &LHS, const APInt &RHS) const {
1427      return LHS.ult(RHS);
1428    }
1429  };
1430}
1431
1432/// getAddExpr - Get a canonical add expression, or something simpler if
1433/// possible.
1434const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1435                                        SCEV::NoWrapFlags Flags) {
1436  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1437         "only nuw or nsw allowed");
1438  assert(!Ops.empty() && "Cannot get empty add!");
1439  if (Ops.size() == 1) return Ops[0];
1440#ifndef NDEBUG
1441  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1442  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1443    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1444           "SCEVAddExpr operand types don't match!");
1445#endif
1446
1447  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1448  // And vice-versa.
1449  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1450  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1451  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1452    bool All = true;
1453    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1454         E = Ops.end(); I != E; ++I)
1455      if (!isKnownNonNegative(*I)) {
1456        All = false;
1457        break;
1458      }
1459    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1460  }
1461
1462  // Sort by complexity, this groups all similar expression types together.
1463  GroupByComplexity(Ops, LI);
1464
1465  // If there are any constants, fold them together.
1466  unsigned Idx = 0;
1467  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1468    ++Idx;
1469    assert(Idx < Ops.size());
1470    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1471      // We found two constants, fold them together!
1472      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1473                           RHSC->getValue()->getValue());
1474      if (Ops.size() == 2) return Ops[0];
1475      Ops.erase(Ops.begin()+1);  // Erase the folded element
1476      LHSC = cast<SCEVConstant>(Ops[0]);
1477    }
1478
1479    // If we are left with a constant zero being added, strip it off.
1480    if (LHSC->getValue()->isZero()) {
1481      Ops.erase(Ops.begin());
1482      --Idx;
1483    }
1484
1485    if (Ops.size() == 1) return Ops[0];
1486  }
1487
1488  // Okay, check to see if the same value occurs in the operand list more than
1489  // once.  If so, merge them together into an multiply expression.  Since we
1490  // sorted the list, these values are required to be adjacent.
1491  Type *Ty = Ops[0]->getType();
1492  bool FoundMatch = false;
1493  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1494    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1495      // Scan ahead to count how many equal operands there are.
1496      unsigned Count = 2;
1497      while (i+Count != e && Ops[i+Count] == Ops[i])
1498        ++Count;
1499      // Merge the values into a multiply.
1500      const SCEV *Scale = getConstant(Ty, Count);
1501      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1502      if (Ops.size() == Count)
1503        return Mul;
1504      Ops[i] = Mul;
1505      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1506      --i; e -= Count - 1;
1507      FoundMatch = true;
1508    }
1509  if (FoundMatch)
1510    return getAddExpr(Ops, Flags);
1511
1512  // Check for truncates. If all the operands are truncated from the same
1513  // type, see if factoring out the truncate would permit the result to be
1514  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515  // if the contents of the resulting outer trunc fold to something simple.
1516  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1517    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1518    Type *DstType = Trunc->getType();
1519    Type *SrcType = Trunc->getOperand()->getType();
1520    SmallVector<const SCEV *, 8> LargeOps;
1521    bool Ok = true;
1522    // Check all the operands to see if they can be represented in the
1523    // source type of the truncate.
1524    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1525      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1526        if (T->getOperand()->getType() != SrcType) {
1527          Ok = false;
1528          break;
1529        }
1530        LargeOps.push_back(T->getOperand());
1531      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1532        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1533      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1534        SmallVector<const SCEV *, 8> LargeMulOps;
1535        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1536          if (const SCEVTruncateExpr *T =
1537                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1538            if (T->getOperand()->getType() != SrcType) {
1539              Ok = false;
1540              break;
1541            }
1542            LargeMulOps.push_back(T->getOperand());
1543          } else if (const SCEVConstant *C =
1544                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1545            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1546          } else {
1547            Ok = false;
1548            break;
1549          }
1550        }
1551        if (Ok)
1552          LargeOps.push_back(getMulExpr(LargeMulOps));
1553      } else {
1554        Ok = false;
1555        break;
1556      }
1557    }
1558    if (Ok) {
1559      // Evaluate the expression in the larger type.
1560      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1561      // If it folds to something simple, use it. Otherwise, don't.
1562      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1563        return getTruncateExpr(Fold, DstType);
1564    }
1565  }
1566
1567  // Skip past any other cast SCEVs.
1568  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1569    ++Idx;
1570
1571  // If there are add operands they would be next.
1572  if (Idx < Ops.size()) {
1573    bool DeletedAdd = false;
1574    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1575      // If we have an add, expand the add operands onto the end of the operands
1576      // list.
1577      Ops.erase(Ops.begin()+Idx);
1578      Ops.append(Add->op_begin(), Add->op_end());
1579      DeletedAdd = true;
1580    }
1581
1582    // If we deleted at least one add, we added operands to the end of the list,
1583    // and they are not necessarily sorted.  Recurse to resort and resimplify
1584    // any operands we just acquired.
1585    if (DeletedAdd)
1586      return getAddExpr(Ops);
1587  }
1588
1589  // Skip over the add expression until we get to a multiply.
1590  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1591    ++Idx;
1592
1593  // Check to see if there are any folding opportunities present with
1594  // operands multiplied by constant values.
1595  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1596    uint64_t BitWidth = getTypeSizeInBits(Ty);
1597    DenseMap<const SCEV *, APInt> M;
1598    SmallVector<const SCEV *, 8> NewOps;
1599    APInt AccumulatedConstant(BitWidth, 0);
1600    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1601                                     Ops.data(), Ops.size(),
1602                                     APInt(BitWidth, 1), *this)) {
1603      // Some interesting folding opportunity is present, so its worthwhile to
1604      // re-generate the operands list. Group the operands by constant scale,
1605      // to avoid multiplying by the same constant scale multiple times.
1606      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1607      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1608           E = NewOps.end(); I != E; ++I)
1609        MulOpLists[M.find(*I)->second].push_back(*I);
1610      // Re-generate the operands list.
1611      Ops.clear();
1612      if (AccumulatedConstant != 0)
1613        Ops.push_back(getConstant(AccumulatedConstant));
1614      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1615           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1616        if (I->first != 0)
1617          Ops.push_back(getMulExpr(getConstant(I->first),
1618                                   getAddExpr(I->second)));
1619      if (Ops.empty())
1620        return getConstant(Ty, 0);
1621      if (Ops.size() == 1)
1622        return Ops[0];
1623      return getAddExpr(Ops);
1624    }
1625  }
1626
1627  // If we are adding something to a multiply expression, make sure the
1628  // something is not already an operand of the multiply.  If so, merge it into
1629  // the multiply.
1630  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1631    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1632    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1633      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1634      if (isa<SCEVConstant>(MulOpSCEV))
1635        continue;
1636      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1637        if (MulOpSCEV == Ops[AddOp]) {
1638          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1639          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1640          if (Mul->getNumOperands() != 2) {
1641            // If the multiply has more than two operands, we must get the
1642            // Y*Z term.
1643            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1644                                                Mul->op_begin()+MulOp);
1645            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1646            InnerMul = getMulExpr(MulOps);
1647          }
1648          const SCEV *One = getConstant(Ty, 1);
1649          const SCEV *AddOne = getAddExpr(One, InnerMul);
1650          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1651          if (Ops.size() == 2) return OuterMul;
1652          if (AddOp < Idx) {
1653            Ops.erase(Ops.begin()+AddOp);
1654            Ops.erase(Ops.begin()+Idx-1);
1655          } else {
1656            Ops.erase(Ops.begin()+Idx);
1657            Ops.erase(Ops.begin()+AddOp-1);
1658          }
1659          Ops.push_back(OuterMul);
1660          return getAddExpr(Ops);
1661        }
1662
1663      // Check this multiply against other multiplies being added together.
1664      for (unsigned OtherMulIdx = Idx+1;
1665           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1666           ++OtherMulIdx) {
1667        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1668        // If MulOp occurs in OtherMul, we can fold the two multiplies
1669        // together.
1670        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1671             OMulOp != e; ++OMulOp)
1672          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1673            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1674            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1675            if (Mul->getNumOperands() != 2) {
1676              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1677                                                  Mul->op_begin()+MulOp);
1678              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1679              InnerMul1 = getMulExpr(MulOps);
1680            }
1681            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1682            if (OtherMul->getNumOperands() != 2) {
1683              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1684                                                  OtherMul->op_begin()+OMulOp);
1685              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1686              InnerMul2 = getMulExpr(MulOps);
1687            }
1688            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1689            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1690            if (Ops.size() == 2) return OuterMul;
1691            Ops.erase(Ops.begin()+Idx);
1692            Ops.erase(Ops.begin()+OtherMulIdx-1);
1693            Ops.push_back(OuterMul);
1694            return getAddExpr(Ops);
1695          }
1696      }
1697    }
1698  }
1699
1700  // If there are any add recurrences in the operands list, see if any other
1701  // added values are loop invariant.  If so, we can fold them into the
1702  // recurrence.
1703  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1704    ++Idx;
1705
1706  // Scan over all recurrences, trying to fold loop invariants into them.
1707  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1708    // Scan all of the other operands to this add and add them to the vector if
1709    // they are loop invariant w.r.t. the recurrence.
1710    SmallVector<const SCEV *, 8> LIOps;
1711    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1712    const Loop *AddRecLoop = AddRec->getLoop();
1713    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1714      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1715        LIOps.push_back(Ops[i]);
1716        Ops.erase(Ops.begin()+i);
1717        --i; --e;
1718      }
1719
1720    // If we found some loop invariants, fold them into the recurrence.
1721    if (!LIOps.empty()) {
1722      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1723      LIOps.push_back(AddRec->getStart());
1724
1725      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1726                                             AddRec->op_end());
1727      AddRecOps[0] = getAddExpr(LIOps);
1728
1729      // Build the new addrec. Propagate the NUW and NSW flags if both the
1730      // outer add and the inner addrec are guaranteed to have no overflow.
1731      // Always propagate NW.
1732      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1733      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1734
1735      // If all of the other operands were loop invariant, we are done.
1736      if (Ops.size() == 1) return NewRec;
1737
1738      // Otherwise, add the folded AddRec by the non-liv parts.
1739      for (unsigned i = 0;; ++i)
1740        if (Ops[i] == AddRec) {
1741          Ops[i] = NewRec;
1742          break;
1743        }
1744      return getAddExpr(Ops);
1745    }
1746
1747    // Okay, if there weren't any loop invariants to be folded, check to see if
1748    // there are multiple AddRec's with the same loop induction variable being
1749    // added together.  If so, we can fold them.
1750    for (unsigned OtherIdx = Idx+1;
1751         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1752         ++OtherIdx)
1753      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1754        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1755        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756                                               AddRec->op_end());
1757        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1758             ++OtherIdx)
1759          if (const SCEVAddRecExpr *OtherAddRec =
1760                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1761            if (OtherAddRec->getLoop() == AddRecLoop) {
1762              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1763                   i != e; ++i) {
1764                if (i >= AddRecOps.size()) {
1765                  AddRecOps.append(OtherAddRec->op_begin()+i,
1766                                   OtherAddRec->op_end());
1767                  break;
1768                }
1769                AddRecOps[i] = getAddExpr(AddRecOps[i],
1770                                          OtherAddRec->getOperand(i));
1771              }
1772              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1773            }
1774        // Step size has changed, so we cannot guarantee no self-wraparound.
1775        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1776        return getAddExpr(Ops);
1777      }
1778
1779    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1780    // next one.
1781  }
1782
1783  // Okay, it looks like we really DO need an add expr.  Check to see if we
1784  // already have one, otherwise create a new one.
1785  FoldingSetNodeID ID;
1786  ID.AddInteger(scAddExpr);
1787  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1788    ID.AddPointer(Ops[i]);
1789  void *IP = 0;
1790  SCEVAddExpr *S =
1791    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1792  if (!S) {
1793    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1794    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1795    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1796                                        O, Ops.size());
1797    UniqueSCEVs.InsertNode(S, IP);
1798  }
1799  S->setNoWrapFlags(Flags);
1800  return S;
1801}
1802
1803/// getMulExpr - Get a canonical multiply expression, or something simpler if
1804/// possible.
1805const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1806                                        SCEV::NoWrapFlags Flags) {
1807  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1808         "only nuw or nsw allowed");
1809  assert(!Ops.empty() && "Cannot get empty mul!");
1810  if (Ops.size() == 1) return Ops[0];
1811#ifndef NDEBUG
1812  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1813  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1814    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1815           "SCEVMulExpr operand types don't match!");
1816#endif
1817
1818  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1819  // And vice-versa.
1820  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1821  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1822  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1823    bool All = true;
1824    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1825         E = Ops.end(); I != E; ++I)
1826      if (!isKnownNonNegative(*I)) {
1827        All = false;
1828        break;
1829      }
1830    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1831  }
1832
1833  // Sort by complexity, this groups all similar expression types together.
1834  GroupByComplexity(Ops, LI);
1835
1836  // If there are any constants, fold them together.
1837  unsigned Idx = 0;
1838  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1839
1840    // C1*(C2+V) -> C1*C2 + C1*V
1841    if (Ops.size() == 2)
1842      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1843        if (Add->getNumOperands() == 2 &&
1844            isa<SCEVConstant>(Add->getOperand(0)))
1845          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1846                            getMulExpr(LHSC, Add->getOperand(1)));
1847
1848    ++Idx;
1849    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1850      // We found two constants, fold them together!
1851      ConstantInt *Fold = ConstantInt::get(getContext(),
1852                                           LHSC->getValue()->getValue() *
1853                                           RHSC->getValue()->getValue());
1854      Ops[0] = getConstant(Fold);
1855      Ops.erase(Ops.begin()+1);  // Erase the folded element
1856      if (Ops.size() == 1) return Ops[0];
1857      LHSC = cast<SCEVConstant>(Ops[0]);
1858    }
1859
1860    // If we are left with a constant one being multiplied, strip it off.
1861    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1862      Ops.erase(Ops.begin());
1863      --Idx;
1864    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1865      // If we have a multiply of zero, it will always be zero.
1866      return Ops[0];
1867    } else if (Ops[0]->isAllOnesValue()) {
1868      // If we have a mul by -1 of an add, try distributing the -1 among the
1869      // add operands.
1870      if (Ops.size() == 2) {
1871        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1872          SmallVector<const SCEV *, 4> NewOps;
1873          bool AnyFolded = false;
1874          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1875                 E = Add->op_end(); I != E; ++I) {
1876            const SCEV *Mul = getMulExpr(Ops[0], *I);
1877            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1878            NewOps.push_back(Mul);
1879          }
1880          if (AnyFolded)
1881            return getAddExpr(NewOps);
1882        }
1883        else if (const SCEVAddRecExpr *
1884                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1885          // Negation preserves a recurrence's no self-wrap property.
1886          SmallVector<const SCEV *, 4> Operands;
1887          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1888                 E = AddRec->op_end(); I != E; ++I) {
1889            Operands.push_back(getMulExpr(Ops[0], *I));
1890          }
1891          return getAddRecExpr(Operands, AddRec->getLoop(),
1892                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1893        }
1894      }
1895    }
1896
1897    if (Ops.size() == 1)
1898      return Ops[0];
1899  }
1900
1901  // Skip over the add expression until we get to a multiply.
1902  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1903    ++Idx;
1904
1905  // If there are mul operands inline them all into this expression.
1906  if (Idx < Ops.size()) {
1907    bool DeletedMul = false;
1908    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1909      // If we have an mul, expand the mul operands onto the end of the operands
1910      // list.
1911      Ops.erase(Ops.begin()+Idx);
1912      Ops.append(Mul->op_begin(), Mul->op_end());
1913      DeletedMul = true;
1914    }
1915
1916    // If we deleted at least one mul, we added operands to the end of the list,
1917    // and they are not necessarily sorted.  Recurse to resort and resimplify
1918    // any operands we just acquired.
1919    if (DeletedMul)
1920      return getMulExpr(Ops);
1921  }
1922
1923  // If there are any add recurrences in the operands list, see if any other
1924  // added values are loop invariant.  If so, we can fold them into the
1925  // recurrence.
1926  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1927    ++Idx;
1928
1929  // Scan over all recurrences, trying to fold loop invariants into them.
1930  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1931    // Scan all of the other operands to this mul and add them to the vector if
1932    // they are loop invariant w.r.t. the recurrence.
1933    SmallVector<const SCEV *, 8> LIOps;
1934    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1935    const Loop *AddRecLoop = AddRec->getLoop();
1936    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1937      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1938        LIOps.push_back(Ops[i]);
1939        Ops.erase(Ops.begin()+i);
1940        --i; --e;
1941      }
1942
1943    // If we found some loop invariants, fold them into the recurrence.
1944    if (!LIOps.empty()) {
1945      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1946      SmallVector<const SCEV *, 4> NewOps;
1947      NewOps.reserve(AddRec->getNumOperands());
1948      const SCEV *Scale = getMulExpr(LIOps);
1949      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1950        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1951
1952      // Build the new addrec. Propagate the NUW and NSW flags if both the
1953      // outer mul and the inner addrec are guaranteed to have no overflow.
1954      //
1955      // No self-wrap cannot be guaranteed after changing the step size, but
1956      // will be inferred if either NUW or NSW is true.
1957      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1958      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
1959
1960      // If all of the other operands were loop invariant, we are done.
1961      if (Ops.size() == 1) return NewRec;
1962
1963      // Otherwise, multiply the folded AddRec by the non-liv parts.
1964      for (unsigned i = 0;; ++i)
1965        if (Ops[i] == AddRec) {
1966          Ops[i] = NewRec;
1967          break;
1968        }
1969      return getMulExpr(Ops);
1970    }
1971
1972    // Okay, if there weren't any loop invariants to be folded, check to see if
1973    // there are multiple AddRec's with the same loop induction variable being
1974    // multiplied together.  If so, we can fold them.
1975    for (unsigned OtherIdx = Idx+1;
1976         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1977         ++OtherIdx)
1978      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1979        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1980        // {A*C,+,F*D + G*B + B*D}<L>
1981        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1982             ++OtherIdx)
1983          if (const SCEVAddRecExpr *OtherAddRec =
1984                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1985            if (OtherAddRec->getLoop() == AddRecLoop) {
1986              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1987              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1988              const SCEV *B = F->getStepRecurrence(*this);
1989              const SCEV *D = G->getStepRecurrence(*this);
1990              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1991                                               getMulExpr(G, B),
1992                                               getMulExpr(B, D));
1993              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1994                                                    F->getLoop(),
1995                                                    SCEV::FlagAnyWrap);
1996              if (Ops.size() == 2) return NewAddRec;
1997              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1998              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1999            }
2000        return getMulExpr(Ops);
2001      }
2002
2003    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2004    // next one.
2005  }
2006
2007  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2008  // already have one, otherwise create a new one.
2009  FoldingSetNodeID ID;
2010  ID.AddInteger(scMulExpr);
2011  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2012    ID.AddPointer(Ops[i]);
2013  void *IP = 0;
2014  SCEVMulExpr *S =
2015    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2016  if (!S) {
2017    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2018    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2019    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2020                                        O, Ops.size());
2021    UniqueSCEVs.InsertNode(S, IP);
2022  }
2023  S->setNoWrapFlags(Flags);
2024  return S;
2025}
2026
2027/// getUDivExpr - Get a canonical unsigned division expression, or something
2028/// simpler if possible.
2029const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2030                                         const SCEV *RHS) {
2031  assert(getEffectiveSCEVType(LHS->getType()) ==
2032         getEffectiveSCEVType(RHS->getType()) &&
2033         "SCEVUDivExpr operand types don't match!");
2034
2035  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2036    if (RHSC->getValue()->equalsInt(1))
2037      return LHS;                               // X udiv 1 --> x
2038    // If the denominator is zero, the result of the udiv is undefined. Don't
2039    // try to analyze it, because the resolution chosen here may differ from
2040    // the resolution chosen in other parts of the compiler.
2041    if (!RHSC->getValue()->isZero()) {
2042      // Determine if the division can be folded into the operands of
2043      // its operands.
2044      // TODO: Generalize this to non-constants by using known-bits information.
2045      Type *Ty = LHS->getType();
2046      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2047      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2048      // For non-power-of-two values, effectively round the value up to the
2049      // nearest power of two.
2050      if (!RHSC->getValue()->getValue().isPowerOf2())
2051        ++MaxShiftAmt;
2052      IntegerType *ExtTy =
2053        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2054      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2055        if (const SCEVConstant *Step =
2056            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2057          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2058          const APInt &StepInt = Step->getValue()->getValue();
2059          const APInt &DivInt = RHSC->getValue()->getValue();
2060          if (!StepInt.urem(DivInt) &&
2061              getZeroExtendExpr(AR, ExtTy) ==
2062              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2063                            getZeroExtendExpr(Step, ExtTy),
2064                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2065            SmallVector<const SCEV *, 4> Operands;
2066            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2067              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2068            return getAddRecExpr(Operands, AR->getLoop(),
2069                                 SCEV::FlagNW);
2070          }
2071          /// Get a canonical UDivExpr for a recurrence.
2072          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2073          // We can currently only fold X%N if X is constant.
2074          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2075          if (StartC && !DivInt.urem(StepInt) &&
2076              getZeroExtendExpr(AR, ExtTy) ==
2077              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2078                            getZeroExtendExpr(Step, ExtTy),
2079                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2080            const APInt &StartInt = StartC->getValue()->getValue();
2081            const APInt &StartRem = StartInt.urem(StepInt);
2082            if (StartRem != 0)
2083              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2084                                  AR->getLoop(), SCEV::FlagNW);
2085          }
2086        }
2087      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2088      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2089        SmallVector<const SCEV *, 4> Operands;
2090        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2091          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2092        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2093          // Find an operand that's safely divisible.
2094          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2095            const SCEV *Op = M->getOperand(i);
2096            const SCEV *Div = getUDivExpr(Op, RHSC);
2097            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2098              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2099                                                      M->op_end());
2100              Operands[i] = Div;
2101              return getMulExpr(Operands);
2102            }
2103          }
2104      }
2105      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2106      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2107        SmallVector<const SCEV *, 4> Operands;
2108        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2109          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2110        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2111          Operands.clear();
2112          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2113            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2114            if (isa<SCEVUDivExpr>(Op) ||
2115                getMulExpr(Op, RHS) != A->getOperand(i))
2116              break;
2117            Operands.push_back(Op);
2118          }
2119          if (Operands.size() == A->getNumOperands())
2120            return getAddExpr(Operands);
2121        }
2122      }
2123
2124      // Fold if both operands are constant.
2125      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2126        Constant *LHSCV = LHSC->getValue();
2127        Constant *RHSCV = RHSC->getValue();
2128        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2129                                                                   RHSCV)));
2130      }
2131    }
2132  }
2133
2134  FoldingSetNodeID ID;
2135  ID.AddInteger(scUDivExpr);
2136  ID.AddPointer(LHS);
2137  ID.AddPointer(RHS);
2138  void *IP = 0;
2139  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2140  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2141                                             LHS, RHS);
2142  UniqueSCEVs.InsertNode(S, IP);
2143  return S;
2144}
2145
2146
2147/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2148/// Simplify the expression as much as possible.
2149const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2150                                           const Loop *L,
2151                                           SCEV::NoWrapFlags Flags) {
2152  SmallVector<const SCEV *, 4> Operands;
2153  Operands.push_back(Start);
2154  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2155    if (StepChrec->getLoop() == L) {
2156      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2157      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2158    }
2159
2160  Operands.push_back(Step);
2161  return getAddRecExpr(Operands, L, Flags);
2162}
2163
2164/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2165/// Simplify the expression as much as possible.
2166const SCEV *
2167ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2168                               const Loop *L, SCEV::NoWrapFlags Flags) {
2169  if (Operands.size() == 1) return Operands[0];
2170#ifndef NDEBUG
2171  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2172  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2173    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2174           "SCEVAddRecExpr operand types don't match!");
2175  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2176    assert(isLoopInvariant(Operands[i], L) &&
2177           "SCEVAddRecExpr operand is not loop-invariant!");
2178#endif
2179
2180  if (Operands.back()->isZero()) {
2181    Operands.pop_back();
2182    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2183  }
2184
2185  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2186  // use that information to infer NUW and NSW flags. However, computing a
2187  // BE count requires calling getAddRecExpr, so we may not yet have a
2188  // meaningful BE count at this point (and if we don't, we'd be stuck
2189  // with a SCEVCouldNotCompute as the cached BE count).
2190
2191  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2192  // And vice-versa.
2193  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2194  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2195  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2196    bool All = true;
2197    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2198         E = Operands.end(); I != E; ++I)
2199      if (!isKnownNonNegative(*I)) {
2200        All = false;
2201        break;
2202      }
2203    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2204  }
2205
2206  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2207  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2208    const Loop *NestedLoop = NestedAR->getLoop();
2209    if (L->contains(NestedLoop) ?
2210        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2211        (!NestedLoop->contains(L) &&
2212         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2213      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2214                                                  NestedAR->op_end());
2215      Operands[0] = NestedAR->getStart();
2216      // AddRecs require their operands be loop-invariant with respect to their
2217      // loops. Don't perform this transformation if it would break this
2218      // requirement.
2219      bool AllInvariant = true;
2220      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2221        if (!isLoopInvariant(Operands[i], L)) {
2222          AllInvariant = false;
2223          break;
2224        }
2225      if (AllInvariant) {
2226        // Create a recurrence for the outer loop with the same step size.
2227        //
2228        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2229        // inner recurrence has the same property.
2230        SCEV::NoWrapFlags OuterFlags =
2231          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2232
2233        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2234        AllInvariant = true;
2235        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2236          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2237            AllInvariant = false;
2238            break;
2239          }
2240        if (AllInvariant) {
2241          // Ok, both add recurrences are valid after the transformation.
2242          //
2243          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2244          // the outer recurrence has the same property.
2245          SCEV::NoWrapFlags InnerFlags =
2246            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2247          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2248        }
2249      }
2250      // Reset Operands to its original state.
2251      Operands[0] = NestedAR;
2252    }
2253  }
2254
2255  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2256  // already have one, otherwise create a new one.
2257  FoldingSetNodeID ID;
2258  ID.AddInteger(scAddRecExpr);
2259  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2260    ID.AddPointer(Operands[i]);
2261  ID.AddPointer(L);
2262  void *IP = 0;
2263  SCEVAddRecExpr *S =
2264    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2265  if (!S) {
2266    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2267    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2268    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2269                                           O, Operands.size(), L);
2270    UniqueSCEVs.InsertNode(S, IP);
2271  }
2272  S->setNoWrapFlags(Flags);
2273  return S;
2274}
2275
2276const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2277                                         const SCEV *RHS) {
2278  SmallVector<const SCEV *, 2> Ops;
2279  Ops.push_back(LHS);
2280  Ops.push_back(RHS);
2281  return getSMaxExpr(Ops);
2282}
2283
2284const SCEV *
2285ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2286  assert(!Ops.empty() && "Cannot get empty smax!");
2287  if (Ops.size() == 1) return Ops[0];
2288#ifndef NDEBUG
2289  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2290  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2291    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2292           "SCEVSMaxExpr operand types don't match!");
2293#endif
2294
2295  // Sort by complexity, this groups all similar expression types together.
2296  GroupByComplexity(Ops, LI);
2297
2298  // If there are any constants, fold them together.
2299  unsigned Idx = 0;
2300  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2301    ++Idx;
2302    assert(Idx < Ops.size());
2303    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2304      // We found two constants, fold them together!
2305      ConstantInt *Fold = ConstantInt::get(getContext(),
2306                              APIntOps::smax(LHSC->getValue()->getValue(),
2307                                             RHSC->getValue()->getValue()));
2308      Ops[0] = getConstant(Fold);
2309      Ops.erase(Ops.begin()+1);  // Erase the folded element
2310      if (Ops.size() == 1) return Ops[0];
2311      LHSC = cast<SCEVConstant>(Ops[0]);
2312    }
2313
2314    // If we are left with a constant minimum-int, strip it off.
2315    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2316      Ops.erase(Ops.begin());
2317      --Idx;
2318    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2319      // If we have an smax with a constant maximum-int, it will always be
2320      // maximum-int.
2321      return Ops[0];
2322    }
2323
2324    if (Ops.size() == 1) return Ops[0];
2325  }
2326
2327  // Find the first SMax
2328  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2329    ++Idx;
2330
2331  // Check to see if one of the operands is an SMax. If so, expand its operands
2332  // onto our operand list, and recurse to simplify.
2333  if (Idx < Ops.size()) {
2334    bool DeletedSMax = false;
2335    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2336      Ops.erase(Ops.begin()+Idx);
2337      Ops.append(SMax->op_begin(), SMax->op_end());
2338      DeletedSMax = true;
2339    }
2340
2341    if (DeletedSMax)
2342      return getSMaxExpr(Ops);
2343  }
2344
2345  // Okay, check to see if the same value occurs in the operand list twice.  If
2346  // so, delete one.  Since we sorted the list, these values are required to
2347  // be adjacent.
2348  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2349    //  X smax Y smax Y  -->  X smax Y
2350    //  X smax Y         -->  X, if X is always greater than Y
2351    if (Ops[i] == Ops[i+1] ||
2352        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2353      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2354      --i; --e;
2355    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2356      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2357      --i; --e;
2358    }
2359
2360  if (Ops.size() == 1) return Ops[0];
2361
2362  assert(!Ops.empty() && "Reduced smax down to nothing!");
2363
2364  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2365  // already have one, otherwise create a new one.
2366  FoldingSetNodeID ID;
2367  ID.AddInteger(scSMaxExpr);
2368  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2369    ID.AddPointer(Ops[i]);
2370  void *IP = 0;
2371  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2372  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2373  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2374  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2375                                             O, Ops.size());
2376  UniqueSCEVs.InsertNode(S, IP);
2377  return S;
2378}
2379
2380const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2381                                         const SCEV *RHS) {
2382  SmallVector<const SCEV *, 2> Ops;
2383  Ops.push_back(LHS);
2384  Ops.push_back(RHS);
2385  return getUMaxExpr(Ops);
2386}
2387
2388const SCEV *
2389ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2390  assert(!Ops.empty() && "Cannot get empty umax!");
2391  if (Ops.size() == 1) return Ops[0];
2392#ifndef NDEBUG
2393  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2394  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2395    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2396           "SCEVUMaxExpr operand types don't match!");
2397#endif
2398
2399  // Sort by complexity, this groups all similar expression types together.
2400  GroupByComplexity(Ops, LI);
2401
2402  // If there are any constants, fold them together.
2403  unsigned Idx = 0;
2404  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2405    ++Idx;
2406    assert(Idx < Ops.size());
2407    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2408      // We found two constants, fold them together!
2409      ConstantInt *Fold = ConstantInt::get(getContext(),
2410                              APIntOps::umax(LHSC->getValue()->getValue(),
2411                                             RHSC->getValue()->getValue()));
2412      Ops[0] = getConstant(Fold);
2413      Ops.erase(Ops.begin()+1);  // Erase the folded element
2414      if (Ops.size() == 1) return Ops[0];
2415      LHSC = cast<SCEVConstant>(Ops[0]);
2416    }
2417
2418    // If we are left with a constant minimum-int, strip it off.
2419    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2420      Ops.erase(Ops.begin());
2421      --Idx;
2422    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2423      // If we have an umax with a constant maximum-int, it will always be
2424      // maximum-int.
2425      return Ops[0];
2426    }
2427
2428    if (Ops.size() == 1) return Ops[0];
2429  }
2430
2431  // Find the first UMax
2432  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2433    ++Idx;
2434
2435  // Check to see if one of the operands is a UMax. If so, expand its operands
2436  // onto our operand list, and recurse to simplify.
2437  if (Idx < Ops.size()) {
2438    bool DeletedUMax = false;
2439    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2440      Ops.erase(Ops.begin()+Idx);
2441      Ops.append(UMax->op_begin(), UMax->op_end());
2442      DeletedUMax = true;
2443    }
2444
2445    if (DeletedUMax)
2446      return getUMaxExpr(Ops);
2447  }
2448
2449  // Okay, check to see if the same value occurs in the operand list twice.  If
2450  // so, delete one.  Since we sorted the list, these values are required to
2451  // be adjacent.
2452  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2453    //  X umax Y umax Y  -->  X umax Y
2454    //  X umax Y         -->  X, if X is always greater than Y
2455    if (Ops[i] == Ops[i+1] ||
2456        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2457      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2458      --i; --e;
2459    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2460      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2461      --i; --e;
2462    }
2463
2464  if (Ops.size() == 1) return Ops[0];
2465
2466  assert(!Ops.empty() && "Reduced umax down to nothing!");
2467
2468  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2469  // already have one, otherwise create a new one.
2470  FoldingSetNodeID ID;
2471  ID.AddInteger(scUMaxExpr);
2472  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2473    ID.AddPointer(Ops[i]);
2474  void *IP = 0;
2475  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2476  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2477  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2478  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2479                                             O, Ops.size());
2480  UniqueSCEVs.InsertNode(S, IP);
2481  return S;
2482}
2483
2484const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2485                                         const SCEV *RHS) {
2486  // ~smax(~x, ~y) == smin(x, y).
2487  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2488}
2489
2490const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2491                                         const SCEV *RHS) {
2492  // ~umax(~x, ~y) == umin(x, y)
2493  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2494}
2495
2496const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2497  // If we have TargetData, we can bypass creating a target-independent
2498  // constant expression and then folding it back into a ConstantInt.
2499  // This is just a compile-time optimization.
2500  if (TD)
2501    return getConstant(TD->getIntPtrType(getContext()),
2502                       TD->getTypeAllocSize(AllocTy));
2503
2504  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2505  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2506    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2507      C = Folded;
2508  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2509  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2510}
2511
2512const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2513  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2514  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2515    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2516      C = Folded;
2517  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2518  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2519}
2520
2521const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2522                                             unsigned FieldNo) {
2523  // If we have TargetData, we can bypass creating a target-independent
2524  // constant expression and then folding it back into a ConstantInt.
2525  // This is just a compile-time optimization.
2526  if (TD)
2527    return getConstant(TD->getIntPtrType(getContext()),
2528                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2529
2530  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2531  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2532    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2533      C = Folded;
2534  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2535  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2536}
2537
2538const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2539                                             Constant *FieldNo) {
2540  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2541  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2542    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2543      C = Folded;
2544  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2545  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2546}
2547
2548const SCEV *ScalarEvolution::getUnknown(Value *V) {
2549  // Don't attempt to do anything other than create a SCEVUnknown object
2550  // here.  createSCEV only calls getUnknown after checking for all other
2551  // interesting possibilities, and any other code that calls getUnknown
2552  // is doing so in order to hide a value from SCEV canonicalization.
2553
2554  FoldingSetNodeID ID;
2555  ID.AddInteger(scUnknown);
2556  ID.AddPointer(V);
2557  void *IP = 0;
2558  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2559    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2560           "Stale SCEVUnknown in uniquing map!");
2561    return S;
2562  }
2563  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2564                                            FirstUnknown);
2565  FirstUnknown = cast<SCEVUnknown>(S);
2566  UniqueSCEVs.InsertNode(S, IP);
2567  return S;
2568}
2569
2570//===----------------------------------------------------------------------===//
2571//            Basic SCEV Analysis and PHI Idiom Recognition Code
2572//
2573
2574/// isSCEVable - Test if values of the given type are analyzable within
2575/// the SCEV framework. This primarily includes integer types, and it
2576/// can optionally include pointer types if the ScalarEvolution class
2577/// has access to target-specific information.
2578bool ScalarEvolution::isSCEVable(Type *Ty) const {
2579  // Integers and pointers are always SCEVable.
2580  return Ty->isIntegerTy() || Ty->isPointerTy();
2581}
2582
2583/// getTypeSizeInBits - Return the size in bits of the specified type,
2584/// for which isSCEVable must return true.
2585uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2586  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2587
2588  // If we have a TargetData, use it!
2589  if (TD)
2590    return TD->getTypeSizeInBits(Ty);
2591
2592  // Integer types have fixed sizes.
2593  if (Ty->isIntegerTy())
2594    return Ty->getPrimitiveSizeInBits();
2595
2596  // The only other support type is pointer. Without TargetData, conservatively
2597  // assume pointers are 64-bit.
2598  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2599  return 64;
2600}
2601
2602/// getEffectiveSCEVType - Return a type with the same bitwidth as
2603/// the given type and which represents how SCEV will treat the given
2604/// type, for which isSCEVable must return true. For pointer types,
2605/// this is the pointer-sized integer type.
2606Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2607  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2608
2609  if (Ty->isIntegerTy())
2610    return Ty;
2611
2612  // The only other support type is pointer.
2613  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2614  if (TD) return TD->getIntPtrType(getContext());
2615
2616  // Without TargetData, conservatively assume pointers are 64-bit.
2617  return Type::getInt64Ty(getContext());
2618}
2619
2620const SCEV *ScalarEvolution::getCouldNotCompute() {
2621  return &CouldNotCompute;
2622}
2623
2624/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2625/// expression and create a new one.
2626const SCEV *ScalarEvolution::getSCEV(Value *V) {
2627  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2628
2629  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2630  if (I != ValueExprMap.end()) return I->second;
2631  const SCEV *S = createSCEV(V);
2632
2633  // The process of creating a SCEV for V may have caused other SCEVs
2634  // to have been created, so it's necessary to insert the new entry
2635  // from scratch, rather than trying to remember the insert position
2636  // above.
2637  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2638  return S;
2639}
2640
2641/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2642///
2643const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2644  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2645    return getConstant(
2646               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2647
2648  Type *Ty = V->getType();
2649  Ty = getEffectiveSCEVType(Ty);
2650  return getMulExpr(V,
2651                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2652}
2653
2654/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2655const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2656  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2657    return getConstant(
2658                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2659
2660  Type *Ty = V->getType();
2661  Ty = getEffectiveSCEVType(Ty);
2662  const SCEV *AllOnes =
2663                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2664  return getMinusSCEV(AllOnes, V);
2665}
2666
2667/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2668const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2669                                          SCEV::NoWrapFlags Flags) {
2670  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2671
2672  // Fast path: X - X --> 0.
2673  if (LHS == RHS)
2674    return getConstant(LHS->getType(), 0);
2675
2676  // X - Y --> X + -Y
2677  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2678}
2679
2680/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2681/// input value to the specified type.  If the type must be extended, it is zero
2682/// extended.
2683const SCEV *
2684ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2685  Type *SrcTy = V->getType();
2686  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2687         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2688         "Cannot truncate or zero extend with non-integer arguments!");
2689  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2690    return V;  // No conversion
2691  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2692    return getTruncateExpr(V, Ty);
2693  return getZeroExtendExpr(V, Ty);
2694}
2695
2696/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2697/// input value to the specified type.  If the type must be extended, it is sign
2698/// extended.
2699const SCEV *
2700ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2701                                         Type *Ty) {
2702  Type *SrcTy = V->getType();
2703  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2704         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2705         "Cannot truncate or zero extend with non-integer arguments!");
2706  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2707    return V;  // No conversion
2708  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2709    return getTruncateExpr(V, Ty);
2710  return getSignExtendExpr(V, Ty);
2711}
2712
2713/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2714/// input value to the specified type.  If the type must be extended, it is zero
2715/// extended.  The conversion must not be narrowing.
2716const SCEV *
2717ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2718  Type *SrcTy = V->getType();
2719  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2720         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2721         "Cannot noop or zero extend with non-integer arguments!");
2722  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2723         "getNoopOrZeroExtend cannot truncate!");
2724  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2725    return V;  // No conversion
2726  return getZeroExtendExpr(V, Ty);
2727}
2728
2729/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2730/// input value to the specified type.  If the type must be extended, it is sign
2731/// extended.  The conversion must not be narrowing.
2732const SCEV *
2733ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2734  Type *SrcTy = V->getType();
2735  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2736         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2737         "Cannot noop or sign extend with non-integer arguments!");
2738  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2739         "getNoopOrSignExtend cannot truncate!");
2740  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2741    return V;  // No conversion
2742  return getSignExtendExpr(V, Ty);
2743}
2744
2745/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2746/// the input value to the specified type. If the type must be extended,
2747/// it is extended with unspecified bits. The conversion must not be
2748/// narrowing.
2749const SCEV *
2750ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2751  Type *SrcTy = V->getType();
2752  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2753         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2754         "Cannot noop or any extend with non-integer arguments!");
2755  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2756         "getNoopOrAnyExtend cannot truncate!");
2757  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2758    return V;  // No conversion
2759  return getAnyExtendExpr(V, Ty);
2760}
2761
2762/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2763/// input value to the specified type.  The conversion must not be widening.
2764const SCEV *
2765ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2766  Type *SrcTy = V->getType();
2767  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2768         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2769         "Cannot truncate or noop with non-integer arguments!");
2770  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2771         "getTruncateOrNoop cannot extend!");
2772  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2773    return V;  // No conversion
2774  return getTruncateExpr(V, Ty);
2775}
2776
2777/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2778/// the types using zero-extension, and then perform a umax operation
2779/// with them.
2780const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2781                                                        const SCEV *RHS) {
2782  const SCEV *PromotedLHS = LHS;
2783  const SCEV *PromotedRHS = RHS;
2784
2785  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2786    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2787  else
2788    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2789
2790  return getUMaxExpr(PromotedLHS, PromotedRHS);
2791}
2792
2793/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2794/// the types using zero-extension, and then perform a umin operation
2795/// with them.
2796const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2797                                                        const SCEV *RHS) {
2798  const SCEV *PromotedLHS = LHS;
2799  const SCEV *PromotedRHS = RHS;
2800
2801  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2802    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2803  else
2804    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2805
2806  return getUMinExpr(PromotedLHS, PromotedRHS);
2807}
2808
2809/// getPointerBase - Transitively follow the chain of pointer-type operands
2810/// until reaching a SCEV that does not have a single pointer operand. This
2811/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2812/// but corner cases do exist.
2813const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2814  // A pointer operand may evaluate to a nonpointer expression, such as null.
2815  if (!V->getType()->isPointerTy())
2816    return V;
2817
2818  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2819    return getPointerBase(Cast->getOperand());
2820  }
2821  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2822    const SCEV *PtrOp = 0;
2823    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2824         I != E; ++I) {
2825      if ((*I)->getType()->isPointerTy()) {
2826        // Cannot find the base of an expression with multiple pointer operands.
2827        if (PtrOp)
2828          return V;
2829        PtrOp = *I;
2830      }
2831    }
2832    if (!PtrOp)
2833      return V;
2834    return getPointerBase(PtrOp);
2835  }
2836  return V;
2837}
2838
2839/// PushDefUseChildren - Push users of the given Instruction
2840/// onto the given Worklist.
2841static void
2842PushDefUseChildren(Instruction *I,
2843                   SmallVectorImpl<Instruction *> &Worklist) {
2844  // Push the def-use children onto the Worklist stack.
2845  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2846       UI != UE; ++UI)
2847    Worklist.push_back(cast<Instruction>(*UI));
2848}
2849
2850/// ForgetSymbolicValue - This looks up computed SCEV values for all
2851/// instructions that depend on the given instruction and removes them from
2852/// the ValueExprMapType map if they reference SymName. This is used during PHI
2853/// resolution.
2854void
2855ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2856  SmallVector<Instruction *, 16> Worklist;
2857  PushDefUseChildren(PN, Worklist);
2858
2859  SmallPtrSet<Instruction *, 8> Visited;
2860  Visited.insert(PN);
2861  while (!Worklist.empty()) {
2862    Instruction *I = Worklist.pop_back_val();
2863    if (!Visited.insert(I)) continue;
2864
2865    ValueExprMapType::iterator It =
2866      ValueExprMap.find(static_cast<Value *>(I));
2867    if (It != ValueExprMap.end()) {
2868      const SCEV *Old = It->second;
2869
2870      // Short-circuit the def-use traversal if the symbolic name
2871      // ceases to appear in expressions.
2872      if (Old != SymName && !hasOperand(Old, SymName))
2873        continue;
2874
2875      // SCEVUnknown for a PHI either means that it has an unrecognized
2876      // structure, it's a PHI that's in the progress of being computed
2877      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2878      // additional loop trip count information isn't going to change anything.
2879      // In the second case, createNodeForPHI will perform the necessary
2880      // updates on its own when it gets to that point. In the third, we do
2881      // want to forget the SCEVUnknown.
2882      if (!isa<PHINode>(I) ||
2883          !isa<SCEVUnknown>(Old) ||
2884          (I != PN && Old == SymName)) {
2885        forgetMemoizedResults(Old);
2886        ValueExprMap.erase(It);
2887      }
2888    }
2889
2890    PushDefUseChildren(I, Worklist);
2891  }
2892}
2893
2894/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2895/// a loop header, making it a potential recurrence, or it doesn't.
2896///
2897const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2898  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2899    if (L->getHeader() == PN->getParent()) {
2900      // The loop may have multiple entrances or multiple exits; we can analyze
2901      // this phi as an addrec if it has a unique entry value and a unique
2902      // backedge value.
2903      Value *BEValueV = 0, *StartValueV = 0;
2904      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2905        Value *V = PN->getIncomingValue(i);
2906        if (L->contains(PN->getIncomingBlock(i))) {
2907          if (!BEValueV) {
2908            BEValueV = V;
2909          } else if (BEValueV != V) {
2910            BEValueV = 0;
2911            break;
2912          }
2913        } else if (!StartValueV) {
2914          StartValueV = V;
2915        } else if (StartValueV != V) {
2916          StartValueV = 0;
2917          break;
2918        }
2919      }
2920      if (BEValueV && StartValueV) {
2921        // While we are analyzing this PHI node, handle its value symbolically.
2922        const SCEV *SymbolicName = getUnknown(PN);
2923        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2924               "PHI node already processed?");
2925        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2926
2927        // Using this symbolic name for the PHI, analyze the value coming around
2928        // the back-edge.
2929        const SCEV *BEValue = getSCEV(BEValueV);
2930
2931        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2932        // has a special value for the first iteration of the loop.
2933
2934        // If the value coming around the backedge is an add with the symbolic
2935        // value we just inserted, then we found a simple induction variable!
2936        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2937          // If there is a single occurrence of the symbolic value, replace it
2938          // with a recurrence.
2939          unsigned FoundIndex = Add->getNumOperands();
2940          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2941            if (Add->getOperand(i) == SymbolicName)
2942              if (FoundIndex == e) {
2943                FoundIndex = i;
2944                break;
2945              }
2946
2947          if (FoundIndex != Add->getNumOperands()) {
2948            // Create an add with everything but the specified operand.
2949            SmallVector<const SCEV *, 8> Ops;
2950            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2951              if (i != FoundIndex)
2952                Ops.push_back(Add->getOperand(i));
2953            const SCEV *Accum = getAddExpr(Ops);
2954
2955            // This is not a valid addrec if the step amount is varying each
2956            // loop iteration, but is not itself an addrec in this loop.
2957            if (isLoopInvariant(Accum, L) ||
2958                (isa<SCEVAddRecExpr>(Accum) &&
2959                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2960              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
2961
2962              // If the increment doesn't overflow, then neither the addrec nor
2963              // the post-increment will overflow.
2964              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2965                if (OBO->hasNoUnsignedWrap())
2966                  Flags = setFlags(Flags, SCEV::FlagNUW);
2967                if (OBO->hasNoSignedWrap())
2968                  Flags = setFlags(Flags, SCEV::FlagNSW);
2969              } else if (const GEPOperator *GEP =
2970                         dyn_cast<GEPOperator>(BEValueV)) {
2971                // If the increment is an inbounds GEP, then we know the address
2972                // space cannot be wrapped around. We cannot make any guarantee
2973                // about signed or unsigned overflow because pointers are
2974                // unsigned but we may have a negative index from the base
2975                // pointer.
2976                if (GEP->isInBounds())
2977                  Flags = setFlags(Flags, SCEV::FlagNW);
2978              }
2979
2980              const SCEV *StartVal = getSCEV(StartValueV);
2981              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
2982
2983              // Since the no-wrap flags are on the increment, they apply to the
2984              // post-incremented value as well.
2985              if (isLoopInvariant(Accum, L))
2986                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2987                                    Accum, L, Flags);
2988
2989              // Okay, for the entire analysis of this edge we assumed the PHI
2990              // to be symbolic.  We now need to go back and purge all of the
2991              // entries for the scalars that use the symbolic expression.
2992              ForgetSymbolicName(PN, SymbolicName);
2993              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2994              return PHISCEV;
2995            }
2996          }
2997        } else if (const SCEVAddRecExpr *AddRec =
2998                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2999          // Otherwise, this could be a loop like this:
3000          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3001          // In this case, j = {1,+,1}  and BEValue is j.
3002          // Because the other in-value of i (0) fits the evolution of BEValue
3003          // i really is an addrec evolution.
3004          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3005            const SCEV *StartVal = getSCEV(StartValueV);
3006
3007            // If StartVal = j.start - j.stride, we can use StartVal as the
3008            // initial step of the addrec evolution.
3009            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3010                                         AddRec->getOperand(1))) {
3011              // FIXME: For constant StartVal, we should be able to infer
3012              // no-wrap flags.
3013              const SCEV *PHISCEV =
3014                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3015                              SCEV::FlagAnyWrap);
3016
3017              // Okay, for the entire analysis of this edge we assumed the PHI
3018              // to be symbolic.  We now need to go back and purge all of the
3019              // entries for the scalars that use the symbolic expression.
3020              ForgetSymbolicName(PN, SymbolicName);
3021              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3022              return PHISCEV;
3023            }
3024          }
3025        }
3026      }
3027    }
3028
3029  // If the PHI has a single incoming value, follow that value, unless the
3030  // PHI's incoming blocks are in a different loop, in which case doing so
3031  // risks breaking LCSSA form. Instcombine would normally zap these, but
3032  // it doesn't have DominatorTree information, so it may miss cases.
3033  if (Value *V = SimplifyInstruction(PN, TD, DT))
3034    if (LI->replacementPreservesLCSSAForm(PN, V))
3035      return getSCEV(V);
3036
3037  // If it's not a loop phi, we can't handle it yet.
3038  return getUnknown(PN);
3039}
3040
3041/// createNodeForGEP - Expand GEP instructions into add and multiply
3042/// operations. This allows them to be analyzed by regular SCEV code.
3043///
3044const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3045
3046  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3047  // Add expression, because the Instruction may be guarded by control flow
3048  // and the no-overflow bits may not be valid for the expression in any
3049  // context.
3050  bool isInBounds = GEP->isInBounds();
3051
3052  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3053  Value *Base = GEP->getOperand(0);
3054  // Don't attempt to analyze GEPs over unsized objects.
3055  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3056    return getUnknown(GEP);
3057  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3058  gep_type_iterator GTI = gep_type_begin(GEP);
3059  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3060                                      E = GEP->op_end();
3061       I != E; ++I) {
3062    Value *Index = *I;
3063    // Compute the (potentially symbolic) offset in bytes for this index.
3064    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3065      // For a struct, add the member offset.
3066      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3067      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3068
3069      // Add the field offset to the running total offset.
3070      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3071    } else {
3072      // For an array, add the element offset, explicitly scaled.
3073      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3074      const SCEV *IndexS = getSCEV(Index);
3075      // Getelementptr indices are signed.
3076      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3077
3078      // Multiply the index by the element size to compute the element offset.
3079      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3080                                           isInBounds ? SCEV::FlagNSW :
3081                                           SCEV::FlagAnyWrap);
3082
3083      // Add the element offset to the running total offset.
3084      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3085    }
3086  }
3087
3088  // Get the SCEV for the GEP base.
3089  const SCEV *BaseS = getSCEV(Base);
3090
3091  // Add the total offset from all the GEP indices to the base.
3092  return getAddExpr(BaseS, TotalOffset,
3093                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3094}
3095
3096/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3097/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3098/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3099/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3100uint32_t
3101ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3102  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3103    return C->getValue()->getValue().countTrailingZeros();
3104
3105  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3106    return std::min(GetMinTrailingZeros(T->getOperand()),
3107                    (uint32_t)getTypeSizeInBits(T->getType()));
3108
3109  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3110    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3111    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3112             getTypeSizeInBits(E->getType()) : OpRes;
3113  }
3114
3115  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3116    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3117    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3118             getTypeSizeInBits(E->getType()) : OpRes;
3119  }
3120
3121  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3122    // The result is the min of all operands results.
3123    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3124    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3125      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3126    return MinOpRes;
3127  }
3128
3129  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3130    // The result is the sum of all operands results.
3131    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3132    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3133    for (unsigned i = 1, e = M->getNumOperands();
3134         SumOpRes != BitWidth && i != e; ++i)
3135      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3136                          BitWidth);
3137    return SumOpRes;
3138  }
3139
3140  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3141    // The result is the min of all operands results.
3142    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3143    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3144      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3145    return MinOpRes;
3146  }
3147
3148  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3149    // The result is the min of all operands results.
3150    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3151    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3152      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3153    return MinOpRes;
3154  }
3155
3156  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3157    // The result is the min of all operands results.
3158    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3159    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3160      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3161    return MinOpRes;
3162  }
3163
3164  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3165    // For a SCEVUnknown, ask ValueTracking.
3166    unsigned BitWidth = getTypeSizeInBits(U->getType());
3167    APInt Mask = APInt::getAllOnesValue(BitWidth);
3168    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3169    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3170    return Zeros.countTrailingOnes();
3171  }
3172
3173  // SCEVUDivExpr
3174  return 0;
3175}
3176
3177/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3178///
3179ConstantRange
3180ScalarEvolution::getUnsignedRange(const SCEV *S) {
3181  // See if we've computed this range already.
3182  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3183  if (I != UnsignedRanges.end())
3184    return I->second;
3185
3186  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3187    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3188
3189  unsigned BitWidth = getTypeSizeInBits(S->getType());
3190  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3191
3192  // If the value has known zeros, the maximum unsigned value will have those
3193  // known zeros as well.
3194  uint32_t TZ = GetMinTrailingZeros(S);
3195  if (TZ != 0)
3196    ConservativeResult =
3197      ConstantRange(APInt::getMinValue(BitWidth),
3198                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3199
3200  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3201    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3202    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3203      X = X.add(getUnsignedRange(Add->getOperand(i)));
3204    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3205  }
3206
3207  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3208    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3209    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3210      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3211    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3212  }
3213
3214  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3215    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3216    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3217      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3218    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3219  }
3220
3221  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3222    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3223    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3224      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3225    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3226  }
3227
3228  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3229    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3230    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3231    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3232  }
3233
3234  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3235    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3236    return setUnsignedRange(ZExt,
3237      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3238  }
3239
3240  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3241    ConstantRange X = getUnsignedRange(SExt->getOperand());
3242    return setUnsignedRange(SExt,
3243      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3244  }
3245
3246  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3247    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3248    return setUnsignedRange(Trunc,
3249      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3250  }
3251
3252  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3253    // If there's no unsigned wrap, the value will never be less than its
3254    // initial value.
3255    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3256      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3257        if (!C->getValue()->isZero())
3258          ConservativeResult =
3259            ConservativeResult.intersectWith(
3260              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3261
3262    // TODO: non-affine addrec
3263    if (AddRec->isAffine()) {
3264      Type *Ty = AddRec->getType();
3265      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3266      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3267          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3268        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3269
3270        const SCEV *Start = AddRec->getStart();
3271        const SCEV *Step = AddRec->getStepRecurrence(*this);
3272
3273        ConstantRange StartRange = getUnsignedRange(Start);
3274        ConstantRange StepRange = getSignedRange(Step);
3275        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3276        ConstantRange EndRange =
3277          StartRange.add(MaxBECountRange.multiply(StepRange));
3278
3279        // Check for overflow. This must be done with ConstantRange arithmetic
3280        // because we could be called from within the ScalarEvolution overflow
3281        // checking code.
3282        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3283        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3284        ConstantRange ExtMaxBECountRange =
3285          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3286        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3287        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3288            ExtEndRange)
3289          return setUnsignedRange(AddRec, ConservativeResult);
3290
3291        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3292                                   EndRange.getUnsignedMin());
3293        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3294                                   EndRange.getUnsignedMax());
3295        if (Min.isMinValue() && Max.isMaxValue())
3296          return setUnsignedRange(AddRec, ConservativeResult);
3297        return setUnsignedRange(AddRec,
3298          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3299      }
3300    }
3301
3302    return setUnsignedRange(AddRec, ConservativeResult);
3303  }
3304
3305  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3306    // For a SCEVUnknown, ask ValueTracking.
3307    APInt Mask = APInt::getAllOnesValue(BitWidth);
3308    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3309    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3310    if (Ones == ~Zeros + 1)
3311      return setUnsignedRange(U, ConservativeResult);
3312    return setUnsignedRange(U,
3313      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3314  }
3315
3316  return setUnsignedRange(S, ConservativeResult);
3317}
3318
3319/// getSignedRange - Determine the signed range for a particular SCEV.
3320///
3321ConstantRange
3322ScalarEvolution::getSignedRange(const SCEV *S) {
3323  // See if we've computed this range already.
3324  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3325  if (I != SignedRanges.end())
3326    return I->second;
3327
3328  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3329    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3330
3331  unsigned BitWidth = getTypeSizeInBits(S->getType());
3332  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3333
3334  // If the value has known zeros, the maximum signed value will have those
3335  // known zeros as well.
3336  uint32_t TZ = GetMinTrailingZeros(S);
3337  if (TZ != 0)
3338    ConservativeResult =
3339      ConstantRange(APInt::getSignedMinValue(BitWidth),
3340                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3341
3342  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3343    ConstantRange X = getSignedRange(Add->getOperand(0));
3344    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3345      X = X.add(getSignedRange(Add->getOperand(i)));
3346    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3347  }
3348
3349  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3350    ConstantRange X = getSignedRange(Mul->getOperand(0));
3351    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3352      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3353    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3354  }
3355
3356  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3357    ConstantRange X = getSignedRange(SMax->getOperand(0));
3358    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3359      X = X.smax(getSignedRange(SMax->getOperand(i)));
3360    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3361  }
3362
3363  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3364    ConstantRange X = getSignedRange(UMax->getOperand(0));
3365    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3366      X = X.umax(getSignedRange(UMax->getOperand(i)));
3367    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3368  }
3369
3370  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3371    ConstantRange X = getSignedRange(UDiv->getLHS());
3372    ConstantRange Y = getSignedRange(UDiv->getRHS());
3373    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3374  }
3375
3376  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3377    ConstantRange X = getSignedRange(ZExt->getOperand());
3378    return setSignedRange(ZExt,
3379      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3380  }
3381
3382  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3383    ConstantRange X = getSignedRange(SExt->getOperand());
3384    return setSignedRange(SExt,
3385      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3386  }
3387
3388  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3389    ConstantRange X = getSignedRange(Trunc->getOperand());
3390    return setSignedRange(Trunc,
3391      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3392  }
3393
3394  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3395    // If there's no signed wrap, and all the operands have the same sign or
3396    // zero, the value won't ever change sign.
3397    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3398      bool AllNonNeg = true;
3399      bool AllNonPos = true;
3400      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3401        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3402        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3403      }
3404      if (AllNonNeg)
3405        ConservativeResult = ConservativeResult.intersectWith(
3406          ConstantRange(APInt(BitWidth, 0),
3407                        APInt::getSignedMinValue(BitWidth)));
3408      else if (AllNonPos)
3409        ConservativeResult = ConservativeResult.intersectWith(
3410          ConstantRange(APInt::getSignedMinValue(BitWidth),
3411                        APInt(BitWidth, 1)));
3412    }
3413
3414    // TODO: non-affine addrec
3415    if (AddRec->isAffine()) {
3416      Type *Ty = AddRec->getType();
3417      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3418      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3419          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3420        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3421
3422        const SCEV *Start = AddRec->getStart();
3423        const SCEV *Step = AddRec->getStepRecurrence(*this);
3424
3425        ConstantRange StartRange = getSignedRange(Start);
3426        ConstantRange StepRange = getSignedRange(Step);
3427        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3428        ConstantRange EndRange =
3429          StartRange.add(MaxBECountRange.multiply(StepRange));
3430
3431        // Check for overflow. This must be done with ConstantRange arithmetic
3432        // because we could be called from within the ScalarEvolution overflow
3433        // checking code.
3434        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3435        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3436        ConstantRange ExtMaxBECountRange =
3437          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3438        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3439        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3440            ExtEndRange)
3441          return setSignedRange(AddRec, ConservativeResult);
3442
3443        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3444                                   EndRange.getSignedMin());
3445        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3446                                   EndRange.getSignedMax());
3447        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3448          return setSignedRange(AddRec, ConservativeResult);
3449        return setSignedRange(AddRec,
3450          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3451      }
3452    }
3453
3454    return setSignedRange(AddRec, ConservativeResult);
3455  }
3456
3457  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3458    // For a SCEVUnknown, ask ValueTracking.
3459    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3460      return setSignedRange(U, ConservativeResult);
3461    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3462    if (NS == 1)
3463      return setSignedRange(U, ConservativeResult);
3464    return setSignedRange(U, ConservativeResult.intersectWith(
3465      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3466                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3467  }
3468
3469  return setSignedRange(S, ConservativeResult);
3470}
3471
3472/// createSCEV - We know that there is no SCEV for the specified value.
3473/// Analyze the expression.
3474///
3475const SCEV *ScalarEvolution::createSCEV(Value *V) {
3476  if (!isSCEVable(V->getType()))
3477    return getUnknown(V);
3478
3479  unsigned Opcode = Instruction::UserOp1;
3480  if (Instruction *I = dyn_cast<Instruction>(V)) {
3481    Opcode = I->getOpcode();
3482
3483    // Don't attempt to analyze instructions in blocks that aren't
3484    // reachable. Such instructions don't matter, and they aren't required
3485    // to obey basic rules for definitions dominating uses which this
3486    // analysis depends on.
3487    if (!DT->isReachableFromEntry(I->getParent()))
3488      return getUnknown(V);
3489  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3490    Opcode = CE->getOpcode();
3491  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3492    return getConstant(CI);
3493  else if (isa<ConstantPointerNull>(V))
3494    return getConstant(V->getType(), 0);
3495  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3496    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3497  else
3498    return getUnknown(V);
3499
3500  Operator *U = cast<Operator>(V);
3501  switch (Opcode) {
3502  case Instruction::Add: {
3503    // The simple thing to do would be to just call getSCEV on both operands
3504    // and call getAddExpr with the result. However if we're looking at a
3505    // bunch of things all added together, this can be quite inefficient,
3506    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3507    // Instead, gather up all the operands and make a single getAddExpr call.
3508    // LLVM IR canonical form means we need only traverse the left operands.
3509    SmallVector<const SCEV *, 4> AddOps;
3510    AddOps.push_back(getSCEV(U->getOperand(1)));
3511    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3512      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3513      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3514        break;
3515      U = cast<Operator>(Op);
3516      const SCEV *Op1 = getSCEV(U->getOperand(1));
3517      if (Opcode == Instruction::Sub)
3518        AddOps.push_back(getNegativeSCEV(Op1));
3519      else
3520        AddOps.push_back(Op1);
3521    }
3522    AddOps.push_back(getSCEV(U->getOperand(0)));
3523    return getAddExpr(AddOps);
3524  }
3525  case Instruction::Mul: {
3526    // See the Add code above.
3527    SmallVector<const SCEV *, 4> MulOps;
3528    MulOps.push_back(getSCEV(U->getOperand(1)));
3529    for (Value *Op = U->getOperand(0);
3530         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3531         Op = U->getOperand(0)) {
3532      U = cast<Operator>(Op);
3533      MulOps.push_back(getSCEV(U->getOperand(1)));
3534    }
3535    MulOps.push_back(getSCEV(U->getOperand(0)));
3536    return getMulExpr(MulOps);
3537  }
3538  case Instruction::UDiv:
3539    return getUDivExpr(getSCEV(U->getOperand(0)),
3540                       getSCEV(U->getOperand(1)));
3541  case Instruction::Sub:
3542    return getMinusSCEV(getSCEV(U->getOperand(0)),
3543                        getSCEV(U->getOperand(1)));
3544  case Instruction::And:
3545    // For an expression like x&255 that merely masks off the high bits,
3546    // use zext(trunc(x)) as the SCEV expression.
3547    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3548      if (CI->isNullValue())
3549        return getSCEV(U->getOperand(1));
3550      if (CI->isAllOnesValue())
3551        return getSCEV(U->getOperand(0));
3552      const APInt &A = CI->getValue();
3553
3554      // Instcombine's ShrinkDemandedConstant may strip bits out of
3555      // constants, obscuring what would otherwise be a low-bits mask.
3556      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3557      // knew about to reconstruct a low-bits mask value.
3558      unsigned LZ = A.countLeadingZeros();
3559      unsigned BitWidth = A.getBitWidth();
3560      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3561      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3562      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3563
3564      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3565
3566      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3567        return
3568          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3569                                IntegerType::get(getContext(), BitWidth - LZ)),
3570                            U->getType());
3571    }
3572    break;
3573
3574  case Instruction::Or:
3575    // If the RHS of the Or is a constant, we may have something like:
3576    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3577    // optimizations will transparently handle this case.
3578    //
3579    // In order for this transformation to be safe, the LHS must be of the
3580    // form X*(2^n) and the Or constant must be less than 2^n.
3581    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3582      const SCEV *LHS = getSCEV(U->getOperand(0));
3583      const APInt &CIVal = CI->getValue();
3584      if (GetMinTrailingZeros(LHS) >=
3585          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3586        // Build a plain add SCEV.
3587        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3588        // If the LHS of the add was an addrec and it has no-wrap flags,
3589        // transfer the no-wrap flags, since an or won't introduce a wrap.
3590        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3591          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3592          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3593            OldAR->getNoWrapFlags());
3594        }
3595        return S;
3596      }
3597    }
3598    break;
3599  case Instruction::Xor:
3600    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3601      // If the RHS of the xor is a signbit, then this is just an add.
3602      // Instcombine turns add of signbit into xor as a strength reduction step.
3603      if (CI->getValue().isSignBit())
3604        return getAddExpr(getSCEV(U->getOperand(0)),
3605                          getSCEV(U->getOperand(1)));
3606
3607      // If the RHS of xor is -1, then this is a not operation.
3608      if (CI->isAllOnesValue())
3609        return getNotSCEV(getSCEV(U->getOperand(0)));
3610
3611      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3612      // This is a variant of the check for xor with -1, and it handles
3613      // the case where instcombine has trimmed non-demanded bits out
3614      // of an xor with -1.
3615      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3616        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3617          if (BO->getOpcode() == Instruction::And &&
3618              LCI->getValue() == CI->getValue())
3619            if (const SCEVZeroExtendExpr *Z =
3620                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3621              Type *UTy = U->getType();
3622              const SCEV *Z0 = Z->getOperand();
3623              Type *Z0Ty = Z0->getType();
3624              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3625
3626              // If C is a low-bits mask, the zero extend is serving to
3627              // mask off the high bits. Complement the operand and
3628              // re-apply the zext.
3629              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3630                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3631
3632              // If C is a single bit, it may be in the sign-bit position
3633              // before the zero-extend. In this case, represent the xor
3634              // using an add, which is equivalent, and re-apply the zext.
3635              APInt Trunc = CI->getValue().trunc(Z0TySize);
3636              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3637                  Trunc.isSignBit())
3638                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3639                                         UTy);
3640            }
3641    }
3642    break;
3643
3644  case Instruction::Shl:
3645    // Turn shift left of a constant amount into a multiply.
3646    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3647      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3648
3649      // If the shift count is not less than the bitwidth, the result of
3650      // the shift is undefined. Don't try to analyze it, because the
3651      // resolution chosen here may differ from the resolution chosen in
3652      // other parts of the compiler.
3653      if (SA->getValue().uge(BitWidth))
3654        break;
3655
3656      Constant *X = ConstantInt::get(getContext(),
3657        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3658      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3659    }
3660    break;
3661
3662  case Instruction::LShr:
3663    // Turn logical shift right of a constant into a unsigned divide.
3664    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3665      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3666
3667      // If the shift count is not less than the bitwidth, the result of
3668      // the shift is undefined. Don't try to analyze it, because the
3669      // resolution chosen here may differ from the resolution chosen in
3670      // other parts of the compiler.
3671      if (SA->getValue().uge(BitWidth))
3672        break;
3673
3674      Constant *X = ConstantInt::get(getContext(),
3675        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3676      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3677    }
3678    break;
3679
3680  case Instruction::AShr:
3681    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3682    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3683      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3684        if (L->getOpcode() == Instruction::Shl &&
3685            L->getOperand(1) == U->getOperand(1)) {
3686          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3687
3688          // If the shift count is not less than the bitwidth, the result of
3689          // the shift is undefined. Don't try to analyze it, because the
3690          // resolution chosen here may differ from the resolution chosen in
3691          // other parts of the compiler.
3692          if (CI->getValue().uge(BitWidth))
3693            break;
3694
3695          uint64_t Amt = BitWidth - CI->getZExtValue();
3696          if (Amt == BitWidth)
3697            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3698          return
3699            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3700                                              IntegerType::get(getContext(),
3701                                                               Amt)),
3702                              U->getType());
3703        }
3704    break;
3705
3706  case Instruction::Trunc:
3707    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3708
3709  case Instruction::ZExt:
3710    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3711
3712  case Instruction::SExt:
3713    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3714
3715  case Instruction::BitCast:
3716    // BitCasts are no-op casts so we just eliminate the cast.
3717    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3718      return getSCEV(U->getOperand(0));
3719    break;
3720
3721  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3722  // lead to pointer expressions which cannot safely be expanded to GEPs,
3723  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3724  // simplifying integer expressions.
3725
3726  case Instruction::GetElementPtr:
3727    return createNodeForGEP(cast<GEPOperator>(U));
3728
3729  case Instruction::PHI:
3730    return createNodeForPHI(cast<PHINode>(U));
3731
3732  case Instruction::Select:
3733    // This could be a smax or umax that was lowered earlier.
3734    // Try to recover it.
3735    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3736      Value *LHS = ICI->getOperand(0);
3737      Value *RHS = ICI->getOperand(1);
3738      switch (ICI->getPredicate()) {
3739      case ICmpInst::ICMP_SLT:
3740      case ICmpInst::ICMP_SLE:
3741        std::swap(LHS, RHS);
3742        // fall through
3743      case ICmpInst::ICMP_SGT:
3744      case ICmpInst::ICMP_SGE:
3745        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3746        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3747        if (LHS->getType() == U->getType()) {
3748          const SCEV *LS = getSCEV(LHS);
3749          const SCEV *RS = getSCEV(RHS);
3750          const SCEV *LA = getSCEV(U->getOperand(1));
3751          const SCEV *RA = getSCEV(U->getOperand(2));
3752          const SCEV *LDiff = getMinusSCEV(LA, LS);
3753          const SCEV *RDiff = getMinusSCEV(RA, RS);
3754          if (LDiff == RDiff)
3755            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3756          LDiff = getMinusSCEV(LA, RS);
3757          RDiff = getMinusSCEV(RA, LS);
3758          if (LDiff == RDiff)
3759            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3760        }
3761        break;
3762      case ICmpInst::ICMP_ULT:
3763      case ICmpInst::ICMP_ULE:
3764        std::swap(LHS, RHS);
3765        // fall through
3766      case ICmpInst::ICMP_UGT:
3767      case ICmpInst::ICMP_UGE:
3768        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3769        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3770        if (LHS->getType() == U->getType()) {
3771          const SCEV *LS = getSCEV(LHS);
3772          const SCEV *RS = getSCEV(RHS);
3773          const SCEV *LA = getSCEV(U->getOperand(1));
3774          const SCEV *RA = getSCEV(U->getOperand(2));
3775          const SCEV *LDiff = getMinusSCEV(LA, LS);
3776          const SCEV *RDiff = getMinusSCEV(RA, RS);
3777          if (LDiff == RDiff)
3778            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3779          LDiff = getMinusSCEV(LA, RS);
3780          RDiff = getMinusSCEV(RA, LS);
3781          if (LDiff == RDiff)
3782            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3783        }
3784        break;
3785      case ICmpInst::ICMP_NE:
3786        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3787        if (LHS->getType() == U->getType() &&
3788            isa<ConstantInt>(RHS) &&
3789            cast<ConstantInt>(RHS)->isZero()) {
3790          const SCEV *One = getConstant(LHS->getType(), 1);
3791          const SCEV *LS = getSCEV(LHS);
3792          const SCEV *LA = getSCEV(U->getOperand(1));
3793          const SCEV *RA = getSCEV(U->getOperand(2));
3794          const SCEV *LDiff = getMinusSCEV(LA, LS);
3795          const SCEV *RDiff = getMinusSCEV(RA, One);
3796          if (LDiff == RDiff)
3797            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3798        }
3799        break;
3800      case ICmpInst::ICMP_EQ:
3801        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3802        if (LHS->getType() == U->getType() &&
3803            isa<ConstantInt>(RHS) &&
3804            cast<ConstantInt>(RHS)->isZero()) {
3805          const SCEV *One = getConstant(LHS->getType(), 1);
3806          const SCEV *LS = getSCEV(LHS);
3807          const SCEV *LA = getSCEV(U->getOperand(1));
3808          const SCEV *RA = getSCEV(U->getOperand(2));
3809          const SCEV *LDiff = getMinusSCEV(LA, One);
3810          const SCEV *RDiff = getMinusSCEV(RA, LS);
3811          if (LDiff == RDiff)
3812            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3813        }
3814        break;
3815      default:
3816        break;
3817      }
3818    }
3819
3820  default: // We cannot analyze this expression.
3821    break;
3822  }
3823
3824  return getUnknown(V);
3825}
3826
3827
3828
3829//===----------------------------------------------------------------------===//
3830//                   Iteration Count Computation Code
3831//
3832
3833/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3834/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3835/// or not constant. Will also return 0 if the maximum trip count is very large
3836/// (>= 2^32)
3837unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3838                                                    BasicBlock *ExitBlock) {
3839  const SCEVConstant *ExitCount =
3840    dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3841  if (!ExitCount)
3842    return 0;
3843
3844  ConstantInt *ExitConst = ExitCount->getValue();
3845
3846  // Guard against huge trip counts.
3847  if (ExitConst->getValue().getActiveBits() > 32)
3848    return 0;
3849
3850  // In case of integer overflow, this returns 0, which is correct.
3851  return ((unsigned)ExitConst->getZExtValue()) + 1;
3852}
3853
3854/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3855/// trip count of this loop as a normal unsigned value, if possible. This
3856/// means that the actual trip count is always a multiple of the returned
3857/// value (don't forget the trip count could very well be zero as well!).
3858///
3859/// Returns 1 if the trip count is unknown or not guaranteed to be the
3860/// multiple of a constant (which is also the case if the trip count is simply
3861/// constant, use getSmallConstantTripCount for that case), Will also return 1
3862/// if the trip count is very large (>= 2^32).
3863unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3864                                                       BasicBlock *ExitBlock) {
3865  const SCEV *ExitCount = getExitCount(L, ExitBlock);
3866  if (ExitCount == getCouldNotCompute())
3867    return 1;
3868
3869  // Get the trip count from the BE count by adding 1.
3870  const SCEV *TCMul = getAddExpr(ExitCount,
3871                                 getConstant(ExitCount->getType(), 1));
3872  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3873  // to factor simple cases.
3874  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3875    TCMul = Mul->getOperand(0);
3876
3877  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3878  if (!MulC)
3879    return 1;
3880
3881  ConstantInt *Result = MulC->getValue();
3882
3883  // Guard against huge trip counts.
3884  if (!Result || Result->getValue().getActiveBits() > 32)
3885    return 1;
3886
3887  return (unsigned)Result->getZExtValue();
3888}
3889
3890// getExitCount - Get the expression for the number of loop iterations for which
3891// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
3892// SCEVCouldNotCompute.
3893const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3894  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
3895}
3896
3897/// getBackedgeTakenCount - If the specified loop has a predictable
3898/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3899/// object. The backedge-taken count is the number of times the loop header
3900/// will be branched to from within the loop. This is one less than the
3901/// trip count of the loop, since it doesn't count the first iteration,
3902/// when the header is branched to from outside the loop.
3903///
3904/// Note that it is not valid to call this method on a loop without a
3905/// loop-invariant backedge-taken count (see
3906/// hasLoopInvariantBackedgeTakenCount).
3907///
3908const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3909  return getBackedgeTakenInfo(L).getExact(this);
3910}
3911
3912/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3913/// return the least SCEV value that is known never to be less than the
3914/// actual backedge taken count.
3915const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3916  return getBackedgeTakenInfo(L).getMax(this);
3917}
3918
3919/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3920/// onto the given Worklist.
3921static void
3922PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3923  BasicBlock *Header = L->getHeader();
3924
3925  // Push all Loop-header PHIs onto the Worklist stack.
3926  for (BasicBlock::iterator I = Header->begin();
3927       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3928    Worklist.push_back(PN);
3929}
3930
3931const ScalarEvolution::BackedgeTakenInfo &
3932ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3933  // Initially insert an invalid entry for this loop. If the insertion
3934  // succeeds, proceed to actually compute a backedge-taken count and
3935  // update the value. The temporary CouldNotCompute value tells SCEV
3936  // code elsewhere that it shouldn't attempt to request a new
3937  // backedge-taken count, which could result in infinite recursion.
3938  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3939    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
3940  if (!Pair.second)
3941    return Pair.first->second;
3942
3943  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3944  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3945  // must be cleared in this scope.
3946  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3947
3948  if (Result.getExact(this) != getCouldNotCompute()) {
3949    assert(isLoopInvariant(Result.getExact(this), L) &&
3950           isLoopInvariant(Result.getMax(this), L) &&
3951           "Computed backedge-taken count isn't loop invariant for loop!");
3952    ++NumTripCountsComputed;
3953  }
3954  else if (Result.getMax(this) == getCouldNotCompute() &&
3955           isa<PHINode>(L->getHeader()->begin())) {
3956    // Only count loops that have phi nodes as not being computable.
3957    ++NumTripCountsNotComputed;
3958  }
3959
3960  // Now that we know more about the trip count for this loop, forget any
3961  // existing SCEV values for PHI nodes in this loop since they are only
3962  // conservative estimates made without the benefit of trip count
3963  // information. This is similar to the code in forgetLoop, except that
3964  // it handles SCEVUnknown PHI nodes specially.
3965  if (Result.hasAnyInfo()) {
3966    SmallVector<Instruction *, 16> Worklist;
3967    PushLoopPHIs(L, Worklist);
3968
3969    SmallPtrSet<Instruction *, 8> Visited;
3970    while (!Worklist.empty()) {
3971      Instruction *I = Worklist.pop_back_val();
3972      if (!Visited.insert(I)) continue;
3973
3974      ValueExprMapType::iterator It =
3975        ValueExprMap.find(static_cast<Value *>(I));
3976      if (It != ValueExprMap.end()) {
3977        const SCEV *Old = It->second;
3978
3979        // SCEVUnknown for a PHI either means that it has an unrecognized
3980        // structure, or it's a PHI that's in the progress of being computed
3981        // by createNodeForPHI.  In the former case, additional loop trip
3982        // count information isn't going to change anything. In the later
3983        // case, createNodeForPHI will perform the necessary updates on its
3984        // own when it gets to that point.
3985        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3986          forgetMemoizedResults(Old);
3987          ValueExprMap.erase(It);
3988        }
3989        if (PHINode *PN = dyn_cast<PHINode>(I))
3990          ConstantEvolutionLoopExitValue.erase(PN);
3991      }
3992
3993      PushDefUseChildren(I, Worklist);
3994    }
3995  }
3996
3997  // Re-lookup the insert position, since the call to
3998  // ComputeBackedgeTakenCount above could result in a
3999  // recusive call to getBackedgeTakenInfo (on a different
4000  // loop), which would invalidate the iterator computed
4001  // earlier.
4002  return BackedgeTakenCounts.find(L)->second = Result;
4003}
4004
4005/// forgetLoop - This method should be called by the client when it has
4006/// changed a loop in a way that may effect ScalarEvolution's ability to
4007/// compute a trip count, or if the loop is deleted.
4008void ScalarEvolution::forgetLoop(const Loop *L) {
4009  // Drop any stored trip count value.
4010  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4011    BackedgeTakenCounts.find(L);
4012  if (BTCPos != BackedgeTakenCounts.end()) {
4013    BTCPos->second.clear();
4014    BackedgeTakenCounts.erase(BTCPos);
4015  }
4016
4017  // Drop information about expressions based on loop-header PHIs.
4018  SmallVector<Instruction *, 16> Worklist;
4019  PushLoopPHIs(L, Worklist);
4020
4021  SmallPtrSet<Instruction *, 8> Visited;
4022  while (!Worklist.empty()) {
4023    Instruction *I = Worklist.pop_back_val();
4024    if (!Visited.insert(I)) continue;
4025
4026    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4027    if (It != ValueExprMap.end()) {
4028      forgetMemoizedResults(It->second);
4029      ValueExprMap.erase(It);
4030      if (PHINode *PN = dyn_cast<PHINode>(I))
4031        ConstantEvolutionLoopExitValue.erase(PN);
4032    }
4033
4034    PushDefUseChildren(I, Worklist);
4035  }
4036
4037  // Forget all contained loops too, to avoid dangling entries in the
4038  // ValuesAtScopes map.
4039  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4040    forgetLoop(*I);
4041}
4042
4043/// forgetValue - This method should be called by the client when it has
4044/// changed a value in a way that may effect its value, or which may
4045/// disconnect it from a def-use chain linking it to a loop.
4046void ScalarEvolution::forgetValue(Value *V) {
4047  Instruction *I = dyn_cast<Instruction>(V);
4048  if (!I) return;
4049
4050  // Drop information about expressions based on loop-header PHIs.
4051  SmallVector<Instruction *, 16> Worklist;
4052  Worklist.push_back(I);
4053
4054  SmallPtrSet<Instruction *, 8> Visited;
4055  while (!Worklist.empty()) {
4056    I = Worklist.pop_back_val();
4057    if (!Visited.insert(I)) continue;
4058
4059    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4060    if (It != ValueExprMap.end()) {
4061      forgetMemoizedResults(It->second);
4062      ValueExprMap.erase(It);
4063      if (PHINode *PN = dyn_cast<PHINode>(I))
4064        ConstantEvolutionLoopExitValue.erase(PN);
4065    }
4066
4067    PushDefUseChildren(I, Worklist);
4068  }
4069}
4070
4071/// getExact - Get the exact loop backedge taken count considering all loop
4072/// exits. If all exits are computable, this is the minimum computed count.
4073const SCEV *
4074ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4075  // If any exits were not computable, the loop is not computable.
4076  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4077
4078  // We need at least one computable exit.
4079  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4080  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4081
4082  const SCEV *BECount = 0;
4083  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4084       ENT != 0; ENT = ENT->getNextExit()) {
4085
4086    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4087
4088    if (!BECount)
4089      BECount = ENT->ExactNotTaken;
4090    else
4091      BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4092  }
4093  assert(BECount && "Invalid not taken count for loop exit");
4094  return BECount;
4095}
4096
4097/// getExact - Get the exact not taken count for this loop exit.
4098const SCEV *
4099ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4100                                             ScalarEvolution *SE) const {
4101  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4102       ENT != 0; ENT = ENT->getNextExit()) {
4103
4104    if (ENT->ExitingBlock == ExitingBlock)
4105      return ENT->ExactNotTaken;
4106  }
4107  return SE->getCouldNotCompute();
4108}
4109
4110/// getMax - Get the max backedge taken count for the loop.
4111const SCEV *
4112ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4113  return Max ? Max : SE->getCouldNotCompute();
4114}
4115
4116/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4117/// computable exit into a persistent ExitNotTakenInfo array.
4118ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4119  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4120  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4121
4122  if (!Complete)
4123    ExitNotTaken.setIncomplete();
4124
4125  unsigned NumExits = ExitCounts.size();
4126  if (NumExits == 0) return;
4127
4128  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4129  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4130  if (NumExits == 1) return;
4131
4132  // Handle the rare case of multiple computable exits.
4133  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4134
4135  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4136  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4137    PrevENT->setNextExit(ENT);
4138    ENT->ExitingBlock = ExitCounts[i].first;
4139    ENT->ExactNotTaken = ExitCounts[i].second;
4140  }
4141}
4142
4143/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4144void ScalarEvolution::BackedgeTakenInfo::clear() {
4145  ExitNotTaken.ExitingBlock = 0;
4146  ExitNotTaken.ExactNotTaken = 0;
4147  delete[] ExitNotTaken.getNextExit();
4148}
4149
4150/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4151/// of the specified loop will execute.
4152ScalarEvolution::BackedgeTakenInfo
4153ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4154  SmallVector<BasicBlock *, 8> ExitingBlocks;
4155  L->getExitingBlocks(ExitingBlocks);
4156
4157  // Examine all exits and pick the most conservative values.
4158  const SCEV *MaxBECount = getCouldNotCompute();
4159  bool CouldComputeBECount = true;
4160  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4161  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4162    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4163    if (EL.Exact == getCouldNotCompute())
4164      // We couldn't compute an exact value for this exit, so
4165      // we won't be able to compute an exact value for the loop.
4166      CouldComputeBECount = false;
4167    else
4168      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4169
4170    if (MaxBECount == getCouldNotCompute())
4171      MaxBECount = EL.Max;
4172    else if (EL.Max != getCouldNotCompute())
4173      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
4174  }
4175
4176  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4177}
4178
4179/// ComputeExitLimit - Compute the number of times the backedge of the specified
4180/// loop will execute if it exits via the specified block.
4181ScalarEvolution::ExitLimit
4182ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4183
4184  // Okay, we've chosen an exiting block.  See what condition causes us to
4185  // exit at this block.
4186  //
4187  // FIXME: we should be able to handle switch instructions (with a single exit)
4188  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4189  if (ExitBr == 0) return getCouldNotCompute();
4190  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4191
4192  // At this point, we know we have a conditional branch that determines whether
4193  // the loop is exited.  However, we don't know if the branch is executed each
4194  // time through the loop.  If not, then the execution count of the branch will
4195  // not be equal to the trip count of the loop.
4196  //
4197  // Currently we check for this by checking to see if the Exit branch goes to
4198  // the loop header.  If so, we know it will always execute the same number of
4199  // times as the loop.  We also handle the case where the exit block *is* the
4200  // loop header.  This is common for un-rotated loops.
4201  //
4202  // If both of those tests fail, walk up the unique predecessor chain to the
4203  // header, stopping if there is an edge that doesn't exit the loop. If the
4204  // header is reached, the execution count of the branch will be equal to the
4205  // trip count of the loop.
4206  //
4207  //  More extensive analysis could be done to handle more cases here.
4208  //
4209  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4210      ExitBr->getSuccessor(1) != L->getHeader() &&
4211      ExitBr->getParent() != L->getHeader()) {
4212    // The simple checks failed, try climbing the unique predecessor chain
4213    // up to the header.
4214    bool Ok = false;
4215    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4216      BasicBlock *Pred = BB->getUniquePredecessor();
4217      if (!Pred)
4218        return getCouldNotCompute();
4219      TerminatorInst *PredTerm = Pred->getTerminator();
4220      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4221        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4222        if (PredSucc == BB)
4223          continue;
4224        // If the predecessor has a successor that isn't BB and isn't
4225        // outside the loop, assume the worst.
4226        if (L->contains(PredSucc))
4227          return getCouldNotCompute();
4228      }
4229      if (Pred == L->getHeader()) {
4230        Ok = true;
4231        break;
4232      }
4233      BB = Pred;
4234    }
4235    if (!Ok)
4236      return getCouldNotCompute();
4237  }
4238
4239  // Proceed to the next level to examine the exit condition expression.
4240  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4241                                  ExitBr->getSuccessor(0),
4242                                  ExitBr->getSuccessor(1));
4243}
4244
4245/// ComputeExitLimitFromCond - Compute the number of times the
4246/// backedge of the specified loop will execute if its exit condition
4247/// were a conditional branch of ExitCond, TBB, and FBB.
4248ScalarEvolution::ExitLimit
4249ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4250                                          Value *ExitCond,
4251                                          BasicBlock *TBB,
4252                                          BasicBlock *FBB) {
4253  // Check if the controlling expression for this loop is an And or Or.
4254  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4255    if (BO->getOpcode() == Instruction::And) {
4256      // Recurse on the operands of the and.
4257      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4258      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4259      const SCEV *BECount = getCouldNotCompute();
4260      const SCEV *MaxBECount = getCouldNotCompute();
4261      if (L->contains(TBB)) {
4262        // Both conditions must be true for the loop to continue executing.
4263        // Choose the less conservative count.
4264        if (EL0.Exact == getCouldNotCompute() ||
4265            EL1.Exact == getCouldNotCompute())
4266          BECount = getCouldNotCompute();
4267        else
4268          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4269        if (EL0.Max == getCouldNotCompute())
4270          MaxBECount = EL1.Max;
4271        else if (EL1.Max == getCouldNotCompute())
4272          MaxBECount = EL0.Max;
4273        else
4274          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4275      } else {
4276        // Both conditions must be true at the same time for the loop to exit.
4277        // For now, be conservative.
4278        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4279        if (EL0.Max == EL1.Max)
4280          MaxBECount = EL0.Max;
4281        if (EL0.Exact == EL1.Exact)
4282          BECount = EL0.Exact;
4283      }
4284
4285      return ExitLimit(BECount, MaxBECount);
4286    }
4287    if (BO->getOpcode() == Instruction::Or) {
4288      // Recurse on the operands of the or.
4289      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4290      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4291      const SCEV *BECount = getCouldNotCompute();
4292      const SCEV *MaxBECount = getCouldNotCompute();
4293      if (L->contains(FBB)) {
4294        // Both conditions must be false for the loop to continue executing.
4295        // Choose the less conservative count.
4296        if (EL0.Exact == getCouldNotCompute() ||
4297            EL1.Exact == getCouldNotCompute())
4298          BECount = getCouldNotCompute();
4299        else
4300          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4301        if (EL0.Max == getCouldNotCompute())
4302          MaxBECount = EL1.Max;
4303        else if (EL1.Max == getCouldNotCompute())
4304          MaxBECount = EL0.Max;
4305        else
4306          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4307      } else {
4308        // Both conditions must be false at the same time for the loop to exit.
4309        // For now, be conservative.
4310        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4311        if (EL0.Max == EL1.Max)
4312          MaxBECount = EL0.Max;
4313        if (EL0.Exact == EL1.Exact)
4314          BECount = EL0.Exact;
4315      }
4316
4317      return ExitLimit(BECount, MaxBECount);
4318    }
4319  }
4320
4321  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4322  // Proceed to the next level to examine the icmp.
4323  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4324    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4325
4326  // Check for a constant condition. These are normally stripped out by
4327  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4328  // preserve the CFG and is temporarily leaving constant conditions
4329  // in place.
4330  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4331    if (L->contains(FBB) == !CI->getZExtValue())
4332      // The backedge is always taken.
4333      return getCouldNotCompute();
4334    else
4335      // The backedge is never taken.
4336      return getConstant(CI->getType(), 0);
4337  }
4338
4339  // If it's not an integer or pointer comparison then compute it the hard way.
4340  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4341}
4342
4343/// ComputeExitLimitFromICmp - Compute the number of times the
4344/// backedge of the specified loop will execute if its exit condition
4345/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4346ScalarEvolution::ExitLimit
4347ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4348                                          ICmpInst *ExitCond,
4349                                          BasicBlock *TBB,
4350                                          BasicBlock *FBB) {
4351
4352  // If the condition was exit on true, convert the condition to exit on false
4353  ICmpInst::Predicate Cond;
4354  if (!L->contains(FBB))
4355    Cond = ExitCond->getPredicate();
4356  else
4357    Cond = ExitCond->getInversePredicate();
4358
4359  // Handle common loops like: for (X = "string"; *X; ++X)
4360  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4361    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4362      ExitLimit ItCnt =
4363        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4364      if (ItCnt.hasAnyInfo())
4365        return ItCnt;
4366    }
4367
4368  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4369  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4370
4371  // Try to evaluate any dependencies out of the loop.
4372  LHS = getSCEVAtScope(LHS, L);
4373  RHS = getSCEVAtScope(RHS, L);
4374
4375  // At this point, we would like to compute how many iterations of the
4376  // loop the predicate will return true for these inputs.
4377  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4378    // If there is a loop-invariant, force it into the RHS.
4379    std::swap(LHS, RHS);
4380    Cond = ICmpInst::getSwappedPredicate(Cond);
4381  }
4382
4383  // Simplify the operands before analyzing them.
4384  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4385
4386  // If we have a comparison of a chrec against a constant, try to use value
4387  // ranges to answer this query.
4388  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4389    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4390      if (AddRec->getLoop() == L) {
4391        // Form the constant range.
4392        ConstantRange CompRange(
4393            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4394
4395        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4396        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4397      }
4398
4399  switch (Cond) {
4400  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4401    // Convert to: while (X-Y != 0)
4402    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4403    if (EL.hasAnyInfo()) return EL;
4404    break;
4405  }
4406  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4407    // Convert to: while (X-Y == 0)
4408    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4409    if (EL.hasAnyInfo()) return EL;
4410    break;
4411  }
4412  case ICmpInst::ICMP_SLT: {
4413    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4414    if (EL.hasAnyInfo()) return EL;
4415    break;
4416  }
4417  case ICmpInst::ICMP_SGT: {
4418    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4419                                             getNotSCEV(RHS), L, true);
4420    if (EL.hasAnyInfo()) return EL;
4421    break;
4422  }
4423  case ICmpInst::ICMP_ULT: {
4424    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4425    if (EL.hasAnyInfo()) return EL;
4426    break;
4427  }
4428  case ICmpInst::ICMP_UGT: {
4429    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4430                                             getNotSCEV(RHS), L, false);
4431    if (EL.hasAnyInfo()) return EL;
4432    break;
4433  }
4434  default:
4435#if 0
4436    dbgs() << "ComputeBackedgeTakenCount ";
4437    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4438      dbgs() << "[unsigned] ";
4439    dbgs() << *LHS << "   "
4440         << Instruction::getOpcodeName(Instruction::ICmp)
4441         << "   " << *RHS << "\n";
4442#endif
4443    break;
4444  }
4445  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4446}
4447
4448static ConstantInt *
4449EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4450                                ScalarEvolution &SE) {
4451  const SCEV *InVal = SE.getConstant(C);
4452  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4453  assert(isa<SCEVConstant>(Val) &&
4454         "Evaluation of SCEV at constant didn't fold correctly?");
4455  return cast<SCEVConstant>(Val)->getValue();
4456}
4457
4458/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4459/// and a GEP expression (missing the pointer index) indexing into it, return
4460/// the addressed element of the initializer or null if the index expression is
4461/// invalid.
4462static Constant *
4463GetAddressedElementFromGlobal(GlobalVariable *GV,
4464                              const std::vector<ConstantInt*> &Indices) {
4465  Constant *Init = GV->getInitializer();
4466  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4467    uint64_t Idx = Indices[i]->getZExtValue();
4468    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4469      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4470      Init = cast<Constant>(CS->getOperand(Idx));
4471    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4472      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4473      Init = cast<Constant>(CA->getOperand(Idx));
4474    } else if (isa<ConstantAggregateZero>(Init)) {
4475      if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
4476        assert(Idx < STy->getNumElements() && "Bad struct index!");
4477        Init = Constant::getNullValue(STy->getElementType(Idx));
4478      } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4479        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4480        Init = Constant::getNullValue(ATy->getElementType());
4481      } else {
4482        llvm_unreachable("Unknown constant aggregate type!");
4483      }
4484      return 0;
4485    } else {
4486      return 0; // Unknown initializer type
4487    }
4488  }
4489  return Init;
4490}
4491
4492/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4493/// 'icmp op load X, cst', try to see if we can compute the backedge
4494/// execution count.
4495ScalarEvolution::ExitLimit
4496ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4497  LoadInst *LI,
4498  Constant *RHS,
4499  const Loop *L,
4500  ICmpInst::Predicate predicate) {
4501
4502  if (LI->isVolatile()) return getCouldNotCompute();
4503
4504  // Check to see if the loaded pointer is a getelementptr of a global.
4505  // TODO: Use SCEV instead of manually grubbing with GEPs.
4506  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4507  if (!GEP) return getCouldNotCompute();
4508
4509  // Make sure that it is really a constant global we are gepping, with an
4510  // initializer, and make sure the first IDX is really 0.
4511  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4512  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4513      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4514      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4515    return getCouldNotCompute();
4516
4517  // Okay, we allow one non-constant index into the GEP instruction.
4518  Value *VarIdx = 0;
4519  std::vector<ConstantInt*> Indexes;
4520  unsigned VarIdxNum = 0;
4521  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4522    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4523      Indexes.push_back(CI);
4524    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4525      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4526      VarIdx = GEP->getOperand(i);
4527      VarIdxNum = i-2;
4528      Indexes.push_back(0);
4529    }
4530
4531  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4532  // Check to see if X is a loop variant variable value now.
4533  const SCEV *Idx = getSCEV(VarIdx);
4534  Idx = getSCEVAtScope(Idx, L);
4535
4536  // We can only recognize very limited forms of loop index expressions, in
4537  // particular, only affine AddRec's like {C1,+,C2}.
4538  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4539  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4540      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4541      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4542    return getCouldNotCompute();
4543
4544  unsigned MaxSteps = MaxBruteForceIterations;
4545  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4546    ConstantInt *ItCst = ConstantInt::get(
4547                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4548    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4549
4550    // Form the GEP offset.
4551    Indexes[VarIdxNum] = Val;
4552
4553    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4554    if (Result == 0) break;  // Cannot compute!
4555
4556    // Evaluate the condition for this iteration.
4557    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4558    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4559    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4560#if 0
4561      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4562             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4563             << "***\n";
4564#endif
4565      ++NumArrayLenItCounts;
4566      return getConstant(ItCst);   // Found terminating iteration!
4567    }
4568  }
4569  return getCouldNotCompute();
4570}
4571
4572
4573/// CanConstantFold - Return true if we can constant fold an instruction of the
4574/// specified type, assuming that all operands were constants.
4575static bool CanConstantFold(const Instruction *I) {
4576  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4577      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4578    return true;
4579
4580  if (const CallInst *CI = dyn_cast<CallInst>(I))
4581    if (const Function *F = CI->getCalledFunction())
4582      return canConstantFoldCallTo(F);
4583  return false;
4584}
4585
4586/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4587/// in the loop that V is derived from.  We allow arbitrary operations along the
4588/// way, but the operands of an operation must either be constants or a value
4589/// derived from a constant PHI.  If this expression does not fit with these
4590/// constraints, return null.
4591static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4592  // If this is not an instruction, or if this is an instruction outside of the
4593  // loop, it can't be derived from a loop PHI.
4594  Instruction *I = dyn_cast<Instruction>(V);
4595  if (I == 0 || !L->contains(I)) return 0;
4596
4597  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4598    if (L->getHeader() == I->getParent())
4599      return PN;
4600    else
4601      // We don't currently keep track of the control flow needed to evaluate
4602      // PHIs, so we cannot handle PHIs inside of loops.
4603      return 0;
4604  }
4605
4606  // If we won't be able to constant fold this expression even if the operands
4607  // are constants, return early.
4608  if (!CanConstantFold(I)) return 0;
4609
4610  // Otherwise, we can evaluate this instruction if all of its operands are
4611  // constant or derived from a PHI node themselves.
4612  PHINode *PHI = 0;
4613  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4614    if (!isa<Constant>(I->getOperand(Op))) {
4615      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4616      if (P == 0) return 0;  // Not evolving from PHI
4617      if (PHI == 0)
4618        PHI = P;
4619      else if (PHI != P)
4620        return 0;  // Evolving from multiple different PHIs.
4621    }
4622
4623  // This is a expression evolving from a constant PHI!
4624  return PHI;
4625}
4626
4627/// EvaluateExpression - Given an expression that passes the
4628/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4629/// in the loop has the value PHIVal.  If we can't fold this expression for some
4630/// reason, return null.
4631static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4632                                    const TargetData *TD) {
4633  if (isa<PHINode>(V)) return PHIVal;
4634  if (Constant *C = dyn_cast<Constant>(V)) return C;
4635  Instruction *I = cast<Instruction>(V);
4636
4637  std::vector<Constant*> Operands(I->getNumOperands());
4638
4639  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4640    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4641    if (Operands[i] == 0) return 0;
4642  }
4643
4644  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4645    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4646                                           Operands[1], TD);
4647  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
4648}
4649
4650/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4651/// in the header of its containing loop, we know the loop executes a
4652/// constant number of times, and the PHI node is just a recurrence
4653/// involving constants, fold it.
4654Constant *
4655ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4656                                                   const APInt &BEs,
4657                                                   const Loop *L) {
4658  DenseMap<PHINode*, Constant*>::const_iterator I =
4659    ConstantEvolutionLoopExitValue.find(PN);
4660  if (I != ConstantEvolutionLoopExitValue.end())
4661    return I->second;
4662
4663  if (BEs.ugt(MaxBruteForceIterations))
4664    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4665
4666  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4667
4668  // Since the loop is canonicalized, the PHI node must have two entries.  One
4669  // entry must be a constant (coming in from outside of the loop), and the
4670  // second must be derived from the same PHI.
4671  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4672  Constant *StartCST =
4673    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4674  if (StartCST == 0)
4675    return RetVal = 0;  // Must be a constant.
4676
4677  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4678  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4679      !isa<Constant>(BEValue))
4680    return RetVal = 0;  // Not derived from same PHI.
4681
4682  // Execute the loop symbolically to determine the exit value.
4683  if (BEs.getActiveBits() >= 32)
4684    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4685
4686  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4687  unsigned IterationNum = 0;
4688  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4689    if (IterationNum == NumIterations)
4690      return RetVal = PHIVal;  // Got exit value!
4691
4692    // Compute the value of the PHI node for the next iteration.
4693    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4694    if (NextPHI == PHIVal)
4695      return RetVal = NextPHI;  // Stopped evolving!
4696    if (NextPHI == 0)
4697      return 0;        // Couldn't evaluate!
4698    PHIVal = NextPHI;
4699  }
4700}
4701
4702/// ComputeExitCountExhaustively - If the loop is known to execute a
4703/// constant number of times (the condition evolves only from constants),
4704/// try to evaluate a few iterations of the loop until we get the exit
4705/// condition gets a value of ExitWhen (true or false).  If we cannot
4706/// evaluate the trip count of the loop, return getCouldNotCompute().
4707const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4708                                                           Value *Cond,
4709                                                           bool ExitWhen) {
4710  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4711  if (PN == 0) return getCouldNotCompute();
4712
4713  // If the loop is canonicalized, the PHI will have exactly two entries.
4714  // That's the only form we support here.
4715  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4716
4717  // One entry must be a constant (coming in from outside of the loop), and the
4718  // second must be derived from the same PHI.
4719  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4720  Constant *StartCST =
4721    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4722  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4723
4724  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4725  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4726      !isa<Constant>(BEValue))
4727    return getCouldNotCompute();  // Not derived from same PHI.
4728
4729  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4730  // the loop symbolically to determine when the condition gets a value of
4731  // "ExitWhen".
4732  unsigned IterationNum = 0;
4733  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4734  for (Constant *PHIVal = StartCST;
4735       IterationNum != MaxIterations; ++IterationNum) {
4736    ConstantInt *CondVal =
4737      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4738
4739    // Couldn't symbolically evaluate.
4740    if (!CondVal) return getCouldNotCompute();
4741
4742    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4743      ++NumBruteForceTripCountsComputed;
4744      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4745    }
4746
4747    // Compute the value of the PHI node for the next iteration.
4748    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4749    if (NextPHI == 0 || NextPHI == PHIVal)
4750      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4751    PHIVal = NextPHI;
4752  }
4753
4754  // Too many iterations were needed to evaluate.
4755  return getCouldNotCompute();
4756}
4757
4758/// getSCEVAtScope - Return a SCEV expression for the specified value
4759/// at the specified scope in the program.  The L value specifies a loop
4760/// nest to evaluate the expression at, where null is the top-level or a
4761/// specified loop is immediately inside of the loop.
4762///
4763/// This method can be used to compute the exit value for a variable defined
4764/// in a loop by querying what the value will hold in the parent loop.
4765///
4766/// In the case that a relevant loop exit value cannot be computed, the
4767/// original value V is returned.
4768const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4769  // Check to see if we've folded this expression at this loop before.
4770  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4771  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4772    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4773  if (!Pair.second)
4774    return Pair.first->second ? Pair.first->second : V;
4775
4776  // Otherwise compute it.
4777  const SCEV *C = computeSCEVAtScope(V, L);
4778  ValuesAtScopes[V][L] = C;
4779  return C;
4780}
4781
4782const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4783  if (isa<SCEVConstant>(V)) return V;
4784
4785  // If this instruction is evolved from a constant-evolving PHI, compute the
4786  // exit value from the loop without using SCEVs.
4787  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4788    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4789      const Loop *LI = (*this->LI)[I->getParent()];
4790      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4791        if (PHINode *PN = dyn_cast<PHINode>(I))
4792          if (PN->getParent() == LI->getHeader()) {
4793            // Okay, there is no closed form solution for the PHI node.  Check
4794            // to see if the loop that contains it has a known backedge-taken
4795            // count.  If so, we may be able to force computation of the exit
4796            // value.
4797            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4798            if (const SCEVConstant *BTCC =
4799                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4800              // Okay, we know how many times the containing loop executes.  If
4801              // this is a constant evolving PHI node, get the final value at
4802              // the specified iteration number.
4803              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4804                                                   BTCC->getValue()->getValue(),
4805                                                               LI);
4806              if (RV) return getSCEV(RV);
4807            }
4808          }
4809
4810      // Okay, this is an expression that we cannot symbolically evaluate
4811      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4812      // the arguments into constants, and if so, try to constant propagate the
4813      // result.  This is particularly useful for computing loop exit values.
4814      if (CanConstantFold(I)) {
4815        SmallVector<Constant *, 4> Operands;
4816        bool MadeImprovement = false;
4817        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4818          Value *Op = I->getOperand(i);
4819          if (Constant *C = dyn_cast<Constant>(Op)) {
4820            Operands.push_back(C);
4821            continue;
4822          }
4823
4824          // If any of the operands is non-constant and if they are
4825          // non-integer and non-pointer, don't even try to analyze them
4826          // with scev techniques.
4827          if (!isSCEVable(Op->getType()))
4828            return V;
4829
4830          const SCEV *OrigV = getSCEV(Op);
4831          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4832          MadeImprovement |= OrigV != OpV;
4833
4834          Constant *C = 0;
4835          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4836            C = SC->getValue();
4837          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4838            C = dyn_cast<Constant>(SU->getValue());
4839          if (!C) return V;
4840          if (C->getType() != Op->getType())
4841            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4842                                                              Op->getType(),
4843                                                              false),
4844                                      C, Op->getType());
4845          Operands.push_back(C);
4846        }
4847
4848        // Check to see if getSCEVAtScope actually made an improvement.
4849        if (MadeImprovement) {
4850          Constant *C = 0;
4851          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4852            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4853                                                Operands[0], Operands[1], TD);
4854          else
4855            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4856                                         Operands, TD);
4857          if (!C) return V;
4858          return getSCEV(C);
4859        }
4860      }
4861    }
4862
4863    // This is some other type of SCEVUnknown, just return it.
4864    return V;
4865  }
4866
4867  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4868    // Avoid performing the look-up in the common case where the specified
4869    // expression has no loop-variant portions.
4870    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4871      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4872      if (OpAtScope != Comm->getOperand(i)) {
4873        // Okay, at least one of these operands is loop variant but might be
4874        // foldable.  Build a new instance of the folded commutative expression.
4875        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4876                                            Comm->op_begin()+i);
4877        NewOps.push_back(OpAtScope);
4878
4879        for (++i; i != e; ++i) {
4880          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4881          NewOps.push_back(OpAtScope);
4882        }
4883        if (isa<SCEVAddExpr>(Comm))
4884          return getAddExpr(NewOps);
4885        if (isa<SCEVMulExpr>(Comm))
4886          return getMulExpr(NewOps);
4887        if (isa<SCEVSMaxExpr>(Comm))
4888          return getSMaxExpr(NewOps);
4889        if (isa<SCEVUMaxExpr>(Comm))
4890          return getUMaxExpr(NewOps);
4891        llvm_unreachable("Unknown commutative SCEV type!");
4892      }
4893    }
4894    // If we got here, all operands are loop invariant.
4895    return Comm;
4896  }
4897
4898  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4899    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4900    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4901    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4902      return Div;   // must be loop invariant
4903    return getUDivExpr(LHS, RHS);
4904  }
4905
4906  // If this is a loop recurrence for a loop that does not contain L, then we
4907  // are dealing with the final value computed by the loop.
4908  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4909    // First, attempt to evaluate each operand.
4910    // Avoid performing the look-up in the common case where the specified
4911    // expression has no loop-variant portions.
4912    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4913      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4914      if (OpAtScope == AddRec->getOperand(i))
4915        continue;
4916
4917      // Okay, at least one of these operands is loop variant but might be
4918      // foldable.  Build a new instance of the folded commutative expression.
4919      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4920                                          AddRec->op_begin()+i);
4921      NewOps.push_back(OpAtScope);
4922      for (++i; i != e; ++i)
4923        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4924
4925      const SCEV *FoldedRec =
4926        getAddRecExpr(NewOps, AddRec->getLoop(),
4927                      AddRec->getNoWrapFlags(SCEV::FlagNW));
4928      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
4929      // The addrec may be folded to a nonrecurrence, for example, if the
4930      // induction variable is multiplied by zero after constant folding. Go
4931      // ahead and return the folded value.
4932      if (!AddRec)
4933        return FoldedRec;
4934      break;
4935    }
4936
4937    // If the scope is outside the addrec's loop, evaluate it by using the
4938    // loop exit value of the addrec.
4939    if (!AddRec->getLoop()->contains(L)) {
4940      // To evaluate this recurrence, we need to know how many times the AddRec
4941      // loop iterates.  Compute this now.
4942      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4943      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4944
4945      // Then, evaluate the AddRec.
4946      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4947    }
4948
4949    return AddRec;
4950  }
4951
4952  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4953    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4954    if (Op == Cast->getOperand())
4955      return Cast;  // must be loop invariant
4956    return getZeroExtendExpr(Op, Cast->getType());
4957  }
4958
4959  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4960    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4961    if (Op == Cast->getOperand())
4962      return Cast;  // must be loop invariant
4963    return getSignExtendExpr(Op, Cast->getType());
4964  }
4965
4966  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4967    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4968    if (Op == Cast->getOperand())
4969      return Cast;  // must be loop invariant
4970    return getTruncateExpr(Op, Cast->getType());
4971  }
4972
4973  llvm_unreachable("Unknown SCEV type!");
4974  return 0;
4975}
4976
4977/// getSCEVAtScope - This is a convenience function which does
4978/// getSCEVAtScope(getSCEV(V), L).
4979const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4980  return getSCEVAtScope(getSCEV(V), L);
4981}
4982
4983/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4984/// following equation:
4985///
4986///     A * X = B (mod N)
4987///
4988/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4989/// A and B isn't important.
4990///
4991/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4992static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4993                                               ScalarEvolution &SE) {
4994  uint32_t BW = A.getBitWidth();
4995  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4996  assert(A != 0 && "A must be non-zero.");
4997
4998  // 1. D = gcd(A, N)
4999  //
5000  // The gcd of A and N may have only one prime factor: 2. The number of
5001  // trailing zeros in A is its multiplicity
5002  uint32_t Mult2 = A.countTrailingZeros();
5003  // D = 2^Mult2
5004
5005  // 2. Check if B is divisible by D.
5006  //
5007  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5008  // is not less than multiplicity of this prime factor for D.
5009  if (B.countTrailingZeros() < Mult2)
5010    return SE.getCouldNotCompute();
5011
5012  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5013  // modulo (N / D).
5014  //
5015  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5016  // bit width during computations.
5017  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5018  APInt Mod(BW + 1, 0);
5019  Mod.setBit(BW - Mult2);  // Mod = N / D
5020  APInt I = AD.multiplicativeInverse(Mod);
5021
5022  // 4. Compute the minimum unsigned root of the equation:
5023  // I * (B / D) mod (N / D)
5024  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5025
5026  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5027  // bits.
5028  return SE.getConstant(Result.trunc(BW));
5029}
5030
5031/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5032/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5033/// might be the same) or two SCEVCouldNotCompute objects.
5034///
5035static std::pair<const SCEV *,const SCEV *>
5036SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5037  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5038  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5039  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5040  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5041
5042  // We currently can only solve this if the coefficients are constants.
5043  if (!LC || !MC || !NC) {
5044    const SCEV *CNC = SE.getCouldNotCompute();
5045    return std::make_pair(CNC, CNC);
5046  }
5047
5048  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5049  const APInt &L = LC->getValue()->getValue();
5050  const APInt &M = MC->getValue()->getValue();
5051  const APInt &N = NC->getValue()->getValue();
5052  APInt Two(BitWidth, 2);
5053  APInt Four(BitWidth, 4);
5054
5055  {
5056    using namespace APIntOps;
5057    const APInt& C = L;
5058    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5059    // The B coefficient is M-N/2
5060    APInt B(M);
5061    B -= sdiv(N,Two);
5062
5063    // The A coefficient is N/2
5064    APInt A(N.sdiv(Two));
5065
5066    // Compute the B^2-4ac term.
5067    APInt SqrtTerm(B);
5068    SqrtTerm *= B;
5069    SqrtTerm -= Four * (A * C);
5070
5071    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5072    // integer value or else APInt::sqrt() will assert.
5073    APInt SqrtVal(SqrtTerm.sqrt());
5074
5075    // Compute the two solutions for the quadratic formula.
5076    // The divisions must be performed as signed divisions.
5077    APInt NegB(-B);
5078    APInt TwoA( A << 1 );
5079    if (TwoA.isMinValue()) {
5080      const SCEV *CNC = SE.getCouldNotCompute();
5081      return std::make_pair(CNC, CNC);
5082    }
5083
5084    LLVMContext &Context = SE.getContext();
5085
5086    ConstantInt *Solution1 =
5087      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5088    ConstantInt *Solution2 =
5089      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5090
5091    return std::make_pair(SE.getConstant(Solution1),
5092                          SE.getConstant(Solution2));
5093    } // end APIntOps namespace
5094}
5095
5096/// HowFarToZero - Return the number of times a backedge comparing the specified
5097/// value to zero will execute.  If not computable, return CouldNotCompute.
5098///
5099/// This is only used for loops with a "x != y" exit test. The exit condition is
5100/// now expressed as a single expression, V = x-y. So the exit test is
5101/// effectively V != 0.  We know and take advantage of the fact that this
5102/// expression only being used in a comparison by zero context.
5103ScalarEvolution::ExitLimit
5104ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5105  // If the value is a constant
5106  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5107    // If the value is already zero, the branch will execute zero times.
5108    if (C->getValue()->isZero()) return C;
5109    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5110  }
5111
5112  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5113  if (!AddRec || AddRec->getLoop() != L)
5114    return getCouldNotCompute();
5115
5116  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5117  // the quadratic equation to solve it.
5118  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5119    std::pair<const SCEV *,const SCEV *> Roots =
5120      SolveQuadraticEquation(AddRec, *this);
5121    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5122    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5123    if (R1 && R2) {
5124#if 0
5125      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5126             << "  sol#2: " << *R2 << "\n";
5127#endif
5128      // Pick the smallest positive root value.
5129      if (ConstantInt *CB =
5130          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5131                                                      R1->getValue(),
5132                                                      R2->getValue()))) {
5133        if (CB->getZExtValue() == false)
5134          std::swap(R1, R2);   // R1 is the minimum root now.
5135
5136        // We can only use this value if the chrec ends up with an exact zero
5137        // value at this index.  When solving for "X*X != 5", for example, we
5138        // should not accept a root of 2.
5139        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5140        if (Val->isZero())
5141          return R1;  // We found a quadratic root!
5142      }
5143    }
5144    return getCouldNotCompute();
5145  }
5146
5147  // Otherwise we can only handle this if it is affine.
5148  if (!AddRec->isAffine())
5149    return getCouldNotCompute();
5150
5151  // If this is an affine expression, the execution count of this branch is
5152  // the minimum unsigned root of the following equation:
5153  //
5154  //     Start + Step*N = 0 (mod 2^BW)
5155  //
5156  // equivalent to:
5157  //
5158  //             Step*N = -Start (mod 2^BW)
5159  //
5160  // where BW is the common bit width of Start and Step.
5161
5162  // Get the initial value for the loop.
5163  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5164  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5165
5166  // For now we handle only constant steps.
5167  //
5168  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5169  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5170  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5171  // We have not yet seen any such cases.
5172  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5173  if (StepC == 0)
5174    return getCouldNotCompute();
5175
5176  // For positive steps (counting up until unsigned overflow):
5177  //   N = -Start/Step (as unsigned)
5178  // For negative steps (counting down to zero):
5179  //   N = Start/-Step
5180  // First compute the unsigned distance from zero in the direction of Step.
5181  bool CountDown = StepC->getValue()->getValue().isNegative();
5182  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5183
5184  // Handle unitary steps, which cannot wraparound.
5185  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5186  //   N = Distance (as unsigned)
5187  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5188    return Distance;
5189
5190  // If the recurrence is known not to wraparound, unsigned divide computes the
5191  // back edge count. We know that the value will either become zero (and thus
5192  // the loop terminates), that the loop will terminate through some other exit
5193  // condition first, or that the loop has undefined behavior.  This means
5194  // we can't "miss" the exit value, even with nonunit stride.
5195  //
5196  // FIXME: Prove that loops always exhibits *acceptable* undefined
5197  // behavior. Loops must exhibit defined behavior until a wrapped value is
5198  // actually used. So the trip count computed by udiv could be smaller than the
5199  // number of well-defined iterations.
5200  if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5201    // FIXME: We really want an "isexact" bit for udiv.
5202    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5203
5204  // Then, try to solve the above equation provided that Start is constant.
5205  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5206    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5207                                        -StartC->getValue()->getValue(),
5208                                        *this);
5209  return getCouldNotCompute();
5210}
5211
5212/// HowFarToNonZero - Return the number of times a backedge checking the
5213/// specified value for nonzero will execute.  If not computable, return
5214/// CouldNotCompute
5215ScalarEvolution::ExitLimit
5216ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5217  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5218  // handle them yet except for the trivial case.  This could be expanded in the
5219  // future as needed.
5220
5221  // If the value is a constant, check to see if it is known to be non-zero
5222  // already.  If so, the backedge will execute zero times.
5223  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5224    if (!C->getValue()->isNullValue())
5225      return getConstant(C->getType(), 0);
5226    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5227  }
5228
5229  // We could implement others, but I really doubt anyone writes loops like
5230  // this, and if they did, they would already be constant folded.
5231  return getCouldNotCompute();
5232}
5233
5234/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5235/// (which may not be an immediate predecessor) which has exactly one
5236/// successor from which BB is reachable, or null if no such block is
5237/// found.
5238///
5239std::pair<BasicBlock *, BasicBlock *>
5240ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5241  // If the block has a unique predecessor, then there is no path from the
5242  // predecessor to the block that does not go through the direct edge
5243  // from the predecessor to the block.
5244  if (BasicBlock *Pred = BB->getSinglePredecessor())
5245    return std::make_pair(Pred, BB);
5246
5247  // A loop's header is defined to be a block that dominates the loop.
5248  // If the header has a unique predecessor outside the loop, it must be
5249  // a block that has exactly one successor that can reach the loop.
5250  if (Loop *L = LI->getLoopFor(BB))
5251    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5252
5253  return std::pair<BasicBlock *, BasicBlock *>();
5254}
5255
5256/// HasSameValue - SCEV structural equivalence is usually sufficient for
5257/// testing whether two expressions are equal, however for the purposes of
5258/// looking for a condition guarding a loop, it can be useful to be a little
5259/// more general, since a front-end may have replicated the controlling
5260/// expression.
5261///
5262static bool HasSameValue(const SCEV *A, const SCEV *B) {
5263  // Quick check to see if they are the same SCEV.
5264  if (A == B) return true;
5265
5266  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5267  // two different instructions with the same value. Check for this case.
5268  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5269    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5270      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5271        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5272          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5273            return true;
5274
5275  // Otherwise assume they may have a different value.
5276  return false;
5277}
5278
5279/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5280/// predicate Pred. Return true iff any changes were made.
5281///
5282bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5283                                           const SCEV *&LHS, const SCEV *&RHS) {
5284  bool Changed = false;
5285
5286  // Canonicalize a constant to the right side.
5287  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5288    // Check for both operands constant.
5289    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5290      if (ConstantExpr::getICmp(Pred,
5291                                LHSC->getValue(),
5292                                RHSC->getValue())->isNullValue())
5293        goto trivially_false;
5294      else
5295        goto trivially_true;
5296    }
5297    // Otherwise swap the operands to put the constant on the right.
5298    std::swap(LHS, RHS);
5299    Pred = ICmpInst::getSwappedPredicate(Pred);
5300    Changed = true;
5301  }
5302
5303  // If we're comparing an addrec with a value which is loop-invariant in the
5304  // addrec's loop, put the addrec on the left. Also make a dominance check,
5305  // as both operands could be addrecs loop-invariant in each other's loop.
5306  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5307    const Loop *L = AR->getLoop();
5308    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5309      std::swap(LHS, RHS);
5310      Pred = ICmpInst::getSwappedPredicate(Pred);
5311      Changed = true;
5312    }
5313  }
5314
5315  // If there's a constant operand, canonicalize comparisons with boundary
5316  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5317  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5318    const APInt &RA = RC->getValue()->getValue();
5319    switch (Pred) {
5320    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5321    case ICmpInst::ICMP_EQ:
5322    case ICmpInst::ICMP_NE:
5323      break;
5324    case ICmpInst::ICMP_UGE:
5325      if ((RA - 1).isMinValue()) {
5326        Pred = ICmpInst::ICMP_NE;
5327        RHS = getConstant(RA - 1);
5328        Changed = true;
5329        break;
5330      }
5331      if (RA.isMaxValue()) {
5332        Pred = ICmpInst::ICMP_EQ;
5333        Changed = true;
5334        break;
5335      }
5336      if (RA.isMinValue()) goto trivially_true;
5337
5338      Pred = ICmpInst::ICMP_UGT;
5339      RHS = getConstant(RA - 1);
5340      Changed = true;
5341      break;
5342    case ICmpInst::ICMP_ULE:
5343      if ((RA + 1).isMaxValue()) {
5344        Pred = ICmpInst::ICMP_NE;
5345        RHS = getConstant(RA + 1);
5346        Changed = true;
5347        break;
5348      }
5349      if (RA.isMinValue()) {
5350        Pred = ICmpInst::ICMP_EQ;
5351        Changed = true;
5352        break;
5353      }
5354      if (RA.isMaxValue()) goto trivially_true;
5355
5356      Pred = ICmpInst::ICMP_ULT;
5357      RHS = getConstant(RA + 1);
5358      Changed = true;
5359      break;
5360    case ICmpInst::ICMP_SGE:
5361      if ((RA - 1).isMinSignedValue()) {
5362        Pred = ICmpInst::ICMP_NE;
5363        RHS = getConstant(RA - 1);
5364        Changed = true;
5365        break;
5366      }
5367      if (RA.isMaxSignedValue()) {
5368        Pred = ICmpInst::ICMP_EQ;
5369        Changed = true;
5370        break;
5371      }
5372      if (RA.isMinSignedValue()) goto trivially_true;
5373
5374      Pred = ICmpInst::ICMP_SGT;
5375      RHS = getConstant(RA - 1);
5376      Changed = true;
5377      break;
5378    case ICmpInst::ICMP_SLE:
5379      if ((RA + 1).isMaxSignedValue()) {
5380        Pred = ICmpInst::ICMP_NE;
5381        RHS = getConstant(RA + 1);
5382        Changed = true;
5383        break;
5384      }
5385      if (RA.isMinSignedValue()) {
5386        Pred = ICmpInst::ICMP_EQ;
5387        Changed = true;
5388        break;
5389      }
5390      if (RA.isMaxSignedValue()) goto trivially_true;
5391
5392      Pred = ICmpInst::ICMP_SLT;
5393      RHS = getConstant(RA + 1);
5394      Changed = true;
5395      break;
5396    case ICmpInst::ICMP_UGT:
5397      if (RA.isMinValue()) {
5398        Pred = ICmpInst::ICMP_NE;
5399        Changed = true;
5400        break;
5401      }
5402      if ((RA + 1).isMaxValue()) {
5403        Pred = ICmpInst::ICMP_EQ;
5404        RHS = getConstant(RA + 1);
5405        Changed = true;
5406        break;
5407      }
5408      if (RA.isMaxValue()) goto trivially_false;
5409      break;
5410    case ICmpInst::ICMP_ULT:
5411      if (RA.isMaxValue()) {
5412        Pred = ICmpInst::ICMP_NE;
5413        Changed = true;
5414        break;
5415      }
5416      if ((RA - 1).isMinValue()) {
5417        Pred = ICmpInst::ICMP_EQ;
5418        RHS = getConstant(RA - 1);
5419        Changed = true;
5420        break;
5421      }
5422      if (RA.isMinValue()) goto trivially_false;
5423      break;
5424    case ICmpInst::ICMP_SGT:
5425      if (RA.isMinSignedValue()) {
5426        Pred = ICmpInst::ICMP_NE;
5427        Changed = true;
5428        break;
5429      }
5430      if ((RA + 1).isMaxSignedValue()) {
5431        Pred = ICmpInst::ICMP_EQ;
5432        RHS = getConstant(RA + 1);
5433        Changed = true;
5434        break;
5435      }
5436      if (RA.isMaxSignedValue()) goto trivially_false;
5437      break;
5438    case ICmpInst::ICMP_SLT:
5439      if (RA.isMaxSignedValue()) {
5440        Pred = ICmpInst::ICMP_NE;
5441        Changed = true;
5442        break;
5443      }
5444      if ((RA - 1).isMinSignedValue()) {
5445       Pred = ICmpInst::ICMP_EQ;
5446       RHS = getConstant(RA - 1);
5447        Changed = true;
5448       break;
5449      }
5450      if (RA.isMinSignedValue()) goto trivially_false;
5451      break;
5452    }
5453  }
5454
5455  // Check for obvious equality.
5456  if (HasSameValue(LHS, RHS)) {
5457    if (ICmpInst::isTrueWhenEqual(Pred))
5458      goto trivially_true;
5459    if (ICmpInst::isFalseWhenEqual(Pred))
5460      goto trivially_false;
5461  }
5462
5463  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5464  // adding or subtracting 1 from one of the operands.
5465  switch (Pred) {
5466  case ICmpInst::ICMP_SLE:
5467    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5468      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5469                       SCEV::FlagNSW);
5470      Pred = ICmpInst::ICMP_SLT;
5471      Changed = true;
5472    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5473      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5474                       SCEV::FlagNSW);
5475      Pred = ICmpInst::ICMP_SLT;
5476      Changed = true;
5477    }
5478    break;
5479  case ICmpInst::ICMP_SGE:
5480    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5481      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5482                       SCEV::FlagNSW);
5483      Pred = ICmpInst::ICMP_SGT;
5484      Changed = true;
5485    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5486      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5487                       SCEV::FlagNSW);
5488      Pred = ICmpInst::ICMP_SGT;
5489      Changed = true;
5490    }
5491    break;
5492  case ICmpInst::ICMP_ULE:
5493    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5494      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5495                       SCEV::FlagNUW);
5496      Pred = ICmpInst::ICMP_ULT;
5497      Changed = true;
5498    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5499      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5500                       SCEV::FlagNUW);
5501      Pred = ICmpInst::ICMP_ULT;
5502      Changed = true;
5503    }
5504    break;
5505  case ICmpInst::ICMP_UGE:
5506    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5507      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5508                       SCEV::FlagNUW);
5509      Pred = ICmpInst::ICMP_UGT;
5510      Changed = true;
5511    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5512      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5513                       SCEV::FlagNUW);
5514      Pred = ICmpInst::ICMP_UGT;
5515      Changed = true;
5516    }
5517    break;
5518  default:
5519    break;
5520  }
5521
5522  // TODO: More simplifications are possible here.
5523
5524  return Changed;
5525
5526trivially_true:
5527  // Return 0 == 0.
5528  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5529  Pred = ICmpInst::ICMP_EQ;
5530  return true;
5531
5532trivially_false:
5533  // Return 0 != 0.
5534  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5535  Pred = ICmpInst::ICMP_NE;
5536  return true;
5537}
5538
5539bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5540  return getSignedRange(S).getSignedMax().isNegative();
5541}
5542
5543bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5544  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5545}
5546
5547bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5548  return !getSignedRange(S).getSignedMin().isNegative();
5549}
5550
5551bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5552  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5553}
5554
5555bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5556  return isKnownNegative(S) || isKnownPositive(S);
5557}
5558
5559bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5560                                       const SCEV *LHS, const SCEV *RHS) {
5561  // Canonicalize the inputs first.
5562  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5563
5564  // If LHS or RHS is an addrec, check to see if the condition is true in
5565  // every iteration of the loop.
5566  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5567    if (isLoopEntryGuardedByCond(
5568          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5569        isLoopBackedgeGuardedByCond(
5570          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5571      return true;
5572  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5573    if (isLoopEntryGuardedByCond(
5574          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5575        isLoopBackedgeGuardedByCond(
5576          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5577      return true;
5578
5579  // Otherwise see what can be done with known constant ranges.
5580  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5581}
5582
5583bool
5584ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5585                                            const SCEV *LHS, const SCEV *RHS) {
5586  if (HasSameValue(LHS, RHS))
5587    return ICmpInst::isTrueWhenEqual(Pred);
5588
5589  // This code is split out from isKnownPredicate because it is called from
5590  // within isLoopEntryGuardedByCond.
5591  switch (Pred) {
5592  default:
5593    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5594    break;
5595  case ICmpInst::ICMP_SGT:
5596    Pred = ICmpInst::ICMP_SLT;
5597    std::swap(LHS, RHS);
5598  case ICmpInst::ICMP_SLT: {
5599    ConstantRange LHSRange = getSignedRange(LHS);
5600    ConstantRange RHSRange = getSignedRange(RHS);
5601    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5602      return true;
5603    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5604      return false;
5605    break;
5606  }
5607  case ICmpInst::ICMP_SGE:
5608    Pred = ICmpInst::ICMP_SLE;
5609    std::swap(LHS, RHS);
5610  case ICmpInst::ICMP_SLE: {
5611    ConstantRange LHSRange = getSignedRange(LHS);
5612    ConstantRange RHSRange = getSignedRange(RHS);
5613    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5614      return true;
5615    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5616      return false;
5617    break;
5618  }
5619  case ICmpInst::ICMP_UGT:
5620    Pred = ICmpInst::ICMP_ULT;
5621    std::swap(LHS, RHS);
5622  case ICmpInst::ICMP_ULT: {
5623    ConstantRange LHSRange = getUnsignedRange(LHS);
5624    ConstantRange RHSRange = getUnsignedRange(RHS);
5625    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5626      return true;
5627    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5628      return false;
5629    break;
5630  }
5631  case ICmpInst::ICMP_UGE:
5632    Pred = ICmpInst::ICMP_ULE;
5633    std::swap(LHS, RHS);
5634  case ICmpInst::ICMP_ULE: {
5635    ConstantRange LHSRange = getUnsignedRange(LHS);
5636    ConstantRange RHSRange = getUnsignedRange(RHS);
5637    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5638      return true;
5639    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5640      return false;
5641    break;
5642  }
5643  case ICmpInst::ICMP_NE: {
5644    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5645      return true;
5646    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5647      return true;
5648
5649    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5650    if (isKnownNonZero(Diff))
5651      return true;
5652    break;
5653  }
5654  case ICmpInst::ICMP_EQ:
5655    // The check at the top of the function catches the case where
5656    // the values are known to be equal.
5657    break;
5658  }
5659  return false;
5660}
5661
5662/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5663/// protected by a conditional between LHS and RHS.  This is used to
5664/// to eliminate casts.
5665bool
5666ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5667                                             ICmpInst::Predicate Pred,
5668                                             const SCEV *LHS, const SCEV *RHS) {
5669  // Interpret a null as meaning no loop, where there is obviously no guard
5670  // (interprocedural conditions notwithstanding).
5671  if (!L) return true;
5672
5673  BasicBlock *Latch = L->getLoopLatch();
5674  if (!Latch)
5675    return false;
5676
5677  BranchInst *LoopContinuePredicate =
5678    dyn_cast<BranchInst>(Latch->getTerminator());
5679  if (!LoopContinuePredicate ||
5680      LoopContinuePredicate->isUnconditional())
5681    return false;
5682
5683  return isImpliedCond(Pred, LHS, RHS,
5684                       LoopContinuePredicate->getCondition(),
5685                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5686}
5687
5688/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5689/// by a conditional between LHS and RHS.  This is used to help avoid max
5690/// expressions in loop trip counts, and to eliminate casts.
5691bool
5692ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5693                                          ICmpInst::Predicate Pred,
5694                                          const SCEV *LHS, const SCEV *RHS) {
5695  // Interpret a null as meaning no loop, where there is obviously no guard
5696  // (interprocedural conditions notwithstanding).
5697  if (!L) return false;
5698
5699  // Starting at the loop predecessor, climb up the predecessor chain, as long
5700  // as there are predecessors that can be found that have unique successors
5701  // leading to the original header.
5702  for (std::pair<BasicBlock *, BasicBlock *>
5703         Pair(L->getLoopPredecessor(), L->getHeader());
5704       Pair.first;
5705       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5706
5707    BranchInst *LoopEntryPredicate =
5708      dyn_cast<BranchInst>(Pair.first->getTerminator());
5709    if (!LoopEntryPredicate ||
5710        LoopEntryPredicate->isUnconditional())
5711      continue;
5712
5713    if (isImpliedCond(Pred, LHS, RHS,
5714                      LoopEntryPredicate->getCondition(),
5715                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5716      return true;
5717  }
5718
5719  return false;
5720}
5721
5722/// isImpliedCond - Test whether the condition described by Pred, LHS,
5723/// and RHS is true whenever the given Cond value evaluates to true.
5724bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5725                                    const SCEV *LHS, const SCEV *RHS,
5726                                    Value *FoundCondValue,
5727                                    bool Inverse) {
5728  // Recursively handle And and Or conditions.
5729  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5730    if (BO->getOpcode() == Instruction::And) {
5731      if (!Inverse)
5732        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5733               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5734    } else if (BO->getOpcode() == Instruction::Or) {
5735      if (Inverse)
5736        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5737               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5738    }
5739  }
5740
5741  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5742  if (!ICI) return false;
5743
5744  // Bail if the ICmp's operands' types are wider than the needed type
5745  // before attempting to call getSCEV on them. This avoids infinite
5746  // recursion, since the analysis of widening casts can require loop
5747  // exit condition information for overflow checking, which would
5748  // lead back here.
5749  if (getTypeSizeInBits(LHS->getType()) <
5750      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5751    return false;
5752
5753  // Now that we found a conditional branch that dominates the loop, check to
5754  // see if it is the comparison we are looking for.
5755  ICmpInst::Predicate FoundPred;
5756  if (Inverse)
5757    FoundPred = ICI->getInversePredicate();
5758  else
5759    FoundPred = ICI->getPredicate();
5760
5761  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5762  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5763
5764  // Balance the types. The case where FoundLHS' type is wider than
5765  // LHS' type is checked for above.
5766  if (getTypeSizeInBits(LHS->getType()) >
5767      getTypeSizeInBits(FoundLHS->getType())) {
5768    if (CmpInst::isSigned(Pred)) {
5769      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5770      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5771    } else {
5772      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5773      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5774    }
5775  }
5776
5777  // Canonicalize the query to match the way instcombine will have
5778  // canonicalized the comparison.
5779  if (SimplifyICmpOperands(Pred, LHS, RHS))
5780    if (LHS == RHS)
5781      return CmpInst::isTrueWhenEqual(Pred);
5782  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5783    if (FoundLHS == FoundRHS)
5784      return CmpInst::isFalseWhenEqual(Pred);
5785
5786  // Check to see if we can make the LHS or RHS match.
5787  if (LHS == FoundRHS || RHS == FoundLHS) {
5788    if (isa<SCEVConstant>(RHS)) {
5789      std::swap(FoundLHS, FoundRHS);
5790      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5791    } else {
5792      std::swap(LHS, RHS);
5793      Pred = ICmpInst::getSwappedPredicate(Pred);
5794    }
5795  }
5796
5797  // Check whether the found predicate is the same as the desired predicate.
5798  if (FoundPred == Pred)
5799    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5800
5801  // Check whether swapping the found predicate makes it the same as the
5802  // desired predicate.
5803  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5804    if (isa<SCEVConstant>(RHS))
5805      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5806    else
5807      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5808                                   RHS, LHS, FoundLHS, FoundRHS);
5809  }
5810
5811  // Check whether the actual condition is beyond sufficient.
5812  if (FoundPred == ICmpInst::ICMP_EQ)
5813    if (ICmpInst::isTrueWhenEqual(Pred))
5814      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5815        return true;
5816  if (Pred == ICmpInst::ICMP_NE)
5817    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5818      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5819        return true;
5820
5821  // Otherwise assume the worst.
5822  return false;
5823}
5824
5825/// isImpliedCondOperands - Test whether the condition described by Pred,
5826/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5827/// and FoundRHS is true.
5828bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5829                                            const SCEV *LHS, const SCEV *RHS,
5830                                            const SCEV *FoundLHS,
5831                                            const SCEV *FoundRHS) {
5832  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5833                                     FoundLHS, FoundRHS) ||
5834         // ~x < ~y --> x > y
5835         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5836                                     getNotSCEV(FoundRHS),
5837                                     getNotSCEV(FoundLHS));
5838}
5839
5840/// isImpliedCondOperandsHelper - Test whether the condition described by
5841/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5842/// FoundLHS, and FoundRHS is true.
5843bool
5844ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5845                                             const SCEV *LHS, const SCEV *RHS,
5846                                             const SCEV *FoundLHS,
5847                                             const SCEV *FoundRHS) {
5848  switch (Pred) {
5849  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5850  case ICmpInst::ICMP_EQ:
5851  case ICmpInst::ICMP_NE:
5852    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5853      return true;
5854    break;
5855  case ICmpInst::ICMP_SLT:
5856  case ICmpInst::ICMP_SLE:
5857    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5858        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5859      return true;
5860    break;
5861  case ICmpInst::ICMP_SGT:
5862  case ICmpInst::ICMP_SGE:
5863    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5864        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5865      return true;
5866    break;
5867  case ICmpInst::ICMP_ULT:
5868  case ICmpInst::ICMP_ULE:
5869    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5870        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5871      return true;
5872    break;
5873  case ICmpInst::ICMP_UGT:
5874  case ICmpInst::ICMP_UGE:
5875    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5876        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5877      return true;
5878    break;
5879  }
5880
5881  return false;
5882}
5883
5884/// getBECount - Subtract the end and start values and divide by the step,
5885/// rounding up, to get the number of times the backedge is executed. Return
5886/// CouldNotCompute if an intermediate computation overflows.
5887const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5888                                        const SCEV *End,
5889                                        const SCEV *Step,
5890                                        bool NoWrap) {
5891  assert(!isKnownNegative(Step) &&
5892         "This code doesn't handle negative strides yet!");
5893
5894  Type *Ty = Start->getType();
5895
5896  // When Start == End, we have an exact BECount == 0. Short-circuit this case
5897  // here because SCEV may not be able to determine that the unsigned division
5898  // after rounding is zero.
5899  if (Start == End)
5900    return getConstant(Ty, 0);
5901
5902  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5903  const SCEV *Diff = getMinusSCEV(End, Start);
5904  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5905
5906  // Add an adjustment to the difference between End and Start so that
5907  // the division will effectively round up.
5908  const SCEV *Add = getAddExpr(Diff, RoundUp);
5909
5910  if (!NoWrap) {
5911    // Check Add for unsigned overflow.
5912    // TODO: More sophisticated things could be done here.
5913    Type *WideTy = IntegerType::get(getContext(),
5914                                          getTypeSizeInBits(Ty) + 1);
5915    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5916    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5917    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5918    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5919      return getCouldNotCompute();
5920  }
5921
5922  return getUDivExpr(Add, Step);
5923}
5924
5925/// HowManyLessThans - Return the number of times a backedge containing the
5926/// specified less-than comparison will execute.  If not computable, return
5927/// CouldNotCompute.
5928ScalarEvolution::ExitLimit
5929ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5930                                  const Loop *L, bool isSigned) {
5931  // Only handle:  "ADDREC < LoopInvariant".
5932  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5933
5934  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5935  if (!AddRec || AddRec->getLoop() != L)
5936    return getCouldNotCompute();
5937
5938  // Check to see if we have a flag which makes analysis easy.
5939  bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5940                           AddRec->getNoWrapFlags(SCEV::FlagNUW);
5941
5942  if (AddRec->isAffine()) {
5943    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5944    const SCEV *Step = AddRec->getStepRecurrence(*this);
5945
5946    if (Step->isZero())
5947      return getCouldNotCompute();
5948    if (Step->isOne()) {
5949      // With unit stride, the iteration never steps past the limit value.
5950    } else if (isKnownPositive(Step)) {
5951      // Test whether a positive iteration can step past the limit
5952      // value and past the maximum value for its type in a single step.
5953      // Note that it's not sufficient to check NoWrap here, because even
5954      // though the value after a wrap is undefined, it's not undefined
5955      // behavior, so if wrap does occur, the loop could either terminate or
5956      // loop infinitely, but in either case, the loop is guaranteed to
5957      // iterate at least until the iteration where the wrapping occurs.
5958      const SCEV *One = getConstant(Step->getType(), 1);
5959      if (isSigned) {
5960        APInt Max = APInt::getSignedMaxValue(BitWidth);
5961        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5962              .slt(getSignedRange(RHS).getSignedMax()))
5963          return getCouldNotCompute();
5964      } else {
5965        APInt Max = APInt::getMaxValue(BitWidth);
5966        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5967              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5968          return getCouldNotCompute();
5969      }
5970    } else
5971      // TODO: Handle negative strides here and below.
5972      return getCouldNotCompute();
5973
5974    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5975    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5976    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5977    // treat m-n as signed nor unsigned due to overflow possibility.
5978
5979    // First, we get the value of the LHS in the first iteration: n
5980    const SCEV *Start = AddRec->getOperand(0);
5981
5982    // Determine the minimum constant start value.
5983    const SCEV *MinStart = getConstant(isSigned ?
5984      getSignedRange(Start).getSignedMin() :
5985      getUnsignedRange(Start).getUnsignedMin());
5986
5987    // If we know that the condition is true in order to enter the loop,
5988    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5989    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5990    // the division must round up.
5991    const SCEV *End = RHS;
5992    if (!isLoopEntryGuardedByCond(L,
5993                                  isSigned ? ICmpInst::ICMP_SLT :
5994                                             ICmpInst::ICMP_ULT,
5995                                  getMinusSCEV(Start, Step), RHS))
5996      End = isSigned ? getSMaxExpr(RHS, Start)
5997                     : getUMaxExpr(RHS, Start);
5998
5999    // Determine the maximum constant end value.
6000    const SCEV *MaxEnd = getConstant(isSigned ?
6001      getSignedRange(End).getSignedMax() :
6002      getUnsignedRange(End).getUnsignedMax());
6003
6004    // If MaxEnd is within a step of the maximum integer value in its type,
6005    // adjust it down to the minimum value which would produce the same effect.
6006    // This allows the subsequent ceiling division of (N+(step-1))/step to
6007    // compute the correct value.
6008    const SCEV *StepMinusOne = getMinusSCEV(Step,
6009                                            getConstant(Step->getType(), 1));
6010    MaxEnd = isSigned ?
6011      getSMinExpr(MaxEnd,
6012                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6013                               StepMinusOne)) :
6014      getUMinExpr(MaxEnd,
6015                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6016                               StepMinusOne));
6017
6018    // Finally, we subtract these two values and divide, rounding up, to get
6019    // the number of times the backedge is executed.
6020    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6021
6022    // The maximum backedge count is similar, except using the minimum start
6023    // value and the maximum end value.
6024    // If we already have an exact constant BECount, use it instead.
6025    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6026      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6027
6028    // If the stride is nonconstant, and NoWrap == true, then
6029    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6030    // exact BECount and invalid MaxBECount, which should be avoided to catch
6031    // more optimization opportunities.
6032    if (isa<SCEVCouldNotCompute>(MaxBECount))
6033      MaxBECount = BECount;
6034
6035    return ExitLimit(BECount, MaxBECount);
6036  }
6037
6038  return getCouldNotCompute();
6039}
6040
6041/// getNumIterationsInRange - Return the number of iterations of this loop that
6042/// produce values in the specified constant range.  Another way of looking at
6043/// this is that it returns the first iteration number where the value is not in
6044/// the condition, thus computing the exit count. If the iteration count can't
6045/// be computed, an instance of SCEVCouldNotCompute is returned.
6046const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6047                                                    ScalarEvolution &SE) const {
6048  if (Range.isFullSet())  // Infinite loop.
6049    return SE.getCouldNotCompute();
6050
6051  // If the start is a non-zero constant, shift the range to simplify things.
6052  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6053    if (!SC->getValue()->isZero()) {
6054      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6055      Operands[0] = SE.getConstant(SC->getType(), 0);
6056      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6057                                             getNoWrapFlags(FlagNW));
6058      if (const SCEVAddRecExpr *ShiftedAddRec =
6059            dyn_cast<SCEVAddRecExpr>(Shifted))
6060        return ShiftedAddRec->getNumIterationsInRange(
6061                           Range.subtract(SC->getValue()->getValue()), SE);
6062      // This is strange and shouldn't happen.
6063      return SE.getCouldNotCompute();
6064    }
6065
6066  // The only time we can solve this is when we have all constant indices.
6067  // Otherwise, we cannot determine the overflow conditions.
6068  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6069    if (!isa<SCEVConstant>(getOperand(i)))
6070      return SE.getCouldNotCompute();
6071
6072
6073  // Okay at this point we know that all elements of the chrec are constants and
6074  // that the start element is zero.
6075
6076  // First check to see if the range contains zero.  If not, the first
6077  // iteration exits.
6078  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6079  if (!Range.contains(APInt(BitWidth, 0)))
6080    return SE.getConstant(getType(), 0);
6081
6082  if (isAffine()) {
6083    // If this is an affine expression then we have this situation:
6084    //   Solve {0,+,A} in Range  ===  Ax in Range
6085
6086    // We know that zero is in the range.  If A is positive then we know that
6087    // the upper value of the range must be the first possible exit value.
6088    // If A is negative then the lower of the range is the last possible loop
6089    // value.  Also note that we already checked for a full range.
6090    APInt One(BitWidth,1);
6091    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6092    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6093
6094    // The exit value should be (End+A)/A.
6095    APInt ExitVal = (End + A).udiv(A);
6096    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6097
6098    // Evaluate at the exit value.  If we really did fall out of the valid
6099    // range, then we computed our trip count, otherwise wrap around or other
6100    // things must have happened.
6101    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6102    if (Range.contains(Val->getValue()))
6103      return SE.getCouldNotCompute();  // Something strange happened
6104
6105    // Ensure that the previous value is in the range.  This is a sanity check.
6106    assert(Range.contains(
6107           EvaluateConstantChrecAtConstant(this,
6108           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6109           "Linear scev computation is off in a bad way!");
6110    return SE.getConstant(ExitValue);
6111  } else if (isQuadratic()) {
6112    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6113    // quadratic equation to solve it.  To do this, we must frame our problem in
6114    // terms of figuring out when zero is crossed, instead of when
6115    // Range.getUpper() is crossed.
6116    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6117    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6118    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6119                                             // getNoWrapFlags(FlagNW)
6120                                             FlagAnyWrap);
6121
6122    // Next, solve the constructed addrec
6123    std::pair<const SCEV *,const SCEV *> Roots =
6124      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6125    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6126    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6127    if (R1) {
6128      // Pick the smallest positive root value.
6129      if (ConstantInt *CB =
6130          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6131                         R1->getValue(), R2->getValue()))) {
6132        if (CB->getZExtValue() == false)
6133          std::swap(R1, R2);   // R1 is the minimum root now.
6134
6135        // Make sure the root is not off by one.  The returned iteration should
6136        // not be in the range, but the previous one should be.  When solving
6137        // for "X*X < 5", for example, we should not return a root of 2.
6138        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6139                                                             R1->getValue(),
6140                                                             SE);
6141        if (Range.contains(R1Val->getValue())) {
6142          // The next iteration must be out of the range...
6143          ConstantInt *NextVal =
6144                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6145
6146          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6147          if (!Range.contains(R1Val->getValue()))
6148            return SE.getConstant(NextVal);
6149          return SE.getCouldNotCompute();  // Something strange happened
6150        }
6151
6152        // If R1 was not in the range, then it is a good return value.  Make
6153        // sure that R1-1 WAS in the range though, just in case.
6154        ConstantInt *NextVal =
6155               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6156        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6157        if (Range.contains(R1Val->getValue()))
6158          return R1;
6159        return SE.getCouldNotCompute();  // Something strange happened
6160      }
6161    }
6162  }
6163
6164  return SE.getCouldNotCompute();
6165}
6166
6167
6168
6169//===----------------------------------------------------------------------===//
6170//                   SCEVCallbackVH Class Implementation
6171//===----------------------------------------------------------------------===//
6172
6173void ScalarEvolution::SCEVCallbackVH::deleted() {
6174  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6175  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6176    SE->ConstantEvolutionLoopExitValue.erase(PN);
6177  SE->ValueExprMap.erase(getValPtr());
6178  // this now dangles!
6179}
6180
6181void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6182  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6183
6184  // Forget all the expressions associated with users of the old value,
6185  // so that future queries will recompute the expressions using the new
6186  // value.
6187  Value *Old = getValPtr();
6188  SmallVector<User *, 16> Worklist;
6189  SmallPtrSet<User *, 8> Visited;
6190  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6191       UI != UE; ++UI)
6192    Worklist.push_back(*UI);
6193  while (!Worklist.empty()) {
6194    User *U = Worklist.pop_back_val();
6195    // Deleting the Old value will cause this to dangle. Postpone
6196    // that until everything else is done.
6197    if (U == Old)
6198      continue;
6199    if (!Visited.insert(U))
6200      continue;
6201    if (PHINode *PN = dyn_cast<PHINode>(U))
6202      SE->ConstantEvolutionLoopExitValue.erase(PN);
6203    SE->ValueExprMap.erase(U);
6204    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6205         UI != UE; ++UI)
6206      Worklist.push_back(*UI);
6207  }
6208  // Delete the Old value.
6209  if (PHINode *PN = dyn_cast<PHINode>(Old))
6210    SE->ConstantEvolutionLoopExitValue.erase(PN);
6211  SE->ValueExprMap.erase(Old);
6212  // this now dangles!
6213}
6214
6215ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6216  : CallbackVH(V), SE(se) {}
6217
6218//===----------------------------------------------------------------------===//
6219//                   ScalarEvolution Class Implementation
6220//===----------------------------------------------------------------------===//
6221
6222ScalarEvolution::ScalarEvolution()
6223  : FunctionPass(ID), FirstUnknown(0) {
6224  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6225}
6226
6227bool ScalarEvolution::runOnFunction(Function &F) {
6228  this->F = &F;
6229  LI = &getAnalysis<LoopInfo>();
6230  TD = getAnalysisIfAvailable<TargetData>();
6231  DT = &getAnalysis<DominatorTree>();
6232  return false;
6233}
6234
6235void ScalarEvolution::releaseMemory() {
6236  // Iterate through all the SCEVUnknown instances and call their
6237  // destructors, so that they release their references to their values.
6238  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6239    U->~SCEVUnknown();
6240  FirstUnknown = 0;
6241
6242  ValueExprMap.clear();
6243
6244  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6245  // that a loop had multiple computable exits.
6246  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6247         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6248       I != E; ++I) {
6249    I->second.clear();
6250  }
6251
6252  BackedgeTakenCounts.clear();
6253  ConstantEvolutionLoopExitValue.clear();
6254  ValuesAtScopes.clear();
6255  LoopDispositions.clear();
6256  BlockDispositions.clear();
6257  UnsignedRanges.clear();
6258  SignedRanges.clear();
6259  UniqueSCEVs.clear();
6260  SCEVAllocator.Reset();
6261}
6262
6263void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6264  AU.setPreservesAll();
6265  AU.addRequiredTransitive<LoopInfo>();
6266  AU.addRequiredTransitive<DominatorTree>();
6267}
6268
6269bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6270  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6271}
6272
6273static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6274                          const Loop *L) {
6275  // Print all inner loops first
6276  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6277    PrintLoopInfo(OS, SE, *I);
6278
6279  OS << "Loop ";
6280  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6281  OS << ": ";
6282
6283  SmallVector<BasicBlock *, 8> ExitBlocks;
6284  L->getExitBlocks(ExitBlocks);
6285  if (ExitBlocks.size() != 1)
6286    OS << "<multiple exits> ";
6287
6288  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6289    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6290  } else {
6291    OS << "Unpredictable backedge-taken count. ";
6292  }
6293
6294  OS << "\n"
6295        "Loop ";
6296  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6297  OS << ": ";
6298
6299  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6300    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6301  } else {
6302    OS << "Unpredictable max backedge-taken count. ";
6303  }
6304
6305  OS << "\n";
6306}
6307
6308void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6309  // ScalarEvolution's implementation of the print method is to print
6310  // out SCEV values of all instructions that are interesting. Doing
6311  // this potentially causes it to create new SCEV objects though,
6312  // which technically conflicts with the const qualifier. This isn't
6313  // observable from outside the class though, so casting away the
6314  // const isn't dangerous.
6315  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6316
6317  OS << "Classifying expressions for: ";
6318  WriteAsOperand(OS, F, /*PrintType=*/false);
6319  OS << "\n";
6320  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6321    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6322      OS << *I << '\n';
6323      OS << "  -->  ";
6324      const SCEV *SV = SE.getSCEV(&*I);
6325      SV->print(OS);
6326
6327      const Loop *L = LI->getLoopFor((*I).getParent());
6328
6329      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6330      if (AtUse != SV) {
6331        OS << "  -->  ";
6332        AtUse->print(OS);
6333      }
6334
6335      if (L) {
6336        OS << "\t\t" "Exits: ";
6337        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6338        if (!SE.isLoopInvariant(ExitValue, L)) {
6339          OS << "<<Unknown>>";
6340        } else {
6341          OS << *ExitValue;
6342        }
6343      }
6344
6345      OS << "\n";
6346    }
6347
6348  OS << "Determining loop execution counts for: ";
6349  WriteAsOperand(OS, F, /*PrintType=*/false);
6350  OS << "\n";
6351  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6352    PrintLoopInfo(OS, &SE, *I);
6353}
6354
6355ScalarEvolution::LoopDisposition
6356ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6357  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6358  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6359    Values.insert(std::make_pair(L, LoopVariant));
6360  if (!Pair.second)
6361    return Pair.first->second;
6362
6363  LoopDisposition D = computeLoopDisposition(S, L);
6364  return LoopDispositions[S][L] = D;
6365}
6366
6367ScalarEvolution::LoopDisposition
6368ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6369  switch (S->getSCEVType()) {
6370  case scConstant:
6371    return LoopInvariant;
6372  case scTruncate:
6373  case scZeroExtend:
6374  case scSignExtend:
6375    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6376  case scAddRecExpr: {
6377    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6378
6379    // If L is the addrec's loop, it's computable.
6380    if (AR->getLoop() == L)
6381      return LoopComputable;
6382
6383    // Add recurrences are never invariant in the function-body (null loop).
6384    if (!L)
6385      return LoopVariant;
6386
6387    // This recurrence is variant w.r.t. L if L contains AR's loop.
6388    if (L->contains(AR->getLoop()))
6389      return LoopVariant;
6390
6391    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6392    if (AR->getLoop()->contains(L))
6393      return LoopInvariant;
6394
6395    // This recurrence is variant w.r.t. L if any of its operands
6396    // are variant.
6397    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6398         I != E; ++I)
6399      if (!isLoopInvariant(*I, L))
6400        return LoopVariant;
6401
6402    // Otherwise it's loop-invariant.
6403    return LoopInvariant;
6404  }
6405  case scAddExpr:
6406  case scMulExpr:
6407  case scUMaxExpr:
6408  case scSMaxExpr: {
6409    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6410    bool HasVarying = false;
6411    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6412         I != E; ++I) {
6413      LoopDisposition D = getLoopDisposition(*I, L);
6414      if (D == LoopVariant)
6415        return LoopVariant;
6416      if (D == LoopComputable)
6417        HasVarying = true;
6418    }
6419    return HasVarying ? LoopComputable : LoopInvariant;
6420  }
6421  case scUDivExpr: {
6422    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6423    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6424    if (LD == LoopVariant)
6425      return LoopVariant;
6426    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6427    if (RD == LoopVariant)
6428      return LoopVariant;
6429    return (LD == LoopInvariant && RD == LoopInvariant) ?
6430           LoopInvariant : LoopComputable;
6431  }
6432  case scUnknown:
6433    // All non-instruction values are loop invariant.  All instructions are loop
6434    // invariant if they are not contained in the specified loop.
6435    // Instructions are never considered invariant in the function body
6436    // (null loop) because they are defined within the "loop".
6437    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6438      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6439    return LoopInvariant;
6440  case scCouldNotCompute:
6441    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6442    return LoopVariant;
6443  default: break;
6444  }
6445  llvm_unreachable("Unknown SCEV kind!");
6446  return LoopVariant;
6447}
6448
6449bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6450  return getLoopDisposition(S, L) == LoopInvariant;
6451}
6452
6453bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6454  return getLoopDisposition(S, L) == LoopComputable;
6455}
6456
6457ScalarEvolution::BlockDisposition
6458ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6459  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6460  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6461    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6462  if (!Pair.second)
6463    return Pair.first->second;
6464
6465  BlockDisposition D = computeBlockDisposition(S, BB);
6466  return BlockDispositions[S][BB] = D;
6467}
6468
6469ScalarEvolution::BlockDisposition
6470ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6471  switch (S->getSCEVType()) {
6472  case scConstant:
6473    return ProperlyDominatesBlock;
6474  case scTruncate:
6475  case scZeroExtend:
6476  case scSignExtend:
6477    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6478  case scAddRecExpr: {
6479    // This uses a "dominates" query instead of "properly dominates" query
6480    // to test for proper dominance too, because the instruction which
6481    // produces the addrec's value is a PHI, and a PHI effectively properly
6482    // dominates its entire containing block.
6483    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6484    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6485      return DoesNotDominateBlock;
6486  }
6487  // FALL THROUGH into SCEVNAryExpr handling.
6488  case scAddExpr:
6489  case scMulExpr:
6490  case scUMaxExpr:
6491  case scSMaxExpr: {
6492    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6493    bool Proper = true;
6494    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6495         I != E; ++I) {
6496      BlockDisposition D = getBlockDisposition(*I, BB);
6497      if (D == DoesNotDominateBlock)
6498        return DoesNotDominateBlock;
6499      if (D == DominatesBlock)
6500        Proper = false;
6501    }
6502    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6503  }
6504  case scUDivExpr: {
6505    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6506    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6507    BlockDisposition LD = getBlockDisposition(LHS, BB);
6508    if (LD == DoesNotDominateBlock)
6509      return DoesNotDominateBlock;
6510    BlockDisposition RD = getBlockDisposition(RHS, BB);
6511    if (RD == DoesNotDominateBlock)
6512      return DoesNotDominateBlock;
6513    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6514      ProperlyDominatesBlock : DominatesBlock;
6515  }
6516  case scUnknown:
6517    if (Instruction *I =
6518          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6519      if (I->getParent() == BB)
6520        return DominatesBlock;
6521      if (DT->properlyDominates(I->getParent(), BB))
6522        return ProperlyDominatesBlock;
6523      return DoesNotDominateBlock;
6524    }
6525    return ProperlyDominatesBlock;
6526  case scCouldNotCompute:
6527    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6528    return DoesNotDominateBlock;
6529  default: break;
6530  }
6531  llvm_unreachable("Unknown SCEV kind!");
6532  return DoesNotDominateBlock;
6533}
6534
6535bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6536  return getBlockDisposition(S, BB) >= DominatesBlock;
6537}
6538
6539bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6540  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6541}
6542
6543bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6544  switch (S->getSCEVType()) {
6545  case scConstant:
6546    return false;
6547  case scTruncate:
6548  case scZeroExtend:
6549  case scSignExtend: {
6550    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6551    const SCEV *CastOp = Cast->getOperand();
6552    return Op == CastOp || hasOperand(CastOp, Op);
6553  }
6554  case scAddRecExpr:
6555  case scAddExpr:
6556  case scMulExpr:
6557  case scUMaxExpr:
6558  case scSMaxExpr: {
6559    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6560    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6561         I != E; ++I) {
6562      const SCEV *NAryOp = *I;
6563      if (NAryOp == Op || hasOperand(NAryOp, Op))
6564        return true;
6565    }
6566    return false;
6567  }
6568  case scUDivExpr: {
6569    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6570    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6571    return LHS == Op || hasOperand(LHS, Op) ||
6572           RHS == Op || hasOperand(RHS, Op);
6573  }
6574  case scUnknown:
6575    return false;
6576  case scCouldNotCompute:
6577    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6578    return false;
6579  default: break;
6580  }
6581  llvm_unreachable("Unknown SCEV kind!");
6582  return false;
6583}
6584
6585void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6586  ValuesAtScopes.erase(S);
6587  LoopDispositions.erase(S);
6588  BlockDispositions.erase(S);
6589  UnsignedRanges.erase(S);
6590  SignedRanges.erase(S);
6591}
6592