ScalarEvolution.cpp revision d3773507188d550a3ce5be09662235cf23679811
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104namespace {
105  RegisterPass<ScalarEvolution>
106  R("scalar-evolution", "Scalar Evolution Analysis");
107}
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118  print(cerr);
119}
120
121/// getValueRange - Return the tightest constant bounds that this value is
122/// known to have.  This method is only valid on integer SCEV objects.
123ConstantRange SCEV::getValueRange() const {
124  const Type *Ty = getType();
125  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
126  Ty = Ty->getUnsignedVersion();
127  // Default to a full range if no better information is available.
128  return ConstantRange(getType());
129}
130
131
132SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
133
134bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
135  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
136  return false;
137}
138
139const Type *SCEVCouldNotCompute::getType() const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return 0;
142}
143
144bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return false;
147}
148
149SCEVHandle SCEVCouldNotCompute::
150replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
151                                  const SCEVHandle &Conc) const {
152  return this;
153}
154
155void SCEVCouldNotCompute::print(std::ostream &OS) const {
156  OS << "***COULDNOTCOMPUTE***";
157}
158
159bool SCEVCouldNotCompute::classof(const SCEV *S) {
160  return S->getSCEVType() == scCouldNotCompute;
161}
162
163
164// SCEVConstants - Only allow the creation of one SCEVConstant for any
165// particular value.  Don't use a SCEVHandle here, or else the object will
166// never be deleted!
167static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
168
169
170SCEVConstant::~SCEVConstant() {
171  SCEVConstants->erase(V);
172}
173
174SCEVHandle SCEVConstant::get(ConstantInt *V) {
175  // Make sure that SCEVConstant instances are all unsigned.
176  // FIXME:Signless. This entire if statement can be removed when integer types
177  // are signless. There won't be a need to bitcast then.
178  if (V->getType()->isSigned()) {
179    const Type *NewTy = V->getType()->getUnsignedVersion();
180    V = cast<ConstantInt>(
181        ConstantExpr::getBitCast(V, NewTy));
182  }
183
184  SCEVConstant *&R = (*SCEVConstants)[V];
185  if (R == 0) R = new SCEVConstant(V);
186  return R;
187}
188
189ConstantRange SCEVConstant::getValueRange() const {
190  return ConstantRange(V);
191}
192
193const Type *SCEVConstant::getType() const { return V->getType(); }
194
195void SCEVConstant::print(std::ostream &OS) const {
196  WriteAsOperand(OS, V, false);
197}
198
199// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
200// particular input.  Don't use a SCEVHandle here, or else the object will
201// never be deleted!
202static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
203                     SCEVTruncateExpr*> > SCEVTruncates;
204
205SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
206  : SCEV(scTruncate), Op(op), Ty(ty) {
207  assert(Op->getType()->isInteger() && Ty->isInteger() &&
208         "Cannot truncate non-integer value!");
209  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
210         "This is not a truncating conversion!");
211}
212
213SCEVTruncateExpr::~SCEVTruncateExpr() {
214  SCEVTruncates->erase(std::make_pair(Op, Ty));
215}
216
217ConstantRange SCEVTruncateExpr::getValueRange() const {
218  return getOperand()->getValueRange().truncate(getType());
219}
220
221void SCEVTruncateExpr::print(std::ostream &OS) const {
222  OS << "(truncate " << *Op << " to " << *Ty << ")";
223}
224
225// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226// particular input.  Don't use a SCEVHandle here, or else the object will never
227// be deleted!
228static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
229                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
230
231SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
232  : SCEV(scZeroExtend), Op(op), Ty(ty) {
233  assert(Op->getType()->isInteger() && Ty->isInteger() &&
234         "Cannot zero extend non-integer value!");
235  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
236         "This is not an extending conversion!");
237}
238
239SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
240  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
241}
242
243ConstantRange SCEVZeroExtendExpr::getValueRange() const {
244  return getOperand()->getValueRange().zeroExtend(getType());
245}
246
247void SCEVZeroExtendExpr::print(std::ostream &OS) const {
248  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
249}
250
251// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
252// particular input.  Don't use a SCEVHandle here, or else the object will never
253// be deleted!
254static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
255                     SCEVCommutativeExpr*> > SCEVCommExprs;
256
257SCEVCommutativeExpr::~SCEVCommutativeExpr() {
258  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
259                                      std::vector<SCEV*>(Operands.begin(),
260                                                         Operands.end())));
261}
262
263void SCEVCommutativeExpr::print(std::ostream &OS) const {
264  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
265  const char *OpStr = getOperationStr();
266  OS << "(" << *Operands[0];
267  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
268    OS << OpStr << *Operands[i];
269  OS << ")";
270}
271
272SCEVHandle SCEVCommutativeExpr::
273replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
274                                  const SCEVHandle &Conc) const {
275  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
276    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
277    if (H != getOperand(i)) {
278      std::vector<SCEVHandle> NewOps;
279      NewOps.reserve(getNumOperands());
280      for (unsigned j = 0; j != i; ++j)
281        NewOps.push_back(getOperand(j));
282      NewOps.push_back(H);
283      for (++i; i != e; ++i)
284        NewOps.push_back(getOperand(i)->
285                         replaceSymbolicValuesWithConcrete(Sym, Conc));
286
287      if (isa<SCEVAddExpr>(this))
288        return SCEVAddExpr::get(NewOps);
289      else if (isa<SCEVMulExpr>(this))
290        return SCEVMulExpr::get(NewOps);
291      else
292        assert(0 && "Unknown commutative expr!");
293    }
294  }
295  return this;
296}
297
298
299// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
300// input.  Don't use a SCEVHandle here, or else the object will never be
301// deleted!
302static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
303                     SCEVSDivExpr*> > SCEVSDivs;
304
305SCEVSDivExpr::~SCEVSDivExpr() {
306  SCEVSDivs->erase(std::make_pair(LHS, RHS));
307}
308
309void SCEVSDivExpr::print(std::ostream &OS) const {
310  OS << "(" << *LHS << " /s " << *RHS << ")";
311}
312
313const Type *SCEVSDivExpr::getType() const {
314  const Type *Ty = LHS->getType();
315  if (Ty->isUnsigned()) Ty = Ty->getSignedVersion();
316  return Ty;
317}
318
319// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
320// particular input.  Don't use a SCEVHandle here, or else the object will never
321// be deleted!
322static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
323                     SCEVAddRecExpr*> > SCEVAddRecExprs;
324
325SCEVAddRecExpr::~SCEVAddRecExpr() {
326  SCEVAddRecExprs->erase(std::make_pair(L,
327                                        std::vector<SCEV*>(Operands.begin(),
328                                                           Operands.end())));
329}
330
331SCEVHandle SCEVAddRecExpr::
332replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
333                                  const SCEVHandle &Conc) const {
334  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
335    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
336    if (H != getOperand(i)) {
337      std::vector<SCEVHandle> NewOps;
338      NewOps.reserve(getNumOperands());
339      for (unsigned j = 0; j != i; ++j)
340        NewOps.push_back(getOperand(j));
341      NewOps.push_back(H);
342      for (++i; i != e; ++i)
343        NewOps.push_back(getOperand(i)->
344                         replaceSymbolicValuesWithConcrete(Sym, Conc));
345
346      return get(NewOps, L);
347    }
348  }
349  return this;
350}
351
352
353bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
354  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
355  // contain L and if the start is invariant.
356  return !QueryLoop->contains(L->getHeader()) &&
357         getOperand(0)->isLoopInvariant(QueryLoop);
358}
359
360
361void SCEVAddRecExpr::print(std::ostream &OS) const {
362  OS << "{" << *Operands[0];
363  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
364    OS << ",+," << *Operands[i];
365  OS << "}<" << L->getHeader()->getName() + ">";
366}
367
368// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
369// value.  Don't use a SCEVHandle here, or else the object will never be
370// deleted!
371static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
372
373SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
374
375bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
376  // All non-instruction values are loop invariant.  All instructions are loop
377  // invariant if they are not contained in the specified loop.
378  if (Instruction *I = dyn_cast<Instruction>(V))
379    return !L->contains(I->getParent());
380  return true;
381}
382
383const Type *SCEVUnknown::getType() const {
384  return V->getType();
385}
386
387void SCEVUnknown::print(std::ostream &OS) const {
388  WriteAsOperand(OS, V, false);
389}
390
391//===----------------------------------------------------------------------===//
392//                               SCEV Utilities
393//===----------------------------------------------------------------------===//
394
395namespace {
396  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
397  /// than the complexity of the RHS.  This comparator is used to canonicalize
398  /// expressions.
399  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
400    bool operator()(SCEV *LHS, SCEV *RHS) {
401      return LHS->getSCEVType() < RHS->getSCEVType();
402    }
403  };
404}
405
406/// GroupByComplexity - Given a list of SCEV objects, order them by their
407/// complexity, and group objects of the same complexity together by value.
408/// When this routine is finished, we know that any duplicates in the vector are
409/// consecutive and that complexity is monotonically increasing.
410///
411/// Note that we go take special precautions to ensure that we get determinstic
412/// results from this routine.  In other words, we don't want the results of
413/// this to depend on where the addresses of various SCEV objects happened to
414/// land in memory.
415///
416static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
417  if (Ops.size() < 2) return;  // Noop
418  if (Ops.size() == 2) {
419    // This is the common case, which also happens to be trivially simple.
420    // Special case it.
421    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
422      std::swap(Ops[0], Ops[1]);
423    return;
424  }
425
426  // Do the rough sort by complexity.
427  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
428
429  // Now that we are sorted by complexity, group elements of the same
430  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
431  // be extremely short in practice.  Note that we take this approach because we
432  // do not want to depend on the addresses of the objects we are grouping.
433  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
434    SCEV *S = Ops[i];
435    unsigned Complexity = S->getSCEVType();
436
437    // If there are any objects of the same complexity and same value as this
438    // one, group them.
439    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
440      if (Ops[j] == S) { // Found a duplicate.
441        // Move it to immediately after i'th element.
442        std::swap(Ops[i+1], Ops[j]);
443        ++i;   // no need to rescan it.
444        if (i == e-2) return;  // Done!
445      }
446    }
447  }
448}
449
450
451
452//===----------------------------------------------------------------------===//
453//                      Simple SCEV method implementations
454//===----------------------------------------------------------------------===//
455
456/// getIntegerSCEV - Given an integer or FP type, create a constant for the
457/// specified signed integer value and return a SCEV for the constant.
458SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
459  Constant *C;
460  if (Val == 0)
461    C = Constant::getNullValue(Ty);
462  else if (Ty->isFloatingPoint())
463    C = ConstantFP::get(Ty, Val);
464  /// FIXME:Signless. when integer types are signless, just change this to:
465  /// else
466  ///   C = ConstantInt::get(Ty, Val);
467  else if (Ty->isSigned())
468    C = ConstantInt::get(Ty, Val);
469  else {
470    C = ConstantInt::get(Ty->getSignedVersion(), Val);
471    C = ConstantExpr::getBitCast(C, Ty);
472  }
473  return SCEVUnknown::get(C);
474}
475
476/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
477/// input value to the specified type.  If the type must be extended, it is zero
478/// extended.
479static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
480  const Type *SrcTy = V->getType();
481  assert(SrcTy->isInteger() && Ty->isInteger() &&
482         "Cannot truncate or zero extend with non-integer arguments!");
483  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
484    return V;  // No conversion
485  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
486    return SCEVTruncateExpr::get(V, Ty);
487  return SCEVZeroExtendExpr::get(V, Ty);
488}
489
490/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
491///
492SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
493  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
494    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
495
496  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
497}
498
499/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
500///
501SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
502  // X - Y --> X + -Y
503  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
504}
505
506
507/// PartialFact - Compute V!/(V-NumSteps)!
508static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
509  // Handle this case efficiently, it is common to have constant iteration
510  // counts while computing loop exit values.
511  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
512    uint64_t Val = SC->getValue()->getZExtValue();
513    uint64_t Result = 1;
514    for (; NumSteps; --NumSteps)
515      Result *= Val-(NumSteps-1);
516    Constant *Res = ConstantInt::get(Type::ULongTy, Result);
517    return SCEVUnknown::get(
518        ConstantExpr::getTruncOrBitCast(Res, V->getType()));
519  }
520
521  const Type *Ty = V->getType();
522  if (NumSteps == 0)
523    return SCEVUnknown::getIntegerSCEV(1, Ty);
524
525  SCEVHandle Result = V;
526  for (unsigned i = 1; i != NumSteps; ++i)
527    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
528                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
529  return Result;
530}
531
532
533/// evaluateAtIteration - Return the value of this chain of recurrences at
534/// the specified iteration number.  We can evaluate this recurrence by
535/// multiplying each element in the chain by the binomial coefficient
536/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
537///
538///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
539///
540/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
541/// Is the binomial equation safe using modular arithmetic??
542///
543SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
544  SCEVHandle Result = getStart();
545  int Divisor = 1;
546  const Type *Ty = It->getType();
547  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
548    SCEVHandle BC = PartialFact(It, i);
549    Divisor *= i;
550    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
551                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
552    Result = SCEVAddExpr::get(Result, Val);
553  }
554  return Result;
555}
556
557
558//===----------------------------------------------------------------------===//
559//                    SCEV Expression folder implementations
560//===----------------------------------------------------------------------===//
561
562SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
563  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
564    return SCEVUnknown::get(
565        ConstantExpr::getTrunc(SC->getValue(), Ty));
566
567  // If the input value is a chrec scev made out of constants, truncate
568  // all of the constants.
569  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
570    std::vector<SCEVHandle> Operands;
571    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
572      // FIXME: This should allow truncation of other expression types!
573      if (isa<SCEVConstant>(AddRec->getOperand(i)))
574        Operands.push_back(get(AddRec->getOperand(i), Ty));
575      else
576        break;
577    if (Operands.size() == AddRec->getNumOperands())
578      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
579  }
580
581  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
582  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
583  return Result;
584}
585
586SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
587  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
588    return SCEVUnknown::get(
589        ConstantExpr::getZExt(SC->getValue(), Ty));
590
591  // FIXME: If the input value is a chrec scev, and we can prove that the value
592  // did not overflow the old, smaller, value, we can zero extend all of the
593  // operands (often constants).  This would allow analysis of something like
594  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
595
596  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
597  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
598  return Result;
599}
600
601// get - Get a canonical add expression, or something simpler if possible.
602SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
603  assert(!Ops.empty() && "Cannot get empty add!");
604  if (Ops.size() == 1) return Ops[0];
605
606  // Sort by complexity, this groups all similar expression types together.
607  GroupByComplexity(Ops);
608
609  // If there are any constants, fold them together.
610  unsigned Idx = 0;
611  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
612    ++Idx;
613    assert(Idx < Ops.size());
614    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
615      // We found two constants, fold them together!
616      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
617      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
618        Ops[0] = SCEVConstant::get(CI);
619        Ops.erase(Ops.begin()+1);  // Erase the folded element
620        if (Ops.size() == 1) return Ops[0];
621        LHSC = cast<SCEVConstant>(Ops[0]);
622      } else {
623        // If we couldn't fold the expression, move to the next constant.  Note
624        // that this is impossible to happen in practice because we always
625        // constant fold constant ints to constant ints.
626        ++Idx;
627      }
628    }
629
630    // If we are left with a constant zero being added, strip it off.
631    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
632      Ops.erase(Ops.begin());
633      --Idx;
634    }
635  }
636
637  if (Ops.size() == 1) return Ops[0];
638
639  // Okay, check to see if the same value occurs in the operand list twice.  If
640  // so, merge them together into an multiply expression.  Since we sorted the
641  // list, these values are required to be adjacent.
642  const Type *Ty = Ops[0]->getType();
643  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
644    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
645      // Found a match, merge the two values into a multiply, and add any
646      // remaining values to the result.
647      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
648      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
649      if (Ops.size() == 2)
650        return Mul;
651      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
652      Ops.push_back(Mul);
653      return SCEVAddExpr::get(Ops);
654    }
655
656  // Okay, now we know the first non-constant operand.  If there are add
657  // operands they would be next.
658  if (Idx < Ops.size()) {
659    bool DeletedAdd = false;
660    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
661      // If we have an add, expand the add operands onto the end of the operands
662      // list.
663      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
664      Ops.erase(Ops.begin()+Idx);
665      DeletedAdd = true;
666    }
667
668    // If we deleted at least one add, we added operands to the end of the list,
669    // and they are not necessarily sorted.  Recurse to resort and resimplify
670    // any operands we just aquired.
671    if (DeletedAdd)
672      return get(Ops);
673  }
674
675  // Skip over the add expression until we get to a multiply.
676  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
677    ++Idx;
678
679  // If we are adding something to a multiply expression, make sure the
680  // something is not already an operand of the multiply.  If so, merge it into
681  // the multiply.
682  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
683    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
684    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
685      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
686      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
687        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
688          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
689          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
690          if (Mul->getNumOperands() != 2) {
691            // If the multiply has more than two operands, we must get the
692            // Y*Z term.
693            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
694            MulOps.erase(MulOps.begin()+MulOp);
695            InnerMul = SCEVMulExpr::get(MulOps);
696          }
697          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
698          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
699          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
700          if (Ops.size() == 2) return OuterMul;
701          if (AddOp < Idx) {
702            Ops.erase(Ops.begin()+AddOp);
703            Ops.erase(Ops.begin()+Idx-1);
704          } else {
705            Ops.erase(Ops.begin()+Idx);
706            Ops.erase(Ops.begin()+AddOp-1);
707          }
708          Ops.push_back(OuterMul);
709          return SCEVAddExpr::get(Ops);
710        }
711
712      // Check this multiply against other multiplies being added together.
713      for (unsigned OtherMulIdx = Idx+1;
714           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
715           ++OtherMulIdx) {
716        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
717        // If MulOp occurs in OtherMul, we can fold the two multiplies
718        // together.
719        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
720             OMulOp != e; ++OMulOp)
721          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
722            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
723            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
724            if (Mul->getNumOperands() != 2) {
725              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
726              MulOps.erase(MulOps.begin()+MulOp);
727              InnerMul1 = SCEVMulExpr::get(MulOps);
728            }
729            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
730            if (OtherMul->getNumOperands() != 2) {
731              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
732                                             OtherMul->op_end());
733              MulOps.erase(MulOps.begin()+OMulOp);
734              InnerMul2 = SCEVMulExpr::get(MulOps);
735            }
736            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
737            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
738            if (Ops.size() == 2) return OuterMul;
739            Ops.erase(Ops.begin()+Idx);
740            Ops.erase(Ops.begin()+OtherMulIdx-1);
741            Ops.push_back(OuterMul);
742            return SCEVAddExpr::get(Ops);
743          }
744      }
745    }
746  }
747
748  // If there are any add recurrences in the operands list, see if any other
749  // added values are loop invariant.  If so, we can fold them into the
750  // recurrence.
751  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
752    ++Idx;
753
754  // Scan over all recurrences, trying to fold loop invariants into them.
755  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
756    // Scan all of the other operands to this add and add them to the vector if
757    // they are loop invariant w.r.t. the recurrence.
758    std::vector<SCEVHandle> LIOps;
759    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
760    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
761      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
762        LIOps.push_back(Ops[i]);
763        Ops.erase(Ops.begin()+i);
764        --i; --e;
765      }
766
767    // If we found some loop invariants, fold them into the recurrence.
768    if (!LIOps.empty()) {
769      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
770      LIOps.push_back(AddRec->getStart());
771
772      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
773      AddRecOps[0] = SCEVAddExpr::get(LIOps);
774
775      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
776      // If all of the other operands were loop invariant, we are done.
777      if (Ops.size() == 1) return NewRec;
778
779      // Otherwise, add the folded AddRec by the non-liv parts.
780      for (unsigned i = 0;; ++i)
781        if (Ops[i] == AddRec) {
782          Ops[i] = NewRec;
783          break;
784        }
785      return SCEVAddExpr::get(Ops);
786    }
787
788    // Okay, if there weren't any loop invariants to be folded, check to see if
789    // there are multiple AddRec's with the same loop induction variable being
790    // added together.  If so, we can fold them.
791    for (unsigned OtherIdx = Idx+1;
792         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
793      if (OtherIdx != Idx) {
794        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
795        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
796          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
797          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
798          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
799            if (i >= NewOps.size()) {
800              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
801                            OtherAddRec->op_end());
802              break;
803            }
804            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
805          }
806          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
807
808          if (Ops.size() == 2) return NewAddRec;
809
810          Ops.erase(Ops.begin()+Idx);
811          Ops.erase(Ops.begin()+OtherIdx-1);
812          Ops.push_back(NewAddRec);
813          return SCEVAddExpr::get(Ops);
814        }
815      }
816
817    // Otherwise couldn't fold anything into this recurrence.  Move onto the
818    // next one.
819  }
820
821  // Okay, it looks like we really DO need an add expr.  Check to see if we
822  // already have one, otherwise create a new one.
823  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
824  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
825                                                                 SCEVOps)];
826  if (Result == 0) Result = new SCEVAddExpr(Ops);
827  return Result;
828}
829
830
831SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
832  assert(!Ops.empty() && "Cannot get empty mul!");
833
834  // Sort by complexity, this groups all similar expression types together.
835  GroupByComplexity(Ops);
836
837  // If there are any constants, fold them together.
838  unsigned Idx = 0;
839  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
840
841    // C1*(C2+V) -> C1*C2 + C1*V
842    if (Ops.size() == 2)
843      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
844        if (Add->getNumOperands() == 2 &&
845            isa<SCEVConstant>(Add->getOperand(0)))
846          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
847                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
848
849
850    ++Idx;
851    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
852      // We found two constants, fold them together!
853      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
854      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
855        Ops[0] = SCEVConstant::get(CI);
856        Ops.erase(Ops.begin()+1);  // Erase the folded element
857        if (Ops.size() == 1) return Ops[0];
858        LHSC = cast<SCEVConstant>(Ops[0]);
859      } else {
860        // If we couldn't fold the expression, move to the next constant.  Note
861        // that this is impossible to happen in practice because we always
862        // constant fold constant ints to constant ints.
863        ++Idx;
864      }
865    }
866
867    // If we are left with a constant one being multiplied, strip it off.
868    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
869      Ops.erase(Ops.begin());
870      --Idx;
871    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
872      // If we have a multiply of zero, it will always be zero.
873      return Ops[0];
874    }
875  }
876
877  // Skip over the add expression until we get to a multiply.
878  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
879    ++Idx;
880
881  if (Ops.size() == 1)
882    return Ops[0];
883
884  // If there are mul operands inline them all into this expression.
885  if (Idx < Ops.size()) {
886    bool DeletedMul = false;
887    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
888      // If we have an mul, expand the mul operands onto the end of the operands
889      // list.
890      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
891      Ops.erase(Ops.begin()+Idx);
892      DeletedMul = true;
893    }
894
895    // If we deleted at least one mul, we added operands to the end of the list,
896    // and they are not necessarily sorted.  Recurse to resort and resimplify
897    // any operands we just aquired.
898    if (DeletedMul)
899      return get(Ops);
900  }
901
902  // If there are any add recurrences in the operands list, see if any other
903  // added values are loop invariant.  If so, we can fold them into the
904  // recurrence.
905  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
906    ++Idx;
907
908  // Scan over all recurrences, trying to fold loop invariants into them.
909  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
910    // Scan all of the other operands to this mul and add them to the vector if
911    // they are loop invariant w.r.t. the recurrence.
912    std::vector<SCEVHandle> LIOps;
913    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
914    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
915      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
916        LIOps.push_back(Ops[i]);
917        Ops.erase(Ops.begin()+i);
918        --i; --e;
919      }
920
921    // If we found some loop invariants, fold them into the recurrence.
922    if (!LIOps.empty()) {
923      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
924      std::vector<SCEVHandle> NewOps;
925      NewOps.reserve(AddRec->getNumOperands());
926      if (LIOps.size() == 1) {
927        SCEV *Scale = LIOps[0];
928        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
929          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
930      } else {
931        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
932          std::vector<SCEVHandle> MulOps(LIOps);
933          MulOps.push_back(AddRec->getOperand(i));
934          NewOps.push_back(SCEVMulExpr::get(MulOps));
935        }
936      }
937
938      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
939
940      // If all of the other operands were loop invariant, we are done.
941      if (Ops.size() == 1) return NewRec;
942
943      // Otherwise, multiply the folded AddRec by the non-liv parts.
944      for (unsigned i = 0;; ++i)
945        if (Ops[i] == AddRec) {
946          Ops[i] = NewRec;
947          break;
948        }
949      return SCEVMulExpr::get(Ops);
950    }
951
952    // Okay, if there weren't any loop invariants to be folded, check to see if
953    // there are multiple AddRec's with the same loop induction variable being
954    // multiplied together.  If so, we can fold them.
955    for (unsigned OtherIdx = Idx+1;
956         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
957      if (OtherIdx != Idx) {
958        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
959        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
960          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
961          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
962          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
963                                                 G->getStart());
964          SCEVHandle B = F->getStepRecurrence();
965          SCEVHandle D = G->getStepRecurrence();
966          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
967                                                SCEVMulExpr::get(G, B),
968                                                SCEVMulExpr::get(B, D));
969          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
970                                                     F->getLoop());
971          if (Ops.size() == 2) return NewAddRec;
972
973          Ops.erase(Ops.begin()+Idx);
974          Ops.erase(Ops.begin()+OtherIdx-1);
975          Ops.push_back(NewAddRec);
976          return SCEVMulExpr::get(Ops);
977        }
978      }
979
980    // Otherwise couldn't fold anything into this recurrence.  Move onto the
981    // next one.
982  }
983
984  // Okay, it looks like we really DO need an mul expr.  Check to see if we
985  // already have one, otherwise create a new one.
986  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
987  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
988                                                                 SCEVOps)];
989  if (Result == 0)
990    Result = new SCEVMulExpr(Ops);
991  return Result;
992}
993
994SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
995  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
996    if (RHSC->getValue()->equalsInt(1))
997      return LHS;                            // X sdiv 1 --> x
998    if (RHSC->getValue()->isAllOnesValue())
999      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
1000
1001    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1002      Constant *LHSCV = LHSC->getValue();
1003      Constant *RHSCV = RHSC->getValue();
1004      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
1005    }
1006  }
1007
1008  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1009
1010  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1011  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1012  return Result;
1013}
1014
1015
1016/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1017/// specified loop.  Simplify the expression as much as possible.
1018SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1019                               const SCEVHandle &Step, const Loop *L) {
1020  std::vector<SCEVHandle> Operands;
1021  Operands.push_back(Start);
1022  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1023    if (StepChrec->getLoop() == L) {
1024      Operands.insert(Operands.end(), StepChrec->op_begin(),
1025                      StepChrec->op_end());
1026      return get(Operands, L);
1027    }
1028
1029  Operands.push_back(Step);
1030  return get(Operands, L);
1031}
1032
1033/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1034/// specified loop.  Simplify the expression as much as possible.
1035SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1036                               const Loop *L) {
1037  if (Operands.size() == 1) return Operands[0];
1038
1039  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1040    if (StepC->getValue()->isNullValue()) {
1041      Operands.pop_back();
1042      return get(Operands, L);             // { X,+,0 }  -->  X
1043    }
1044
1045  SCEVAddRecExpr *&Result =
1046    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1047                                                            Operands.end()))];
1048  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1049  return Result;
1050}
1051
1052SCEVHandle SCEVUnknown::get(Value *V) {
1053  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1054    return SCEVConstant::get(CI);
1055  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1056  if (Result == 0) Result = new SCEVUnknown(V);
1057  return Result;
1058}
1059
1060
1061//===----------------------------------------------------------------------===//
1062//             ScalarEvolutionsImpl Definition and Implementation
1063//===----------------------------------------------------------------------===//
1064//
1065/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1066/// evolution code.
1067///
1068namespace {
1069  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1070    /// F - The function we are analyzing.
1071    ///
1072    Function &F;
1073
1074    /// LI - The loop information for the function we are currently analyzing.
1075    ///
1076    LoopInfo &LI;
1077
1078    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1079    /// things.
1080    SCEVHandle UnknownValue;
1081
1082    /// Scalars - This is a cache of the scalars we have analyzed so far.
1083    ///
1084    std::map<Value*, SCEVHandle> Scalars;
1085
1086    /// IterationCounts - Cache the iteration count of the loops for this
1087    /// function as they are computed.
1088    std::map<const Loop*, SCEVHandle> IterationCounts;
1089
1090    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1091    /// the PHI instructions that we attempt to compute constant evolutions for.
1092    /// This allows us to avoid potentially expensive recomputation of these
1093    /// properties.  An instruction maps to null if we are unable to compute its
1094    /// exit value.
1095    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1096
1097  public:
1098    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1099      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1100
1101    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1102    /// expression and create a new one.
1103    SCEVHandle getSCEV(Value *V);
1104
1105    /// hasSCEV - Return true if the SCEV for this value has already been
1106    /// computed.
1107    bool hasSCEV(Value *V) const {
1108      return Scalars.count(V);
1109    }
1110
1111    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1112    /// the specified value.
1113    void setSCEV(Value *V, const SCEVHandle &H) {
1114      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1115      assert(isNew && "This entry already existed!");
1116    }
1117
1118
1119    /// getSCEVAtScope - Compute the value of the specified expression within
1120    /// the indicated loop (which may be null to indicate in no loop).  If the
1121    /// expression cannot be evaluated, return UnknownValue itself.
1122    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1123
1124
1125    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1126    /// an analyzable loop-invariant iteration count.
1127    bool hasLoopInvariantIterationCount(const Loop *L);
1128
1129    /// getIterationCount - If the specified loop has a predictable iteration
1130    /// count, return it.  Note that it is not valid to call this method on a
1131    /// loop without a loop-invariant iteration count.
1132    SCEVHandle getIterationCount(const Loop *L);
1133
1134    /// deleteInstructionFromRecords - This method should be called by the
1135    /// client before it removes an instruction from the program, to make sure
1136    /// that no dangling references are left around.
1137    void deleteInstructionFromRecords(Instruction *I);
1138
1139  private:
1140    /// createSCEV - We know that there is no SCEV for the specified value.
1141    /// Analyze the expression.
1142    SCEVHandle createSCEV(Value *V);
1143
1144    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1145    /// SCEVs.
1146    SCEVHandle createNodeForPHI(PHINode *PN);
1147
1148    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1149    /// for the specified instruction and replaces any references to the
1150    /// symbolic value SymName with the specified value.  This is used during
1151    /// PHI resolution.
1152    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1153                                          const SCEVHandle &SymName,
1154                                          const SCEVHandle &NewVal);
1155
1156    /// ComputeIterationCount - Compute the number of times the specified loop
1157    /// will iterate.
1158    SCEVHandle ComputeIterationCount(const Loop *L);
1159
1160    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1161    /// 'setcc load X, cst', try to se if we can compute the trip count.
1162    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1163                                                        Constant *RHS,
1164                                                        const Loop *L,
1165                                                        unsigned SetCCOpcode);
1166
1167    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1168    /// constant number of times (the condition evolves only from constants),
1169    /// try to evaluate a few iterations of the loop until we get the exit
1170    /// condition gets a value of ExitWhen (true or false).  If we cannot
1171    /// evaluate the trip count of the loop, return UnknownValue.
1172    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1173                                                 bool ExitWhen);
1174
1175    /// HowFarToZero - Return the number of times a backedge comparing the
1176    /// specified value to zero will execute.  If not computable, return
1177    /// UnknownValue.
1178    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1179
1180    /// HowFarToNonZero - Return the number of times a backedge checking the
1181    /// specified value for nonzero will execute.  If not computable, return
1182    /// UnknownValue.
1183    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1184
1185    /// HowManyLessThans - Return the number of times a backedge containing the
1186    /// specified less-than comparison will execute.  If not computable, return
1187    /// UnknownValue.
1188    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1189
1190    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1191    /// in the header of its containing loop, we know the loop executes a
1192    /// constant number of times, and the PHI node is just a recurrence
1193    /// involving constants, fold it.
1194    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1195                                                const Loop *L);
1196  };
1197}
1198
1199//===----------------------------------------------------------------------===//
1200//            Basic SCEV Analysis and PHI Idiom Recognition Code
1201//
1202
1203/// deleteInstructionFromRecords - This method should be called by the
1204/// client before it removes an instruction from the program, to make sure
1205/// that no dangling references are left around.
1206void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1207  Scalars.erase(I);
1208  if (PHINode *PN = dyn_cast<PHINode>(I))
1209    ConstantEvolutionLoopExitValue.erase(PN);
1210}
1211
1212
1213/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1214/// expression and create a new one.
1215SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1216  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1217
1218  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1219  if (I != Scalars.end()) return I->second;
1220  SCEVHandle S = createSCEV(V);
1221  Scalars.insert(std::make_pair(V, S));
1222  return S;
1223}
1224
1225/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1226/// the specified instruction and replaces any references to the symbolic value
1227/// SymName with the specified value.  This is used during PHI resolution.
1228void ScalarEvolutionsImpl::
1229ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1230                                 const SCEVHandle &NewVal) {
1231  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1232  if (SI == Scalars.end()) return;
1233
1234  SCEVHandle NV =
1235    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1236  if (NV == SI->second) return;  // No change.
1237
1238  SI->second = NV;       // Update the scalars map!
1239
1240  // Any instruction values that use this instruction might also need to be
1241  // updated!
1242  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1243       UI != E; ++UI)
1244    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1245}
1246
1247/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1248/// a loop header, making it a potential recurrence, or it doesn't.
1249///
1250SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1251  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1252    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1253      if (L->getHeader() == PN->getParent()) {
1254        // If it lives in the loop header, it has two incoming values, one
1255        // from outside the loop, and one from inside.
1256        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1257        unsigned BackEdge     = IncomingEdge^1;
1258
1259        // While we are analyzing this PHI node, handle its value symbolically.
1260        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1261        assert(Scalars.find(PN) == Scalars.end() &&
1262               "PHI node already processed?");
1263        Scalars.insert(std::make_pair(PN, SymbolicName));
1264
1265        // Using this symbolic name for the PHI, analyze the value coming around
1266        // the back-edge.
1267        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1268
1269        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1270        // has a special value for the first iteration of the loop.
1271
1272        // If the value coming around the backedge is an add with the symbolic
1273        // value we just inserted, then we found a simple induction variable!
1274        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1275          // If there is a single occurrence of the symbolic value, replace it
1276          // with a recurrence.
1277          unsigned FoundIndex = Add->getNumOperands();
1278          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1279            if (Add->getOperand(i) == SymbolicName)
1280              if (FoundIndex == e) {
1281                FoundIndex = i;
1282                break;
1283              }
1284
1285          if (FoundIndex != Add->getNumOperands()) {
1286            // Create an add with everything but the specified operand.
1287            std::vector<SCEVHandle> Ops;
1288            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1289              if (i != FoundIndex)
1290                Ops.push_back(Add->getOperand(i));
1291            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1292
1293            // This is not a valid addrec if the step amount is varying each
1294            // loop iteration, but is not itself an addrec in this loop.
1295            if (Accum->isLoopInvariant(L) ||
1296                (isa<SCEVAddRecExpr>(Accum) &&
1297                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1298              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1299              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1300
1301              // Okay, for the entire analysis of this edge we assumed the PHI
1302              // to be symbolic.  We now need to go back and update all of the
1303              // entries for the scalars that use the PHI (except for the PHI
1304              // itself) to use the new analyzed value instead of the "symbolic"
1305              // value.
1306              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1307              return PHISCEV;
1308            }
1309          }
1310        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1311          // Otherwise, this could be a loop like this:
1312          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1313          // In this case, j = {1,+,1}  and BEValue is j.
1314          // Because the other in-value of i (0) fits the evolution of BEValue
1315          // i really is an addrec evolution.
1316          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1317            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1318
1319            // If StartVal = j.start - j.stride, we can use StartVal as the
1320            // initial step of the addrec evolution.
1321            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1322                                               AddRec->getOperand(1))) {
1323              SCEVHandle PHISCEV =
1324                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1325
1326              // Okay, for the entire analysis of this edge we assumed the PHI
1327              // to be symbolic.  We now need to go back and update all of the
1328              // entries for the scalars that use the PHI (except for the PHI
1329              // itself) to use the new analyzed value instead of the "symbolic"
1330              // value.
1331              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1332              return PHISCEV;
1333            }
1334          }
1335        }
1336
1337        return SymbolicName;
1338      }
1339
1340  // If it's not a loop phi, we can't handle it yet.
1341  return SCEVUnknown::get(PN);
1342}
1343
1344/// GetConstantFactor - Determine the largest constant factor that S has.  For
1345/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1346static uint64_t GetConstantFactor(SCEVHandle S) {
1347  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1348    if (uint64_t V = C->getValue()->getZExtValue())
1349      return V;
1350    else   // Zero is a multiple of everything.
1351      return 1ULL << (S->getType()->getPrimitiveSizeInBits()-1);
1352  }
1353
1354  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1355    return GetConstantFactor(T->getOperand()) &
1356           T->getType()->getIntegralTypeMask();
1357  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1358    return GetConstantFactor(E->getOperand());
1359
1360  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1361    // The result is the min of all operands.
1362    uint64_t Res = GetConstantFactor(A->getOperand(0));
1363    for (unsigned i = 1, e = A->getNumOperands(); i != e && Res > 1; ++i)
1364      Res = std::min(Res, GetConstantFactor(A->getOperand(i)));
1365    return Res;
1366  }
1367
1368  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1369    // The result is the product of all the operands.
1370    uint64_t Res = GetConstantFactor(M->getOperand(0));
1371    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i)
1372      Res *= GetConstantFactor(M->getOperand(i));
1373    return Res;
1374  }
1375
1376  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1377    // For now, we just handle linear expressions.
1378    if (A->getNumOperands() == 2) {
1379      // We want the GCD between the start and the stride value.
1380      uint64_t Start = GetConstantFactor(A->getOperand(0));
1381      if (Start == 1) return 1;
1382      uint64_t Stride = GetConstantFactor(A->getOperand(1));
1383      return GreatestCommonDivisor64(Start, Stride);
1384    }
1385  }
1386
1387  // SCEVSDivExpr, SCEVUnknown.
1388  return 1;
1389}
1390
1391/// createSCEV - We know that there is no SCEV for the specified value.
1392/// Analyze the expression.
1393///
1394SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1395  if (Instruction *I = dyn_cast<Instruction>(V)) {
1396    switch (I->getOpcode()) {
1397    case Instruction::Add:
1398      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1399                              getSCEV(I->getOperand(1)));
1400    case Instruction::Mul:
1401      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1402                              getSCEV(I->getOperand(1)));
1403    case Instruction::SDiv:
1404      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1405                              getSCEV(I->getOperand(1)));
1406      break;
1407
1408    case Instruction::Sub:
1409      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1410                                getSCEV(I->getOperand(1)));
1411    case Instruction::Or:
1412      // If the RHS of the Or is a constant, we may have something like:
1413      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1414      // optimizations will transparently handle this case.
1415      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1416        SCEVHandle LHS = getSCEV(I->getOperand(0));
1417        uint64_t CommonFact = GetConstantFactor(LHS);
1418        assert(CommonFact && "Common factor should at least be 1!");
1419        if (CommonFact > CI->getZExtValue()) {
1420          // If the LHS is a multiple that is larger than the RHS, use +.
1421          return SCEVAddExpr::get(LHS,
1422                                  getSCEV(I->getOperand(1)));
1423        }
1424      }
1425      break;
1426
1427    case Instruction::Shl:
1428      // Turn shift left of a constant amount into a multiply.
1429      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1430        Constant *X = ConstantInt::get(V->getType(), 1);
1431        X = ConstantExpr::getShl(X, SA);
1432        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1433      }
1434      break;
1435
1436    case Instruction::Trunc:
1437      // We don't handle trunc to bool yet.
1438      if (I->getType()->isInteger())
1439        return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)),
1440                                     I->getType()->getUnsignedVersion());
1441      break;
1442
1443    case Instruction::ZExt:
1444      // We don't handle zext from bool yet.
1445      if (I->getOperand(0)->getType()->isInteger())
1446        return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)),
1447                                       I->getType()->getUnsignedVersion());
1448      break;
1449
1450    case Instruction::BitCast:
1451      // BitCasts are no-op casts so we just eliminate the cast.
1452      if (I->getType()->isInteger() && I->getOperand(0)->getType()->isInteger())
1453        return getSCEV(I->getOperand(0));
1454      break;
1455
1456    case Instruction::PHI:
1457      return createNodeForPHI(cast<PHINode>(I));
1458
1459    default: // We cannot analyze this expression.
1460      break;
1461    }
1462  }
1463
1464  return SCEVUnknown::get(V);
1465}
1466
1467
1468
1469//===----------------------------------------------------------------------===//
1470//                   Iteration Count Computation Code
1471//
1472
1473/// getIterationCount - If the specified loop has a predictable iteration
1474/// count, return it.  Note that it is not valid to call this method on a
1475/// loop without a loop-invariant iteration count.
1476SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1477  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1478  if (I == IterationCounts.end()) {
1479    SCEVHandle ItCount = ComputeIterationCount(L);
1480    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1481    if (ItCount != UnknownValue) {
1482      assert(ItCount->isLoopInvariant(L) &&
1483             "Computed trip count isn't loop invariant for loop!");
1484      ++NumTripCountsComputed;
1485    } else if (isa<PHINode>(L->getHeader()->begin())) {
1486      // Only count loops that have phi nodes as not being computable.
1487      ++NumTripCountsNotComputed;
1488    }
1489  }
1490  return I->second;
1491}
1492
1493/// ComputeIterationCount - Compute the number of times the specified loop
1494/// will iterate.
1495SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1496  // If the loop has a non-one exit block count, we can't analyze it.
1497  std::vector<BasicBlock*> ExitBlocks;
1498  L->getExitBlocks(ExitBlocks);
1499  if (ExitBlocks.size() != 1) return UnknownValue;
1500
1501  // Okay, there is one exit block.  Try to find the condition that causes the
1502  // loop to be exited.
1503  BasicBlock *ExitBlock = ExitBlocks[0];
1504
1505  BasicBlock *ExitingBlock = 0;
1506  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1507       PI != E; ++PI)
1508    if (L->contains(*PI)) {
1509      if (ExitingBlock == 0)
1510        ExitingBlock = *PI;
1511      else
1512        return UnknownValue;   // More than one block exiting!
1513    }
1514  assert(ExitingBlock && "No exits from loop, something is broken!");
1515
1516  // Okay, we've computed the exiting block.  See what condition causes us to
1517  // exit.
1518  //
1519  // FIXME: we should be able to handle switch instructions (with a single exit)
1520  // FIXME: We should handle cast of int to bool as well
1521  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1522  if (ExitBr == 0) return UnknownValue;
1523  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1524  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1525  if (ExitCond == 0)  // Not a setcc
1526    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1527                                          ExitBr->getSuccessor(0) == ExitBlock);
1528
1529  // If the condition was exit on true, convert the condition to exit on false.
1530  Instruction::BinaryOps Cond;
1531  if (ExitBr->getSuccessor(1) == ExitBlock)
1532    Cond = ExitCond->getOpcode();
1533  else
1534    Cond = ExitCond->getInverseCondition();
1535
1536  // Handle common loops like: for (X = "string"; *X; ++X)
1537  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1538    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1539      SCEVHandle ItCnt =
1540        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1541      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1542    }
1543
1544  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1545  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1546
1547  // Try to evaluate any dependencies out of the loop.
1548  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1549  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1550  Tmp = getSCEVAtScope(RHS, L);
1551  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1552
1553  // At this point, we would like to compute how many iterations of the loop the
1554  // predicate will return true for these inputs.
1555  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1556    // If there is a constant, force it into the RHS.
1557    std::swap(LHS, RHS);
1558    Cond = SetCondInst::getSwappedCondition(Cond);
1559  }
1560
1561  // FIXME: think about handling pointer comparisons!  i.e.:
1562  // while (P != P+100) ++P;
1563
1564  // If we have a comparison of a chrec against a constant, try to use value
1565  // ranges to answer this query.
1566  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1567    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1568      if (AddRec->getLoop() == L) {
1569        // Form the comparison range using the constant of the correct type so
1570        // that the ConstantRange class knows to do a signed or unsigned
1571        // comparison.
1572        ConstantInt *CompVal = RHSC->getValue();
1573        const Type *RealTy = ExitCond->getOperand(0)->getType();
1574        CompVal = dyn_cast<ConstantInt>(
1575          ConstantExpr::getBitCast(CompVal, RealTy));
1576        if (CompVal) {
1577          // Form the constant range.
1578          ConstantRange CompRange(Cond, CompVal);
1579
1580          // Now that we have it, if it's signed, convert it to an unsigned
1581          // range.
1582          // FIXME:Signless. This entire if statement can go away when
1583          // integers are signless.  ConstantRange is already signless.
1584          if (CompRange.getLower()->getType()->isSigned()) {
1585            const Type *NewTy = RHSC->getValue()->getType();
1586            Constant *NewL = ConstantExpr::getBitCast(CompRange.getLower(),
1587                                                      NewTy);
1588            Constant *NewU = ConstantExpr::getBitCast(CompRange.getUpper(),
1589                                                      NewTy);
1590            CompRange = ConstantRange(NewL, NewU);
1591          }
1592
1593          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1594          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1595        }
1596      }
1597
1598  switch (Cond) {
1599  case Instruction::SetNE:                     // while (X != Y)
1600    // Convert to: while (X-Y != 0)
1601    if (LHS->getType()->isInteger()) {
1602      SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1603      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1604    }
1605    break;
1606  case Instruction::SetEQ:
1607    // Convert to: while (X-Y == 0)           // while (X == Y)
1608    if (LHS->getType()->isInteger()) {
1609      SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1610      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1611    }
1612    break;
1613  case Instruction::SetLT:
1614    if (LHS->getType()->isInteger() &&
1615        ExitCond->getOperand(0)->getType()->isSigned()) {
1616      SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1617      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1618    }
1619    break;
1620  case Instruction::SetGT:
1621    if (LHS->getType()->isInteger() &&
1622        ExitCond->getOperand(0)->getType()->isSigned()) {
1623      SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1624      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1625    }
1626    break;
1627  default:
1628#if 0
1629    cerr << "ComputeIterationCount ";
1630    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1631      cerr << "[unsigned] ";
1632    cerr << *LHS << "   "
1633         << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1634#endif
1635    break;
1636  }
1637
1638  return ComputeIterationCountExhaustively(L, ExitCond,
1639                                         ExitBr->getSuccessor(0) == ExitBlock);
1640}
1641
1642static ConstantInt *
1643EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1644  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1645  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1646  assert(isa<SCEVConstant>(Val) &&
1647         "Evaluation of SCEV at constant didn't fold correctly?");
1648  return cast<SCEVConstant>(Val)->getValue();
1649}
1650
1651/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1652/// and a GEP expression (missing the pointer index) indexing into it, return
1653/// the addressed element of the initializer or null if the index expression is
1654/// invalid.
1655static Constant *
1656GetAddressedElementFromGlobal(GlobalVariable *GV,
1657                              const std::vector<ConstantInt*> &Indices) {
1658  Constant *Init = GV->getInitializer();
1659  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1660    uint64_t Idx = Indices[i]->getZExtValue();
1661    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1662      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1663      Init = cast<Constant>(CS->getOperand(Idx));
1664    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1665      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1666      Init = cast<Constant>(CA->getOperand(Idx));
1667    } else if (isa<ConstantAggregateZero>(Init)) {
1668      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1669        assert(Idx < STy->getNumElements() && "Bad struct index!");
1670        Init = Constant::getNullValue(STy->getElementType(Idx));
1671      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1672        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1673        Init = Constant::getNullValue(ATy->getElementType());
1674      } else {
1675        assert(0 && "Unknown constant aggregate type!");
1676      }
1677      return 0;
1678    } else {
1679      return 0; // Unknown initializer type
1680    }
1681  }
1682  return Init;
1683}
1684
1685/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1686/// 'setcc load X, cst', try to se if we can compute the trip count.
1687SCEVHandle ScalarEvolutionsImpl::
1688ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1689                                         const Loop *L, unsigned SetCCOpcode) {
1690  if (LI->isVolatile()) return UnknownValue;
1691
1692  // Check to see if the loaded pointer is a getelementptr of a global.
1693  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1694  if (!GEP) return UnknownValue;
1695
1696  // Make sure that it is really a constant global we are gepping, with an
1697  // initializer, and make sure the first IDX is really 0.
1698  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1699  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1700      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1701      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1702    return UnknownValue;
1703
1704  // Okay, we allow one non-constant index into the GEP instruction.
1705  Value *VarIdx = 0;
1706  std::vector<ConstantInt*> Indexes;
1707  unsigned VarIdxNum = 0;
1708  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1709    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1710      Indexes.push_back(CI);
1711    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1712      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1713      VarIdx = GEP->getOperand(i);
1714      VarIdxNum = i-2;
1715      Indexes.push_back(0);
1716    }
1717
1718  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1719  // Check to see if X is a loop variant variable value now.
1720  SCEVHandle Idx = getSCEV(VarIdx);
1721  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1722  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1723
1724  // We can only recognize very limited forms of loop index expressions, in
1725  // particular, only affine AddRec's like {C1,+,C2}.
1726  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1727  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1728      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1729      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1730    return UnknownValue;
1731
1732  unsigned MaxSteps = MaxBruteForceIterations;
1733  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1734    ConstantInt *ItCst =
1735      ConstantInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1736    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1737
1738    // Form the GEP offset.
1739    Indexes[VarIdxNum] = Val;
1740
1741    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1742    if (Result == 0) break;  // Cannot compute!
1743
1744    // Evaluate the condition for this iteration.
1745    Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1746    if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
1747    if (cast<ConstantBool>(Result)->getValue() == false) {
1748#if 0
1749      cerr << "\n***\n*** Computed loop count " << *ItCst
1750           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1751           << "***\n";
1752#endif
1753      ++NumArrayLenItCounts;
1754      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1755    }
1756  }
1757  return UnknownValue;
1758}
1759
1760
1761/// CanConstantFold - Return true if we can constant fold an instruction of the
1762/// specified type, assuming that all operands were constants.
1763static bool CanConstantFold(const Instruction *I) {
1764  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1765      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1766    return true;
1767
1768  if (const CallInst *CI = dyn_cast<CallInst>(I))
1769    if (const Function *F = CI->getCalledFunction())
1770      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1771  return false;
1772}
1773
1774/// ConstantFold - Constant fold an instruction of the specified type with the
1775/// specified constant operands.  This function may modify the operands vector.
1776static Constant *ConstantFold(const Instruction *I,
1777                              std::vector<Constant*> &Operands) {
1778  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1779    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1780
1781  if (isa<CastInst>(I))
1782    return ConstantExpr::getCast(I->getOpcode(), Operands[0], I->getType());
1783
1784  switch (I->getOpcode()) {
1785  case Instruction::Select:
1786    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1787  case Instruction::Call:
1788    if (Function *GV = dyn_cast<Function>(Operands[0])) {
1789      Operands.erase(Operands.begin());
1790      return ConstantFoldCall(cast<Function>(GV), Operands);
1791    }
1792    return 0;
1793  case Instruction::GetElementPtr:
1794    Constant *Base = Operands[0];
1795    Operands.erase(Operands.begin());
1796    return ConstantExpr::getGetElementPtr(Base, Operands);
1797  }
1798  return 0;
1799}
1800
1801
1802/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1803/// in the loop that V is derived from.  We allow arbitrary operations along the
1804/// way, but the operands of an operation must either be constants or a value
1805/// derived from a constant PHI.  If this expression does not fit with these
1806/// constraints, return null.
1807static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1808  // If this is not an instruction, or if this is an instruction outside of the
1809  // loop, it can't be derived from a loop PHI.
1810  Instruction *I = dyn_cast<Instruction>(V);
1811  if (I == 0 || !L->contains(I->getParent())) return 0;
1812
1813  if (PHINode *PN = dyn_cast<PHINode>(I))
1814    if (L->getHeader() == I->getParent())
1815      return PN;
1816    else
1817      // We don't currently keep track of the control flow needed to evaluate
1818      // PHIs, so we cannot handle PHIs inside of loops.
1819      return 0;
1820
1821  // If we won't be able to constant fold this expression even if the operands
1822  // are constants, return early.
1823  if (!CanConstantFold(I)) return 0;
1824
1825  // Otherwise, we can evaluate this instruction if all of its operands are
1826  // constant or derived from a PHI node themselves.
1827  PHINode *PHI = 0;
1828  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1829    if (!(isa<Constant>(I->getOperand(Op)) ||
1830          isa<GlobalValue>(I->getOperand(Op)))) {
1831      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1832      if (P == 0) return 0;  // Not evolving from PHI
1833      if (PHI == 0)
1834        PHI = P;
1835      else if (PHI != P)
1836        return 0;  // Evolving from multiple different PHIs.
1837    }
1838
1839  // This is a expression evolving from a constant PHI!
1840  return PHI;
1841}
1842
1843/// EvaluateExpression - Given an expression that passes the
1844/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1845/// in the loop has the value PHIVal.  If we can't fold this expression for some
1846/// reason, return null.
1847static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1848  if (isa<PHINode>(V)) return PHIVal;
1849  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1850    return GV;
1851  if (Constant *C = dyn_cast<Constant>(V)) return C;
1852  Instruction *I = cast<Instruction>(V);
1853
1854  std::vector<Constant*> Operands;
1855  Operands.resize(I->getNumOperands());
1856
1857  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1858    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1859    if (Operands[i] == 0) return 0;
1860  }
1861
1862  return ConstantFold(I, Operands);
1863}
1864
1865/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1866/// in the header of its containing loop, we know the loop executes a
1867/// constant number of times, and the PHI node is just a recurrence
1868/// involving constants, fold it.
1869Constant *ScalarEvolutionsImpl::
1870getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1871  std::map<PHINode*, Constant*>::iterator I =
1872    ConstantEvolutionLoopExitValue.find(PN);
1873  if (I != ConstantEvolutionLoopExitValue.end())
1874    return I->second;
1875
1876  if (Its > MaxBruteForceIterations)
1877    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1878
1879  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1880
1881  // Since the loop is canonicalized, the PHI node must have two entries.  One
1882  // entry must be a constant (coming in from outside of the loop), and the
1883  // second must be derived from the same PHI.
1884  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1885  Constant *StartCST =
1886    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1887  if (StartCST == 0)
1888    return RetVal = 0;  // Must be a constant.
1889
1890  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1891  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1892  if (PN2 != PN)
1893    return RetVal = 0;  // Not derived from same PHI.
1894
1895  // Execute the loop symbolically to determine the exit value.
1896  unsigned IterationNum = 0;
1897  unsigned NumIterations = Its;
1898  if (NumIterations != Its)
1899    return RetVal = 0;  // More than 2^32 iterations??
1900
1901  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1902    if (IterationNum == NumIterations)
1903      return RetVal = PHIVal;  // Got exit value!
1904
1905    // Compute the value of the PHI node for the next iteration.
1906    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1907    if (NextPHI == PHIVal)
1908      return RetVal = NextPHI;  // Stopped evolving!
1909    if (NextPHI == 0)
1910      return 0;        // Couldn't evaluate!
1911    PHIVal = NextPHI;
1912  }
1913}
1914
1915/// ComputeIterationCountExhaustively - If the trip is known to execute a
1916/// constant number of times (the condition evolves only from constants),
1917/// try to evaluate a few iterations of the loop until we get the exit
1918/// condition gets a value of ExitWhen (true or false).  If we cannot
1919/// evaluate the trip count of the loop, return UnknownValue.
1920SCEVHandle ScalarEvolutionsImpl::
1921ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1922  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1923  if (PN == 0) return UnknownValue;
1924
1925  // Since the loop is canonicalized, the PHI node must have two entries.  One
1926  // entry must be a constant (coming in from outside of the loop), and the
1927  // second must be derived from the same PHI.
1928  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1929  Constant *StartCST =
1930    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1931  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1932
1933  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1934  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1935  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1936
1937  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1938  // the loop symbolically to determine when the condition gets a value of
1939  // "ExitWhen".
1940  unsigned IterationNum = 0;
1941  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1942  for (Constant *PHIVal = StartCST;
1943       IterationNum != MaxIterations; ++IterationNum) {
1944    ConstantBool *CondVal =
1945      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1946    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
1947
1948    if (CondVal->getValue() == ExitWhen) {
1949      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1950      ++NumBruteForceTripCountsComputed;
1951      return SCEVConstant::get(ConstantInt::get(Type::UIntTy, IterationNum));
1952    }
1953
1954    // Compute the value of the PHI node for the next iteration.
1955    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1956    if (NextPHI == 0 || NextPHI == PHIVal)
1957      return UnknownValue;  // Couldn't evaluate or not making progress...
1958    PHIVal = NextPHI;
1959  }
1960
1961  // Too many iterations were needed to evaluate.
1962  return UnknownValue;
1963}
1964
1965/// getSCEVAtScope - Compute the value of the specified expression within the
1966/// indicated loop (which may be null to indicate in no loop).  If the
1967/// expression cannot be evaluated, return UnknownValue.
1968SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1969  // FIXME: this should be turned into a virtual method on SCEV!
1970
1971  if (isa<SCEVConstant>(V)) return V;
1972
1973  // If this instruction is evolves from a constant-evolving PHI, compute the
1974  // exit value from the loop without using SCEVs.
1975  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1976    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1977      const Loop *LI = this->LI[I->getParent()];
1978      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1979        if (PHINode *PN = dyn_cast<PHINode>(I))
1980          if (PN->getParent() == LI->getHeader()) {
1981            // Okay, there is no closed form solution for the PHI node.  Check
1982            // to see if the loop that contains it has a known iteration count.
1983            // If so, we may be able to force computation of the exit value.
1984            SCEVHandle IterationCount = getIterationCount(LI);
1985            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1986              // Okay, we know how many times the containing loop executes.  If
1987              // this is a constant evolving PHI node, get the final value at
1988              // the specified iteration number.
1989              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1990                                               ICC->getValue()->getZExtValue(),
1991                                                               LI);
1992              if (RV) return SCEVUnknown::get(RV);
1993            }
1994          }
1995
1996      // Okay, this is an expression that we cannot symbolically evaluate
1997      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1998      // the arguments into constants, and if so, try to constant propagate the
1999      // result.  This is particularly useful for computing loop exit values.
2000      if (CanConstantFold(I)) {
2001        std::vector<Constant*> Operands;
2002        Operands.reserve(I->getNumOperands());
2003        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2004          Value *Op = I->getOperand(i);
2005          if (Constant *C = dyn_cast<Constant>(Op)) {
2006            Operands.push_back(C);
2007          } else {
2008            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2009            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2010              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2011                                                              Op->getType(),
2012                                                              false));
2013            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2014              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2015                Operands.push_back(ConstantExpr::getIntegerCast(C,
2016                                                                Op->getType(),
2017                                                                false));
2018              else
2019                return V;
2020            } else {
2021              return V;
2022            }
2023          }
2024        }
2025        return SCEVUnknown::get(ConstantFold(I, Operands));
2026      }
2027    }
2028
2029    // This is some other type of SCEVUnknown, just return it.
2030    return V;
2031  }
2032
2033  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2034    // Avoid performing the look-up in the common case where the specified
2035    // expression has no loop-variant portions.
2036    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2037      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2038      if (OpAtScope != Comm->getOperand(i)) {
2039        if (OpAtScope == UnknownValue) return UnknownValue;
2040        // Okay, at least one of these operands is loop variant but might be
2041        // foldable.  Build a new instance of the folded commutative expression.
2042        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2043        NewOps.push_back(OpAtScope);
2044
2045        for (++i; i != e; ++i) {
2046          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2047          if (OpAtScope == UnknownValue) return UnknownValue;
2048          NewOps.push_back(OpAtScope);
2049        }
2050        if (isa<SCEVAddExpr>(Comm))
2051          return SCEVAddExpr::get(NewOps);
2052        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2053        return SCEVMulExpr::get(NewOps);
2054      }
2055    }
2056    // If we got here, all operands are loop invariant.
2057    return Comm;
2058  }
2059
2060  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2061    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2062    if (LHS == UnknownValue) return LHS;
2063    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2064    if (RHS == UnknownValue) return RHS;
2065    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2066      return Div;   // must be loop invariant
2067    return SCEVSDivExpr::get(LHS, RHS);
2068  }
2069
2070  // If this is a loop recurrence for a loop that does not contain L, then we
2071  // are dealing with the final value computed by the loop.
2072  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2073    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2074      // To evaluate this recurrence, we need to know how many times the AddRec
2075      // loop iterates.  Compute this now.
2076      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2077      if (IterationCount == UnknownValue) return UnknownValue;
2078      IterationCount = getTruncateOrZeroExtend(IterationCount,
2079                                               AddRec->getType());
2080
2081      // If the value is affine, simplify the expression evaluation to just
2082      // Start + Step*IterationCount.
2083      if (AddRec->isAffine())
2084        return SCEVAddExpr::get(AddRec->getStart(),
2085                                SCEVMulExpr::get(IterationCount,
2086                                                 AddRec->getOperand(1)));
2087
2088      // Otherwise, evaluate it the hard way.
2089      return AddRec->evaluateAtIteration(IterationCount);
2090    }
2091    return UnknownValue;
2092  }
2093
2094  //assert(0 && "Unknown SCEV type!");
2095  return UnknownValue;
2096}
2097
2098
2099/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2100/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2101/// might be the same) or two SCEVCouldNotCompute objects.
2102///
2103static std::pair<SCEVHandle,SCEVHandle>
2104SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2105  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2106  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2107  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2108  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2109
2110  // We currently can only solve this if the coefficients are constants.
2111  if (!L || !M || !N) {
2112    SCEV *CNC = new SCEVCouldNotCompute();
2113    return std::make_pair(CNC, CNC);
2114  }
2115
2116  Constant *C = L->getValue();
2117  Constant *Two = ConstantInt::get(C->getType(), 2);
2118
2119  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2120  // The B coefficient is M-N/2
2121  Constant *B = ConstantExpr::getSub(M->getValue(),
2122                                     ConstantExpr::getSDiv(N->getValue(),
2123                                                          Two));
2124  // The A coefficient is N/2
2125  Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
2126
2127  // Compute the B^2-4ac term.
2128  Constant *SqrtTerm =
2129    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2130                         ConstantExpr::getMul(A, C));
2131  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2132
2133  // Compute floor(sqrt(B^2-4ac))
2134  ConstantInt *SqrtVal =
2135    cast<ConstantInt>(ConstantExpr::getBitCast(SqrtTerm,
2136                                   SqrtTerm->getType()->getUnsignedVersion()));
2137  uint64_t SqrtValV = SqrtVal->getZExtValue();
2138  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2139  // The square root might not be precise for arbitrary 64-bit integer
2140  // values.  Do some sanity checks to ensure it's correct.
2141  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2142      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2143    SCEV *CNC = new SCEVCouldNotCompute();
2144    return std::make_pair(CNC, CNC);
2145  }
2146
2147  SqrtVal = ConstantInt::get(Type::ULongTy, SqrtValV2);
2148  SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
2149
2150  Constant *NegB = ConstantExpr::getNeg(B);
2151  Constant *TwoA = ConstantExpr::getMul(A, Two);
2152
2153  // The divisions must be performed as signed divisions.
2154  // FIXME:Signedness. These casts can all go away once integer types are
2155  // signless.
2156  const Type *SignedTy = NegB->getType()->getSignedVersion();
2157  NegB = ConstantExpr::getBitCast(NegB, SignedTy);
2158  TwoA = ConstantExpr::getBitCast(TwoA, SignedTy);
2159  SqrtTerm = ConstantExpr::getBitCast(SqrtTerm, SignedTy);
2160
2161  Constant *Solution1 =
2162    ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2163  Constant *Solution2 =
2164    ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2165  return std::make_pair(SCEVUnknown::get(Solution1),
2166                        SCEVUnknown::get(Solution2));
2167}
2168
2169/// HowFarToZero - Return the number of times a backedge comparing the specified
2170/// value to zero will execute.  If not computable, return UnknownValue
2171SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2172  // If the value is a constant
2173  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2174    // If the value is already zero, the branch will execute zero times.
2175    if (C->getValue()->isNullValue()) return C;
2176    return UnknownValue;  // Otherwise it will loop infinitely.
2177  }
2178
2179  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2180  if (!AddRec || AddRec->getLoop() != L)
2181    return UnknownValue;
2182
2183  if (AddRec->isAffine()) {
2184    // If this is an affine expression the execution count of this branch is
2185    // equal to:
2186    //
2187    //     (0 - Start/Step)    iff   Start % Step == 0
2188    //
2189    // Get the initial value for the loop.
2190    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2191    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2192    SCEVHandle Step = AddRec->getOperand(1);
2193
2194    Step = getSCEVAtScope(Step, L->getParentLoop());
2195
2196    // Figure out if Start % Step == 0.
2197    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2198    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2199      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2200        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2201      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2202        return Start;                   // 0 - Start/-1 == Start
2203
2204      // Check to see if Start is divisible by SC with no remainder.
2205      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2206        ConstantInt *StartCC = StartC->getValue();
2207        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2208        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2209        if (Rem->isNullValue()) {
2210          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2211          return SCEVUnknown::get(Result);
2212        }
2213      }
2214    }
2215  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2216    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2217    // the quadratic equation to solve it.
2218    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2219    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2220    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2221    if (R1) {
2222#if 0
2223      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2224           << "  sol#2: " << *R2 << "\n";
2225#endif
2226      // Pick the smallest positive root value.
2227      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2228      if (ConstantBool *CB =
2229          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2230                                                        R2->getValue()))) {
2231        if (CB->getValue() == false)
2232          std::swap(R1, R2);   // R1 is the minimum root now.
2233
2234        // We can only use this value if the chrec ends up with an exact zero
2235        // value at this index.  When solving for "X*X != 5", for example, we
2236        // should not accept a root of 2.
2237        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2238        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2239          if (EvalVal->getValue()->isNullValue())
2240            return R1;  // We found a quadratic root!
2241      }
2242    }
2243  }
2244
2245  return UnknownValue;
2246}
2247
2248/// HowFarToNonZero - Return the number of times a backedge checking the
2249/// specified value for nonzero will execute.  If not computable, return
2250/// UnknownValue
2251SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2252  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2253  // handle them yet except for the trivial case.  This could be expanded in the
2254  // future as needed.
2255
2256  // If the value is a constant, check to see if it is known to be non-zero
2257  // already.  If so, the backedge will execute zero times.
2258  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2259    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2260    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2261    if (NonZero == ConstantBool::getTrue())
2262      return getSCEV(Zero);
2263    return UnknownValue;  // Otherwise it will loop infinitely.
2264  }
2265
2266  // We could implement others, but I really doubt anyone writes loops like
2267  // this, and if they did, they would already be constant folded.
2268  return UnknownValue;
2269}
2270
2271/// HowManyLessThans - Return the number of times a backedge containing the
2272/// specified less-than comparison will execute.  If not computable, return
2273/// UnknownValue.
2274SCEVHandle ScalarEvolutionsImpl::
2275HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2276  // Only handle:  "ADDREC < LoopInvariant".
2277  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2278
2279  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2280  if (!AddRec || AddRec->getLoop() != L)
2281    return UnknownValue;
2282
2283  if (AddRec->isAffine()) {
2284    // FORNOW: We only support unit strides.
2285    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2286    if (AddRec->getOperand(1) != One)
2287      return UnknownValue;
2288
2289    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2290    // know that m is >= n on input to the loop.  If it is, the condition return
2291    // true zero times.  What we really should return, for full generality, is
2292    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2293    // canonical loop form: most do-loops will have a check that dominates the
2294    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2295    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2296
2297    // Search for the check.
2298    BasicBlock *Preheader = L->getLoopPreheader();
2299    BasicBlock *PreheaderDest = L->getHeader();
2300    if (Preheader == 0) return UnknownValue;
2301
2302    BranchInst *LoopEntryPredicate =
2303      dyn_cast<BranchInst>(Preheader->getTerminator());
2304    if (!LoopEntryPredicate) return UnknownValue;
2305
2306    // This might be a critical edge broken out.  If the loop preheader ends in
2307    // an unconditional branch to the loop, check to see if the preheader has a
2308    // single predecessor, and if so, look for its terminator.
2309    while (LoopEntryPredicate->isUnconditional()) {
2310      PreheaderDest = Preheader;
2311      Preheader = Preheader->getSinglePredecessor();
2312      if (!Preheader) return UnknownValue;  // Multiple preds.
2313
2314      LoopEntryPredicate =
2315        dyn_cast<BranchInst>(Preheader->getTerminator());
2316      if (!LoopEntryPredicate) return UnknownValue;
2317    }
2318
2319    // Now that we found a conditional branch that dominates the loop, check to
2320    // see if it is the comparison we are looking for.
2321    SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
2322    if (!SCI) return UnknownValue;
2323    Value *PreCondLHS = SCI->getOperand(0);
2324    Value *PreCondRHS = SCI->getOperand(1);
2325    Instruction::BinaryOps Cond;
2326    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2327      Cond = SCI->getOpcode();
2328    else
2329      Cond = SCI->getInverseCondition();
2330
2331    switch (Cond) {
2332    case Instruction::SetGT:
2333      std::swap(PreCondLHS, PreCondRHS);
2334      Cond = Instruction::SetLT;
2335      // Fall Through.
2336    case Instruction::SetLT:
2337      if (PreCondLHS->getType()->isInteger() &&
2338          PreCondLHS->getType()->isSigned()) {
2339        if (RHS != getSCEV(PreCondRHS))
2340          return UnknownValue;  // Not a comparison against 'm'.
2341
2342        if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2343                    != getSCEV(PreCondLHS))
2344          return UnknownValue;  // Not a comparison against 'n-1'.
2345        break;
2346      } else {
2347        return UnknownValue;
2348      }
2349    default: break;
2350    }
2351
2352    //cerr << "Computed Loop Trip Count as: "
2353    //     << *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2354    return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2355  }
2356
2357  return UnknownValue;
2358}
2359
2360/// getNumIterationsInRange - Return the number of iterations of this loop that
2361/// produce values in the specified constant range.  Another way of looking at
2362/// this is that it returns the first iteration number where the value is not in
2363/// the condition, thus computing the exit count. If the iteration count can't
2364/// be computed, an instance of SCEVCouldNotCompute is returned.
2365SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2366  if (Range.isFullSet())  // Infinite loop.
2367    return new SCEVCouldNotCompute();
2368
2369  // If the start is a non-zero constant, shift the range to simplify things.
2370  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2371    if (!SC->getValue()->isNullValue()) {
2372      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2373      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2374      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2375      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2376        return ShiftedAddRec->getNumIterationsInRange(
2377                                              Range.subtract(SC->getValue()));
2378      // This is strange and shouldn't happen.
2379      return new SCEVCouldNotCompute();
2380    }
2381
2382  // The only time we can solve this is when we have all constant indices.
2383  // Otherwise, we cannot determine the overflow conditions.
2384  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2385    if (!isa<SCEVConstant>(getOperand(i)))
2386      return new SCEVCouldNotCompute();
2387
2388
2389  // Okay at this point we know that all elements of the chrec are constants and
2390  // that the start element is zero.
2391
2392  // First check to see if the range contains zero.  If not, the first
2393  // iteration exits.
2394  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2395  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2396
2397  if (isAffine()) {
2398    // If this is an affine expression then we have this situation:
2399    //   Solve {0,+,A} in Range  ===  Ax in Range
2400
2401    // Since we know that zero is in the range, we know that the upper value of
2402    // the range must be the first possible exit value.  Also note that we
2403    // already checked for a full range.
2404    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2405    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2406    ConstantInt *One   = ConstantInt::get(getType(), 1);
2407
2408    // The exit value should be (Upper+A-1)/A.
2409    Constant *ExitValue = Upper;
2410    if (A != One) {
2411      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2412      ExitValue = ConstantExpr::getSDiv(ExitValue, A);
2413    }
2414    assert(isa<ConstantInt>(ExitValue) &&
2415           "Constant folding of integers not implemented?");
2416
2417    // Evaluate at the exit value.  If we really did fall out of the valid
2418    // range, then we computed our trip count, otherwise wrap around or other
2419    // things must have happened.
2420    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2421    if (Range.contains(Val))
2422      return new SCEVCouldNotCompute();  // Something strange happened
2423
2424    // Ensure that the previous value is in the range.  This is a sanity check.
2425    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2426                              ConstantExpr::getSub(ExitValue, One))) &&
2427           "Linear scev computation is off in a bad way!");
2428    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2429  } else if (isQuadratic()) {
2430    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2431    // quadratic equation to solve it.  To do this, we must frame our problem in
2432    // terms of figuring out when zero is crossed, instead of when
2433    // Range.getUpper() is crossed.
2434    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2435    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2436    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2437
2438    // Next, solve the constructed addrec
2439    std::pair<SCEVHandle,SCEVHandle> Roots =
2440      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2441    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2442    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2443    if (R1) {
2444      // Pick the smallest positive root value.
2445      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2446      if (ConstantBool *CB =
2447          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2448                                                        R2->getValue()))) {
2449        if (CB->getValue() == false)
2450          std::swap(R1, R2);   // R1 is the minimum root now.
2451
2452        // Make sure the root is not off by one.  The returned iteration should
2453        // not be in the range, but the previous one should be.  When solving
2454        // for "X*X < 5", for example, we should not return a root of 2.
2455        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2456                                                             R1->getValue());
2457        if (Range.contains(R1Val)) {
2458          // The next iteration must be out of the range...
2459          Constant *NextVal =
2460            ConstantExpr::getAdd(R1->getValue(),
2461                                 ConstantInt::get(R1->getType(), 1));
2462
2463          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2464          if (!Range.contains(R1Val))
2465            return SCEVUnknown::get(NextVal);
2466          return new SCEVCouldNotCompute();  // Something strange happened
2467        }
2468
2469        // If R1 was not in the range, then it is a good return value.  Make
2470        // sure that R1-1 WAS in the range though, just in case.
2471        Constant *NextVal =
2472          ConstantExpr::getSub(R1->getValue(),
2473                               ConstantInt::get(R1->getType(), 1));
2474        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2475        if (Range.contains(R1Val))
2476          return R1;
2477        return new SCEVCouldNotCompute();  // Something strange happened
2478      }
2479    }
2480  }
2481
2482  // Fallback, if this is a general polynomial, figure out the progression
2483  // through brute force: evaluate until we find an iteration that fails the
2484  // test.  This is likely to be slow, but getting an accurate trip count is
2485  // incredibly important, we will be able to simplify the exit test a lot, and
2486  // we are almost guaranteed to get a trip count in this case.
2487  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2488  ConstantInt *One     = ConstantInt::get(getType(), 1);
2489  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2490  do {
2491    ++NumBruteForceEvaluations;
2492    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2493    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2494      return new SCEVCouldNotCompute();
2495
2496    // Check to see if we found the value!
2497    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2498      return SCEVConstant::get(TestVal);
2499
2500    // Increment to test the next index.
2501    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2502  } while (TestVal != EndVal);
2503
2504  return new SCEVCouldNotCompute();
2505}
2506
2507
2508
2509//===----------------------------------------------------------------------===//
2510//                   ScalarEvolution Class Implementation
2511//===----------------------------------------------------------------------===//
2512
2513bool ScalarEvolution::runOnFunction(Function &F) {
2514  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2515  return false;
2516}
2517
2518void ScalarEvolution::releaseMemory() {
2519  delete (ScalarEvolutionsImpl*)Impl;
2520  Impl = 0;
2521}
2522
2523void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2524  AU.setPreservesAll();
2525  AU.addRequiredTransitive<LoopInfo>();
2526}
2527
2528SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2529  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2530}
2531
2532/// hasSCEV - Return true if the SCEV for this value has already been
2533/// computed.
2534bool ScalarEvolution::hasSCEV(Value *V) const {
2535  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2536}
2537
2538
2539/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2540/// the specified value.
2541void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2542  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2543}
2544
2545
2546SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2547  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2548}
2549
2550bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2551  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2552}
2553
2554SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2555  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2556}
2557
2558void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2559  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2560}
2561
2562static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2563                          const Loop *L) {
2564  // Print all inner loops first
2565  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2566    PrintLoopInfo(OS, SE, *I);
2567
2568  cerr << "Loop " << L->getHeader()->getName() << ": ";
2569
2570  std::vector<BasicBlock*> ExitBlocks;
2571  L->getExitBlocks(ExitBlocks);
2572  if (ExitBlocks.size() != 1)
2573    cerr << "<multiple exits> ";
2574
2575  if (SE->hasLoopInvariantIterationCount(L)) {
2576    cerr << *SE->getIterationCount(L) << " iterations! ";
2577  } else {
2578    cerr << "Unpredictable iteration count. ";
2579  }
2580
2581  cerr << "\n";
2582}
2583
2584void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2585  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2586  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2587
2588  OS << "Classifying expressions for: " << F.getName() << "\n";
2589  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2590    if (I->getType()->isInteger()) {
2591      OS << *I;
2592      OS << "  --> ";
2593      SCEVHandle SV = getSCEV(&*I);
2594      SV->print(OS);
2595      OS << "\t\t";
2596
2597      if ((*I).getType()->isIntegral()) {
2598        ConstantRange Bounds = SV->getValueRange();
2599        if (!Bounds.isFullSet())
2600          OS << "Bounds: " << Bounds << " ";
2601      }
2602
2603      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2604        OS << "Exits: ";
2605        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2606        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2607          OS << "<<Unknown>>";
2608        } else {
2609          OS << *ExitValue;
2610        }
2611      }
2612
2613
2614      OS << "\n";
2615    }
2616
2617  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2618  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2619    PrintLoopInfo(OS, this, *I);
2620}
2621
2622