ScalarEvolution.cpp revision b336409673c614843cc19b8f61db6afb9d8c5ac3
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/Instructions.h"
67#include "llvm/Analysis/ConstantFolding.h"
68#include "llvm/Analysis/LoopInfo.h"
69#include "llvm/Assembly/Writer.h"
70#include "llvm/Transforms/Scalar.h"
71#include "llvm/Support/CFG.h"
72#include "llvm/Support/CommandLine.h"
73#include "llvm/Support/Compiler.h"
74#include "llvm/Support/ConstantRange.h"
75#include "llvm/Support/InstIterator.h"
76#include "llvm/Support/ManagedStatic.h"
77#include "llvm/ADT/Statistic.h"
78#include <cmath>
79#include <iostream>
80#include <algorithm>
81using namespace llvm;
82
83namespace {
84  RegisterPass<ScalarEvolution>
85  R("scalar-evolution", "Scalar Evolution Analysis");
86
87  Statistic<>
88  NumBruteForceEvaluations("scalar-evolution",
89                           "Number of brute force evaluations needed to "
90                           "calculate high-order polynomial exit values");
91  Statistic<>
92  NumArrayLenItCounts("scalar-evolution",
93                      "Number of trip counts computed with array length");
94  Statistic<>
95  NumTripCountsComputed("scalar-evolution",
96                        "Number of loops with predictable loop counts");
97  Statistic<>
98  NumTripCountsNotComputed("scalar-evolution",
99                           "Number of loops without predictable loop counts");
100  Statistic<>
101  NumBruteForceTripCountsComputed("scalar-evolution",
102                        "Number of loops with trip counts computed by force");
103
104  cl::opt<unsigned>
105  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
106                          cl::desc("Maximum number of iterations SCEV will "
107                              "symbolically execute a constant derived loop"),
108                          cl::init(100));
109}
110
111//===----------------------------------------------------------------------===//
112//                           SCEV class definitions
113//===----------------------------------------------------------------------===//
114
115//===----------------------------------------------------------------------===//
116// Implementation of the SCEV class.
117//
118SCEV::~SCEV() {}
119void SCEV::dump() const {
120  print(std::cerr);
121}
122
123/// getValueRange - Return the tightest constant bounds that this value is
124/// known to have.  This method is only valid on integer SCEV objects.
125ConstantRange SCEV::getValueRange() const {
126  const Type *Ty = getType();
127  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
128  Ty = Ty->getUnsignedVersion();
129  // Default to a full range if no better information is available.
130  return ConstantRange(getType());
131}
132
133
134SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
135
136bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
137  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
138  return false;
139}
140
141const Type *SCEVCouldNotCompute::getType() const {
142  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
143  return 0;
144}
145
146bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
147  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151SCEVHandle SCEVCouldNotCompute::
152replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
153                                  const SCEVHandle &Conc) const {
154  return this;
155}
156
157void SCEVCouldNotCompute::print(std::ostream &OS) const {
158  OS << "***COULDNOTCOMPUTE***";
159}
160
161bool SCEVCouldNotCompute::classof(const SCEV *S) {
162  return S->getSCEVType() == scCouldNotCompute;
163}
164
165
166// SCEVConstants - Only allow the creation of one SCEVConstant for any
167// particular value.  Don't use a SCEVHandle here, or else the object will
168// never be deleted!
169static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
170
171
172SCEVConstant::~SCEVConstant() {
173  SCEVConstants->erase(V);
174}
175
176SCEVHandle SCEVConstant::get(ConstantInt *V) {
177  // Make sure that SCEVConstant instances are all unsigned.
178  if (V->getType()->isSigned()) {
179    const Type *NewTy = V->getType()->getUnsignedVersion();
180    V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
181  }
182
183  SCEVConstant *&R = (*SCEVConstants)[V];
184  if (R == 0) R = new SCEVConstant(V);
185  return R;
186}
187
188ConstantRange SCEVConstant::getValueRange() const {
189  return ConstantRange(V);
190}
191
192const Type *SCEVConstant::getType() const { return V->getType(); }
193
194void SCEVConstant::print(std::ostream &OS) const {
195  WriteAsOperand(OS, V, false);
196}
197
198// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
199// particular input.  Don't use a SCEVHandle here, or else the object will
200// never be deleted!
201static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
202                     SCEVTruncateExpr*> > SCEVTruncates;
203
204SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
205  : SCEV(scTruncate), Op(op), Ty(ty) {
206  assert(Op->getType()->isInteger() && Ty->isInteger() &&
207         Ty->isUnsigned() &&
208         "Cannot truncate non-integer value!");
209  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
210         "This is not a truncating conversion!");
211}
212
213SCEVTruncateExpr::~SCEVTruncateExpr() {
214  SCEVTruncates->erase(std::make_pair(Op, Ty));
215}
216
217ConstantRange SCEVTruncateExpr::getValueRange() const {
218  return getOperand()->getValueRange().truncate(getType());
219}
220
221void SCEVTruncateExpr::print(std::ostream &OS) const {
222  OS << "(truncate " << *Op << " to " << *Ty << ")";
223}
224
225// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226// particular input.  Don't use a SCEVHandle here, or else the object will never
227// be deleted!
228static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
229                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
230
231SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
232  : SCEV(scTruncate), Op(op), Ty(ty) {
233  assert(Op->getType()->isInteger() && Ty->isInteger() &&
234         Ty->isUnsigned() &&
235         "Cannot zero extend non-integer value!");
236  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
237         "This is not an extending conversion!");
238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
244ConstantRange SCEVZeroExtendExpr::getValueRange() const {
245  return getOperand()->getValueRange().zeroExtend(getType());
246}
247
248void SCEVZeroExtendExpr::print(std::ostream &OS) const {
249  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
250}
251
252// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
253// particular input.  Don't use a SCEVHandle here, or else the object will never
254// be deleted!
255static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
256                     SCEVCommutativeExpr*> > SCEVCommExprs;
257
258SCEVCommutativeExpr::~SCEVCommutativeExpr() {
259  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
260                                      std::vector<SCEV*>(Operands.begin(),
261                                                         Operands.end())));
262}
263
264void SCEVCommutativeExpr::print(std::ostream &OS) const {
265  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
266  const char *OpStr = getOperationStr();
267  OS << "(" << *Operands[0];
268  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
269    OS << OpStr << *Operands[i];
270  OS << ")";
271}
272
273SCEVHandle SCEVCommutativeExpr::
274replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
275                                  const SCEVHandle &Conc) const {
276  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
277    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
278    if (H != getOperand(i)) {
279      std::vector<SCEVHandle> NewOps;
280      NewOps.reserve(getNumOperands());
281      for (unsigned j = 0; j != i; ++j)
282        NewOps.push_back(getOperand(j));
283      NewOps.push_back(H);
284      for (++i; i != e; ++i)
285        NewOps.push_back(getOperand(i)->
286                         replaceSymbolicValuesWithConcrete(Sym, Conc));
287
288      if (isa<SCEVAddExpr>(this))
289        return SCEVAddExpr::get(NewOps);
290      else if (isa<SCEVMulExpr>(this))
291        return SCEVMulExpr::get(NewOps);
292      else
293        assert(0 && "Unknown commutative expr!");
294    }
295  }
296  return this;
297}
298
299
300// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
301// input.  Don't use a SCEVHandle here, or else the object will never be
302// deleted!
303static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
304                     SCEVSDivExpr*> > SCEVSDivs;
305
306SCEVSDivExpr::~SCEVSDivExpr() {
307  SCEVSDivs->erase(std::make_pair(LHS, RHS));
308}
309
310void SCEVSDivExpr::print(std::ostream &OS) const {
311  OS << "(" << *LHS << " /s " << *RHS << ")";
312}
313
314const Type *SCEVSDivExpr::getType() const {
315  const Type *Ty = LHS->getType();
316  if (Ty->isUnsigned()) Ty = Ty->getSignedVersion();
317  return Ty;
318}
319
320// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
321// particular input.  Don't use a SCEVHandle here, or else the object will never
322// be deleted!
323static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
324                     SCEVAddRecExpr*> > SCEVAddRecExprs;
325
326SCEVAddRecExpr::~SCEVAddRecExpr() {
327  SCEVAddRecExprs->erase(std::make_pair(L,
328                                        std::vector<SCEV*>(Operands.begin(),
329                                                           Operands.end())));
330}
331
332SCEVHandle SCEVAddRecExpr::
333replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
334                                  const SCEVHandle &Conc) const {
335  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
336    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
337    if (H != getOperand(i)) {
338      std::vector<SCEVHandle> NewOps;
339      NewOps.reserve(getNumOperands());
340      for (unsigned j = 0; j != i; ++j)
341        NewOps.push_back(getOperand(j));
342      NewOps.push_back(H);
343      for (++i; i != e; ++i)
344        NewOps.push_back(getOperand(i)->
345                         replaceSymbolicValuesWithConcrete(Sym, Conc));
346
347      return get(NewOps, L);
348    }
349  }
350  return this;
351}
352
353
354bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
355  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
356  // contain L and if the start is invariant.
357  return !QueryLoop->contains(L->getHeader()) &&
358         getOperand(0)->isLoopInvariant(QueryLoop);
359}
360
361
362void SCEVAddRecExpr::print(std::ostream &OS) const {
363  OS << "{" << *Operands[0];
364  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
365    OS << ",+," << *Operands[i];
366  OS << "}<" << L->getHeader()->getName() + ">";
367}
368
369// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
370// value.  Don't use a SCEVHandle here, or else the object will never be
371// deleted!
372static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
373
374SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
375
376bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
377  // All non-instruction values are loop invariant.  All instructions are loop
378  // invariant if they are not contained in the specified loop.
379  if (Instruction *I = dyn_cast<Instruction>(V))
380    return !L->contains(I->getParent());
381  return true;
382}
383
384const Type *SCEVUnknown::getType() const {
385  return V->getType();
386}
387
388void SCEVUnknown::print(std::ostream &OS) const {
389  WriteAsOperand(OS, V, false);
390}
391
392//===----------------------------------------------------------------------===//
393//                               SCEV Utilities
394//===----------------------------------------------------------------------===//
395
396namespace {
397  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
398  /// than the complexity of the RHS.  This comparator is used to canonicalize
399  /// expressions.
400  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
401    bool operator()(SCEV *LHS, SCEV *RHS) {
402      return LHS->getSCEVType() < RHS->getSCEVType();
403    }
404  };
405}
406
407/// GroupByComplexity - Given a list of SCEV objects, order them by their
408/// complexity, and group objects of the same complexity together by value.
409/// When this routine is finished, we know that any duplicates in the vector are
410/// consecutive and that complexity is monotonically increasing.
411///
412/// Note that we go take special precautions to ensure that we get determinstic
413/// results from this routine.  In other words, we don't want the results of
414/// this to depend on where the addresses of various SCEV objects happened to
415/// land in memory.
416///
417static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
418  if (Ops.size() < 2) return;  // Noop
419  if (Ops.size() == 2) {
420    // This is the common case, which also happens to be trivially simple.
421    // Special case it.
422    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
423      std::swap(Ops[0], Ops[1]);
424    return;
425  }
426
427  // Do the rough sort by complexity.
428  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
429
430  // Now that we are sorted by complexity, group elements of the same
431  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
432  // be extremely short in practice.  Note that we take this approach because we
433  // do not want to depend on the addresses of the objects we are grouping.
434  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
435    SCEV *S = Ops[i];
436    unsigned Complexity = S->getSCEVType();
437
438    // If there are any objects of the same complexity and same value as this
439    // one, group them.
440    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
441      if (Ops[j] == S) { // Found a duplicate.
442        // Move it to immediately after i'th element.
443        std::swap(Ops[i+1], Ops[j]);
444        ++i;   // no need to rescan it.
445        if (i == e-2) return;  // Done!
446      }
447    }
448  }
449}
450
451
452
453//===----------------------------------------------------------------------===//
454//                      Simple SCEV method implementations
455//===----------------------------------------------------------------------===//
456
457/// getIntegerSCEV - Given an integer or FP type, create a constant for the
458/// specified signed integer value and return a SCEV for the constant.
459SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
460  Constant *C;
461  if (Val == 0)
462    C = Constant::getNullValue(Ty);
463  else if (Ty->isFloatingPoint())
464    C = ConstantFP::get(Ty, Val);
465  else if (Ty->isSigned())
466    C = ConstantSInt::get(Ty, Val);
467  else {
468    C = ConstantSInt::get(Ty->getSignedVersion(), Val);
469    C = ConstantExpr::getCast(C, Ty);
470  }
471  return SCEVUnknown::get(C);
472}
473
474/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
475/// input value to the specified type.  If the type must be extended, it is zero
476/// extended.
477static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
478  const Type *SrcTy = V->getType();
479  assert(SrcTy->isInteger() && Ty->isInteger() &&
480         "Cannot truncate or zero extend with non-integer arguments!");
481  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
482    return V;  // No conversion
483  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
484    return SCEVTruncateExpr::get(V, Ty);
485  return SCEVZeroExtendExpr::get(V, Ty);
486}
487
488/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
489///
490SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
491  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
492    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
493
494  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
495}
496
497/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
498///
499SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
500  // X - Y --> X + -Y
501  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
502}
503
504
505/// PartialFact - Compute V!/(V-NumSteps)!
506static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
507  // Handle this case efficiently, it is common to have constant iteration
508  // counts while computing loop exit values.
509  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
510    uint64_t Val = SC->getValue()->getRawValue();
511    uint64_t Result = 1;
512    for (; NumSteps; --NumSteps)
513      Result *= Val-(NumSteps-1);
514    Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
515    return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
516  }
517
518  const Type *Ty = V->getType();
519  if (NumSteps == 0)
520    return SCEVUnknown::getIntegerSCEV(1, Ty);
521
522  SCEVHandle Result = V;
523  for (unsigned i = 1; i != NumSteps; ++i)
524    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
525                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
526  return Result;
527}
528
529
530/// evaluateAtIteration - Return the value of this chain of recurrences at
531/// the specified iteration number.  We can evaluate this recurrence by
532/// multiplying each element in the chain by the binomial coefficient
533/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
534///
535///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
536///
537/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
538/// Is the binomial equation safe using modular arithmetic??
539///
540SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
541  SCEVHandle Result = getStart();
542  int Divisor = 1;
543  const Type *Ty = It->getType();
544  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
545    SCEVHandle BC = PartialFact(It, i);
546    Divisor *= i;
547    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
548                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
549    Result = SCEVAddExpr::get(Result, Val);
550  }
551  return Result;
552}
553
554
555//===----------------------------------------------------------------------===//
556//                    SCEV Expression folder implementations
557//===----------------------------------------------------------------------===//
558
559SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
560  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
561    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
562
563  // If the input value is a chrec scev made out of constants, truncate
564  // all of the constants.
565  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
566    std::vector<SCEVHandle> Operands;
567    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
568      // FIXME: This should allow truncation of other expression types!
569      if (isa<SCEVConstant>(AddRec->getOperand(i)))
570        Operands.push_back(get(AddRec->getOperand(i), Ty));
571      else
572        break;
573    if (Operands.size() == AddRec->getNumOperands())
574      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
575  }
576
577  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
578  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
579  return Result;
580}
581
582SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
583  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
584    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
585
586  // FIXME: If the input value is a chrec scev, and we can prove that the value
587  // did not overflow the old, smaller, value, we can zero extend all of the
588  // operands (often constants).  This would allow analysis of something like
589  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
590
591  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
592  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
593  return Result;
594}
595
596// get - Get a canonical add expression, or something simpler if possible.
597SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
598  assert(!Ops.empty() && "Cannot get empty add!");
599  if (Ops.size() == 1) return Ops[0];
600
601  // Sort by complexity, this groups all similar expression types together.
602  GroupByComplexity(Ops);
603
604  // If there are any constants, fold them together.
605  unsigned Idx = 0;
606  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
607    ++Idx;
608    assert(Idx < Ops.size());
609    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
610      // We found two constants, fold them together!
611      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
612      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
613        Ops[0] = SCEVConstant::get(CI);
614        Ops.erase(Ops.begin()+1);  // Erase the folded element
615        if (Ops.size() == 1) return Ops[0];
616        LHSC = cast<SCEVConstant>(Ops[0]);
617      } else {
618        // If we couldn't fold the expression, move to the next constant.  Note
619        // that this is impossible to happen in practice because we always
620        // constant fold constant ints to constant ints.
621        ++Idx;
622      }
623    }
624
625    // If we are left with a constant zero being added, strip it off.
626    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
627      Ops.erase(Ops.begin());
628      --Idx;
629    }
630  }
631
632  if (Ops.size() == 1) return Ops[0];
633
634  // Okay, check to see if the same value occurs in the operand list twice.  If
635  // so, merge them together into an multiply expression.  Since we sorted the
636  // list, these values are required to be adjacent.
637  const Type *Ty = Ops[0]->getType();
638  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
639    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
640      // Found a match, merge the two values into a multiply, and add any
641      // remaining values to the result.
642      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
643      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
644      if (Ops.size() == 2)
645        return Mul;
646      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
647      Ops.push_back(Mul);
648      return SCEVAddExpr::get(Ops);
649    }
650
651  // Okay, now we know the first non-constant operand.  If there are add
652  // operands they would be next.
653  if (Idx < Ops.size()) {
654    bool DeletedAdd = false;
655    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
656      // If we have an add, expand the add operands onto the end of the operands
657      // list.
658      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
659      Ops.erase(Ops.begin()+Idx);
660      DeletedAdd = true;
661    }
662
663    // If we deleted at least one add, we added operands to the end of the list,
664    // and they are not necessarily sorted.  Recurse to resort and resimplify
665    // any operands we just aquired.
666    if (DeletedAdd)
667      return get(Ops);
668  }
669
670  // Skip over the add expression until we get to a multiply.
671  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
672    ++Idx;
673
674  // If we are adding something to a multiply expression, make sure the
675  // something is not already an operand of the multiply.  If so, merge it into
676  // the multiply.
677  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
678    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
679    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
680      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
681      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
682        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
683          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
684          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
685          if (Mul->getNumOperands() != 2) {
686            // If the multiply has more than two operands, we must get the
687            // Y*Z term.
688            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
689            MulOps.erase(MulOps.begin()+MulOp);
690            InnerMul = SCEVMulExpr::get(MulOps);
691          }
692          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
693          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
694          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
695          if (Ops.size() == 2) return OuterMul;
696          if (AddOp < Idx) {
697            Ops.erase(Ops.begin()+AddOp);
698            Ops.erase(Ops.begin()+Idx-1);
699          } else {
700            Ops.erase(Ops.begin()+Idx);
701            Ops.erase(Ops.begin()+AddOp-1);
702          }
703          Ops.push_back(OuterMul);
704          return SCEVAddExpr::get(Ops);
705        }
706
707      // Check this multiply against other multiplies being added together.
708      for (unsigned OtherMulIdx = Idx+1;
709           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
710           ++OtherMulIdx) {
711        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
712        // If MulOp occurs in OtherMul, we can fold the two multiplies
713        // together.
714        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
715             OMulOp != e; ++OMulOp)
716          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
717            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
718            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
719            if (Mul->getNumOperands() != 2) {
720              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
721              MulOps.erase(MulOps.begin()+MulOp);
722              InnerMul1 = SCEVMulExpr::get(MulOps);
723            }
724            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
725            if (OtherMul->getNumOperands() != 2) {
726              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
727                                             OtherMul->op_end());
728              MulOps.erase(MulOps.begin()+OMulOp);
729              InnerMul2 = SCEVMulExpr::get(MulOps);
730            }
731            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
732            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
733            if (Ops.size() == 2) return OuterMul;
734            Ops.erase(Ops.begin()+Idx);
735            Ops.erase(Ops.begin()+OtherMulIdx-1);
736            Ops.push_back(OuterMul);
737            return SCEVAddExpr::get(Ops);
738          }
739      }
740    }
741  }
742
743  // If there are any add recurrences in the operands list, see if any other
744  // added values are loop invariant.  If so, we can fold them into the
745  // recurrence.
746  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
747    ++Idx;
748
749  // Scan over all recurrences, trying to fold loop invariants into them.
750  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
751    // Scan all of the other operands to this add and add them to the vector if
752    // they are loop invariant w.r.t. the recurrence.
753    std::vector<SCEVHandle> LIOps;
754    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
755    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
756      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
757        LIOps.push_back(Ops[i]);
758        Ops.erase(Ops.begin()+i);
759        --i; --e;
760      }
761
762    // If we found some loop invariants, fold them into the recurrence.
763    if (!LIOps.empty()) {
764      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
765      LIOps.push_back(AddRec->getStart());
766
767      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
768      AddRecOps[0] = SCEVAddExpr::get(LIOps);
769
770      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
771      // If all of the other operands were loop invariant, we are done.
772      if (Ops.size() == 1) return NewRec;
773
774      // Otherwise, add the folded AddRec by the non-liv parts.
775      for (unsigned i = 0;; ++i)
776        if (Ops[i] == AddRec) {
777          Ops[i] = NewRec;
778          break;
779        }
780      return SCEVAddExpr::get(Ops);
781    }
782
783    // Okay, if there weren't any loop invariants to be folded, check to see if
784    // there are multiple AddRec's with the same loop induction variable being
785    // added together.  If so, we can fold them.
786    for (unsigned OtherIdx = Idx+1;
787         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
788      if (OtherIdx != Idx) {
789        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
790        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
791          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
792          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
793          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
794            if (i >= NewOps.size()) {
795              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
796                            OtherAddRec->op_end());
797              break;
798            }
799            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
800          }
801          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
802
803          if (Ops.size() == 2) return NewAddRec;
804
805          Ops.erase(Ops.begin()+Idx);
806          Ops.erase(Ops.begin()+OtherIdx-1);
807          Ops.push_back(NewAddRec);
808          return SCEVAddExpr::get(Ops);
809        }
810      }
811
812    // Otherwise couldn't fold anything into this recurrence.  Move onto the
813    // next one.
814  }
815
816  // Okay, it looks like we really DO need an add expr.  Check to see if we
817  // already have one, otherwise create a new one.
818  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
819  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
820                                                                 SCEVOps)];
821  if (Result == 0) Result = new SCEVAddExpr(Ops);
822  return Result;
823}
824
825
826SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
827  assert(!Ops.empty() && "Cannot get empty mul!");
828
829  // Sort by complexity, this groups all similar expression types together.
830  GroupByComplexity(Ops);
831
832  // If there are any constants, fold them together.
833  unsigned Idx = 0;
834  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
835
836    // C1*(C2+V) -> C1*C2 + C1*V
837    if (Ops.size() == 2)
838      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
839        if (Add->getNumOperands() == 2 &&
840            isa<SCEVConstant>(Add->getOperand(0)))
841          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
842                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
843
844
845    ++Idx;
846    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
847      // We found two constants, fold them together!
848      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
849      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
850        Ops[0] = SCEVConstant::get(CI);
851        Ops.erase(Ops.begin()+1);  // Erase the folded element
852        if (Ops.size() == 1) return Ops[0];
853        LHSC = cast<SCEVConstant>(Ops[0]);
854      } else {
855        // If we couldn't fold the expression, move to the next constant.  Note
856        // that this is impossible to happen in practice because we always
857        // constant fold constant ints to constant ints.
858        ++Idx;
859      }
860    }
861
862    // If we are left with a constant one being multiplied, strip it off.
863    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
864      Ops.erase(Ops.begin());
865      --Idx;
866    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
867      // If we have a multiply of zero, it will always be zero.
868      return Ops[0];
869    }
870  }
871
872  // Skip over the add expression until we get to a multiply.
873  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
874    ++Idx;
875
876  if (Ops.size() == 1)
877    return Ops[0];
878
879  // If there are mul operands inline them all into this expression.
880  if (Idx < Ops.size()) {
881    bool DeletedMul = false;
882    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
883      // If we have an mul, expand the mul operands onto the end of the operands
884      // list.
885      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
886      Ops.erase(Ops.begin()+Idx);
887      DeletedMul = true;
888    }
889
890    // If we deleted at least one mul, we added operands to the end of the list,
891    // and they are not necessarily sorted.  Recurse to resort and resimplify
892    // any operands we just aquired.
893    if (DeletedMul)
894      return get(Ops);
895  }
896
897  // If there are any add recurrences in the operands list, see if any other
898  // added values are loop invariant.  If so, we can fold them into the
899  // recurrence.
900  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
901    ++Idx;
902
903  // Scan over all recurrences, trying to fold loop invariants into them.
904  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
905    // Scan all of the other operands to this mul and add them to the vector if
906    // they are loop invariant w.r.t. the recurrence.
907    std::vector<SCEVHandle> LIOps;
908    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
909    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
910      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
911        LIOps.push_back(Ops[i]);
912        Ops.erase(Ops.begin()+i);
913        --i; --e;
914      }
915
916    // If we found some loop invariants, fold them into the recurrence.
917    if (!LIOps.empty()) {
918      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
919      std::vector<SCEVHandle> NewOps;
920      NewOps.reserve(AddRec->getNumOperands());
921      if (LIOps.size() == 1) {
922        SCEV *Scale = LIOps[0];
923        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
924          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
925      } else {
926        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
927          std::vector<SCEVHandle> MulOps(LIOps);
928          MulOps.push_back(AddRec->getOperand(i));
929          NewOps.push_back(SCEVMulExpr::get(MulOps));
930        }
931      }
932
933      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
934
935      // If all of the other operands were loop invariant, we are done.
936      if (Ops.size() == 1) return NewRec;
937
938      // Otherwise, multiply the folded AddRec by the non-liv parts.
939      for (unsigned i = 0;; ++i)
940        if (Ops[i] == AddRec) {
941          Ops[i] = NewRec;
942          break;
943        }
944      return SCEVMulExpr::get(Ops);
945    }
946
947    // Okay, if there weren't any loop invariants to be folded, check to see if
948    // there are multiple AddRec's with the same loop induction variable being
949    // multiplied together.  If so, we can fold them.
950    for (unsigned OtherIdx = Idx+1;
951         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
952      if (OtherIdx != Idx) {
953        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
954        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
955          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
956          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
957          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
958                                                 G->getStart());
959          SCEVHandle B = F->getStepRecurrence();
960          SCEVHandle D = G->getStepRecurrence();
961          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
962                                                SCEVMulExpr::get(G, B),
963                                                SCEVMulExpr::get(B, D));
964          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
965                                                     F->getLoop());
966          if (Ops.size() == 2) return NewAddRec;
967
968          Ops.erase(Ops.begin()+Idx);
969          Ops.erase(Ops.begin()+OtherIdx-1);
970          Ops.push_back(NewAddRec);
971          return SCEVMulExpr::get(Ops);
972        }
973      }
974
975    // Otherwise couldn't fold anything into this recurrence.  Move onto the
976    // next one.
977  }
978
979  // Okay, it looks like we really DO need an mul expr.  Check to see if we
980  // already have one, otherwise create a new one.
981  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
982  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
983                                                                 SCEVOps)];
984  if (Result == 0)
985    Result = new SCEVMulExpr(Ops);
986  return Result;
987}
988
989SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
990  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
991    if (RHSC->getValue()->equalsInt(1))
992      return LHS;                            // X /s 1 --> x
993    if (RHSC->getValue()->isAllOnesValue())
994      return SCEV::getNegativeSCEV(LHS);           // X /s -1  -->  -x
995
996    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
997      Constant *LHSCV = LHSC->getValue();
998      Constant *RHSCV = RHSC->getValue();
999      if (LHSCV->getType()->isUnsigned())
1000        LHSCV = ConstantExpr::getCast(LHSCV,
1001                                      LHSCV->getType()->getSignedVersion());
1002      if (RHSCV->getType()->isUnsigned())
1003        RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
1004      return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
1005    }
1006  }
1007
1008  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1009
1010  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1011  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1012  return Result;
1013}
1014
1015
1016/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1017/// specified loop.  Simplify the expression as much as possible.
1018SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1019                               const SCEVHandle &Step, const Loop *L) {
1020  std::vector<SCEVHandle> Operands;
1021  Operands.push_back(Start);
1022  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1023    if (StepChrec->getLoop() == L) {
1024      Operands.insert(Operands.end(), StepChrec->op_begin(),
1025                      StepChrec->op_end());
1026      return get(Operands, L);
1027    }
1028
1029  Operands.push_back(Step);
1030  return get(Operands, L);
1031}
1032
1033/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1034/// specified loop.  Simplify the expression as much as possible.
1035SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1036                               const Loop *L) {
1037  if (Operands.size() == 1) return Operands[0];
1038
1039  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1040    if (StepC->getValue()->isNullValue()) {
1041      Operands.pop_back();
1042      return get(Operands, L);             // { X,+,0 }  -->  X
1043    }
1044
1045  SCEVAddRecExpr *&Result =
1046    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1047                                                            Operands.end()))];
1048  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1049  return Result;
1050}
1051
1052SCEVHandle SCEVUnknown::get(Value *V) {
1053  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1054    return SCEVConstant::get(CI);
1055  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1056  if (Result == 0) Result = new SCEVUnknown(V);
1057  return Result;
1058}
1059
1060
1061//===----------------------------------------------------------------------===//
1062//             ScalarEvolutionsImpl Definition and Implementation
1063//===----------------------------------------------------------------------===//
1064//
1065/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1066/// evolution code.
1067///
1068namespace {
1069  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1070    /// F - The function we are analyzing.
1071    ///
1072    Function &F;
1073
1074    /// LI - The loop information for the function we are currently analyzing.
1075    ///
1076    LoopInfo &LI;
1077
1078    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1079    /// things.
1080    SCEVHandle UnknownValue;
1081
1082    /// Scalars - This is a cache of the scalars we have analyzed so far.
1083    ///
1084    std::map<Value*, SCEVHandle> Scalars;
1085
1086    /// IterationCounts - Cache the iteration count of the loops for this
1087    /// function as they are computed.
1088    std::map<const Loop*, SCEVHandle> IterationCounts;
1089
1090    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1091    /// the PHI instructions that we attempt to compute constant evolutions for.
1092    /// This allows us to avoid potentially expensive recomputation of these
1093    /// properties.  An instruction maps to null if we are unable to compute its
1094    /// exit value.
1095    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1096
1097  public:
1098    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1099      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1100
1101    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1102    /// expression and create a new one.
1103    SCEVHandle getSCEV(Value *V);
1104
1105    /// hasSCEV - Return true if the SCEV for this value has already been
1106    /// computed.
1107    bool hasSCEV(Value *V) const {
1108      return Scalars.count(V);
1109    }
1110
1111    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1112    /// the specified value.
1113    void setSCEV(Value *V, const SCEVHandle &H) {
1114      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1115      assert(isNew && "This entry already existed!");
1116    }
1117
1118
1119    /// getSCEVAtScope - Compute the value of the specified expression within
1120    /// the indicated loop (which may be null to indicate in no loop).  If the
1121    /// expression cannot be evaluated, return UnknownValue itself.
1122    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1123
1124
1125    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1126    /// an analyzable loop-invariant iteration count.
1127    bool hasLoopInvariantIterationCount(const Loop *L);
1128
1129    /// getIterationCount - If the specified loop has a predictable iteration
1130    /// count, return it.  Note that it is not valid to call this method on a
1131    /// loop without a loop-invariant iteration count.
1132    SCEVHandle getIterationCount(const Loop *L);
1133
1134    /// deleteInstructionFromRecords - This method should be called by the
1135    /// client before it removes an instruction from the program, to make sure
1136    /// that no dangling references are left around.
1137    void deleteInstructionFromRecords(Instruction *I);
1138
1139  private:
1140    /// createSCEV - We know that there is no SCEV for the specified value.
1141    /// Analyze the expression.
1142    SCEVHandle createSCEV(Value *V);
1143    SCEVHandle createNodeForCast(CastInst *CI);
1144
1145    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1146    /// SCEVs.
1147    SCEVHandle createNodeForPHI(PHINode *PN);
1148
1149    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1150    /// for the specified instruction and replaces any references to the
1151    /// symbolic value SymName with the specified value.  This is used during
1152    /// PHI resolution.
1153    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1154                                          const SCEVHandle &SymName,
1155                                          const SCEVHandle &NewVal);
1156
1157    /// ComputeIterationCount - Compute the number of times the specified loop
1158    /// will iterate.
1159    SCEVHandle ComputeIterationCount(const Loop *L);
1160
1161    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1162    /// 'setcc load X, cst', try to se if we can compute the trip count.
1163    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1164                                                        Constant *RHS,
1165                                                        const Loop *L,
1166                                                        unsigned SetCCOpcode);
1167
1168    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1169    /// constant number of times (the condition evolves only from constants),
1170    /// try to evaluate a few iterations of the loop until we get the exit
1171    /// condition gets a value of ExitWhen (true or false).  If we cannot
1172    /// evaluate the trip count of the loop, return UnknownValue.
1173    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1174                                                 bool ExitWhen);
1175
1176    /// HowFarToZero - Return the number of times a backedge comparing the
1177    /// specified value to zero will execute.  If not computable, return
1178    /// UnknownValue.
1179    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1180
1181    /// HowFarToNonZero - Return the number of times a backedge checking the
1182    /// specified value for nonzero will execute.  If not computable, return
1183    /// UnknownValue.
1184    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1185
1186    /// HowManyLessThans - Return the number of times a backedge containing the
1187    /// specified less-than comparison will execute.  If not computable, return
1188    /// UnknownValue.
1189    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1190
1191    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1192    /// in the header of its containing loop, we know the loop executes a
1193    /// constant number of times, and the PHI node is just a recurrence
1194    /// involving constants, fold it.
1195    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1196                                                const Loop *L);
1197  };
1198}
1199
1200//===----------------------------------------------------------------------===//
1201//            Basic SCEV Analysis and PHI Idiom Recognition Code
1202//
1203
1204/// deleteInstructionFromRecords - This method should be called by the
1205/// client before it removes an instruction from the program, to make sure
1206/// that no dangling references are left around.
1207void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1208  Scalars.erase(I);
1209  if (PHINode *PN = dyn_cast<PHINode>(I))
1210    ConstantEvolutionLoopExitValue.erase(PN);
1211}
1212
1213
1214/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1215/// expression and create a new one.
1216SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1217  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1218
1219  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1220  if (I != Scalars.end()) return I->second;
1221  SCEVHandle S = createSCEV(V);
1222  Scalars.insert(std::make_pair(V, S));
1223  return S;
1224}
1225
1226/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1227/// the specified instruction and replaces any references to the symbolic value
1228/// SymName with the specified value.  This is used during PHI resolution.
1229void ScalarEvolutionsImpl::
1230ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1231                                 const SCEVHandle &NewVal) {
1232  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1233  if (SI == Scalars.end()) return;
1234
1235  SCEVHandle NV =
1236    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1237  if (NV == SI->second) return;  // No change.
1238
1239  SI->second = NV;       // Update the scalars map!
1240
1241  // Any instruction values that use this instruction might also need to be
1242  // updated!
1243  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1244       UI != E; ++UI)
1245    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1246}
1247
1248/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1249/// a loop header, making it a potential recurrence, or it doesn't.
1250///
1251SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1252  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1253    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1254      if (L->getHeader() == PN->getParent()) {
1255        // If it lives in the loop header, it has two incoming values, one
1256        // from outside the loop, and one from inside.
1257        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1258        unsigned BackEdge     = IncomingEdge^1;
1259
1260        // While we are analyzing this PHI node, handle its value symbolically.
1261        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1262        assert(Scalars.find(PN) == Scalars.end() &&
1263               "PHI node already processed?");
1264        Scalars.insert(std::make_pair(PN, SymbolicName));
1265
1266        // Using this symbolic name for the PHI, analyze the value coming around
1267        // the back-edge.
1268        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1269
1270        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1271        // has a special value for the first iteration of the loop.
1272
1273        // If the value coming around the backedge is an add with the symbolic
1274        // value we just inserted, then we found a simple induction variable!
1275        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1276          // If there is a single occurrence of the symbolic value, replace it
1277          // with a recurrence.
1278          unsigned FoundIndex = Add->getNumOperands();
1279          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1280            if (Add->getOperand(i) == SymbolicName)
1281              if (FoundIndex == e) {
1282                FoundIndex = i;
1283                break;
1284              }
1285
1286          if (FoundIndex != Add->getNumOperands()) {
1287            // Create an add with everything but the specified operand.
1288            std::vector<SCEVHandle> Ops;
1289            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1290              if (i != FoundIndex)
1291                Ops.push_back(Add->getOperand(i));
1292            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1293
1294            // This is not a valid addrec if the step amount is varying each
1295            // loop iteration, but is not itself an addrec in this loop.
1296            if (Accum->isLoopInvariant(L) ||
1297                (isa<SCEVAddRecExpr>(Accum) &&
1298                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1299              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1300              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1301
1302              // Okay, for the entire analysis of this edge we assumed the PHI
1303              // to be symbolic.  We now need to go back and update all of the
1304              // entries for the scalars that use the PHI (except for the PHI
1305              // itself) to use the new analyzed value instead of the "symbolic"
1306              // value.
1307              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1308              return PHISCEV;
1309            }
1310          }
1311        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1312          // Otherwise, this could be a loop like this:
1313          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1314          // In this case, j = {1,+,1}  and BEValue is j.
1315          // Because the other in-value of i (0) fits the evolution of BEValue
1316          // i really is an addrec evolution.
1317          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1318            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1319
1320            // If StartVal = j.start - j.stride, we can use StartVal as the
1321            // initial step of the addrec evolution.
1322            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1323                                               AddRec->getOperand(1))) {
1324              SCEVHandle PHISCEV =
1325                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1326
1327              // Okay, for the entire analysis of this edge we assumed the PHI
1328              // to be symbolic.  We now need to go back and update all of the
1329              // entries for the scalars that use the PHI (except for the PHI
1330              // itself) to use the new analyzed value instead of the "symbolic"
1331              // value.
1332              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1333              return PHISCEV;
1334            }
1335          }
1336        }
1337
1338        return SymbolicName;
1339      }
1340
1341  // If it's not a loop phi, we can't handle it yet.
1342  return SCEVUnknown::get(PN);
1343}
1344
1345/// createNodeForCast - Handle the various forms of casts that we support.
1346///
1347SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1348  const Type *SrcTy = CI->getOperand(0)->getType();
1349  const Type *DestTy = CI->getType();
1350
1351  // If this is a noop cast (ie, conversion from int to uint), ignore it.
1352  if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1353    return getSCEV(CI->getOperand(0));
1354
1355  if (SrcTy->isInteger() && DestTy->isInteger()) {
1356    // Otherwise, if this is a truncating integer cast, we can represent this
1357    // cast.
1358    if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1359      return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1360                                   CI->getType()->getUnsignedVersion());
1361    if (SrcTy->isUnsigned() &&
1362        SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1363      return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1364                                     CI->getType()->getUnsignedVersion());
1365  }
1366
1367  // If this is an sign or zero extending cast and we can prove that the value
1368  // will never overflow, we could do similar transformations.
1369
1370  // Otherwise, we can't handle this cast!
1371  return SCEVUnknown::get(CI);
1372}
1373
1374
1375/// createSCEV - We know that there is no SCEV for the specified value.
1376/// Analyze the expression.
1377///
1378SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1379  if (Instruction *I = dyn_cast<Instruction>(V)) {
1380    switch (I->getOpcode()) {
1381    case Instruction::Add:
1382      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1383                              getSCEV(I->getOperand(1)));
1384    case Instruction::Mul:
1385      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1386                              getSCEV(I->getOperand(1)));
1387    case Instruction::Div:
1388      if (V->getType()->isInteger() && V->getType()->isSigned())
1389        return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1390                                 getSCEV(I->getOperand(1)));
1391      break;
1392
1393    case Instruction::Sub:
1394      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1395                                getSCEV(I->getOperand(1)));
1396
1397    case Instruction::Shl:
1398      // Turn shift left of a constant amount into a multiply.
1399      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1400        Constant *X = ConstantInt::get(V->getType(), 1);
1401        X = ConstantExpr::getShl(X, SA);
1402        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1403      }
1404      break;
1405
1406    case Instruction::Cast:
1407      return createNodeForCast(cast<CastInst>(I));
1408
1409    case Instruction::PHI:
1410      return createNodeForPHI(cast<PHINode>(I));
1411
1412    default: // We cannot analyze this expression.
1413      break;
1414    }
1415  }
1416
1417  return SCEVUnknown::get(V);
1418}
1419
1420
1421
1422//===----------------------------------------------------------------------===//
1423//                   Iteration Count Computation Code
1424//
1425
1426/// getIterationCount - If the specified loop has a predictable iteration
1427/// count, return it.  Note that it is not valid to call this method on a
1428/// loop without a loop-invariant iteration count.
1429SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1430  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1431  if (I == IterationCounts.end()) {
1432    SCEVHandle ItCount = ComputeIterationCount(L);
1433    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1434    if (ItCount != UnknownValue) {
1435      assert(ItCount->isLoopInvariant(L) &&
1436             "Computed trip count isn't loop invariant for loop!");
1437      ++NumTripCountsComputed;
1438    } else if (isa<PHINode>(L->getHeader()->begin())) {
1439      // Only count loops that have phi nodes as not being computable.
1440      ++NumTripCountsNotComputed;
1441    }
1442  }
1443  return I->second;
1444}
1445
1446/// ComputeIterationCount - Compute the number of times the specified loop
1447/// will iterate.
1448SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1449  // If the loop has a non-one exit block count, we can't analyze it.
1450  std::vector<BasicBlock*> ExitBlocks;
1451  L->getExitBlocks(ExitBlocks);
1452  if (ExitBlocks.size() != 1) return UnknownValue;
1453
1454  // Okay, there is one exit block.  Try to find the condition that causes the
1455  // loop to be exited.
1456  BasicBlock *ExitBlock = ExitBlocks[0];
1457
1458  BasicBlock *ExitingBlock = 0;
1459  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1460       PI != E; ++PI)
1461    if (L->contains(*PI)) {
1462      if (ExitingBlock == 0)
1463        ExitingBlock = *PI;
1464      else
1465        return UnknownValue;   // More than one block exiting!
1466    }
1467  assert(ExitingBlock && "No exits from loop, something is broken!");
1468
1469  // Okay, we've computed the exiting block.  See what condition causes us to
1470  // exit.
1471  //
1472  // FIXME: we should be able to handle switch instructions (with a single exit)
1473  // FIXME: We should handle cast of int to bool as well
1474  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1475  if (ExitBr == 0) return UnknownValue;
1476  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1477  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1478  if (ExitCond == 0)  // Not a setcc
1479    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1480                                          ExitBr->getSuccessor(0) == ExitBlock);
1481
1482  // If the condition was exit on true, convert the condition to exit on false.
1483  Instruction::BinaryOps Cond;
1484  if (ExitBr->getSuccessor(1) == ExitBlock)
1485    Cond = ExitCond->getOpcode();
1486  else
1487    Cond = ExitCond->getInverseCondition();
1488
1489  // Handle common loops like: for (X = "string"; *X; ++X)
1490  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1491    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1492      SCEVHandle ItCnt =
1493        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1494      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1495    }
1496
1497  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1498  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1499
1500  // Try to evaluate any dependencies out of the loop.
1501  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1502  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1503  Tmp = getSCEVAtScope(RHS, L);
1504  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1505
1506  // At this point, we would like to compute how many iterations of the loop the
1507  // predicate will return true for these inputs.
1508  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1509    // If there is a constant, force it into the RHS.
1510    std::swap(LHS, RHS);
1511    Cond = SetCondInst::getSwappedCondition(Cond);
1512  }
1513
1514  // FIXME: think about handling pointer comparisons!  i.e.:
1515  // while (P != P+100) ++P;
1516
1517  // If we have a comparison of a chrec against a constant, try to use value
1518  // ranges to answer this query.
1519  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1520    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1521      if (AddRec->getLoop() == L) {
1522        // Form the comparison range using the constant of the correct type so
1523        // that the ConstantRange class knows to do a signed or unsigned
1524        // comparison.
1525        ConstantInt *CompVal = RHSC->getValue();
1526        const Type *RealTy = ExitCond->getOperand(0)->getType();
1527        CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1528        if (CompVal) {
1529          // Form the constant range.
1530          ConstantRange CompRange(Cond, CompVal);
1531
1532          // Now that we have it, if it's signed, convert it to an unsigned
1533          // range.
1534          if (CompRange.getLower()->getType()->isSigned()) {
1535            const Type *NewTy = RHSC->getValue()->getType();
1536            Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1537            Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1538            CompRange = ConstantRange(NewL, NewU);
1539          }
1540
1541          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1542          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1543        }
1544      }
1545
1546  switch (Cond) {
1547  case Instruction::SetNE:                     // while (X != Y)
1548    // Convert to: while (X-Y != 0)
1549    if (LHS->getType()->isInteger()) {
1550      SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1551      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1552    }
1553    break;
1554  case Instruction::SetEQ:
1555    // Convert to: while (X-Y == 0)           // while (X == Y)
1556    if (LHS->getType()->isInteger()) {
1557      SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1558      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1559    }
1560    break;
1561  case Instruction::SetLT:
1562    if (LHS->getType()->isInteger() &&
1563        ExitCond->getOperand(0)->getType()->isSigned()) {
1564      SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1565      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1566    }
1567    break;
1568  case Instruction::SetGT:
1569    if (LHS->getType()->isInteger() &&
1570        ExitCond->getOperand(0)->getType()->isSigned()) {
1571      SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1572      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1573    }
1574    break;
1575  default:
1576#if 0
1577    std::cerr << "ComputeIterationCount ";
1578    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1579      std::cerr << "[unsigned] ";
1580    std::cerr << *LHS << "   "
1581              << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1582#endif
1583    break;
1584  }
1585
1586  return ComputeIterationCountExhaustively(L, ExitCond,
1587                                         ExitBr->getSuccessor(0) == ExitBlock);
1588}
1589
1590static ConstantInt *
1591EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1592  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1593  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1594  assert(isa<SCEVConstant>(Val) &&
1595         "Evaluation of SCEV at constant didn't fold correctly?");
1596  return cast<SCEVConstant>(Val)->getValue();
1597}
1598
1599/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1600/// and a GEP expression (missing the pointer index) indexing into it, return
1601/// the addressed element of the initializer or null if the index expression is
1602/// invalid.
1603static Constant *
1604GetAddressedElementFromGlobal(GlobalVariable *GV,
1605                              const std::vector<ConstantInt*> &Indices) {
1606  Constant *Init = GV->getInitializer();
1607  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1608    uint64_t Idx = Indices[i]->getRawValue();
1609    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1610      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1611      Init = cast<Constant>(CS->getOperand(Idx));
1612    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1613      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1614      Init = cast<Constant>(CA->getOperand(Idx));
1615    } else if (isa<ConstantAggregateZero>(Init)) {
1616      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1617        assert(Idx < STy->getNumElements() && "Bad struct index!");
1618        Init = Constant::getNullValue(STy->getElementType(Idx));
1619      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1620        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1621        Init = Constant::getNullValue(ATy->getElementType());
1622      } else {
1623        assert(0 && "Unknown constant aggregate type!");
1624      }
1625      return 0;
1626    } else {
1627      return 0; // Unknown initializer type
1628    }
1629  }
1630  return Init;
1631}
1632
1633/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1634/// 'setcc load X, cst', try to se if we can compute the trip count.
1635SCEVHandle ScalarEvolutionsImpl::
1636ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1637                                         const Loop *L, unsigned SetCCOpcode) {
1638  if (LI->isVolatile()) return UnknownValue;
1639
1640  // Check to see if the loaded pointer is a getelementptr of a global.
1641  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1642  if (!GEP) return UnknownValue;
1643
1644  // Make sure that it is really a constant global we are gepping, with an
1645  // initializer, and make sure the first IDX is really 0.
1646  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1647  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1648      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1649      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1650    return UnknownValue;
1651
1652  // Okay, we allow one non-constant index into the GEP instruction.
1653  Value *VarIdx = 0;
1654  std::vector<ConstantInt*> Indexes;
1655  unsigned VarIdxNum = 0;
1656  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1657    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1658      Indexes.push_back(CI);
1659    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1660      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1661      VarIdx = GEP->getOperand(i);
1662      VarIdxNum = i-2;
1663      Indexes.push_back(0);
1664    }
1665
1666  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1667  // Check to see if X is a loop variant variable value now.
1668  SCEVHandle Idx = getSCEV(VarIdx);
1669  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1670  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1671
1672  // We can only recognize very limited forms of loop index expressions, in
1673  // particular, only affine AddRec's like {C1,+,C2}.
1674  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1675  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1676      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1677      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1678    return UnknownValue;
1679
1680  unsigned MaxSteps = MaxBruteForceIterations;
1681  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1682    ConstantUInt *ItCst =
1683      ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1684    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1685
1686    // Form the GEP offset.
1687    Indexes[VarIdxNum] = Val;
1688
1689    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1690    if (Result == 0) break;  // Cannot compute!
1691
1692    // Evaluate the condition for this iteration.
1693    Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1694    if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
1695    if (cast<ConstantBool>(Result)->getValue() == false) {
1696#if 0
1697      std::cerr << "\n***\n*** Computed loop count " << *ItCst
1698                << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1699                << "***\n";
1700#endif
1701      ++NumArrayLenItCounts;
1702      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1703    }
1704  }
1705  return UnknownValue;
1706}
1707
1708
1709/// CanConstantFold - Return true if we can constant fold an instruction of the
1710/// specified type, assuming that all operands were constants.
1711static bool CanConstantFold(const Instruction *I) {
1712  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1713      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1714    return true;
1715
1716  if (const CallInst *CI = dyn_cast<CallInst>(I))
1717    if (const Function *F = CI->getCalledFunction())
1718      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1719  return false;
1720}
1721
1722/// ConstantFold - Constant fold an instruction of the specified type with the
1723/// specified constant operands.  This function may modify the operands vector.
1724static Constant *ConstantFold(const Instruction *I,
1725                              std::vector<Constant*> &Operands) {
1726  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1727    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1728
1729  switch (I->getOpcode()) {
1730  case Instruction::Cast:
1731    return ConstantExpr::getCast(Operands[0], I->getType());
1732  case Instruction::Select:
1733    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1734  case Instruction::Call:
1735    if (Function *GV = dyn_cast<Function>(Operands[0])) {
1736      Operands.erase(Operands.begin());
1737      return ConstantFoldCall(cast<Function>(GV), Operands);
1738    }
1739
1740    return 0;
1741  case Instruction::GetElementPtr:
1742    Constant *Base = Operands[0];
1743    Operands.erase(Operands.begin());
1744    return ConstantExpr::getGetElementPtr(Base, Operands);
1745  }
1746  return 0;
1747}
1748
1749
1750/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1751/// in the loop that V is derived from.  We allow arbitrary operations along the
1752/// way, but the operands of an operation must either be constants or a value
1753/// derived from a constant PHI.  If this expression does not fit with these
1754/// constraints, return null.
1755static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1756  // If this is not an instruction, or if this is an instruction outside of the
1757  // loop, it can't be derived from a loop PHI.
1758  Instruction *I = dyn_cast<Instruction>(V);
1759  if (I == 0 || !L->contains(I->getParent())) return 0;
1760
1761  if (PHINode *PN = dyn_cast<PHINode>(I))
1762    if (L->getHeader() == I->getParent())
1763      return PN;
1764    else
1765      // We don't currently keep track of the control flow needed to evaluate
1766      // PHIs, so we cannot handle PHIs inside of loops.
1767      return 0;
1768
1769  // If we won't be able to constant fold this expression even if the operands
1770  // are constants, return early.
1771  if (!CanConstantFold(I)) return 0;
1772
1773  // Otherwise, we can evaluate this instruction if all of its operands are
1774  // constant or derived from a PHI node themselves.
1775  PHINode *PHI = 0;
1776  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1777    if (!(isa<Constant>(I->getOperand(Op)) ||
1778          isa<GlobalValue>(I->getOperand(Op)))) {
1779      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1780      if (P == 0) return 0;  // Not evolving from PHI
1781      if (PHI == 0)
1782        PHI = P;
1783      else if (PHI != P)
1784        return 0;  // Evolving from multiple different PHIs.
1785    }
1786
1787  // This is a expression evolving from a constant PHI!
1788  return PHI;
1789}
1790
1791/// EvaluateExpression - Given an expression that passes the
1792/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1793/// in the loop has the value PHIVal.  If we can't fold this expression for some
1794/// reason, return null.
1795static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1796  if (isa<PHINode>(V)) return PHIVal;
1797  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1798    return GV;
1799  if (Constant *C = dyn_cast<Constant>(V)) return C;
1800  Instruction *I = cast<Instruction>(V);
1801
1802  std::vector<Constant*> Operands;
1803  Operands.resize(I->getNumOperands());
1804
1805  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1806    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1807    if (Operands[i] == 0) return 0;
1808  }
1809
1810  return ConstantFold(I, Operands);
1811}
1812
1813/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1814/// in the header of its containing loop, we know the loop executes a
1815/// constant number of times, and the PHI node is just a recurrence
1816/// involving constants, fold it.
1817Constant *ScalarEvolutionsImpl::
1818getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1819  std::map<PHINode*, Constant*>::iterator I =
1820    ConstantEvolutionLoopExitValue.find(PN);
1821  if (I != ConstantEvolutionLoopExitValue.end())
1822    return I->second;
1823
1824  if (Its > MaxBruteForceIterations)
1825    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1826
1827  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1828
1829  // Since the loop is canonicalized, the PHI node must have two entries.  One
1830  // entry must be a constant (coming in from outside of the loop), and the
1831  // second must be derived from the same PHI.
1832  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1833  Constant *StartCST =
1834    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1835  if (StartCST == 0)
1836    return RetVal = 0;  // Must be a constant.
1837
1838  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1839  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1840  if (PN2 != PN)
1841    return RetVal = 0;  // Not derived from same PHI.
1842
1843  // Execute the loop symbolically to determine the exit value.
1844  unsigned IterationNum = 0;
1845  unsigned NumIterations = Its;
1846  if (NumIterations != Its)
1847    return RetVal = 0;  // More than 2^32 iterations??
1848
1849  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1850    if (IterationNum == NumIterations)
1851      return RetVal = PHIVal;  // Got exit value!
1852
1853    // Compute the value of the PHI node for the next iteration.
1854    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1855    if (NextPHI == PHIVal)
1856      return RetVal = NextPHI;  // Stopped evolving!
1857    if (NextPHI == 0)
1858      return 0;        // Couldn't evaluate!
1859    PHIVal = NextPHI;
1860  }
1861}
1862
1863/// ComputeIterationCountExhaustively - If the trip is known to execute a
1864/// constant number of times (the condition evolves only from constants),
1865/// try to evaluate a few iterations of the loop until we get the exit
1866/// condition gets a value of ExitWhen (true or false).  If we cannot
1867/// evaluate the trip count of the loop, return UnknownValue.
1868SCEVHandle ScalarEvolutionsImpl::
1869ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1870  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1871  if (PN == 0) return UnknownValue;
1872
1873  // Since the loop is canonicalized, the PHI node must have two entries.  One
1874  // entry must be a constant (coming in from outside of the loop), and the
1875  // second must be derived from the same PHI.
1876  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1877  Constant *StartCST =
1878    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1879  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1880
1881  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1882  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1883  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1884
1885  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1886  // the loop symbolically to determine when the condition gets a value of
1887  // "ExitWhen".
1888  unsigned IterationNum = 0;
1889  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1890  for (Constant *PHIVal = StartCST;
1891       IterationNum != MaxIterations; ++IterationNum) {
1892    ConstantBool *CondVal =
1893      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1894    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
1895
1896    if (CondVal->getValue() == ExitWhen) {
1897      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1898      ++NumBruteForceTripCountsComputed;
1899      return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1900    }
1901
1902    // Compute the value of the PHI node for the next iteration.
1903    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1904    if (NextPHI == 0 || NextPHI == PHIVal)
1905      return UnknownValue;  // Couldn't evaluate or not making progress...
1906    PHIVal = NextPHI;
1907  }
1908
1909  // Too many iterations were needed to evaluate.
1910  return UnknownValue;
1911}
1912
1913/// getSCEVAtScope - Compute the value of the specified expression within the
1914/// indicated loop (which may be null to indicate in no loop).  If the
1915/// expression cannot be evaluated, return UnknownValue.
1916SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1917  // FIXME: this should be turned into a virtual method on SCEV!
1918
1919  if (isa<SCEVConstant>(V)) return V;
1920
1921  // If this instruction is evolves from a constant-evolving PHI, compute the
1922  // exit value from the loop without using SCEVs.
1923  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1924    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1925      const Loop *LI = this->LI[I->getParent()];
1926      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1927        if (PHINode *PN = dyn_cast<PHINode>(I))
1928          if (PN->getParent() == LI->getHeader()) {
1929            // Okay, there is no closed form solution for the PHI node.  Check
1930            // to see if the loop that contains it has a known iteration count.
1931            // If so, we may be able to force computation of the exit value.
1932            SCEVHandle IterationCount = getIterationCount(LI);
1933            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1934              // Okay, we know how many times the containing loop executes.  If
1935              // this is a constant evolving PHI node, get the final value at
1936              // the specified iteration number.
1937              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1938                                               ICC->getValue()->getRawValue(),
1939                                                               LI);
1940              if (RV) return SCEVUnknown::get(RV);
1941            }
1942          }
1943
1944      // Okay, this is a some expression that we cannot symbolically evaluate
1945      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1946      // the arguments into constants, and if see, try to constant propagate the
1947      // result.  This is particularly useful for computing loop exit values.
1948      if (CanConstantFold(I)) {
1949        std::vector<Constant*> Operands;
1950        Operands.reserve(I->getNumOperands());
1951        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1952          Value *Op = I->getOperand(i);
1953          if (Constant *C = dyn_cast<Constant>(Op)) {
1954            Operands.push_back(C);
1955          } else {
1956            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1957            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1958              Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1959                                                       Op->getType()));
1960            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1961              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1962                Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1963              else
1964                return V;
1965            } else {
1966              return V;
1967            }
1968          }
1969        }
1970        return SCEVUnknown::get(ConstantFold(I, Operands));
1971      }
1972    }
1973
1974    // This is some other type of SCEVUnknown, just return it.
1975    return V;
1976  }
1977
1978  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1979    // Avoid performing the look-up in the common case where the specified
1980    // expression has no loop-variant portions.
1981    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1982      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1983      if (OpAtScope != Comm->getOperand(i)) {
1984        if (OpAtScope == UnknownValue) return UnknownValue;
1985        // Okay, at least one of these operands is loop variant but might be
1986        // foldable.  Build a new instance of the folded commutative expression.
1987        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
1988        NewOps.push_back(OpAtScope);
1989
1990        for (++i; i != e; ++i) {
1991          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1992          if (OpAtScope == UnknownValue) return UnknownValue;
1993          NewOps.push_back(OpAtScope);
1994        }
1995        if (isa<SCEVAddExpr>(Comm))
1996          return SCEVAddExpr::get(NewOps);
1997        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1998        return SCEVMulExpr::get(NewOps);
1999      }
2000    }
2001    // If we got here, all operands are loop invariant.
2002    return Comm;
2003  }
2004
2005  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2006    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2007    if (LHS == UnknownValue) return LHS;
2008    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2009    if (RHS == UnknownValue) return RHS;
2010    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2011      return Div;   // must be loop invariant
2012    return SCEVSDivExpr::get(LHS, RHS);
2013  }
2014
2015  // If this is a loop recurrence for a loop that does not contain L, then we
2016  // are dealing with the final value computed by the loop.
2017  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2018    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2019      // To evaluate this recurrence, we need to know how many times the AddRec
2020      // loop iterates.  Compute this now.
2021      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2022      if (IterationCount == UnknownValue) return UnknownValue;
2023      IterationCount = getTruncateOrZeroExtend(IterationCount,
2024                                               AddRec->getType());
2025
2026      // If the value is affine, simplify the expression evaluation to just
2027      // Start + Step*IterationCount.
2028      if (AddRec->isAffine())
2029        return SCEVAddExpr::get(AddRec->getStart(),
2030                                SCEVMulExpr::get(IterationCount,
2031                                                 AddRec->getOperand(1)));
2032
2033      // Otherwise, evaluate it the hard way.
2034      return AddRec->evaluateAtIteration(IterationCount);
2035    }
2036    return UnknownValue;
2037  }
2038
2039  //assert(0 && "Unknown SCEV type!");
2040  return UnknownValue;
2041}
2042
2043
2044/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2045/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2046/// might be the same) or two SCEVCouldNotCompute objects.
2047///
2048static std::pair<SCEVHandle,SCEVHandle>
2049SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2050  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2051  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2052  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2053  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2054
2055  // We currently can only solve this if the coefficients are constants.
2056  if (!L || !M || !N) {
2057    SCEV *CNC = new SCEVCouldNotCompute();
2058    return std::make_pair(CNC, CNC);
2059  }
2060
2061  Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
2062
2063  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2064  Constant *C = L->getValue();
2065  // The B coefficient is M-N/2
2066  Constant *B = ConstantExpr::getSub(M->getValue(),
2067                                     ConstantExpr::getDiv(N->getValue(),
2068                                                          Two));
2069  // The A coefficient is N/2
2070  Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
2071
2072  // Compute the B^2-4ac term.
2073  Constant *SqrtTerm =
2074    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2075                         ConstantExpr::getMul(A, C));
2076  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2077
2078  // Compute floor(sqrt(B^2-4ac))
2079  ConstantUInt *SqrtVal =
2080    cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2081                                   SqrtTerm->getType()->getUnsignedVersion()));
2082  uint64_t SqrtValV = SqrtVal->getValue();
2083  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2084  // The square root might not be precise for arbitrary 64-bit integer
2085  // values.  Do some sanity checks to ensure it's correct.
2086  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2087      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2088    SCEV *CNC = new SCEVCouldNotCompute();
2089    return std::make_pair(CNC, CNC);
2090  }
2091
2092  SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2093  SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
2094
2095  Constant *NegB = ConstantExpr::getNeg(B);
2096  Constant *TwoA = ConstantExpr::getMul(A, Two);
2097
2098  // The divisions must be performed as signed divisions.
2099  const Type *SignedTy = NegB->getType()->getSignedVersion();
2100  NegB = ConstantExpr::getCast(NegB, SignedTy);
2101  TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2102  SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
2103
2104  Constant *Solution1 =
2105    ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2106  Constant *Solution2 =
2107    ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2108  return std::make_pair(SCEVUnknown::get(Solution1),
2109                        SCEVUnknown::get(Solution2));
2110}
2111
2112/// HowFarToZero - Return the number of times a backedge comparing the specified
2113/// value to zero will execute.  If not computable, return UnknownValue
2114SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2115  // If the value is a constant
2116  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2117    // If the value is already zero, the branch will execute zero times.
2118    if (C->getValue()->isNullValue()) return C;
2119    return UnknownValue;  // Otherwise it will loop infinitely.
2120  }
2121
2122  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2123  if (!AddRec || AddRec->getLoop() != L)
2124    return UnknownValue;
2125
2126  if (AddRec->isAffine()) {
2127    // If this is an affine expression the execution count of this branch is
2128    // equal to:
2129    //
2130    //     (0 - Start/Step)    iff   Start % Step == 0
2131    //
2132    // Get the initial value for the loop.
2133    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2134    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2135    SCEVHandle Step = AddRec->getOperand(1);
2136
2137    Step = getSCEVAtScope(Step, L->getParentLoop());
2138
2139    // Figure out if Start % Step == 0.
2140    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2141    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2142      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2143        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2144      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2145        return Start;                   // 0 - Start/-1 == Start
2146
2147      // Check to see if Start is divisible by SC with no remainder.
2148      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2149        ConstantInt *StartCC = StartC->getValue();
2150        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2151        Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2152        if (Rem->isNullValue()) {
2153          Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2154          return SCEVUnknown::get(Result);
2155        }
2156      }
2157    }
2158  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2159    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2160    // the quadratic equation to solve it.
2161    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2162    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2163    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2164    if (R1) {
2165#if 0
2166      std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2167                << "  sol#2: " << *R2 << "\n";
2168#endif
2169      // Pick the smallest positive root value.
2170      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2171      if (ConstantBool *CB =
2172          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2173                                                        R2->getValue()))) {
2174        if (CB->getValue() == false)
2175          std::swap(R1, R2);   // R1 is the minimum root now.
2176
2177        // We can only use this value if the chrec ends up with an exact zero
2178        // value at this index.  When solving for "X*X != 5", for example, we
2179        // should not accept a root of 2.
2180        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2181        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2182          if (EvalVal->getValue()->isNullValue())
2183            return R1;  // We found a quadratic root!
2184      }
2185    }
2186  }
2187
2188  return UnknownValue;
2189}
2190
2191/// HowFarToNonZero - Return the number of times a backedge checking the
2192/// specified value for nonzero will execute.  If not computable, return
2193/// UnknownValue
2194SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2195  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2196  // handle them yet except for the trivial case.  This could be expanded in the
2197  // future as needed.
2198
2199  // If the value is a constant, check to see if it is known to be non-zero
2200  // already.  If so, the backedge will execute zero times.
2201  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2202    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2203    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2204    if (NonZero == ConstantBool::getTrue())
2205      return getSCEV(Zero);
2206    return UnknownValue;  // Otherwise it will loop infinitely.
2207  }
2208
2209  // We could implement others, but I really doubt anyone writes loops like
2210  // this, and if they did, they would already be constant folded.
2211  return UnknownValue;
2212}
2213
2214/// HowManyLessThans - Return the number of times a backedge containing the
2215/// specified less-than comparison will execute.  If not computable, return
2216/// UnknownValue.
2217SCEVHandle ScalarEvolutionsImpl::
2218HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2219  // Only handle:  "ADDREC < LoopInvariant".
2220  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2221
2222  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2223  if (!AddRec || AddRec->getLoop() != L)
2224    return UnknownValue;
2225
2226  if (AddRec->isAffine()) {
2227    // FORNOW: We only support unit strides.
2228    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2229    if (AddRec->getOperand(1) != One)
2230      return UnknownValue;
2231
2232    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2233    // know that m is >= n on input to the loop.  If it is, the condition return
2234    // true zero times.  What we really should return, for full generality, is
2235    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2236    // canonical loop form: most do-loops will have a check that dominates the
2237    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2238    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2239
2240    // Search for the check.
2241    BasicBlock *Preheader = L->getLoopPreheader();
2242    BasicBlock *PreheaderDest = L->getHeader();
2243    if (Preheader == 0) return UnknownValue;
2244
2245    BranchInst *LoopEntryPredicate =
2246      dyn_cast<BranchInst>(Preheader->getTerminator());
2247    if (!LoopEntryPredicate) return UnknownValue;
2248
2249    // This might be a critical edge broken out.  If the loop preheader ends in
2250    // an unconditional branch to the loop, check to see if the preheader has a
2251    // single predecessor, and if so, look for its terminator.
2252    while (LoopEntryPredicate->isUnconditional()) {
2253      PreheaderDest = Preheader;
2254      Preheader = Preheader->getSinglePredecessor();
2255      if (!Preheader) return UnknownValue;  // Multiple preds.
2256
2257      LoopEntryPredicate =
2258        dyn_cast<BranchInst>(Preheader->getTerminator());
2259      if (!LoopEntryPredicate) return UnknownValue;
2260    }
2261
2262    // Now that we found a conditional branch that dominates the loop, check to
2263    // see if it is the comparison we are looking for.
2264    SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
2265    if (!SCI) return UnknownValue;
2266    Value *PreCondLHS = SCI->getOperand(0);
2267    Value *PreCondRHS = SCI->getOperand(1);
2268    Instruction::BinaryOps Cond;
2269    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2270      Cond = SCI->getOpcode();
2271    else
2272      Cond = SCI->getInverseCondition();
2273
2274    switch (Cond) {
2275    case Instruction::SetGT:
2276      std::swap(PreCondLHS, PreCondRHS);
2277      Cond = Instruction::SetLT;
2278      // Fall Through.
2279    case Instruction::SetLT:
2280      if (PreCondLHS->getType()->isInteger() &&
2281          PreCondLHS->getType()->isSigned()) {
2282        if (RHS != getSCEV(PreCondRHS))
2283          return UnknownValue;  // Not a comparison against 'm'.
2284
2285        if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2286                    != getSCEV(PreCondLHS))
2287          return UnknownValue;  // Not a comparison against 'n-1'.
2288        break;
2289      } else {
2290        return UnknownValue;
2291      }
2292    default: break;
2293    }
2294
2295    //std::cerr << "Computed Loop Trip Count as: " <<
2296    //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2297    return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2298  }
2299
2300  return UnknownValue;
2301}
2302
2303/// getNumIterationsInRange - Return the number of iterations of this loop that
2304/// produce values in the specified constant range.  Another way of looking at
2305/// this is that it returns the first iteration number where the value is not in
2306/// the condition, thus computing the exit count. If the iteration count can't
2307/// be computed, an instance of SCEVCouldNotCompute is returned.
2308SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2309  if (Range.isFullSet())  // Infinite loop.
2310    return new SCEVCouldNotCompute();
2311
2312  // If the start is a non-zero constant, shift the range to simplify things.
2313  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2314    if (!SC->getValue()->isNullValue()) {
2315      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2316      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2317      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2318      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2319        return ShiftedAddRec->getNumIterationsInRange(
2320                                              Range.subtract(SC->getValue()));
2321      // This is strange and shouldn't happen.
2322      return new SCEVCouldNotCompute();
2323    }
2324
2325  // The only time we can solve this is when we have all constant indices.
2326  // Otherwise, we cannot determine the overflow conditions.
2327  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2328    if (!isa<SCEVConstant>(getOperand(i)))
2329      return new SCEVCouldNotCompute();
2330
2331
2332  // Okay at this point we know that all elements of the chrec are constants and
2333  // that the start element is zero.
2334
2335  // First check to see if the range contains zero.  If not, the first
2336  // iteration exits.
2337  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2338  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2339
2340  if (isAffine()) {
2341    // If this is an affine expression then we have this situation:
2342    //   Solve {0,+,A} in Range  ===  Ax in Range
2343
2344    // Since we know that zero is in the range, we know that the upper value of
2345    // the range must be the first possible exit value.  Also note that we
2346    // already checked for a full range.
2347    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2348    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2349    ConstantInt *One   = ConstantInt::get(getType(), 1);
2350
2351    // The exit value should be (Upper+A-1)/A.
2352    Constant *ExitValue = Upper;
2353    if (A != One) {
2354      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2355      ExitValue = ConstantExpr::getDiv(ExitValue, A);
2356    }
2357    assert(isa<ConstantInt>(ExitValue) &&
2358           "Constant folding of integers not implemented?");
2359
2360    // Evaluate at the exit value.  If we really did fall out of the valid
2361    // range, then we computed our trip count, otherwise wrap around or other
2362    // things must have happened.
2363    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2364    if (Range.contains(Val))
2365      return new SCEVCouldNotCompute();  // Something strange happened
2366
2367    // Ensure that the previous value is in the range.  This is a sanity check.
2368    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2369                              ConstantExpr::getSub(ExitValue, One))) &&
2370           "Linear scev computation is off in a bad way!");
2371    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2372  } else if (isQuadratic()) {
2373    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2374    // quadratic equation to solve it.  To do this, we must frame our problem in
2375    // terms of figuring out when zero is crossed, instead of when
2376    // Range.getUpper() is crossed.
2377    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2378    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2379    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2380
2381    // Next, solve the constructed addrec
2382    std::pair<SCEVHandle,SCEVHandle> Roots =
2383      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2384    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2385    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2386    if (R1) {
2387      // Pick the smallest positive root value.
2388      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2389      if (ConstantBool *CB =
2390          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2391                                                        R2->getValue()))) {
2392        if (CB->getValue() == false)
2393          std::swap(R1, R2);   // R1 is the minimum root now.
2394
2395        // Make sure the root is not off by one.  The returned iteration should
2396        // not be in the range, but the previous one should be.  When solving
2397        // for "X*X < 5", for example, we should not return a root of 2.
2398        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2399                                                             R1->getValue());
2400        if (Range.contains(R1Val)) {
2401          // The next iteration must be out of the range...
2402          Constant *NextVal =
2403            ConstantExpr::getAdd(R1->getValue(),
2404                                 ConstantInt::get(R1->getType(), 1));
2405
2406          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2407          if (!Range.contains(R1Val))
2408            return SCEVUnknown::get(NextVal);
2409          return new SCEVCouldNotCompute();  // Something strange happened
2410        }
2411
2412        // If R1 was not in the range, then it is a good return value.  Make
2413        // sure that R1-1 WAS in the range though, just in case.
2414        Constant *NextVal =
2415          ConstantExpr::getSub(R1->getValue(),
2416                               ConstantInt::get(R1->getType(), 1));
2417        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2418        if (Range.contains(R1Val))
2419          return R1;
2420        return new SCEVCouldNotCompute();  // Something strange happened
2421      }
2422    }
2423  }
2424
2425  // Fallback, if this is a general polynomial, figure out the progression
2426  // through brute force: evaluate until we find an iteration that fails the
2427  // test.  This is likely to be slow, but getting an accurate trip count is
2428  // incredibly important, we will be able to simplify the exit test a lot, and
2429  // we are almost guaranteed to get a trip count in this case.
2430  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2431  ConstantInt *One     = ConstantInt::get(getType(), 1);
2432  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2433  do {
2434    ++NumBruteForceEvaluations;
2435    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2436    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2437      return new SCEVCouldNotCompute();
2438
2439    // Check to see if we found the value!
2440    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2441      return SCEVConstant::get(TestVal);
2442
2443    // Increment to test the next index.
2444    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2445  } while (TestVal != EndVal);
2446
2447  return new SCEVCouldNotCompute();
2448}
2449
2450
2451
2452//===----------------------------------------------------------------------===//
2453//                   ScalarEvolution Class Implementation
2454//===----------------------------------------------------------------------===//
2455
2456bool ScalarEvolution::runOnFunction(Function &F) {
2457  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2458  return false;
2459}
2460
2461void ScalarEvolution::releaseMemory() {
2462  delete (ScalarEvolutionsImpl*)Impl;
2463  Impl = 0;
2464}
2465
2466void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2467  AU.setPreservesAll();
2468  AU.addRequiredTransitive<LoopInfo>();
2469}
2470
2471SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2472  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2473}
2474
2475/// hasSCEV - Return true if the SCEV for this value has already been
2476/// computed.
2477bool ScalarEvolution::hasSCEV(Value *V) const {
2478  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2479}
2480
2481
2482/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2483/// the specified value.
2484void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2485  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2486}
2487
2488
2489SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2490  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2491}
2492
2493bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2494  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2495}
2496
2497SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2498  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2499}
2500
2501void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2502  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2503}
2504
2505static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2506                          const Loop *L) {
2507  // Print all inner loops first
2508  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2509    PrintLoopInfo(OS, SE, *I);
2510
2511  std::cerr << "Loop " << L->getHeader()->getName() << ": ";
2512
2513  std::vector<BasicBlock*> ExitBlocks;
2514  L->getExitBlocks(ExitBlocks);
2515  if (ExitBlocks.size() != 1)
2516    std::cerr << "<multiple exits> ";
2517
2518  if (SE->hasLoopInvariantIterationCount(L)) {
2519    std::cerr << *SE->getIterationCount(L) << " iterations! ";
2520  } else {
2521    std::cerr << "Unpredictable iteration count. ";
2522  }
2523
2524  std::cerr << "\n";
2525}
2526
2527void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2528  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2529  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2530
2531  OS << "Classifying expressions for: " << F.getName() << "\n";
2532  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2533    if (I->getType()->isInteger()) {
2534      OS << *I;
2535      OS << "  --> ";
2536      SCEVHandle SV = getSCEV(&*I);
2537      SV->print(OS);
2538      OS << "\t\t";
2539
2540      if ((*I).getType()->isIntegral()) {
2541        ConstantRange Bounds = SV->getValueRange();
2542        if (!Bounds.isFullSet())
2543          OS << "Bounds: " << Bounds << " ";
2544      }
2545
2546      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2547        OS << "Exits: ";
2548        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2549        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2550          OS << "<<Unknown>>";
2551        } else {
2552          OS << *ExitValue;
2553        }
2554      }
2555
2556
2557      OS << "\n";
2558    }
2559
2560  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2561  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2562    PrintLoopInfo(OS, this, *I);
2563}
2564
2565