IntrinsicLowering.cpp revision 76c94b616924b19b850e274df0c6485b9395fcb9
1//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the IntrinsicLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Module.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/Streams.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/SmallVector.h"
23using namespace llvm;
24
25template <class ArgIt>
26static void EnsureFunctionExists(Module &M, const char *Name,
27                                 ArgIt ArgBegin, ArgIt ArgEnd,
28                                 const Type *RetTy) {
29  // Insert a correctly-typed definition now.
30  std::vector<const Type *> ParamTys;
31  for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
32    ParamTys.push_back(I->getType());
33  M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
34}
35
36/// ReplaceCallWith - This function is used when we want to lower an intrinsic
37/// call to a call of an external function.  This handles hard cases such as
38/// when there was already a prototype for the external function, and if that
39/// prototype doesn't match the arguments we expect to pass in.
40template <class ArgIt>
41static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
42                                 ArgIt ArgBegin, ArgIt ArgEnd,
43                                 const Type *RetTy, Constant *&FCache) {
44  if (!FCache) {
45    // If we haven't already looked up this function, check to see if the
46    // program already contains a function with this name.
47    Module *M = CI->getParent()->getParent()->getParent();
48    // Get or insert the definition now.
49    std::vector<const Type *> ParamTys;
50    for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
51      ParamTys.push_back((*I)->getType());
52    FCache = M->getOrInsertFunction(NewFn,
53                                    FunctionType::get(RetTy, ParamTys, false));
54  }
55
56  SmallVector<Value*, 8> Operands(ArgBegin, ArgEnd);
57  CallInst *NewCI = new CallInst(FCache, &Operands[0], Operands.size(),
58                                 CI->getName(), CI);
59  if (!CI->use_empty())
60    CI->replaceAllUsesWith(NewCI);
61  return NewCI;
62}
63
64void IntrinsicLowering::AddPrototypes(Module &M) {
65  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
66    if (I->isDeclaration() && !I->use_empty())
67      switch (I->getIntrinsicID()) {
68      default: break;
69      case Intrinsic::setjmp:
70        EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
71                             Type::Int32Ty);
72        break;
73      case Intrinsic::longjmp:
74        EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
75                             Type::VoidTy);
76        break;
77      case Intrinsic::siglongjmp:
78        EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
79                             Type::VoidTy);
80        break;
81      case Intrinsic::memcpy_i32:
82      case Intrinsic::memcpy_i64:
83        M.getOrInsertFunction("memcpy", PointerType::get(Type::Int8Ty),
84                              PointerType::get(Type::Int8Ty),
85                              PointerType::get(Type::Int8Ty),
86                              TD.getIntPtrType(), (Type *)0);
87        break;
88      case Intrinsic::memmove_i32:
89      case Intrinsic::memmove_i64:
90        M.getOrInsertFunction("memmove", PointerType::get(Type::Int8Ty),
91                              PointerType::get(Type::Int8Ty),
92                              PointerType::get(Type::Int8Ty),
93                              TD.getIntPtrType(), (Type *)0);
94        break;
95      case Intrinsic::memset_i32:
96      case Intrinsic::memset_i64:
97        M.getOrInsertFunction("memset", PointerType::get(Type::Int8Ty),
98                              PointerType::get(Type::Int8Ty), Type::Int32Ty,
99                              TD.getIntPtrType(), (Type *)0);
100        break;
101      case Intrinsic::sqrt_f32:
102      case Intrinsic::sqrt_f64:
103        if(I->arg_begin()->getType() == Type::FloatTy)
104          EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(),
105                               Type::FloatTy);
106        else
107          EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(),
108                               Type::DoubleTy);
109        break;
110      }
111}
112
113/// LowerBSWAP - Emit the code to lower bswap of V before the specified
114/// instruction IP.
115static Value *LowerBSWAP(Value *V, Instruction *IP) {
116  assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
117
118  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
119
120  switch(BitSize) {
121  default: assert(0 && "Unhandled type size of value to byteswap!");
122  case 16: {
123    Value *Tmp1 = BinaryOperator::createShl(V,
124                                ConstantInt::get(V->getType(),8),"bswap.2",IP);
125    Value *Tmp2 = BinaryOperator::createLShr(V,
126                                ConstantInt::get(V->getType(),8),"bswap.1",IP);
127    V = BinaryOperator::createOr(Tmp1, Tmp2, "bswap.i16", IP);
128    break;
129  }
130  case 32: {
131    Value *Tmp4 = BinaryOperator::createShl(V,
132                              ConstantInt::get(V->getType(),24),"bswap.4", IP);
133    Value *Tmp3 = BinaryOperator::createShl(V,
134                              ConstantInt::get(V->getType(),8),"bswap.3",IP);
135    Value *Tmp2 = BinaryOperator::createLShr(V,
136                              ConstantInt::get(V->getType(),8),"bswap.2",IP);
137    Value *Tmp1 = BinaryOperator::createLShr(V,
138                              ConstantInt::get(V->getType(),24),"bswap.1", IP);
139    Tmp3 = BinaryOperator::createAnd(Tmp3,
140                                     ConstantInt::get(Type::Int32Ty, 0xFF0000),
141                                     "bswap.and3", IP);
142    Tmp2 = BinaryOperator::createAnd(Tmp2,
143                                     ConstantInt::get(Type::Int32Ty, 0xFF00),
144                                     "bswap.and2", IP);
145    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or1", IP);
146    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or2", IP);
147    V = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.i32", IP);
148    break;
149  }
150  case 64: {
151    Value *Tmp8 = BinaryOperator::createShl(V,
152                              ConstantInt::get(V->getType(),56),"bswap.8", IP);
153    Value *Tmp7 = BinaryOperator::createShl(V,
154                              ConstantInt::get(V->getType(),40),"bswap.7", IP);
155    Value *Tmp6 = BinaryOperator::createShl(V,
156                              ConstantInt::get(V->getType(),24),"bswap.6", IP);
157    Value *Tmp5 = BinaryOperator::createShl(V,
158                              ConstantInt::get(V->getType(),8),"bswap.5", IP);
159    Value* Tmp4 = BinaryOperator::createLShr(V,
160                              ConstantInt::get(V->getType(),8),"bswap.4", IP);
161    Value* Tmp3 = BinaryOperator::createLShr(V,
162                              ConstantInt::get(V->getType(),24),"bswap.3", IP);
163    Value* Tmp2 = BinaryOperator::createLShr(V,
164                              ConstantInt::get(V->getType(),40),"bswap.2", IP);
165    Value* Tmp1 = BinaryOperator::createLShr(V,
166                              ConstantInt::get(V->getType(),56),"bswap.1", IP);
167    Tmp7 = BinaryOperator::createAnd(Tmp7,
168                             ConstantInt::get(Type::Int64Ty,
169                               0xFF000000000000ULL),
170                             "bswap.and7", IP);
171    Tmp6 = BinaryOperator::createAnd(Tmp6,
172                             ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
173                             "bswap.and6", IP);
174    Tmp5 = BinaryOperator::createAnd(Tmp5,
175                             ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
176                             "bswap.and5", IP);
177    Tmp4 = BinaryOperator::createAnd(Tmp4,
178                             ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
179                             "bswap.and4", IP);
180    Tmp3 = BinaryOperator::createAnd(Tmp3,
181                             ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
182                             "bswap.and3", IP);
183    Tmp2 = BinaryOperator::createAnd(Tmp2,
184                             ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
185                             "bswap.and2", IP);
186    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp7, "bswap.or1", IP);
187    Tmp6 = BinaryOperator::createOr(Tmp6, Tmp5, "bswap.or2", IP);
188    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or3", IP);
189    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or4", IP);
190    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp6, "bswap.or5", IP);
191    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.or6", IP);
192    V = BinaryOperator::createOr(Tmp8, Tmp4, "bswap.i64", IP);
193    break;
194  }
195  }
196  return V;
197}
198
199/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
200/// instruction IP.
201static Value *LowerCTPOP(Value *V, Instruction *IP) {
202  assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
203
204  static const uint64_t MaskValues[6] = {
205    0x5555555555555555ULL, 0x3333333333333333ULL,
206    0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
207    0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
208  };
209
210  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
211
212  for (unsigned i = 1, ct = 0; i != BitSize; i <<= 1, ++ct) {
213    Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
214    Value *LHS = BinaryOperator::createAnd(V, MaskCst, "cppop.and1", IP);
215    Value *VShift = BinaryOperator::createLShr(V,
216                      ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
217    Value *RHS = BinaryOperator::createAnd(VShift, MaskCst, "cppop.and2", IP);
218    V = BinaryOperator::createAdd(LHS, RHS, "ctpop.step", IP);
219  }
220
221  return CastInst::createIntegerCast(V, Type::Int32Ty, false, "ctpop", IP);
222}
223
224/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
225/// instruction IP.
226static Value *LowerCTLZ(Value *V, Instruction *IP) {
227
228  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
229  for (unsigned i = 1; i != BitSize; i <<= 1) {
230    Value *ShVal = ConstantInt::get(V->getType(), i);
231    ShVal = BinaryOperator::createLShr(V, ShVal, "ctlz.sh", IP);
232    V = BinaryOperator::createOr(V, ShVal, "ctlz.step", IP);
233  }
234
235  V = BinaryOperator::createNot(V, "", IP);
236  return LowerCTPOP(V, IP);
237}
238
239/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
240/// three integer arguments. The first argument is the Value from which the
241/// bits will be selected. It may be of any bit width. The second and third
242/// arguments specify a range of bits to select with the second argument
243/// specifying the low bit and the third argument specifying the high bit. Both
244/// must be type i32. The result is the corresponding selected bits from the
245/// Value in the same width as the Value (first argument). If the low bit index
246/// is higher than the high bit index then the inverse selection is done and
247/// the bits are returned in inverse order.
248/// @brief Lowering of llvm.part.select intrinsic.
249static Instruction *LowerPartSelect(CallInst *CI) {
250  // Make sure we're dealing with a part select intrinsic here
251  Function *F = CI->getCalledFunction();
252  const FunctionType *FT = F->getFunctionType();
253  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
254      FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
255      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
256    return CI;
257
258  // Get the intrinsic implementation function by converting all the . to _
259  // in the intrinsic's function name and then reconstructing the function
260  // declaration.
261  std::string Name(F->getName());
262  for (unsigned i = 4; i < Name.length(); ++i)
263    if (Name[i] == '.')
264      Name[i] = '_';
265  Module* M = F->getParent();
266  F = cast<Function>(M->getOrInsertFunction(Name, FT));
267  F->setLinkage(GlobalValue::WeakLinkage);
268
269  // If we haven't defined the impl function yet, do so now
270  if (F->isDeclaration()) {
271
272    // Get the arguments to the function
273    Function::arg_iterator args = F->arg_begin();
274    Value* Val = args++; Val->setName("Val");
275    Value* Lo = args++; Lo->setName("Lo");
276    Value* Hi  = args++; Hi->setName("High");
277
278    // We want to select a range of bits here such that [Hi, Lo] is shifted
279    // down to the low bits. However, it is quite possible that Hi is smaller
280    // than Lo in which case the bits have to be reversed.
281
282    // Create the blocks we will need for the two cases (forward, reverse)
283    BasicBlock* CurBB   = new BasicBlock("entry", F);
284    BasicBlock *RevSize = new BasicBlock("revsize", CurBB->getParent());
285    BasicBlock *FwdSize = new BasicBlock("fwdsize", CurBB->getParent());
286    BasicBlock *Compute = new BasicBlock("compute", CurBB->getParent());
287    BasicBlock *Reverse = new BasicBlock("reverse", CurBB->getParent());
288    BasicBlock *RsltBlk = new BasicBlock("result",  CurBB->getParent());
289
290    // Cast Hi and Lo to the size of Val so the widths are all the same
291    if (Hi->getType() != Val->getType())
292      Hi = CastInst::createIntegerCast(Hi, Val->getType(), false,
293                                         "tmp", CurBB);
294    if (Lo->getType() != Val->getType())
295      Lo = CastInst::createIntegerCast(Lo, Val->getType(), false,
296                                          "tmp", CurBB);
297
298    // Compute a few things that both cases will need, up front.
299    Constant* Zero = ConstantInt::get(Val->getType(), 0);
300    Constant* One = ConstantInt::get(Val->getType(), 1);
301    Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
302
303    // Compare the Hi and Lo bit positions. This is used to determine
304    // which case we have (forward or reverse)
305    ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
306    new BranchInst(RevSize, FwdSize, Cmp, CurBB);
307
308    // First, copmute the number of bits in the forward case.
309    Instruction* FBitSize =
310      BinaryOperator::createSub(Hi, Lo,"fbits", FwdSize);
311    new BranchInst(Compute, FwdSize);
312
313    // Second, compute the number of bits in the reverse case.
314    Instruction* RBitSize =
315      BinaryOperator::createSub(Lo, Hi, "rbits", RevSize);
316    new BranchInst(Compute, RevSize);
317
318    // Now, compute the bit range. Start by getting the bitsize and the shift
319    // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
320    // the number of bits we want in the range. We shift the bits down to the
321    // least significant bits, apply the mask to zero out unwanted high bits,
322    // and we have computed the "forward" result. It may still need to be
323    // reversed.
324
325    // Get the BitSize from one of the two subtractions
326    PHINode *BitSize = new PHINode(Val->getType(), "bits", Compute);
327    BitSize->reserveOperandSpace(2);
328    BitSize->addIncoming(FBitSize, FwdSize);
329    BitSize->addIncoming(RBitSize, RevSize);
330
331    // Get the ShiftAmount as the smaller of Hi/Lo
332    PHINode *ShiftAmt = new PHINode(Val->getType(), "shiftamt", Compute);
333    ShiftAmt->reserveOperandSpace(2);
334    ShiftAmt->addIncoming(Lo, FwdSize);
335    ShiftAmt->addIncoming(Hi, RevSize);
336
337    // Increment the bit size
338    Instruction *BitSizePlusOne =
339      BinaryOperator::createAdd(BitSize, One, "bits", Compute);
340
341    // Create a Mask to zero out the high order bits.
342    Instruction* Mask =
343      BinaryOperator::createShl(AllOnes, BitSizePlusOne, "mask", Compute);
344    Mask = BinaryOperator::createNot(Mask, "mask", Compute);
345
346    // Shift the bits down and apply the mask
347    Instruction* FRes =
348      BinaryOperator::createLShr(Val, ShiftAmt, "fres", Compute);
349    FRes = BinaryOperator::createAnd(FRes, Mask, "fres", Compute);
350    new BranchInst(Reverse, RsltBlk, Cmp, Compute);
351
352    // In the Reverse block we have the mask already in FRes but we must reverse
353    // it by shifting FRes bits right and putting them in RRes by shifting them
354    // in from left.
355
356    // First set up our loop counters
357    PHINode *Count = new PHINode(Val->getType(), "count", Reverse);
358    Count->reserveOperandSpace(2);
359    Count->addIncoming(BitSizePlusOne, Compute);
360
361    // Next, get the value that we are shifting.
362    PHINode *BitsToShift   = new PHINode(Val->getType(), "val", Reverse);
363    BitsToShift->reserveOperandSpace(2);
364    BitsToShift->addIncoming(FRes, Compute);
365
366    // Finally, get the result of the last computation
367    PHINode *RRes  = new PHINode(Val->getType(), "rres", Reverse);
368    RRes->reserveOperandSpace(2);
369    RRes->addIncoming(Zero, Compute);
370
371    // Decrement the counter
372    Instruction *Decr = BinaryOperator::createSub(Count, One, "decr", Reverse);
373    Count->addIncoming(Decr, Reverse);
374
375    // Compute the Bit that we want to move
376    Instruction *Bit =
377      BinaryOperator::createAnd(BitsToShift, One, "bit", Reverse);
378
379    // Compute the new value for next iteration.
380    Instruction *NewVal =
381      BinaryOperator::createLShr(BitsToShift, One, "rshift", Reverse);
382    BitsToShift->addIncoming(NewVal, Reverse);
383
384    // Shift the bit into the low bits of the result.
385    Instruction *NewRes =
386      BinaryOperator::createShl(RRes, One, "lshift", Reverse);
387    NewRes = BinaryOperator::createOr(NewRes, Bit, "addbit", Reverse);
388    RRes->addIncoming(NewRes, Reverse);
389
390    // Terminate loop if we've moved all the bits.
391    ICmpInst *Cond =
392      new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
393    new BranchInst(RsltBlk, Reverse, Cond, Reverse);
394
395    // Finally, in the result block, select one of the two results with a PHI
396    // node and return the result;
397    CurBB = RsltBlk;
398    PHINode *BitSelect = new PHINode(Val->getType(), "part_select", CurBB);
399    BitSelect->reserveOperandSpace(2);
400    BitSelect->addIncoming(FRes, Compute);
401    BitSelect->addIncoming(NewRes, Reverse);
402    new ReturnInst(BitSelect, CurBB);
403  }
404
405  // Return a call to the implementation function
406  Value *Args[] = {
407    CI->getOperand(1),
408    CI->getOperand(2),
409    CI->getOperand(3)
410  };
411  return new CallInst(F, Args, sizeof(Args)/sizeof(Args[0]), CI->getName(), CI);
412}
413
414/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
415/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
416/// The first two arguments can be any bit width. The result is the same width
417/// as %Value. The operation replaces bits between %Low and %High with the value
418/// in %Replacement. If %Replacement is not the same width, it is truncated or
419/// zero extended as appropriate to fit the bits being replaced. If %Low is
420/// greater than %High then the inverse set of bits are replaced.
421/// @brief Lowering of llvm.bit.part.set intrinsic.
422static Instruction *LowerPartSet(CallInst *CI) {
423  // Make sure we're dealing with a part select intrinsic here
424  Function *F = CI->getCalledFunction();
425  const FunctionType *FT = F->getFunctionType();
426  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
427      FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
428      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
429      !FT->getParamType(3)->isInteger())
430    return CI;
431
432  // Get the intrinsic implementation function by converting all the . to _
433  // in the intrinsic's function name and then reconstructing the function
434  // declaration.
435  std::string Name(F->getName());
436  for (unsigned i = 4; i < Name.length(); ++i)
437    if (Name[i] == '.')
438      Name[i] = '_';
439  Module* M = F->getParent();
440  F = cast<Function>(M->getOrInsertFunction(Name, FT));
441  F->setLinkage(GlobalValue::WeakLinkage);
442
443  // If we haven't defined the impl function yet, do so now
444  if (F->isDeclaration()) {
445    // Get the arguments for the function.
446    Function::arg_iterator args = F->arg_begin();
447    Value* Val = args++; Val->setName("Val");
448    Value* Rep = args++; Rep->setName("Rep");
449    Value* Lo  = args++; Lo->setName("Lo");
450    Value* Hi  = args++; Hi->setName("Hi");
451
452    // Get some types we need
453    const IntegerType* ValTy = cast<IntegerType>(Val->getType());
454    const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
455    uint32_t ValBits = ValTy->getBitWidth();
456    uint32_t RepBits = RepTy->getBitWidth();
457
458    // Constant Definitions
459    ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
460    ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
461    ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
462    ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
463    ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
464    ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
465    ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
466
467    // Basic blocks we fill in below.
468    BasicBlock* entry = new BasicBlock("entry", F, 0);
469    BasicBlock* large = new BasicBlock("large", F, 0);
470    BasicBlock* small = new BasicBlock("small", F, 0);
471    BasicBlock* reverse = new BasicBlock("reverse", F, 0);
472    BasicBlock* result = new BasicBlock("result", F, 0);
473
474    // BASIC BLOCK: entry
475    // First, get the number of bits that we're placing as an i32
476    ICmpInst* is_forward =
477      new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
478    SelectInst* Hi_pn = new SelectInst(is_forward, Hi, Lo, "", entry);
479    SelectInst* Lo_pn = new SelectInst(is_forward, Lo, Hi, "", entry);
480    BinaryOperator* NumBits = BinaryOperator::createSub(Hi_pn, Lo_pn, "",entry);
481    NumBits = BinaryOperator::createAdd(NumBits, One, "", entry);
482    // Now, convert Lo and Hi to ValTy bit width
483    if (ValBits > 32) {
484      Lo = new ZExtInst(Lo_pn, ValTy, "", entry);
485    } else if (ValBits < 32) {
486      Lo = new TruncInst(Lo_pn, ValTy, "", entry);
487    }
488    // Determine if the replacement bits are larger than the number of bits we
489    // are replacing and deal with it.
490    ICmpInst* is_large =
491      new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
492    new BranchInst(large, small, is_large, entry);
493
494    // BASIC BLOCK: large
495    Instruction* MaskBits =
496      BinaryOperator::createSub(RepBitWidth, NumBits, "", large);
497    MaskBits = CastInst::createIntegerCast(MaskBits, RepMask->getType(),
498                                           false, "", large);
499    BinaryOperator* Mask1 =
500      BinaryOperator::createLShr(RepMask, MaskBits, "", large);
501    BinaryOperator* Rep2 = BinaryOperator::createAnd(Mask1, Rep, "", large);
502    new BranchInst(small, large);
503
504    // BASIC BLOCK: small
505    PHINode* Rep3 = new PHINode(RepTy, "", small);
506    Rep3->reserveOperandSpace(2);
507    Rep3->addIncoming(Rep2, large);
508    Rep3->addIncoming(Rep, entry);
509    Value* Rep4 = Rep3;
510    if (ValBits > RepBits)
511      Rep4 = new ZExtInst(Rep3, ValTy, "", small);
512    else if (ValBits < RepBits)
513      Rep4 = new TruncInst(Rep3, ValTy, "", small);
514    new BranchInst(result, reverse, is_forward, small);
515
516    // BASIC BLOCK: reverse (reverses the bits of the replacement)
517    // Set up our loop counter as a PHI so we can decrement on each iteration.
518    // We will loop for the number of bits in the replacement value.
519    PHINode *Count = new PHINode(Type::Int32Ty, "count", reverse);
520    Count->reserveOperandSpace(2);
521    Count->addIncoming(NumBits, small);
522
523    // Get the value that we are shifting bits out of as a PHI because
524    // we'll change this with each iteration.
525    PHINode *BitsToShift   = new PHINode(Val->getType(), "val", reverse);
526    BitsToShift->reserveOperandSpace(2);
527    BitsToShift->addIncoming(Rep4, small);
528
529    // Get the result of the last computation or zero on first iteration
530    PHINode *RRes  = new PHINode(Val->getType(), "rres", reverse);
531    RRes->reserveOperandSpace(2);
532    RRes->addIncoming(ValZero, small);
533
534    // Decrement the loop counter by one
535    Instruction *Decr = BinaryOperator::createSub(Count, One, "", reverse);
536    Count->addIncoming(Decr, reverse);
537
538    // Get the bit that we want to move into the result
539    Value *Bit = BinaryOperator::createAnd(BitsToShift, ValOne, "", reverse);
540
541    // Compute the new value of the bits to shift for the next iteration.
542    Value *NewVal = BinaryOperator::createLShr(BitsToShift, ValOne,"", reverse);
543    BitsToShift->addIncoming(NewVal, reverse);
544
545    // Shift the bit we extracted into the low bit of the result.
546    Instruction *NewRes = BinaryOperator::createShl(RRes, ValOne, "", reverse);
547    NewRes = BinaryOperator::createOr(NewRes, Bit, "", reverse);
548    RRes->addIncoming(NewRes, reverse);
549
550    // Terminate loop if we've moved all the bits.
551    ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse);
552    new BranchInst(result, reverse, Cond, reverse);
553
554    // BASIC BLOCK: result
555    PHINode *Rplcmnt  = new PHINode(Val->getType(), "", result);
556    Rplcmnt->reserveOperandSpace(2);
557    Rplcmnt->addIncoming(NewRes, reverse);
558    Rplcmnt->addIncoming(Rep4, small);
559    Value* t0   = CastInst::createIntegerCast(NumBits,ValTy,false,"",result);
560    Value* t1   = BinaryOperator::createShl(ValMask, t0, "", result);
561    Value* t2   = BinaryOperator::createShl(t1, Lo, "", result);
562    Value* t3   = BinaryOperator::createAnd(t2, Val, "", result);
563    Value* t4   = BinaryOperator::createShl(Rplcmnt, Lo, "", result);
564    Value* Rslt = BinaryOperator::createOr(t3, t4, "part_set", result);
565    new ReturnInst(Rslt, result);
566  }
567
568  // Return a call to the implementation function
569  Value *Args[] = {
570    CI->getOperand(1),
571    CI->getOperand(2),
572    CI->getOperand(3),
573    CI->getOperand(4)
574  };
575  return new CallInst(F, Args, sizeof(Args)/sizeof(Args[0]), CI->getName(), CI);
576}
577
578
579void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
580  Function *Callee = CI->getCalledFunction();
581  assert(Callee && "Cannot lower an indirect call!");
582
583  switch (Callee->getIntrinsicID()) {
584  case Intrinsic::not_intrinsic:
585    cerr << "Cannot lower a call to a non-intrinsic function '"
586         << Callee->getName() << "'!\n";
587    abort();
588  default:
589    cerr << "Error: Code generator does not support intrinsic function '"
590         << Callee->getName() << "'!\n";
591    abort();
592
593    // The setjmp/longjmp intrinsics should only exist in the code if it was
594    // never optimized (ie, right out of the CFE), or if it has been hacked on
595    // by the lowerinvoke pass.  In both cases, the right thing to do is to
596    // convert the call to an explicit setjmp or longjmp call.
597  case Intrinsic::setjmp: {
598    static Constant *SetjmpFCache = 0;
599    Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
600                               Type::Int32Ty, SetjmpFCache);
601    if (CI->getType() != Type::VoidTy)
602      CI->replaceAllUsesWith(V);
603    break;
604  }
605  case Intrinsic::sigsetjmp:
606     if (CI->getType() != Type::VoidTy)
607       CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
608     break;
609
610  case Intrinsic::longjmp: {
611    static Constant *LongjmpFCache = 0;
612    ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
613                    Type::VoidTy, LongjmpFCache);
614    break;
615  }
616
617  case Intrinsic::siglongjmp: {
618    // Insert the call to abort
619    static Constant *AbortFCache = 0;
620    ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
621                    Type::VoidTy, AbortFCache);
622    break;
623  }
624  case Intrinsic::ctpop:
625    CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
626    break;
627
628  case Intrinsic::bswap:
629    CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
630    break;
631
632  case Intrinsic::ctlz:
633    CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
634    break;
635
636  case Intrinsic::cttz: {
637    // cttz(x) -> ctpop(~X & (X-1))
638    Value *Src = CI->getOperand(1);
639    Value *NotSrc = BinaryOperator::createNot(Src, Src->getName()+".not", CI);
640    Value *SrcM1  = ConstantInt::get(Src->getType(), 1);
641    SrcM1 = BinaryOperator::createSub(Src, SrcM1, "", CI);
642    Src = LowerCTPOP(BinaryOperator::createAnd(NotSrc, SrcM1, "", CI), CI);
643    CI->replaceAllUsesWith(Src);
644    break;
645  }
646
647  case Intrinsic::part_select:
648    CI->replaceAllUsesWith(LowerPartSelect(CI));
649    break;
650
651  case Intrinsic::part_set:
652    CI->replaceAllUsesWith(LowerPartSet(CI));
653    break;
654
655  case Intrinsic::stacksave:
656  case Intrinsic::stackrestore: {
657    static bool Warned = false;
658    if (!Warned)
659      cerr << "WARNING: this target does not support the llvm.stack"
660           << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
661               "save" : "restore") << " intrinsic.\n";
662    Warned = true;
663    if (Callee->getIntrinsicID() == Intrinsic::stacksave)
664      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
665    break;
666  }
667
668  case Intrinsic::returnaddress:
669  case Intrinsic::frameaddress:
670    cerr << "WARNING: this target does not support the llvm."
671         << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
672             "return" : "frame") << "address intrinsic.\n";
673    CI->replaceAllUsesWith(ConstantPointerNull::get(
674                                            cast<PointerType>(CI->getType())));
675    break;
676
677  case Intrinsic::prefetch:
678    break;    // Simply strip out prefetches on unsupported architectures
679
680  case Intrinsic::pcmarker:
681    break;    // Simply strip out pcmarker on unsupported architectures
682  case Intrinsic::readcyclecounter: {
683    cerr << "WARNING: this target does not support the llvm.readcyclecoun"
684         << "ter intrinsic.  It is being lowered to a constant 0\n";
685    CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
686    break;
687  }
688
689  case Intrinsic::dbg_stoppoint:
690  case Intrinsic::dbg_region_start:
691  case Intrinsic::dbg_region_end:
692  case Intrinsic::dbg_func_start:
693  case Intrinsic::dbg_declare:
694  case Intrinsic::eh_exception:
695  case Intrinsic::eh_selector:
696  case Intrinsic::eh_filter:
697    break;    // Simply strip out debugging and eh intrinsics
698
699  case Intrinsic::memcpy_i32:
700  case Intrinsic::memcpy_i64: {
701    static Constant *MemcpyFCache = 0;
702    Value *Size = CI->getOperand(3);
703    const Type *IntPtr = TD.getIntPtrType();
704    if (Size->getType()->getPrimitiveSizeInBits() <
705        IntPtr->getPrimitiveSizeInBits())
706      Size = new ZExtInst(Size, IntPtr, "", CI);
707    else if (Size->getType()->getPrimitiveSizeInBits() >
708             IntPtr->getPrimitiveSizeInBits())
709      Size = new TruncInst(Size, IntPtr, "", CI);
710    Value *Ops[3];
711    Ops[0] = CI->getOperand(1);
712    Ops[1] = CI->getOperand(2);
713    Ops[2] = Size;
714    ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
715                    MemcpyFCache);
716    break;
717  }
718  case Intrinsic::memmove_i32:
719  case Intrinsic::memmove_i64: {
720    static Constant *MemmoveFCache = 0;
721    Value *Size = CI->getOperand(3);
722    const Type *IntPtr = TD.getIntPtrType();
723    if (Size->getType()->getPrimitiveSizeInBits() <
724        IntPtr->getPrimitiveSizeInBits())
725      Size = new ZExtInst(Size, IntPtr, "", CI);
726    else if (Size->getType()->getPrimitiveSizeInBits() >
727             IntPtr->getPrimitiveSizeInBits())
728      Size = new TruncInst(Size, IntPtr, "", CI);
729    Value *Ops[3];
730    Ops[0] = CI->getOperand(1);
731    Ops[1] = CI->getOperand(2);
732    Ops[2] = Size;
733    ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
734                    MemmoveFCache);
735    break;
736  }
737  case Intrinsic::memset_i32:
738  case Intrinsic::memset_i64: {
739    static Constant *MemsetFCache = 0;
740    Value *Size = CI->getOperand(3);
741    const Type *IntPtr = TD.getIntPtrType();
742    if (Size->getType()->getPrimitiveSizeInBits() <
743        IntPtr->getPrimitiveSizeInBits())
744      Size = new ZExtInst(Size, IntPtr, "", CI);
745    else if (Size->getType()->getPrimitiveSizeInBits() >
746             IntPtr->getPrimitiveSizeInBits())
747      Size = new TruncInst(Size, IntPtr, "", CI);
748    Value *Ops[3];
749    Ops[0] = CI->getOperand(1);
750    // Extend the amount to i32.
751    Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI);
752    Ops[2] = Size;
753    ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
754                    MemsetFCache);
755    break;
756  }
757  case Intrinsic::sqrt_f32: {
758    static Constant *sqrtfFCache = 0;
759    ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(),
760                    Type::FloatTy, sqrtfFCache);
761    break;
762  }
763  case Intrinsic::sqrt_f64: {
764    static Constant *sqrtFCache = 0;
765    ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(),
766                    Type::DoubleTy, sqrtFCache);
767    break;
768  }
769  }
770
771  assert(CI->use_empty() &&
772         "Lowering should have eliminated any uses of the intrinsic call!");
773  CI->eraseFromParent();
774}
775