AsmPrinter.cpp revision 0c8e80607bc3296a4775f05c02f0d11df8e5cb04
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Constants.h"
18#include "llvm/Module.h"
19#include "llvm/CodeGen/GCMetadataPrinter.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include <cerrno>
35using namespace llvm;
36
37char AsmPrinter::ID = 0;
38AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
39                       const TargetAsmInfo *T)
40  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
41    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
42    IsInTextSection(false)
43{}
44
45AsmPrinter::~AsmPrinter() {
46  for (gcp_iterator I = GCMetadataPrinters.begin(),
47                    E = GCMetadataPrinters.end(); I != E; ++I)
48    delete I->second;
49}
50
51/// SwitchToTextSection - Switch to the specified text section of the executable
52/// if we are not already in it!
53///
54void AsmPrinter::SwitchToTextSection(const char *NewSection,
55                                     const GlobalValue *GV) {
56  std::string NS;
57  if (GV && GV->hasSection())
58    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
59  else
60    NS = NewSection;
61
62  // If we're already in this section, we're done.
63  if (CurrentSection == NS) return;
64
65  // Close the current section, if applicable.
66  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
67    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
68
69  CurrentSection = NS;
70
71  if (!CurrentSection.empty())
72    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
73
74  IsInTextSection = true;
75}
76
77/// SwitchToDataSection - Switch to the specified data section of the executable
78/// if we are not already in it!
79///
80void AsmPrinter::SwitchToDataSection(const char *NewSection,
81                                     const GlobalValue *GV) {
82  std::string NS;
83  if (GV && GV->hasSection())
84    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
85  else
86    NS = NewSection;
87
88  // If we're already in this section, we're done.
89  if (CurrentSection == NS) return;
90
91  // Close the current section, if applicable.
92  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
93    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
94
95  CurrentSection = NS;
96
97  if (!CurrentSection.empty())
98    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
99
100  IsInTextSection = false;
101}
102
103/// SwitchToSection - Switch to the specified section of the executable if we
104/// are not already in it!
105void AsmPrinter::SwitchToSection(const Section* NS) {
106  const std::string& NewSection = NS->getName();
107
108  // If we're already in this section, we're done.
109  if (CurrentSection == NewSection) return;
110
111  // Close the current section, if applicable.
112  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
113    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
114
115  // FIXME: Make CurrentSection a Section* in the future
116  CurrentSection = NewSection;
117
118  if (!CurrentSection.empty())
119    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
120
121  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
122}
123
124void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
125  MachineFunctionPass::getAnalysisUsage(AU);
126  AU.addRequired<GCModuleInfo>();
127}
128
129bool AsmPrinter::doInitialization(Module &M) {
130  Mang = new Mangler(M, TAI->getGlobalPrefix());
131
132  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
133  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
134  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
135    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
136      MP->beginAssembly(O, *this, *TAI);
137
138  if (!M.getModuleInlineAsm().empty())
139    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
140      << M.getModuleInlineAsm()
141      << '\n' << TAI->getCommentString()
142      << " End of file scope inline assembly\n";
143
144  SwitchToDataSection("");   // Reset back to no section.
145
146  MMI = getAnalysisToUpdate<MachineModuleInfo>();
147  if (MMI) MMI->AnalyzeModule(M);
148
149  return false;
150}
151
152bool AsmPrinter::doFinalization(Module &M) {
153  if (TAI->getWeakRefDirective()) {
154    if (!ExtWeakSymbols.empty())
155      SwitchToDataSection("");
156
157    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
158         e = ExtWeakSymbols.end(); i != e; ++i) {
159      const GlobalValue *GV = *i;
160      std::string Name = Mang->getValueName(GV);
161      O << TAI->getWeakRefDirective() << Name << '\n';
162    }
163  }
164
165  if (TAI->getSetDirective()) {
166    if (!M.alias_empty())
167      SwitchToTextSection(TAI->getTextSection());
168
169    O << '\n';
170    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
171         I!=E; ++I) {
172      std::string Name = Mang->getValueName(I);
173      std::string Target;
174
175      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
176      Target = Mang->getValueName(GV);
177
178      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
179        O << "\t.globl\t" << Name << '\n';
180      else if (I->hasWeakLinkage())
181        O << TAI->getWeakRefDirective() << Name << '\n';
182      else if (!I->hasInternalLinkage())
183        assert(0 && "Invalid alias linkage");
184
185      if (I->hasHiddenVisibility()) {
186        if (const char *Directive = TAI->getHiddenDirective())
187          O << Directive << Name << '\n';
188      } else if (I->hasProtectedVisibility()) {
189        if (const char *Directive = TAI->getProtectedDirective())
190          O << Directive << Name << '\n';
191      }
192
193      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
194
195      // If the aliasee has external weak linkage it can be referenced only by
196      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
197      // weak reference in such case.
198      if (GV->hasExternalWeakLinkage()) {
199        if (TAI->getWeakRefDirective())
200          O << TAI->getWeakRefDirective() << Target << '\n';
201        else
202          O << "\t.globl\t" << Target << '\n';
203      }
204    }
205  }
206
207  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
208  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
209  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
210    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
211      MP->finishAssembly(O, *this, *TAI);
212
213  // If we don't have any trampolines, then we don't require stack memory
214  // to be executable. Some targets have a directive to declare this.
215  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
216  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
217    if (TAI->getNonexecutableStackDirective())
218      O << TAI->getNonexecutableStackDirective() << '\n';
219
220  delete Mang; Mang = 0;
221  return false;
222}
223
224std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
225  assert(MF && "No machine function?");
226  std::string Name = MF->getFunction()->getName();
227  if (Name.empty())
228    Name = Mang->getValueName(MF->getFunction());
229  return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix());
230}
231
232void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
233  // What's my mangled name?
234  CurrentFnName = Mang->getValueName(MF.getFunction());
235  IncrementFunctionNumber();
236}
237
238/// EmitConstantPool - Print to the current output stream assembly
239/// representations of the constants in the constant pool MCP. This is
240/// used to print out constants which have been "spilled to memory" by
241/// the code generator.
242///
243void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
244  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
245  if (CP.empty()) return;
246
247  // Some targets require 4-, 8-, and 16- byte constant literals to be placed
248  // in special sections.
249  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
250  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
251  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
252  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
253  std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
254  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
255    MachineConstantPoolEntry CPE = CP[i];
256    const Type *Ty = CPE.getType();
257    if (TAI->getFourByteConstantSection() &&
258        TM.getTargetData()->getABITypeSize(Ty) == 4)
259      FourByteCPs.push_back(std::make_pair(CPE, i));
260    else if (TAI->getEightByteConstantSection() &&
261             TM.getTargetData()->getABITypeSize(Ty) == 8)
262      EightByteCPs.push_back(std::make_pair(CPE, i));
263    else if (TAI->getSixteenByteConstantSection() &&
264             TM.getTargetData()->getABITypeSize(Ty) == 16)
265      SixteenByteCPs.push_back(std::make_pair(CPE, i));
266    else
267      OtherCPs.push_back(std::make_pair(CPE, i));
268  }
269
270  unsigned Alignment = MCP->getConstantPoolAlignment();
271  EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
272  EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
273  EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
274                   SixteenByteCPs);
275  EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
276}
277
278void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
279               std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
280  if (CP.empty()) return;
281
282  SwitchToDataSection(Section);
283  EmitAlignment(Alignment);
284  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
285    O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
286      << CP[i].second << ":\t\t\t\t\t";
287    // O << TAI->getCommentString() << ' ' <<
288    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
289    O << '\n';
290    if (CP[i].first.isMachineConstantPoolEntry())
291      EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
292     else
293      EmitGlobalConstant(CP[i].first.Val.ConstVal);
294    if (i != e-1) {
295      const Type *Ty = CP[i].first.getType();
296      unsigned EntSize =
297        TM.getTargetData()->getABITypeSize(Ty);
298      unsigned ValEnd = CP[i].first.getOffset() + EntSize;
299      // Emit inter-object padding for alignment.
300      EmitZeros(CP[i+1].first.getOffset()-ValEnd);
301    }
302  }
303}
304
305/// EmitJumpTableInfo - Print assembly representations of the jump tables used
306/// by the current function to the current output stream.
307///
308void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
309                                   MachineFunction &MF) {
310  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
311  if (JT.empty()) return;
312
313  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
314
315  // Pick the directive to use to print the jump table entries, and switch to
316  // the appropriate section.
317  TargetLowering *LoweringInfo = TM.getTargetLowering();
318
319  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
320  const Function *F = MF.getFunction();
321  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
322  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
323     !JumpTableDataSection ||
324      SectionFlags & SectionFlags::Linkonce) {
325    // In PIC mode, we need to emit the jump table to the same section as the
326    // function body itself, otherwise the label differences won't make sense.
327    // We should also do if the section name is NULL or function is declared in
328    // discardable section.
329    SwitchToTextSection(TAI->SectionForGlobal(F).c_str(), F);
330  } else {
331    SwitchToDataSection(JumpTableDataSection);
332  }
333
334  EmitAlignment(Log2_32(MJTI->getAlignment()));
335
336  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
337    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
338
339    // If this jump table was deleted, ignore it.
340    if (JTBBs.empty()) continue;
341
342    // For PIC codegen, if possible we want to use the SetDirective to reduce
343    // the number of relocations the assembler will generate for the jump table.
344    // Set directives are all printed before the jump table itself.
345    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
346    if (TAI->getSetDirective() && IsPic)
347      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
348        if (EmittedSets.insert(JTBBs[ii]))
349          printPICJumpTableSetLabel(i, JTBBs[ii]);
350
351    // On some targets (e.g. darwin) we want to emit two consequtive labels
352    // before each jump table.  The first label is never referenced, but tells
353    // the assembler and linker the extents of the jump table object.  The
354    // second label is actually referenced by the code.
355    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
356      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
357
358    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
359      << '_' << i << ":\n";
360
361    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
362      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
363      O << '\n';
364    }
365  }
366}
367
368void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
369                                        const MachineBasicBlock *MBB,
370                                        unsigned uid)  const {
371  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
372
373  // Use JumpTableDirective otherwise honor the entry size from the jump table
374  // info.
375  const char *JTEntryDirective = TAI->getJumpTableDirective();
376  bool HadJTEntryDirective = JTEntryDirective != NULL;
377  if (!HadJTEntryDirective) {
378    JTEntryDirective = MJTI->getEntrySize() == 4 ?
379      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
380  }
381
382  O << JTEntryDirective << ' ';
383
384  // If we have emitted set directives for the jump table entries, print
385  // them rather than the entries themselves.  If we're emitting PIC, then
386  // emit the table entries as differences between two text section labels.
387  // If we're emitting non-PIC code, then emit the entries as direct
388  // references to the target basic blocks.
389  if (IsPic) {
390    if (TAI->getSetDirective()) {
391      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
392        << '_' << uid << "_set_" << MBB->getNumber();
393    } else {
394      printBasicBlockLabel(MBB, false, false, false);
395      // If the arch uses custom Jump Table directives, don't calc relative to
396      // JT
397      if (!HadJTEntryDirective)
398        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
399          << getFunctionNumber() << '_' << uid;
400    }
401  } else {
402    printBasicBlockLabel(MBB, false, false, false);
403  }
404}
405
406
407/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
408/// special global used by LLVM.  If so, emit it and return true, otherwise
409/// do nothing and return false.
410bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
411  if (GV->getName() == "llvm.used") {
412    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
413      EmitLLVMUsedList(GV->getInitializer());
414    return true;
415  }
416
417  // Ignore debug and non-emitted data.
418  if (GV->getSection() == "llvm.metadata") return true;
419
420  if (!GV->hasAppendingLinkage()) return false;
421
422  assert(GV->hasInitializer() && "Not a special LLVM global!");
423
424  const TargetData *TD = TM.getTargetData();
425  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
426  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
427    SwitchToDataSection(TAI->getStaticCtorsSection());
428    EmitAlignment(Align, 0);
429    EmitXXStructorList(GV->getInitializer());
430    return true;
431  }
432
433  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
434    SwitchToDataSection(TAI->getStaticDtorsSection());
435    EmitAlignment(Align, 0);
436    EmitXXStructorList(GV->getInitializer());
437    return true;
438  }
439
440  return false;
441}
442
443/// findGlobalValue - if CV is an expression equivalent to a single
444/// global value, return that value.
445const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
446  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
447    return GV;
448  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
449    const TargetData *TD = TM.getTargetData();
450    unsigned Opcode = CE->getOpcode();
451    switch (Opcode) {
452    case Instruction::GetElementPtr: {
453      const Constant *ptrVal = CE->getOperand(0);
454      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
455      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
456        return 0;
457      return findGlobalValue(ptrVal);
458    }
459    case Instruction::BitCast:
460      return findGlobalValue(CE->getOperand(0));
461    default:
462      return 0;
463    }
464  }
465  return 0;
466}
467
468/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
469/// global in the specified llvm.used list for which emitUsedDirectiveFor
470/// is true, as being used with this directive.
471
472void AsmPrinter::EmitLLVMUsedList(Constant *List) {
473  const char *Directive = TAI->getUsedDirective();
474
475  // Should be an array of 'sbyte*'.
476  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
477  if (InitList == 0) return;
478
479  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
480    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
481    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
482      O << Directive;
483      EmitConstantValueOnly(InitList->getOperand(i));
484      O << '\n';
485    }
486  }
487}
488
489/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the
490/// function pointers, ignoring the init priority.
491void AsmPrinter::EmitXXStructorList(Constant *List) {
492  // Should be an array of '{ int, void ()* }' structs.  The first value is the
493  // init priority, which we ignore.
494  if (!isa<ConstantArray>(List)) return;
495  ConstantArray *InitList = cast<ConstantArray>(List);
496  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
497    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
498      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
499
500      if (CS->getOperand(1)->isNullValue())
501        return;  // Found a null terminator, exit printing.
502      // Emit the function pointer.
503      EmitGlobalConstant(CS->getOperand(1));
504    }
505}
506
507/// getGlobalLinkName - Returns the asm/link name of of the specified
508/// global variable.  Should be overridden by each target asm printer to
509/// generate the appropriate value.
510const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
511  std::string LinkName;
512
513  if (isa<Function>(GV)) {
514    LinkName += TAI->getFunctionAddrPrefix();
515    LinkName += Mang->getValueName(GV);
516    LinkName += TAI->getFunctionAddrSuffix();
517  } else {
518    LinkName += TAI->getGlobalVarAddrPrefix();
519    LinkName += Mang->getValueName(GV);
520    LinkName += TAI->getGlobalVarAddrSuffix();
521  }
522
523  return LinkName;
524}
525
526/// EmitExternalGlobal - Emit the external reference to a global variable.
527/// Should be overridden if an indirect reference should be used.
528void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
529  O << getGlobalLinkName(GV);
530}
531
532
533
534//===----------------------------------------------------------------------===//
535/// LEB 128 number encoding.
536
537/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
538/// representing an unsigned leb128 value.
539void AsmPrinter::PrintULEB128(unsigned Value) const {
540  do {
541    unsigned Byte = Value & 0x7f;
542    Value >>= 7;
543    if (Value) Byte |= 0x80;
544    O << "0x" <<  utohexstr(Byte);
545    if (Value) O << ", ";
546  } while (Value);
547}
548
549/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
550/// representing a signed leb128 value.
551void AsmPrinter::PrintSLEB128(int Value) const {
552  int Sign = Value >> (8 * sizeof(Value) - 1);
553  bool IsMore;
554
555  do {
556    unsigned Byte = Value & 0x7f;
557    Value >>= 7;
558    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
559    if (IsMore) Byte |= 0x80;
560    O << "0x" << utohexstr(Byte);
561    if (IsMore) O << ", ";
562  } while (IsMore);
563}
564
565//===--------------------------------------------------------------------===//
566// Emission and print routines
567//
568
569/// PrintHex - Print a value as a hexidecimal value.
570///
571void AsmPrinter::PrintHex(int Value) const {
572  O << "0x" << utohexstr(static_cast<unsigned>(Value));
573}
574
575/// EOL - Print a newline character to asm stream.  If a comment is present
576/// then it will be printed first.  Comments should not contain '\n'.
577void AsmPrinter::EOL() const {
578  O << '\n';
579}
580
581void AsmPrinter::EOL(const std::string &Comment) const {
582  if (VerboseAsm && !Comment.empty()) {
583    O << '\t'
584      << TAI->getCommentString()
585      << ' '
586      << Comment;
587  }
588  O << '\n';
589}
590
591void AsmPrinter::EOL(const char* Comment) const {
592  if (VerboseAsm && *Comment) {
593    O << '\t'
594      << TAI->getCommentString()
595      << ' '
596      << Comment;
597  }
598  O << '\n';
599}
600
601/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
602/// unsigned leb128 value.
603void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
604  if (TAI->hasLEB128()) {
605    O << "\t.uleb128\t"
606      << Value;
607  } else {
608    O << TAI->getData8bitsDirective();
609    PrintULEB128(Value);
610  }
611}
612
613/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
614/// signed leb128 value.
615void AsmPrinter::EmitSLEB128Bytes(int Value) const {
616  if (TAI->hasLEB128()) {
617    O << "\t.sleb128\t"
618      << Value;
619  } else {
620    O << TAI->getData8bitsDirective();
621    PrintSLEB128(Value);
622  }
623}
624
625/// EmitInt8 - Emit a byte directive and value.
626///
627void AsmPrinter::EmitInt8(int Value) const {
628  O << TAI->getData8bitsDirective();
629  PrintHex(Value & 0xFF);
630}
631
632/// EmitInt16 - Emit a short directive and value.
633///
634void AsmPrinter::EmitInt16(int Value) const {
635  O << TAI->getData16bitsDirective();
636  PrintHex(Value & 0xFFFF);
637}
638
639/// EmitInt32 - Emit a long directive and value.
640///
641void AsmPrinter::EmitInt32(int Value) const {
642  O << TAI->getData32bitsDirective();
643  PrintHex(Value);
644}
645
646/// EmitInt64 - Emit a long long directive and value.
647///
648void AsmPrinter::EmitInt64(uint64_t Value) const {
649  if (TAI->getData64bitsDirective()) {
650    O << TAI->getData64bitsDirective();
651    PrintHex(Value);
652  } else {
653    if (TM.getTargetData()->isBigEndian()) {
654      EmitInt32(unsigned(Value >> 32)); O << '\n';
655      EmitInt32(unsigned(Value));
656    } else {
657      EmitInt32(unsigned(Value)); O << '\n';
658      EmitInt32(unsigned(Value >> 32));
659    }
660  }
661}
662
663/// toOctal - Convert the low order bits of X into an octal digit.
664///
665static inline char toOctal(int X) {
666  return (X&7)+'0';
667}
668
669/// printStringChar - Print a char, escaped if necessary.
670///
671static void printStringChar(raw_ostream &O, char C) {
672  if (C == '"') {
673    O << "\\\"";
674  } else if (C == '\\') {
675    O << "\\\\";
676  } else if (isprint(C)) {
677    O << C;
678  } else {
679    switch(C) {
680    case '\b': O << "\\b"; break;
681    case '\f': O << "\\f"; break;
682    case '\n': O << "\\n"; break;
683    case '\r': O << "\\r"; break;
684    case '\t': O << "\\t"; break;
685    default:
686      O << '\\';
687      O << toOctal(C >> 6);
688      O << toOctal(C >> 3);
689      O << toOctal(C >> 0);
690      break;
691    }
692  }
693}
694
695/// EmitString - Emit a string with quotes and a null terminator.
696/// Special characters are emitted properly.
697/// \literal (Eg. '\t') \endliteral
698void AsmPrinter::EmitString(const std::string &String) const {
699  const char* AscizDirective = TAI->getAscizDirective();
700  if (AscizDirective)
701    O << AscizDirective;
702  else
703    O << TAI->getAsciiDirective();
704  O << '\"';
705  for (unsigned i = 0, N = String.size(); i < N; ++i) {
706    unsigned char C = String[i];
707    printStringChar(O, C);
708  }
709  if (AscizDirective)
710    O << '\"';
711  else
712    O << "\\0\"";
713}
714
715
716/// EmitFile - Emit a .file directive.
717void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
718  O << "\t.file\t" << Number << " \"";
719  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
720    unsigned char C = Name[i];
721    printStringChar(O, C);
722  }
723  O << '\"';
724}
725
726
727//===----------------------------------------------------------------------===//
728
729// EmitAlignment - Emit an alignment directive to the specified power of
730// two boundary.  For example, if you pass in 3 here, you will get an 8
731// byte alignment.  If a global value is specified, and if that global has
732// an explicit alignment requested, it will unconditionally override the
733// alignment request.  However, if ForcedAlignBits is specified, this value
734// has final say: the ultimate alignment will be the max of ForcedAlignBits
735// and the alignment computed with NumBits and the global.
736//
737// The algorithm is:
738//     Align = NumBits;
739//     if (GV && GV->hasalignment) Align = GV->getalignment();
740//     Align = std::max(Align, ForcedAlignBits);
741//
742void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
743                               unsigned ForcedAlignBits,
744                               bool UseFillExpr) const {
745  if (GV && GV->getAlignment())
746    NumBits = Log2_32(GV->getAlignment());
747  NumBits = std::max(NumBits, ForcedAlignBits);
748
749  if (NumBits == 0) return;   // No need to emit alignment.
750  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
751  O << TAI->getAlignDirective() << NumBits;
752
753  unsigned FillValue = TAI->getTextAlignFillValue();
754  UseFillExpr &= IsInTextSection && FillValue;
755  if (UseFillExpr) O << ",0x" << utohexstr(FillValue);
756  O << '\n';
757}
758
759
760/// EmitZeros - Emit a block of zeros.
761///
762void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
763  if (NumZeros) {
764    if (TAI->getZeroDirective()) {
765      O << TAI->getZeroDirective() << NumZeros;
766      if (TAI->getZeroDirectiveSuffix())
767        O << TAI->getZeroDirectiveSuffix();
768      O << '\n';
769    } else {
770      for (; NumZeros; --NumZeros)
771        O << TAI->getData8bitsDirective() << "0\n";
772    }
773  }
774}
775
776// Print out the specified constant, without a storage class.  Only the
777// constants valid in constant expressions can occur here.
778void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
779  if (CV->isNullValue() || isa<UndefValue>(CV))
780    O << '0';
781  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
782    O << CI->getZExtValue();
783  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
784    // This is a constant address for a global variable or function. Use the
785    // name of the variable or function as the address value, possibly
786    // decorating it with GlobalVarAddrPrefix/Suffix or
787    // FunctionAddrPrefix/Suffix (these all default to "" )
788    if (isa<Function>(GV)) {
789      O << TAI->getFunctionAddrPrefix()
790        << Mang->getValueName(GV)
791        << TAI->getFunctionAddrSuffix();
792    } else {
793      O << TAI->getGlobalVarAddrPrefix()
794        << Mang->getValueName(GV)
795        << TAI->getGlobalVarAddrSuffix();
796    }
797  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
798    const TargetData *TD = TM.getTargetData();
799    unsigned Opcode = CE->getOpcode();
800    switch (Opcode) {
801    case Instruction::GetElementPtr: {
802      // generate a symbolic expression for the byte address
803      const Constant *ptrVal = CE->getOperand(0);
804      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
805      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
806                                                idxVec.size())) {
807        if (Offset)
808          O << '(';
809        EmitConstantValueOnly(ptrVal);
810        if (Offset > 0)
811          O << ") + " << Offset;
812        else if (Offset < 0)
813          O << ") - " << -Offset;
814      } else {
815        EmitConstantValueOnly(ptrVal);
816      }
817      break;
818    }
819    case Instruction::Trunc:
820    case Instruction::ZExt:
821    case Instruction::SExt:
822    case Instruction::FPTrunc:
823    case Instruction::FPExt:
824    case Instruction::UIToFP:
825    case Instruction::SIToFP:
826    case Instruction::FPToUI:
827    case Instruction::FPToSI:
828      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
829      break;
830    case Instruction::BitCast:
831      return EmitConstantValueOnly(CE->getOperand(0));
832
833    case Instruction::IntToPtr: {
834      // Handle casts to pointers by changing them into casts to the appropriate
835      // integer type.  This promotes constant folding and simplifies this code.
836      Constant *Op = CE->getOperand(0);
837      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
838      return EmitConstantValueOnly(Op);
839    }
840
841
842    case Instruction::PtrToInt: {
843      // Support only foldable casts to/from pointers that can be eliminated by
844      // changing the pointer to the appropriately sized integer type.
845      Constant *Op = CE->getOperand(0);
846      const Type *Ty = CE->getType();
847
848      // We can emit the pointer value into this slot if the slot is an
849      // integer slot greater or equal to the size of the pointer.
850      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
851        return EmitConstantValueOnly(Op);
852
853      O << "((";
854      EmitConstantValueOnly(Op);
855      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
856
857      SmallString<40> S;
858      ptrMask.toStringUnsigned(S);
859      O << ") & " << S.c_str() << ')';
860      break;
861    }
862    case Instruction::Add:
863    case Instruction::Sub:
864    case Instruction::And:
865    case Instruction::Or:
866    case Instruction::Xor:
867      O << '(';
868      EmitConstantValueOnly(CE->getOperand(0));
869      O << ')';
870      switch (Opcode) {
871      case Instruction::Add:
872       O << " + ";
873       break;
874      case Instruction::Sub:
875       O << " - ";
876       break;
877      case Instruction::And:
878       O << " & ";
879       break;
880      case Instruction::Or:
881       O << " | ";
882       break;
883      case Instruction::Xor:
884       O << " ^ ";
885       break;
886      default:
887       break;
888      }
889      O << '(';
890      EmitConstantValueOnly(CE->getOperand(1));
891      O << ')';
892      break;
893    default:
894      assert(0 && "Unsupported operator!");
895    }
896  } else {
897    assert(0 && "Unknown constant value!");
898  }
899}
900
901/// printAsCString - Print the specified array as a C compatible string, only if
902/// the predicate isString is true.
903///
904static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
905                           unsigned LastElt) {
906  assert(CVA->isString() && "Array is not string compatible!");
907
908  O << '\"';
909  for (unsigned i = 0; i != LastElt; ++i) {
910    unsigned char C =
911        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
912    printStringChar(O, C);
913  }
914  O << '\"';
915}
916
917/// EmitString - Emit a zero-byte-terminated string constant.
918///
919void AsmPrinter::EmitString(const ConstantArray *CVA) const {
920  unsigned NumElts = CVA->getNumOperands();
921  if (TAI->getAscizDirective() && NumElts &&
922      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
923    O << TAI->getAscizDirective();
924    printAsCString(O, CVA, NumElts-1);
925  } else {
926    O << TAI->getAsciiDirective();
927    printAsCString(O, CVA, NumElts);
928  }
929  O << '\n';
930}
931
932/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
933void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
934  const TargetData *TD = TM.getTargetData();
935  unsigned Size = TD->getABITypeSize(CV->getType());
936
937  if (CV->isNullValue() || isa<UndefValue>(CV)) {
938    EmitZeros(Size);
939    return;
940  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
941    if (CVA->isString()) {
942      EmitString(CVA);
943    } else { // Not a string.  Print the values in successive locations
944      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
945        EmitGlobalConstant(CVA->getOperand(i));
946    }
947    return;
948  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
949    // Print the fields in successive locations. Pad to align if needed!
950    const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
951    uint64_t sizeSoFar = 0;
952    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
953      const Constant* field = CVS->getOperand(i);
954
955      // Check if padding is needed and insert one or more 0s.
956      uint64_t fieldSize = TD->getABITypeSize(field->getType());
957      uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
958                          - cvsLayout->getElementOffset(i)) - fieldSize;
959      sizeSoFar += fieldSize + padSize;
960
961      // Now print the actual field value.
962      EmitGlobalConstant(field);
963
964      // Insert padding - this may include padding to increase the size of the
965      // current field up to the ABI size (if the struct is not packed) as well
966      // as padding to ensure that the next field starts at the right offset.
967      EmitZeros(padSize);
968    }
969    assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
970           "Layout of constant struct may be incorrect!");
971    return;
972  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
973    // FP Constants are printed as integer constants to avoid losing
974    // precision...
975    if (CFP->getType() == Type::DoubleTy) {
976      double Val = CFP->getValueAPF().convertToDouble();  // for comment only
977      uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue();
978      if (TAI->getData64bitsDirective())
979        O << TAI->getData64bitsDirective() << i << '\t'
980          << TAI->getCommentString() << " double value: " << Val << '\n';
981      else if (TD->isBigEndian()) {
982        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
983          << '\t' << TAI->getCommentString()
984          << " double most significant word " << Val << '\n';
985        O << TAI->getData32bitsDirective() << unsigned(i)
986          << '\t' << TAI->getCommentString()
987          << " double least significant word " << Val << '\n';
988      } else {
989        O << TAI->getData32bitsDirective() << unsigned(i)
990          << '\t' << TAI->getCommentString()
991          << " double least significant word " << Val << '\n';
992        O << TAI->getData32bitsDirective() << unsigned(i >> 32)
993          << '\t' << TAI->getCommentString()
994          << " double most significant word " << Val << '\n';
995      }
996      return;
997    } else if (CFP->getType() == Type::FloatTy) {
998      float Val = CFP->getValueAPF().convertToFloat();  // for comment only
999      O << TAI->getData32bitsDirective()
1000        << CFP->getValueAPF().convertToAPInt().getZExtValue()
1001        << '\t' << TAI->getCommentString() << " float " << Val << '\n';
1002      return;
1003    } else if (CFP->getType() == Type::X86_FP80Ty) {
1004      // all long double variants are printed as hex
1005      // api needed to prevent premature destruction
1006      APInt api = CFP->getValueAPF().convertToAPInt();
1007      const uint64_t *p = api.getRawData();
1008      APFloat DoubleVal = CFP->getValueAPF();
1009      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
1010      if (TD->isBigEndian()) {
1011        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1012          << '\t' << TAI->getCommentString()
1013          << " long double most significant halfword of ~"
1014          << DoubleVal.convertToDouble() << '\n';
1015        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1016          << '\t' << TAI->getCommentString()
1017          << " long double next halfword\n";
1018        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1019          << '\t' << TAI->getCommentString()
1020          << " long double next halfword\n";
1021        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1022          << '\t' << TAI->getCommentString()
1023          << " long double next halfword\n";
1024        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1025          << '\t' << TAI->getCommentString()
1026          << " long double least significant halfword\n";
1027       } else {
1028        O << TAI->getData16bitsDirective() << uint16_t(p[1])
1029          << '\t' << TAI->getCommentString()
1030          << " long double least significant halfword of ~"
1031          << DoubleVal.convertToDouble() << '\n';
1032        O << TAI->getData16bitsDirective() << uint16_t(p[0])
1033          << '\t' << TAI->getCommentString()
1034          << " long double next halfword\n";
1035        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
1036          << '\t' << TAI->getCommentString()
1037          << " long double next halfword\n";
1038        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
1039          << '\t' << TAI->getCommentString()
1040          << " long double next halfword\n";
1041        O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
1042          << '\t' << TAI->getCommentString()
1043          << " long double most significant halfword\n";
1044      }
1045      EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty));
1046      return;
1047    } else if (CFP->getType() == Type::PPC_FP128Ty) {
1048      // all long double variants are printed as hex
1049      // api needed to prevent premature destruction
1050      APInt api = CFP->getValueAPF().convertToAPInt();
1051      const uint64_t *p = api.getRawData();
1052      if (TD->isBigEndian()) {
1053        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1054          << '\t' << TAI->getCommentString()
1055          << " long double most significant word\n";
1056        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1057          << '\t' << TAI->getCommentString()
1058          << " long double next word\n";
1059        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1060          << '\t' << TAI->getCommentString()
1061          << " long double next word\n";
1062        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1063          << '\t' << TAI->getCommentString()
1064          << " long double least significant word\n";
1065       } else {
1066        O << TAI->getData32bitsDirective() << uint32_t(p[1])
1067          << '\t' << TAI->getCommentString()
1068          << " long double least significant word\n";
1069        O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
1070          << '\t' << TAI->getCommentString()
1071          << " long double next word\n";
1072        O << TAI->getData32bitsDirective() << uint32_t(p[0])
1073          << '\t' << TAI->getCommentString()
1074          << " long double next word\n";
1075        O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
1076          << '\t' << TAI->getCommentString()
1077          << " long double most significant word\n";
1078      }
1079      return;
1080    } else assert(0 && "Floating point constant type not handled");
1081  } else if (CV->getType()->isInteger() &&
1082             cast<IntegerType>(CV->getType())->getBitWidth() >= 64) {
1083    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1084      unsigned BitWidth = CI->getBitWidth();
1085      assert(isPowerOf2_32(BitWidth) &&
1086             "Non-power-of-2-sized integers not handled!");
1087
1088      // We don't expect assemblers to support integer data directives
1089      // for more than 64 bits, so we emit the data in at most 64-bit
1090      // quantities at a time.
1091      const uint64_t *RawData = CI->getValue().getRawData();
1092      for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1093        uint64_t Val;
1094        if (TD->isBigEndian())
1095          Val = RawData[e - i - 1];
1096        else
1097          Val = RawData[i];
1098
1099        if (TAI->getData64bitsDirective())
1100          O << TAI->getData64bitsDirective() << Val << '\n';
1101        else if (TD->isBigEndian()) {
1102          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1103            << '\t' << TAI->getCommentString()
1104            << " Double-word most significant word " << Val << '\n';
1105          O << TAI->getData32bitsDirective() << unsigned(Val)
1106            << '\t' << TAI->getCommentString()
1107            << " Double-word least significant word " << Val << '\n';
1108        } else {
1109          O << TAI->getData32bitsDirective() << unsigned(Val)
1110            << '\t' << TAI->getCommentString()
1111            << " Double-word least significant word " << Val << '\n';
1112          O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
1113            << '\t' << TAI->getCommentString()
1114            << " Double-word most significant word " << Val << '\n';
1115        }
1116      }
1117      return;
1118    }
1119  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1120    const VectorType *PTy = CP->getType();
1121
1122    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
1123      EmitGlobalConstant(CP->getOperand(I));
1124
1125    return;
1126  }
1127
1128  const Type *type = CV->getType();
1129  printDataDirective(type);
1130  EmitConstantValueOnly(CV);
1131  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1132    SmallString<40> S;
1133    CI->getValue().toStringUnsigned(S, 16);
1134    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1135  }
1136  O << '\n';
1137}
1138
1139void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1140  // Target doesn't support this yet!
1141  abort();
1142}
1143
1144/// PrintSpecial - Print information related to the specified machine instr
1145/// that is independent of the operand, and may be independent of the instr
1146/// itself.  This can be useful for portably encoding the comment character
1147/// or other bits of target-specific knowledge into the asmstrings.  The
1148/// syntax used is ${:comment}.  Targets can override this to add support
1149/// for their own strange codes.
1150void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
1151  if (!strcmp(Code, "private")) {
1152    O << TAI->getPrivateGlobalPrefix();
1153  } else if (!strcmp(Code, "comment")) {
1154    O << TAI->getCommentString();
1155  } else if (!strcmp(Code, "uid")) {
1156    // Assign a unique ID to this machine instruction.
1157    static const MachineInstr *LastMI = 0;
1158    static const Function *F = 0;
1159    static unsigned Counter = 0U-1;
1160
1161    // Comparing the address of MI isn't sufficient, because machineinstrs may
1162    // be allocated to the same address across functions.
1163    const Function *ThisF = MI->getParent()->getParent()->getFunction();
1164
1165    // If this is a new machine instruction, bump the counter.
1166    if (LastMI != MI || F != ThisF) {
1167      ++Counter;
1168      LastMI = MI;
1169      F = ThisF;
1170    }
1171    O << Counter;
1172  } else {
1173    cerr << "Unknown special formatter '" << Code
1174         << "' for machine instr: " << *MI;
1175    exit(1);
1176  }
1177}
1178
1179
1180/// printInlineAsm - This method formats and prints the specified machine
1181/// instruction that is an inline asm.
1182void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1183  unsigned NumOperands = MI->getNumOperands();
1184
1185  // Count the number of register definitions.
1186  unsigned NumDefs = 0;
1187  for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef();
1188       ++NumDefs)
1189    assert(NumDefs != NumOperands-1 && "No asm string?");
1190
1191  assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
1192
1193  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1194  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1195
1196  // If this asmstr is empty, just print the #APP/#NOAPP markers.
1197  // These are useful to see where empty asm's wound up.
1198  if (AsmStr[0] == 0) {
1199    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1200    return;
1201  }
1202
1203  O << TAI->getInlineAsmStart() << "\n\t";
1204
1205  // The variant of the current asmprinter.
1206  int AsmPrinterVariant = TAI->getAssemblerDialect();
1207
1208  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
1209  const char *LastEmitted = AsmStr; // One past the last character emitted.
1210
1211  while (*LastEmitted) {
1212    switch (*LastEmitted) {
1213    default: {
1214      // Not a special case, emit the string section literally.
1215      const char *LiteralEnd = LastEmitted+1;
1216      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1217             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1218        ++LiteralEnd;
1219      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1220        O.write(LastEmitted, LiteralEnd-LastEmitted);
1221      LastEmitted = LiteralEnd;
1222      break;
1223    }
1224    case '\n':
1225      ++LastEmitted;   // Consume newline character.
1226      O << '\n';       // Indent code with newline.
1227      break;
1228    case '$': {
1229      ++LastEmitted;   // Consume '$' character.
1230      bool Done = true;
1231
1232      // Handle escapes.
1233      switch (*LastEmitted) {
1234      default: Done = false; break;
1235      case '$':     // $$ -> $
1236        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1237          O << '$';
1238        ++LastEmitted;  // Consume second '$' character.
1239        break;
1240      case '(':             // $( -> same as GCC's { character.
1241        ++LastEmitted;      // Consume '(' character.
1242        if (CurVariant != -1) {
1243          cerr << "Nested variants found in inline asm string: '"
1244               << AsmStr << "'\n";
1245          exit(1);
1246        }
1247        CurVariant = 0;     // We're in the first variant now.
1248        break;
1249      case '|':
1250        ++LastEmitted;  // consume '|' character.
1251        if (CurVariant == -1) {
1252          cerr << "Found '|' character outside of variant in inline asm "
1253               << "string: '" << AsmStr << "'\n";
1254          exit(1);
1255        }
1256        ++CurVariant;   // We're in the next variant.
1257        break;
1258      case ')':         // $) -> same as GCC's } char.
1259        ++LastEmitted;  // consume ')' character.
1260        if (CurVariant == -1) {
1261          cerr << "Found '}' character outside of variant in inline asm "
1262               << "string: '" << AsmStr << "'\n";
1263          exit(1);
1264        }
1265        CurVariant = -1;
1266        break;
1267      }
1268      if (Done) break;
1269
1270      bool HasCurlyBraces = false;
1271      if (*LastEmitted == '{') {     // ${variable}
1272        ++LastEmitted;               // Consume '{' character.
1273        HasCurlyBraces = true;
1274      }
1275
1276      const char *IDStart = LastEmitted;
1277      char *IDEnd;
1278      errno = 0;
1279      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1280      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1281        cerr << "Bad $ operand number in inline asm string: '"
1282             << AsmStr << "'\n";
1283        exit(1);
1284      }
1285      LastEmitted = IDEnd;
1286
1287      char Modifier[2] = { 0, 0 };
1288
1289      if (HasCurlyBraces) {
1290        // If we have curly braces, check for a modifier character.  This
1291        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1292        if (*LastEmitted == ':') {
1293          ++LastEmitted;    // Consume ':' character.
1294          if (*LastEmitted == 0) {
1295            cerr << "Bad ${:} expression in inline asm string: '"
1296                 << AsmStr << "'\n";
1297            exit(1);
1298          }
1299
1300          Modifier[0] = *LastEmitted;
1301          ++LastEmitted;    // Consume modifier character.
1302        }
1303
1304        if (*LastEmitted != '}') {
1305          cerr << "Bad ${} expression in inline asm string: '"
1306               << AsmStr << "'\n";
1307          exit(1);
1308        }
1309        ++LastEmitted;    // Consume '}' character.
1310      }
1311
1312      if ((unsigned)Val >= NumOperands-1) {
1313        cerr << "Invalid $ operand number in inline asm string: '"
1314             << AsmStr << "'\n";
1315        exit(1);
1316      }
1317
1318      // Okay, we finally have a value number.  Ask the target to print this
1319      // operand!
1320      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1321        unsigned OpNo = 1;
1322
1323        bool Error = false;
1324
1325        // Scan to find the machine operand number for the operand.
1326        for (; Val; --Val) {
1327          if (OpNo >= MI->getNumOperands()) break;
1328          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1329          OpNo += (OpFlags >> 3) + 1;
1330        }
1331
1332        if (OpNo >= MI->getNumOperands()) {
1333          Error = true;
1334        } else {
1335          unsigned OpFlags = MI->getOperand(OpNo).getImm();
1336          ++OpNo;  // Skip over the ID number.
1337
1338          if (Modifier[0]=='l')  // labels are target independent
1339            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1340                                 false, false, false);
1341          else {
1342            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1343            if ((OpFlags & 7) == 4) {
1344              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1345                                                Modifier[0] ? Modifier : 0);
1346            } else {
1347              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1348                                          Modifier[0] ? Modifier : 0);
1349            }
1350          }
1351        }
1352        if (Error) {
1353          cerr << "Invalid operand found in inline asm: '"
1354               << AsmStr << "'\n";
1355          MI->dump();
1356          exit(1);
1357        }
1358      }
1359      break;
1360    }
1361    }
1362  }
1363  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1364}
1365
1366/// printImplicitDef - This method prints the specified machine instruction
1367/// that is an implicit def.
1368void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1369  O << '\t' << TAI->getCommentString() << " implicit-def: "
1370    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1371}
1372
1373/// printLabel - This method prints a local label used by debug and
1374/// exception handling tables.
1375void AsmPrinter::printLabel(const MachineInstr *MI) const {
1376  printLabel(MI->getOperand(0).getImm());
1377}
1378
1379void AsmPrinter::printLabel(unsigned Id) const {
1380  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1381}
1382
1383/// printDeclare - This method prints a local variable declaration used by
1384/// debug tables.
1385/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1386/// entry into dwarf table.
1387void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1388  int FI = MI->getOperand(0).getIndex();
1389  GlobalValue *GV = MI->getOperand(1).getGlobal();
1390  MMI->RecordVariable(GV, FI);
1391}
1392
1393/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1394/// instruction, using the specified assembler variant.  Targets should
1395/// overried this to format as appropriate.
1396bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1397                                 unsigned AsmVariant, const char *ExtraCode) {
1398  // Target doesn't support this yet!
1399  return true;
1400}
1401
1402bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1403                                       unsigned AsmVariant,
1404                                       const char *ExtraCode) {
1405  // Target doesn't support this yet!
1406  return true;
1407}
1408
1409/// printBasicBlockLabel - This method prints the label for the specified
1410/// MachineBasicBlock
1411void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1412                                      bool printAlign,
1413                                      bool printColon,
1414                                      bool printComment) const {
1415  if (printAlign) {
1416    unsigned Align = MBB->getAlignment();
1417    if (Align)
1418      EmitAlignment(Log2_32(Align));
1419  }
1420
1421  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1422    << MBB->getNumber();
1423  if (printColon)
1424    O << ':';
1425  if (printComment && MBB->getBasicBlock())
1426    O << '\t' << TAI->getCommentString() << ' '
1427      << MBB->getBasicBlock()->getNameStart();
1428}
1429
1430/// printPICJumpTableSetLabel - This method prints a set label for the
1431/// specified MachineBasicBlock for a jumptable entry.
1432void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1433                                           const MachineBasicBlock *MBB) const {
1434  if (!TAI->getSetDirective())
1435    return;
1436
1437  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1438    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1439  printBasicBlockLabel(MBB, false, false, false);
1440  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1441    << '_' << uid << '\n';
1442}
1443
1444void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1445                                           const MachineBasicBlock *MBB) const {
1446  if (!TAI->getSetDirective())
1447    return;
1448
1449  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1450    << getFunctionNumber() << '_' << uid << '_' << uid2
1451    << "_set_" << MBB->getNumber() << ',';
1452  printBasicBlockLabel(MBB, false, false, false);
1453  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1454    << '_' << uid << '_' << uid2 << '\n';
1455}
1456
1457/// printDataDirective - This method prints the asm directive for the
1458/// specified type.
1459void AsmPrinter::printDataDirective(const Type *type) {
1460  const TargetData *TD = TM.getTargetData();
1461  switch (type->getTypeID()) {
1462  case Type::IntegerTyID: {
1463    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1464    if (BitWidth <= 8)
1465      O << TAI->getData8bitsDirective();
1466    else if (BitWidth <= 16)
1467      O << TAI->getData16bitsDirective();
1468    else if (BitWidth <= 32)
1469      O << TAI->getData32bitsDirective();
1470    else if (BitWidth <= 64) {
1471      assert(TAI->getData64bitsDirective() &&
1472             "Target cannot handle 64-bit constant exprs!");
1473      O << TAI->getData64bitsDirective();
1474    } else {
1475      assert(0 && "Target cannot handle given data directive width!");
1476    }
1477    break;
1478  }
1479  case Type::PointerTyID:
1480    if (TD->getPointerSize() == 8) {
1481      assert(TAI->getData64bitsDirective() &&
1482             "Target cannot handle 64-bit pointer exprs!");
1483      O << TAI->getData64bitsDirective();
1484    } else {
1485      O << TAI->getData32bitsDirective();
1486    }
1487    break;
1488  case Type::FloatTyID: case Type::DoubleTyID:
1489  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1490    assert (0 && "Should have already output floating point constant.");
1491  default:
1492    assert (0 && "Can't handle printing this type of thing");
1493    break;
1494  }
1495}
1496
1497void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1498                                   const char *Prefix) {
1499  if (Name[0]=='\"')
1500    O << '\"';
1501  O << TAI->getPrivateGlobalPrefix();
1502  if (Prefix) O << Prefix;
1503  if (Name[0]=='\"')
1504    O << '\"';
1505  if (Name[0]=='\"')
1506    O << Name[1];
1507  else
1508    O << Name;
1509  O << Suffix;
1510  if (Name[0]=='\"')
1511    O << '\"';
1512}
1513
1514void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1515  printSuffixedName(Name.c_str(), Suffix);
1516}
1517
1518void AsmPrinter::printVisibility(const std::string& Name,
1519                                 unsigned Visibility) const {
1520  if (Visibility == GlobalValue::HiddenVisibility) {
1521    if (const char *Directive = TAI->getHiddenDirective())
1522      O << Directive << Name << '\n';
1523  } else if (Visibility == GlobalValue::ProtectedVisibility) {
1524    if (const char *Directive = TAI->getProtectedDirective())
1525      O << Directive << Name << '\n';
1526  }
1527}
1528
1529GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1530  if (!S->usesMetadata())
1531    return 0;
1532
1533  gcp_iterator GCPI = GCMetadataPrinters.find(S);
1534  if (GCPI != GCMetadataPrinters.end())
1535    return GCPI->second;
1536
1537  const char *Name = S->getName().c_str();
1538
1539  for (GCMetadataPrinterRegistry::iterator
1540         I = GCMetadataPrinterRegistry::begin(),
1541         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1542    if (strcmp(Name, I->getName()) == 0) {
1543      GCMetadataPrinter *GMP = I->instantiate();
1544      GMP->S = S;
1545      GCMetadataPrinters.insert(std::make_pair(S, GMP));
1546      return GMP;
1547    }
1548
1549  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1550  abort();
1551}
1552