LegalizeIntegerTypes.cpp revision 5e687ac6158bc28f1831699d7dbfa39d3120b892
1//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements integer type expansion and promotion for LegalizeTypes.
11// Promotion is the act of changing a computation in an illegal type into a
12// computation in a larger type.  For example, implementing i8 arithmetic in an
13// i32 register (often needed on powerpc).
14// Expansion is the act of changing a computation in an illegal type into a
15// computation in two identical registers of a smaller type.  For example,
16// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17// targets).
18//
19//===----------------------------------------------------------------------===//
20
21#include "LegalizeTypes.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  Integer Result Promotion
30//===----------------------------------------------------------------------===//
31
32/// PromoteIntegerResult - This method is called when a result of a node is
33/// found to be in need of promotion to a larger type.  At this point, the node
34/// may also have invalid operands or may have other results that need
35/// expansion, we just know that (at least) one result needs promotion.
36void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
37  DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
38  SDValue Res = SDValue();
39
40  // See if the target wants to custom expand this node.
41  if (CustomLowerNode(N, N->getValueType(ResNo), true))
42    return;
43
44  switch (N->getOpcode()) {
45  default:
46#ifndef NDEBUG
47    dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
48    N->dump(&DAG); dbgs() << "\n";
49#endif
50    llvm_unreachable("Do not know how to promote this operator!");
51  case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
52  case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
53  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
54  case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
55  case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
56  case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
57  case ISD::CONVERT_RNDSAT:
58                         Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
59  case ISD::CTLZ:        Res = PromoteIntRes_CTLZ(N); break;
60  case ISD::CTPOP:       Res = PromoteIntRes_CTPOP(N); break;
61  case ISD::CTTZ:        Res = PromoteIntRes_CTTZ(N); break;
62  case ISD::EXTRACT_VECTOR_ELT:
63                         Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
64  case ISD::LOAD:        Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
65  case ISD::SELECT:      Res = PromoteIntRes_SELECT(N); break;
66  case ISD::SELECT_CC:   Res = PromoteIntRes_SELECT_CC(N); break;
67  case ISD::SETCC:       Res = PromoteIntRes_SETCC(N); break;
68  case ISD::SHL:         Res = PromoteIntRes_SHL(N); break;
69  case ISD::SIGN_EXTEND_INREG:
70                         Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
71  case ISD::SRA:         Res = PromoteIntRes_SRA(N); break;
72  case ISD::SRL:         Res = PromoteIntRes_SRL(N); break;
73  case ISD::TRUNCATE:    Res = PromoteIntRes_TRUNCATE(N); break;
74  case ISD::UNDEF:       Res = PromoteIntRes_UNDEF(N); break;
75  case ISD::VAARG:       Res = PromoteIntRes_VAARG(N); break;
76
77  case ISD::EXTRACT_SUBVECTOR:
78                         Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
79  case ISD::VECTOR_SHUFFLE:
80                         Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
81  case ISD::INSERT_VECTOR_ELT:
82                         Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
83  case ISD::BUILD_VECTOR:
84                         Res = PromoteIntRes_BUILD_VECTOR(N); break;
85  case ISD::SCALAR_TO_VECTOR:
86                         Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
87
88  case ISD::SIGN_EXTEND:
89  case ISD::ZERO_EXTEND:
90  case ISD::ANY_EXTEND:  Res = PromoteIntRes_INT_EXTEND(N); break;
91
92  case ISD::FP_TO_SINT:
93  case ISD::FP_TO_UINT:  Res = PromoteIntRes_FP_TO_XINT(N); break;
94
95  case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
96
97  case ISD::AND:
98  case ISD::OR:
99  case ISD::XOR:
100  case ISD::ADD:
101  case ISD::SUB:
102  case ISD::MUL:         Res = PromoteIntRes_SimpleIntBinOp(N); break;
103
104  case ISD::SDIV:
105  case ISD::SREM:        Res = PromoteIntRes_SDIV(N); break;
106
107  case ISD::UDIV:
108  case ISD::UREM:        Res = PromoteIntRes_UDIV(N); break;
109
110  case ISD::SADDO:
111  case ISD::SSUBO:       Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
112  case ISD::UADDO:
113  case ISD::USUBO:       Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
114  case ISD::SMULO:
115  case ISD::UMULO:       Res = PromoteIntRes_XMULO(N, ResNo); break;
116
117  case ISD::ATOMIC_LOAD_ADD:
118  case ISD::ATOMIC_LOAD_SUB:
119  case ISD::ATOMIC_LOAD_AND:
120  case ISD::ATOMIC_LOAD_OR:
121  case ISD::ATOMIC_LOAD_XOR:
122  case ISD::ATOMIC_LOAD_NAND:
123  case ISD::ATOMIC_LOAD_MIN:
124  case ISD::ATOMIC_LOAD_MAX:
125  case ISD::ATOMIC_LOAD_UMIN:
126  case ISD::ATOMIC_LOAD_UMAX:
127  case ISD::ATOMIC_SWAP:
128    Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
129
130  case ISD::ATOMIC_CMP_SWAP:
131    Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
132  }
133
134  // If the result is null then the sub-method took care of registering it.
135  if (Res.getNode())
136    SetPromotedInteger(SDValue(N, ResNo), Res);
137}
138
139SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
140  // Sign-extend the new bits, and continue the assertion.
141  SDValue Op = SExtPromotedInteger(N->getOperand(0));
142  return DAG.getNode(ISD::AssertSext, N->getDebugLoc(),
143                     Op.getValueType(), Op, N->getOperand(1));
144}
145
146SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
147  // Zero the new bits, and continue the assertion.
148  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
149  return DAG.getNode(ISD::AssertZext, N->getDebugLoc(),
150                     Op.getValueType(), Op, N->getOperand(1));
151}
152
153SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
154  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
155  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
156                              N->getMemoryVT(),
157                              N->getChain(), N->getBasePtr(),
158                              Op2, N->getMemOperand());
159  // Legalized the chain result - switch anything that used the old chain to
160  // use the new one.
161  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
162  return Res;
163}
164
165SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
166  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
167  SDValue Op3 = GetPromotedInteger(N->getOperand(3));
168  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
169                              N->getMemoryVT(), N->getChain(), N->getBasePtr(),
170                              Op2, Op3, N->getMemOperand());
171  // Legalized the chain result - switch anything that used the old chain to
172  // use the new one.
173  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
174  return Res;
175}
176
177SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
178  SDValue InOp = N->getOperand(0);
179  EVT InVT = InOp.getValueType();
180  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
181  EVT OutVT = N->getValueType(0);
182  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
183  DebugLoc dl = N->getDebugLoc();
184
185  switch (getTypeAction(InVT)) {
186  default:
187    assert(false && "Unknown type action!");
188    break;
189  case TargetLowering::TypeLegal:
190    break;
191  case TargetLowering::TypePromoteInteger:
192    if (NOutVT.bitsEq(NInVT))
193      // The input promotes to the same size.  Convert the promoted value.
194      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
195    if (NInVT.isVector())
196      // Promote vector element via memory load/store.
197      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
198                         CreateStackStoreLoad(InOp, OutVT));
199    break;
200  case TargetLowering::TypeSoftenFloat:
201    // Promote the integer operand by hand.
202    return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
203  case TargetLowering::TypeExpandInteger:
204  case TargetLowering::TypeExpandFloat:
205    break;
206  case TargetLowering::TypeScalarizeVector:
207    // Convert the element to an integer and promote it by hand.
208    if (!NOutVT.isVector())
209      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
210                         BitConvertToInteger(GetScalarizedVector(InOp)));
211    break;
212  case TargetLowering::TypeSplitVector: {
213    // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
214    // pieces of the input into integers and reassemble in the final type.
215    SDValue Lo, Hi;
216    GetSplitVector(N->getOperand(0), Lo, Hi);
217    Lo = BitConvertToInteger(Lo);
218    Hi = BitConvertToInteger(Hi);
219
220    if (TLI.isBigEndian())
221      std::swap(Lo, Hi);
222
223    InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
224                       EVT::getIntegerVT(*DAG.getContext(),
225                                         NOutVT.getSizeInBits()),
226                       JoinIntegers(Lo, Hi));
227    return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
228  }
229  case TargetLowering::TypeWidenVector:
230    if (OutVT.bitsEq(NInVT))
231      // The input is widened to the same size.  Convert to the widened value.
232      return DAG.getNode(ISD::BITCAST, dl, OutVT, GetWidenedVector(InOp));
233  }
234
235  return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
236                     CreateStackStoreLoad(InOp, OutVT));
237}
238
239SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
240  SDValue Op = GetPromotedInteger(N->getOperand(0));
241  EVT OVT = N->getValueType(0);
242  EVT NVT = Op.getValueType();
243  DebugLoc dl = N->getDebugLoc();
244
245  unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
246  return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
247                     DAG.getConstant(DiffBits, TLI.getPointerTy()));
248}
249
250SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
251  // The pair element type may be legal, or may not promote to the same type as
252  // the result, for example i14 = BUILD_PAIR (i7, i7).  Handle all cases.
253  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
254                     TLI.getTypeToTransformTo(*DAG.getContext(),
255                     N->getValueType(0)), JoinIntegers(N->getOperand(0),
256                     N->getOperand(1)));
257}
258
259SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
260  EVT VT = N->getValueType(0);
261  // FIXME there is no actual debug info here
262  DebugLoc dl = N->getDebugLoc();
263  // Zero extend things like i1, sign extend everything else.  It shouldn't
264  // matter in theory which one we pick, but this tends to give better code?
265  unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
266  SDValue Result = DAG.getNode(Opc, dl,
267                               TLI.getTypeToTransformTo(*DAG.getContext(), VT),
268                               SDValue(N, 0));
269  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
270  return Result;
271}
272
273SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
274  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
275  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
276           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
277           CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
278          "can only promote integers");
279  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
280  return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
281                              N->getOperand(1), N->getOperand(2),
282                              N->getOperand(3), N->getOperand(4), CvtCode);
283}
284
285SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
286  // Zero extend to the promoted type and do the count there.
287  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
288  DebugLoc dl = N->getDebugLoc();
289  EVT OVT = N->getValueType(0);
290  EVT NVT = Op.getValueType();
291  Op = DAG.getNode(ISD::CTLZ, dl, NVT, Op);
292  // Subtract off the extra leading bits in the bigger type.
293  return DAG.getNode(ISD::SUB, dl, NVT, Op,
294                     DAG.getConstant(NVT.getSizeInBits() -
295                                     OVT.getSizeInBits(), NVT));
296}
297
298SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
299  // Zero extend to the promoted type and do the count there.
300  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
301  return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), Op.getValueType(), Op);
302}
303
304SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
305  SDValue Op = GetPromotedInteger(N->getOperand(0));
306  EVT OVT = N->getValueType(0);
307  EVT NVT = Op.getValueType();
308  DebugLoc dl = N->getDebugLoc();
309  // The count is the same in the promoted type except if the original
310  // value was zero.  This can be handled by setting the bit just off
311  // the top of the original type.
312  APInt TopBit(NVT.getSizeInBits(), 0);
313  TopBit.setBit(OVT.getSizeInBits());
314  Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
315  return DAG.getNode(ISD::CTTZ, dl, NVT, Op);
316}
317
318SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
319  DebugLoc dl = N->getDebugLoc();
320  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
321  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
322                     N->getOperand(1));
323}
324
325SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
326  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
327  unsigned NewOpc = N->getOpcode();
328  DebugLoc dl = N->getDebugLoc();
329
330  // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
331  // not Legal, check to see if we can use FP_TO_SINT instead.  (If both UINT
332  // and SINT conversions are Custom, there is no way to tell which is
333  // preferable. We choose SINT because that's the right thing on PPC.)
334  if (N->getOpcode() == ISD::FP_TO_UINT &&
335      !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
336      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
337    NewOpc = ISD::FP_TO_SINT;
338
339  SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
340
341  // Assert that the converted value fits in the original type.  If it doesn't
342  // (eg: because the value being converted is too big), then the result of the
343  // original operation was undefined anyway, so the assert is still correct.
344  return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
345                     ISD::AssertZext : ISD::AssertSext, dl,
346                     NVT, Res, DAG.getValueType(N->getValueType(0)));
347}
348
349SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
350  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
351  DebugLoc dl = N->getDebugLoc();
352
353  SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
354
355  return DAG.getNode(ISD::AssertZext, dl,
356                     NVT, Res, DAG.getValueType(N->getValueType(0)));
357}
358
359SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
360  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
361  DebugLoc dl = N->getDebugLoc();
362
363  if (getTypeAction(N->getOperand(0).getValueType())
364      == TargetLowering::TypePromoteInteger) {
365    SDValue Res = GetPromotedInteger(N->getOperand(0));
366    assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
367
368    // If the result and operand types are the same after promotion, simplify
369    // to an in-register extension.
370    if (NVT == Res.getValueType()) {
371      // The high bits are not guaranteed to be anything.  Insert an extend.
372      if (N->getOpcode() == ISD::SIGN_EXTEND)
373        return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
374                           DAG.getValueType(N->getOperand(0).getValueType()));
375      if (N->getOpcode() == ISD::ZERO_EXTEND)
376        return DAG.getZeroExtendInReg(Res, dl, N->getOperand(0).getValueType());
377      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
378      return Res;
379    }
380  }
381
382  // Otherwise, just extend the original operand all the way to the larger type.
383  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
384}
385
386SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
387  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
388  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
389  ISD::LoadExtType ExtType =
390    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
391  DebugLoc dl = N->getDebugLoc();
392  SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
393                               N->getPointerInfo(),
394                               N->getMemoryVT(), N->isVolatile(),
395                               N->isNonTemporal(), N->getAlignment());
396
397  // Legalized the chain result - switch anything that used the old chain to
398  // use the new one.
399  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
400  return Res;
401}
402
403/// Promote the overflow flag of an overflowing arithmetic node.
404SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
405  // Simply change the return type of the boolean result.
406  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
407  EVT ValueVTs[] = { N->getValueType(0), NVT };
408  SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
409  SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
410                            DAG.getVTList(ValueVTs, 2), Ops, 2);
411
412  // Modified the sum result - switch anything that used the old sum to use
413  // the new one.
414  ReplaceValueWith(SDValue(N, 0), Res);
415
416  return SDValue(Res.getNode(), 1);
417}
418
419SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
420  if (ResNo == 1)
421    return PromoteIntRes_Overflow(N);
422
423  // The operation overflowed iff the result in the larger type is not the
424  // sign extension of its truncation to the original type.
425  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
426  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
427  EVT OVT = N->getOperand(0).getValueType();
428  EVT NVT = LHS.getValueType();
429  DebugLoc dl = N->getDebugLoc();
430
431  // Do the arithmetic in the larger type.
432  unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
433  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
434
435  // Calculate the overflow flag: sign extend the arithmetic result from
436  // the original type.
437  SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
438                            DAG.getValueType(OVT));
439  // Overflowed if and only if this is not equal to Res.
440  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
441
442  // Use the calculated overflow everywhere.
443  ReplaceValueWith(SDValue(N, 1), Ofl);
444
445  return Res;
446}
447
448SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
449  // Sign extend the input.
450  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
451  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
452  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
453                     LHS.getValueType(), LHS, RHS);
454}
455
456SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
457  SDValue LHS = GetPromotedInteger(N->getOperand(1));
458  SDValue RHS = GetPromotedInteger(N->getOperand(2));
459  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
460                     LHS.getValueType(), N->getOperand(0),LHS,RHS);
461}
462
463SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
464  SDValue LHS = GetPromotedInteger(N->getOperand(2));
465  SDValue RHS = GetPromotedInteger(N->getOperand(3));
466  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
467                     LHS.getValueType(), N->getOperand(0),
468                     N->getOperand(1), LHS, RHS, N->getOperand(4));
469}
470
471SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
472  EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
473  assert(isTypeLegal(SVT) && "Illegal SetCC type!");
474  DebugLoc dl = N->getDebugLoc();
475
476  // Get the SETCC result using the canonical SETCC type.
477  SDValue SetCC = DAG.getNode(ISD::SETCC, dl, SVT, N->getOperand(0),
478                              N->getOperand(1), N->getOperand(2));
479
480  // Convert to the expected type.
481  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
482  assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
483  return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
484}
485
486SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
487  return DAG.getNode(ISD::SHL, N->getDebugLoc(),
488                TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
489                     GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
490}
491
492SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
493  SDValue Op = GetPromotedInteger(N->getOperand(0));
494  return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
495                     Op.getValueType(), Op, N->getOperand(1));
496}
497
498SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
499  // The input may have strange things in the top bits of the registers, but
500  // these operations don't care.  They may have weird bits going out, but
501  // that too is okay if they are integer operations.
502  SDValue LHS = GetPromotedInteger(N->getOperand(0));
503  SDValue RHS = GetPromotedInteger(N->getOperand(1));
504  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
505                    LHS.getValueType(), LHS, RHS);
506}
507
508SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
509  // The input value must be properly sign extended.
510  SDValue Res = SExtPromotedInteger(N->getOperand(0));
511  return DAG.getNode(ISD::SRA, N->getDebugLoc(),
512                     Res.getValueType(), Res, N->getOperand(1));
513}
514
515SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
516  // The input value must be properly zero extended.
517  EVT VT = N->getValueType(0);
518  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
519  SDValue Res = ZExtPromotedInteger(N->getOperand(0));
520  return DAG.getNode(ISD::SRL, N->getDebugLoc(), NVT, Res, N->getOperand(1));
521}
522
523SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
524  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
525  SDValue Res;
526
527  switch (getTypeAction(N->getOperand(0).getValueType())) {
528  default: llvm_unreachable("Unknown type action!");
529  case TargetLowering::TypeLegal:
530  case TargetLowering::TypeExpandInteger:
531    Res = N->getOperand(0);
532    break;
533  case TargetLowering::TypePromoteInteger:
534    Res = GetPromotedInteger(N->getOperand(0));
535    break;
536  }
537
538  // Truncate to NVT instead of VT
539  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Res);
540}
541
542SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
543  if (ResNo == 1)
544    return PromoteIntRes_Overflow(N);
545
546  // The operation overflowed iff the result in the larger type is not the
547  // zero extension of its truncation to the original type.
548  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
549  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
550  EVT OVT = N->getOperand(0).getValueType();
551  EVT NVT = LHS.getValueType();
552  DebugLoc dl = N->getDebugLoc();
553
554  // Do the arithmetic in the larger type.
555  unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
556  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
557
558  // Calculate the overflow flag: zero extend the arithmetic result from
559  // the original type.
560  SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
561  // Overflowed if and only if this is not equal to Res.
562  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
563
564  // Use the calculated overflow everywhere.
565  ReplaceValueWith(SDValue(N, 1), Ofl);
566
567  return Res;
568}
569
570SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
571  // Promote the overflow bit trivially.
572  if (ResNo == 1)
573    return PromoteIntRes_Overflow(N);
574
575  SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
576  DebugLoc DL = N->getDebugLoc();
577  EVT SmallVT = LHS.getValueType();
578
579  // To determine if the result overflowed in a larger type, we extend the
580  // input to the larger type, do the multiply, then check the high bits of
581  // the result to see if the overflow happened.
582  if (N->getOpcode() == ISD::SMULO) {
583    LHS = SExtPromotedInteger(LHS);
584    RHS = SExtPromotedInteger(RHS);
585  } else {
586    LHS = ZExtPromotedInteger(LHS);
587    RHS = ZExtPromotedInteger(RHS);
588  }
589  SDValue Mul = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
590
591  // Overflow occurred iff the high part of the result does not
592  // zero/sign-extend the low part.
593  SDValue Overflow;
594  if (N->getOpcode() == ISD::UMULO) {
595    // Unsigned overflow occurred iff the high part is non-zero.
596    SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
597                             DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
598    Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
599                            DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
600  } else {
601    // Signed overflow occurred iff the high part does not sign extend the low.
602    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
603                               Mul, DAG.getValueType(SmallVT));
604    Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
605  }
606
607  // Use the calculated overflow everywhere.
608  ReplaceValueWith(SDValue(N, 1), Overflow);
609  return Mul;
610}
611
612SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
613  // Zero extend the input.
614  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
615  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
616  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
617                     LHS.getValueType(), LHS, RHS);
618}
619
620SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
621  return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
622                                               N->getValueType(0)));
623}
624
625SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
626  SDValue Chain = N->getOperand(0); // Get the chain.
627  SDValue Ptr = N->getOperand(1); // Get the pointer.
628  EVT VT = N->getValueType(0);
629  DebugLoc dl = N->getDebugLoc();
630
631  EVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
632  unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
633  // The argument is passed as NumRegs registers of type RegVT.
634
635  SmallVector<SDValue, 8> Parts(NumRegs);
636  for (unsigned i = 0; i < NumRegs; ++i) {
637    Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
638                            N->getConstantOperandVal(3));
639    Chain = Parts[i].getValue(1);
640  }
641
642  // Handle endianness of the load.
643  if (TLI.isBigEndian())
644    std::reverse(Parts.begin(), Parts.end());
645
646  // Assemble the parts in the promoted type.
647  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
648  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
649  for (unsigned i = 1; i < NumRegs; ++i) {
650    SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
651    // Shift it to the right position and "or" it in.
652    Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
653                       DAG.getConstant(i * RegVT.getSizeInBits(),
654                                       TLI.getPointerTy()));
655    Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
656  }
657
658  // Modified the chain result - switch anything that used the old chain to
659  // use the new one.
660  ReplaceValueWith(SDValue(N, 1), Chain);
661
662  return Res;
663}
664
665//===----------------------------------------------------------------------===//
666//  Integer Operand Promotion
667//===----------------------------------------------------------------------===//
668
669/// PromoteIntegerOperand - This method is called when the specified operand of
670/// the specified node is found to need promotion.  At this point, all of the
671/// result types of the node are known to be legal, but other operands of the
672/// node may need promotion or expansion as well as the specified one.
673bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
674  DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
675  SDValue Res = SDValue();
676
677  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
678    return false;
679
680  switch (N->getOpcode()) {
681    default:
682  #ifndef NDEBUG
683    dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
684    N->dump(&DAG); dbgs() << "\n";
685  #endif
686    llvm_unreachable("Do not know how to promote this operator's operand!");
687
688  case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
689  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
690  case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
691  case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
692  case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
693  case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
694  case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
695  case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
696  case ISD::CONVERT_RNDSAT:
697                          Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
698  case ISD::INSERT_VECTOR_ELT:
699                          Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
700  case ISD::MEMBARRIER:   Res = PromoteIntOp_MEMBARRIER(N); break;
701  case ISD::SCALAR_TO_VECTOR:
702                          Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
703  case ISD::SELECT:       Res = PromoteIntOp_SELECT(N, OpNo); break;
704  case ISD::SELECT_CC:    Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
705  case ISD::SETCC:        Res = PromoteIntOp_SETCC(N, OpNo); break;
706  case ISD::SIGN_EXTEND:  Res = PromoteIntOp_SIGN_EXTEND(N); break;
707  case ISD::SINT_TO_FP:   Res = PromoteIntOp_SINT_TO_FP(N); break;
708  case ISD::STORE:        Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
709                                                   OpNo); break;
710  case ISD::TRUNCATE:     Res = PromoteIntOp_TRUNCATE(N); break;
711  case ISD::FP16_TO_FP32:
712  case ISD::UINT_TO_FP:   Res = PromoteIntOp_UINT_TO_FP(N); break;
713  case ISD::ZERO_EXTEND:  Res = PromoteIntOp_ZERO_EXTEND(N); break;
714
715  case ISD::SHL:
716  case ISD::SRA:
717  case ISD::SRL:
718  case ISD::ROTL:
719  case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
720  }
721
722  // If the result is null, the sub-method took care of registering results etc.
723  if (!Res.getNode()) return false;
724
725  // If the result is N, the sub-method updated N in place.  Tell the legalizer
726  // core about this.
727  if (Res.getNode() == N)
728    return true;
729
730  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
731         "Invalid operand expansion");
732
733  ReplaceValueWith(SDValue(N, 0), Res);
734  return false;
735}
736
737/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
738/// shared among BR_CC, SELECT_CC, and SETCC handlers.
739void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
740                                            ISD::CondCode CCCode) {
741  // We have to insert explicit sign or zero extends.  Note that we could
742  // insert sign extends for ALL conditions, but zero extend is cheaper on
743  // many machines (an AND instead of two shifts), so prefer it.
744  switch (CCCode) {
745  default: llvm_unreachable("Unknown integer comparison!");
746  case ISD::SETEQ:
747  case ISD::SETNE:
748  case ISD::SETUGE:
749  case ISD::SETUGT:
750  case ISD::SETULE:
751  case ISD::SETULT:
752    // ALL of these operations will work if we either sign or zero extend
753    // the operands (including the unsigned comparisons!).  Zero extend is
754    // usually a simpler/cheaper operation, so prefer it.
755    NewLHS = ZExtPromotedInteger(NewLHS);
756    NewRHS = ZExtPromotedInteger(NewRHS);
757    break;
758  case ISD::SETGE:
759  case ISD::SETGT:
760  case ISD::SETLT:
761  case ISD::SETLE:
762    NewLHS = SExtPromotedInteger(NewLHS);
763    NewRHS = SExtPromotedInteger(NewRHS);
764    break;
765  }
766}
767
768SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
769  SDValue Op = GetPromotedInteger(N->getOperand(0));
770  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
771}
772
773SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
774  // This should only occur in unusual situations like bitcasting to an
775  // x86_fp80, so just turn it into a store+load
776  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
777}
778
779SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
780  assert(OpNo == 2 && "Don't know how to promote this operand!");
781
782  SDValue LHS = N->getOperand(2);
783  SDValue RHS = N->getOperand(3);
784  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
785
786  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
787  // legal types.
788  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
789                                N->getOperand(1), LHS, RHS, N->getOperand(4)),
790                 0);
791}
792
793SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
794  assert(OpNo == 1 && "only know how to promote condition");
795
796  // Promote all the way up to the canonical SetCC type.
797  EVT SVT = TLI.getSetCCResultType(MVT::Other);
798  SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
799
800  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
801  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
802                                        N->getOperand(2)), 0);
803}
804
805SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
806  // Since the result type is legal, the operands must promote to it.
807  EVT OVT = N->getOperand(0).getValueType();
808  SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
809  SDValue Hi = GetPromotedInteger(N->getOperand(1));
810  assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
811  DebugLoc dl = N->getDebugLoc();
812
813  Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
814                   DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
815  return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
816}
817
818SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
819  // The vector type is legal but the element type is not.  This implies
820  // that the vector is a power-of-two in length and that the element
821  // type does not have a strange size (eg: it is not i1).
822  EVT VecVT = N->getValueType(0);
823  unsigned NumElts = VecVT.getVectorNumElements();
824  assert(!(NumElts & 1) && "Legal vector of one illegal element?");
825
826  // Promote the inserted value.  The type does not need to match the
827  // vector element type.  Check that any extra bits introduced will be
828  // truncated away.
829  assert(N->getOperand(0).getValueType().getSizeInBits() >=
830         N->getValueType(0).getVectorElementType().getSizeInBits() &&
831         "Type of inserted value narrower than vector element type!");
832
833  SmallVector<SDValue, 16> NewOps;
834  for (unsigned i = 0; i < NumElts; ++i)
835    NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
836
837  return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
838}
839
840SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
841  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
842  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
843           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
844           CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
845           "can only promote integer arguments");
846  SDValue InOp = GetPromotedInteger(N->getOperand(0));
847  return DAG.getConvertRndSat(N->getValueType(0), N->getDebugLoc(), InOp,
848                              N->getOperand(1), N->getOperand(2),
849                              N->getOperand(3), N->getOperand(4), CvtCode);
850}
851
852SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
853                                                         unsigned OpNo) {
854  if (OpNo == 1) {
855    // Promote the inserted value.  This is valid because the type does not
856    // have to match the vector element type.
857
858    // Check that any extra bits introduced will be truncated away.
859    assert(N->getOperand(1).getValueType().getSizeInBits() >=
860           N->getValueType(0).getVectorElementType().getSizeInBits() &&
861           "Type of inserted value narrower than vector element type!");
862    return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
863                                  GetPromotedInteger(N->getOperand(1)),
864                                  N->getOperand(2)),
865                   0);
866  }
867
868  assert(OpNo == 2 && "Different operand and result vector types?");
869
870  // Promote the index.
871  SDValue Idx = ZExtPromotedInteger(N->getOperand(2));
872  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
873                                N->getOperand(1), Idx), 0);
874}
875
876SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
877  SDValue NewOps[6];
878  DebugLoc dl = N->getDebugLoc();
879  NewOps[0] = N->getOperand(0);
880  for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
881    SDValue Flag = GetPromotedInteger(N->getOperand(i));
882    NewOps[i] = DAG.getZeroExtendInReg(Flag, dl, MVT::i1);
883  }
884  return SDValue(DAG.UpdateNodeOperands(N, NewOps, array_lengthof(NewOps)), 0);
885}
886
887SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
888  // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
889  // the operand in place.
890  return SDValue(DAG.UpdateNodeOperands(N,
891                                GetPromotedInteger(N->getOperand(0))), 0);
892}
893
894SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
895  assert(OpNo == 0 && "Only know how to promote condition");
896
897  // Promote all the way up to the canonical SetCC type.
898  EVT SVT = TLI.getSetCCResultType(N->getOperand(1).getValueType());
899  SDValue Cond = PromoteTargetBoolean(N->getOperand(0), SVT);
900
901  return SDValue(DAG.UpdateNodeOperands(N, Cond,
902                                N->getOperand(1), N->getOperand(2)), 0);
903}
904
905SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
906  assert(OpNo == 0 && "Don't know how to promote this operand!");
907
908  SDValue LHS = N->getOperand(0);
909  SDValue RHS = N->getOperand(1);
910  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
911
912  // The CC (#4) and the possible return values (#2 and #3) have legal types.
913  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
914                                N->getOperand(3), N->getOperand(4)), 0);
915}
916
917SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
918  assert(OpNo == 0 && "Don't know how to promote this operand!");
919
920  SDValue LHS = N->getOperand(0);
921  SDValue RHS = N->getOperand(1);
922  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
923
924  // The CC (#2) is always legal.
925  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
926}
927
928SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
929  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
930                                ZExtPromotedInteger(N->getOperand(1))), 0);
931}
932
933SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
934  SDValue Op = GetPromotedInteger(N->getOperand(0));
935  DebugLoc dl = N->getDebugLoc();
936  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
937  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
938                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
939}
940
941SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
942  return SDValue(DAG.UpdateNodeOperands(N,
943                                SExtPromotedInteger(N->getOperand(0))), 0);
944}
945
946SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
947  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
948  SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
949  unsigned Alignment = N->getAlignment();
950  bool isVolatile = N->isVolatile();
951  bool isNonTemporal = N->isNonTemporal();
952  DebugLoc dl = N->getDebugLoc();
953
954  SDValue Val = GetPromotedInteger(N->getValue());  // Get promoted value.
955
956  // Truncate the value and store the result.
957  return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
958                           N->getMemoryVT(),
959                           isVolatile, isNonTemporal, Alignment);
960}
961
962SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
963  SDValue Op = GetPromotedInteger(N->getOperand(0));
964  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), Op);
965}
966
967SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
968  return SDValue(DAG.UpdateNodeOperands(N,
969                                ZExtPromotedInteger(N->getOperand(0))), 0);
970}
971
972SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
973  DebugLoc dl = N->getDebugLoc();
974  SDValue Op = GetPromotedInteger(N->getOperand(0));
975  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
976  return DAG.getZeroExtendInReg(Op, dl,
977                                N->getOperand(0).getValueType().getScalarType());
978}
979
980
981//===----------------------------------------------------------------------===//
982//  Integer Result Expansion
983//===----------------------------------------------------------------------===//
984
985/// ExpandIntegerResult - This method is called when the specified result of the
986/// specified node is found to need expansion.  At this point, the node may also
987/// have invalid operands or may have other results that need promotion, we just
988/// know that (at least) one result needs expansion.
989void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
990  DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
991  SDValue Lo, Hi;
992  Lo = Hi = SDValue();
993
994  // See if the target wants to custom expand this node.
995  if (CustomLowerNode(N, N->getValueType(ResNo), true))
996    return;
997
998  switch (N->getOpcode()) {
999  default:
1000#ifndef NDEBUG
1001    dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1002    N->dump(&DAG); dbgs() << "\n";
1003#endif
1004    llvm_unreachable("Do not know how to expand the result of this operator!");
1005
1006  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
1007  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
1008  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
1009  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
1010
1011  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
1012  case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1013  case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1014  case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1015  case ISD::VAARG:              ExpandRes_VAARG(N, Lo, Hi); break;
1016
1017  case ISD::ANY_EXTEND:  ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1018  case ISD::AssertSext:  ExpandIntRes_AssertSext(N, Lo, Hi); break;
1019  case ISD::AssertZext:  ExpandIntRes_AssertZext(N, Lo, Hi); break;
1020  case ISD::BSWAP:       ExpandIntRes_BSWAP(N, Lo, Hi); break;
1021  case ISD::Constant:    ExpandIntRes_Constant(N, Lo, Hi); break;
1022  case ISD::CTLZ:        ExpandIntRes_CTLZ(N, Lo, Hi); break;
1023  case ISD::CTPOP:       ExpandIntRes_CTPOP(N, Lo, Hi); break;
1024  case ISD::CTTZ:        ExpandIntRes_CTTZ(N, Lo, Hi); break;
1025  case ISD::FP_TO_SINT:  ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1026  case ISD::FP_TO_UINT:  ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1027  case ISD::LOAD:        ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1028  case ISD::MUL:         ExpandIntRes_MUL(N, Lo, Hi); break;
1029  case ISD::SDIV:        ExpandIntRes_SDIV(N, Lo, Hi); break;
1030  case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1031  case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1032  case ISD::SREM:        ExpandIntRes_SREM(N, Lo, Hi); break;
1033  case ISD::TRUNCATE:    ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1034  case ISD::UDIV:        ExpandIntRes_UDIV(N, Lo, Hi); break;
1035  case ISD::UREM:        ExpandIntRes_UREM(N, Lo, Hi); break;
1036  case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1037
1038  case ISD::ATOMIC_LOAD_ADD:
1039  case ISD::ATOMIC_LOAD_SUB:
1040  case ISD::ATOMIC_LOAD_AND:
1041  case ISD::ATOMIC_LOAD_OR:
1042  case ISD::ATOMIC_LOAD_XOR:
1043  case ISD::ATOMIC_LOAD_NAND:
1044  case ISD::ATOMIC_LOAD_MIN:
1045  case ISD::ATOMIC_LOAD_MAX:
1046  case ISD::ATOMIC_LOAD_UMIN:
1047  case ISD::ATOMIC_LOAD_UMAX:
1048  case ISD::ATOMIC_SWAP: {
1049    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1050    SplitInteger(Tmp.first, Lo, Hi);
1051    ReplaceValueWith(SDValue(N, 1), Tmp.second);
1052    break;
1053  }
1054
1055  case ISD::AND:
1056  case ISD::OR:
1057  case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1058
1059  case ISD::ADD:
1060  case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1061
1062  case ISD::ADDC:
1063  case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1064
1065  case ISD::ADDE:
1066  case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1067
1068  case ISD::SHL:
1069  case ISD::SRA:
1070  case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1071
1072  case ISD::SADDO:
1073  case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1074  case ISD::UADDO:
1075  case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1076  case ISD::UMULO:
1077  case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1078  }
1079
1080  // If Lo/Hi is null, the sub-method took care of registering results etc.
1081  if (Lo.getNode())
1082    SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1083}
1084
1085/// Lower an atomic node to the appropriate builtin call.
1086std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1087  unsigned Opc = Node->getOpcode();
1088  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1089  RTLIB::Libcall LC;
1090
1091  switch (Opc) {
1092  default:
1093    llvm_unreachable("Unhandled atomic intrinsic Expand!");
1094    break;
1095  case ISD::ATOMIC_SWAP:
1096    switch (VT.SimpleTy) {
1097    default: llvm_unreachable("Unexpected value type for atomic!");
1098    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1099    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1100    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1101    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1102    }
1103    break;
1104  case ISD::ATOMIC_CMP_SWAP:
1105    switch (VT.SimpleTy) {
1106    default: llvm_unreachable("Unexpected value type for atomic!");
1107    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1108    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1109    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1110    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1111    }
1112    break;
1113  case ISD::ATOMIC_LOAD_ADD:
1114    switch (VT.SimpleTy) {
1115    default: llvm_unreachable("Unexpected value type for atomic!");
1116    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1117    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1118    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1119    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1120    }
1121    break;
1122  case ISD::ATOMIC_LOAD_SUB:
1123    switch (VT.SimpleTy) {
1124    default: llvm_unreachable("Unexpected value type for atomic!");
1125    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1126    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1127    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1128    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1129    }
1130    break;
1131  case ISD::ATOMIC_LOAD_AND:
1132    switch (VT.SimpleTy) {
1133    default: llvm_unreachable("Unexpected value type for atomic!");
1134    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1135    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1136    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1137    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1138    }
1139    break;
1140  case ISD::ATOMIC_LOAD_OR:
1141    switch (VT.SimpleTy) {
1142    default: llvm_unreachable("Unexpected value type for atomic!");
1143    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1144    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1145    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1146    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1147    }
1148    break;
1149  case ISD::ATOMIC_LOAD_XOR:
1150    switch (VT.SimpleTy) {
1151    default: llvm_unreachable("Unexpected value type for atomic!");
1152    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1153    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1154    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1155    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1156    }
1157    break;
1158  case ISD::ATOMIC_LOAD_NAND:
1159    switch (VT.SimpleTy) {
1160    default: llvm_unreachable("Unexpected value type for atomic!");
1161    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1162    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1163    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1164    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1165    }
1166    break;
1167  }
1168
1169  return ExpandChainLibCall(LC, Node, false);
1170}
1171
1172/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1173/// and the shift amount is a constant 'Amt'.  Expand the operation.
1174void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1175                                             SDValue &Lo, SDValue &Hi) {
1176  DebugLoc DL = N->getDebugLoc();
1177  // Expand the incoming operand to be shifted, so that we have its parts
1178  SDValue InL, InH;
1179  GetExpandedInteger(N->getOperand(0), InL, InH);
1180
1181  EVT NVT = InL.getValueType();
1182  unsigned VTBits = N->getValueType(0).getSizeInBits();
1183  unsigned NVTBits = NVT.getSizeInBits();
1184  EVT ShTy = N->getOperand(1).getValueType();
1185
1186  if (N->getOpcode() == ISD::SHL) {
1187    if (Amt > VTBits) {
1188      Lo = Hi = DAG.getConstant(0, NVT);
1189    } else if (Amt > NVTBits) {
1190      Lo = DAG.getConstant(0, NVT);
1191      Hi = DAG.getNode(ISD::SHL, DL,
1192                       NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1193    } else if (Amt == NVTBits) {
1194      Lo = DAG.getConstant(0, NVT);
1195      Hi = InL;
1196    } else if (Amt == 1 &&
1197               TLI.isOperationLegalOrCustom(ISD::ADDC,
1198                              TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1199      // Emit this X << 1 as X+X.
1200      SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1201      SDValue LoOps[2] = { InL, InL };
1202      Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1203      SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1204      Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1205    } else {
1206      Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1207      Hi = DAG.getNode(ISD::OR, DL, NVT,
1208                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1209                                   DAG.getConstant(Amt, ShTy)),
1210                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1211                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1212    }
1213    return;
1214  }
1215
1216  if (N->getOpcode() == ISD::SRL) {
1217    if (Amt > VTBits) {
1218      Lo = DAG.getConstant(0, NVT);
1219      Hi = DAG.getConstant(0, NVT);
1220    } else if (Amt > NVTBits) {
1221      Lo = DAG.getNode(ISD::SRL, DL,
1222                       NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1223      Hi = DAG.getConstant(0, NVT);
1224    } else if (Amt == NVTBits) {
1225      Lo = InH;
1226      Hi = DAG.getConstant(0, NVT);
1227    } else {
1228      Lo = DAG.getNode(ISD::OR, DL, NVT,
1229                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1230                                   DAG.getConstant(Amt, ShTy)),
1231                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1232                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1233      Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1234    }
1235    return;
1236  }
1237
1238  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1239  if (Amt > VTBits) {
1240    Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1241                          DAG.getConstant(NVTBits-1, ShTy));
1242  } else if (Amt > NVTBits) {
1243    Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1244                     DAG.getConstant(Amt-NVTBits, ShTy));
1245    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1246                     DAG.getConstant(NVTBits-1, ShTy));
1247  } else if (Amt == NVTBits) {
1248    Lo = InH;
1249    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1250                     DAG.getConstant(NVTBits-1, ShTy));
1251  } else {
1252    Lo = DAG.getNode(ISD::OR, DL, NVT,
1253                     DAG.getNode(ISD::SRL, DL, NVT, InL,
1254                                 DAG.getConstant(Amt, ShTy)),
1255                     DAG.getNode(ISD::SHL, DL, NVT, InH,
1256                                 DAG.getConstant(NVTBits-Amt, ShTy)));
1257    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1258  }
1259}
1260
1261/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1262/// this shift based on knowledge of the high bit of the shift amount.  If we
1263/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1264/// shift amount.
1265bool DAGTypeLegalizer::
1266ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1267  SDValue Amt = N->getOperand(1);
1268  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1269  EVT ShTy = Amt.getValueType();
1270  unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1271  unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1272  assert(isPowerOf2_32(NVTBits) &&
1273         "Expanded integer type size not a power of two!");
1274  DebugLoc dl = N->getDebugLoc();
1275
1276  APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1277  APInt KnownZero, KnownOne;
1278  DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
1279
1280  // If we don't know anything about the high bits, exit.
1281  if (((KnownZero|KnownOne) & HighBitMask) == 0)
1282    return false;
1283
1284  // Get the incoming operand to be shifted.
1285  SDValue InL, InH;
1286  GetExpandedInteger(N->getOperand(0), InL, InH);
1287
1288  // If we know that any of the high bits of the shift amount are one, then we
1289  // can do this as a couple of simple shifts.
1290  if (KnownOne.intersects(HighBitMask)) {
1291    // Mask out the high bit, which we know is set.
1292    Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1293                      DAG.getConstant(~HighBitMask, ShTy));
1294
1295    switch (N->getOpcode()) {
1296    default: llvm_unreachable("Unknown shift");
1297    case ISD::SHL:
1298      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
1299      Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1300      return true;
1301    case ISD::SRL:
1302      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
1303      Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1304      return true;
1305    case ISD::SRA:
1306      Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part.
1307                       DAG.getConstant(NVTBits-1, ShTy));
1308      Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1309      return true;
1310    }
1311  }
1312
1313#if 0
1314  // FIXME: This code is broken for shifts with a zero amount!
1315  // If we know that all of the high bits of the shift amount are zero, then we
1316  // can do this as a couple of simple shifts.
1317  if ((KnownZero & HighBitMask) == HighBitMask) {
1318    // Compute 32-amt.
1319    SDValue Amt2 = DAG.getNode(ISD::SUB, ShTy,
1320                                 DAG.getConstant(NVTBits, ShTy),
1321                                 Amt);
1322    unsigned Op1, Op2;
1323    switch (N->getOpcode()) {
1324    default: llvm_unreachable("Unknown shift");
1325    case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1326    case ISD::SRL:
1327    case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1328    }
1329
1330    Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
1331    Hi = DAG.getNode(ISD::OR, NVT,
1332                     DAG.getNode(Op1, NVT, InH, Amt),
1333                     DAG.getNode(Op2, NVT, InL, Amt2));
1334    return true;
1335  }
1336#endif
1337
1338  return false;
1339}
1340
1341/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1342/// of any size.
1343bool DAGTypeLegalizer::
1344ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1345  SDValue Amt = N->getOperand(1);
1346  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1347  EVT ShTy = Amt.getValueType();
1348  unsigned NVTBits = NVT.getSizeInBits();
1349  assert(isPowerOf2_32(NVTBits) &&
1350         "Expanded integer type size not a power of two!");
1351  DebugLoc dl = N->getDebugLoc();
1352
1353  // Get the incoming operand to be shifted.
1354  SDValue InL, InH;
1355  GetExpandedInteger(N->getOperand(0), InL, InH);
1356
1357  SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1358  SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1359  SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1360  SDValue isShort = DAG.getSetCC(dl, TLI.getSetCCResultType(ShTy),
1361                                 Amt, NVBitsNode, ISD::SETULT);
1362
1363  SDValue LoS, HiS, LoL, HiL;
1364  switch (N->getOpcode()) {
1365  default: llvm_unreachable("Unknown shift");
1366  case ISD::SHL:
1367    // Short: ShAmt < NVTBits
1368    LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1369    HiS = DAG.getNode(ISD::OR, dl, NVT,
1370                      DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1371    // FIXME: If Amt is zero, the following shift generates an undefined result
1372    // on some architectures.
1373                      DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1374
1375    // Long: ShAmt >= NVTBits
1376    LoL = DAG.getConstant(0, NVT);                        // Lo part is zero.
1377    HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1378
1379    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1380    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1381    return true;
1382  case ISD::SRL:
1383    // Short: ShAmt < NVTBits
1384    HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1385    LoS = DAG.getNode(ISD::OR, dl, NVT,
1386                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1387    // FIXME: If Amt is zero, the following shift generates an undefined result
1388    // on some architectures.
1389                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1390
1391    // Long: ShAmt >= NVTBits
1392    HiL = DAG.getConstant(0, NVT);                        // Hi part is zero.
1393    LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1394
1395    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1396    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1397    return true;
1398  case ISD::SRA:
1399    // Short: ShAmt < NVTBits
1400    HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1401    LoS = DAG.getNode(ISD::OR, dl, NVT,
1402                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1403    // FIXME: If Amt is zero, the following shift generates an undefined result
1404    // on some architectures.
1405                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1406
1407    // Long: ShAmt >= NVTBits
1408    HiL = DAG.getNode(ISD::SRA, dl, NVT, InH,             // Sign of Hi part.
1409                      DAG.getConstant(NVTBits-1, ShTy));
1410    LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1411
1412    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1413    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1414    return true;
1415  }
1416
1417  return false;
1418}
1419
1420void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1421                                           SDValue &Lo, SDValue &Hi) {
1422  DebugLoc dl = N->getDebugLoc();
1423  // Expand the subcomponents.
1424  SDValue LHSL, LHSH, RHSL, RHSH;
1425  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1426  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1427
1428  EVT NVT = LHSL.getValueType();
1429  SDValue LoOps[2] = { LHSL, RHSL };
1430  SDValue HiOps[3] = { LHSH, RHSH };
1431
1432  // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1433  // them.  TODO: Teach operation legalization how to expand unsupported
1434  // ADDC/ADDE/SUBC/SUBE.  The problem is that these operations generate
1435  // a carry of type MVT::Glue, but there doesn't seem to be any way to
1436  // generate a value of this type in the expanded code sequence.
1437  bool hasCarry =
1438    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1439                                   ISD::ADDC : ISD::SUBC,
1440                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1441
1442  if (hasCarry) {
1443    SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1444    if (N->getOpcode() == ISD::ADD) {
1445      Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1446      HiOps[2] = Lo.getValue(1);
1447      Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1448    } else {
1449      Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1450      HiOps[2] = Lo.getValue(1);
1451      Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1452    }
1453    return;
1454  }
1455
1456  if (N->getOpcode() == ISD::ADD) {
1457    Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1458    Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1459    SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[0],
1460                                ISD::SETULT);
1461    SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
1462                                 DAG.getConstant(1, NVT),
1463                                 DAG.getConstant(0, NVT));
1464    SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[1],
1465                                ISD::SETULT);
1466    SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
1467                                 DAG.getConstant(1, NVT), Carry1);
1468    Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1469  } else {
1470    Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1471    Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1472    SDValue Cmp =
1473      DAG.getSetCC(dl, TLI.getSetCCResultType(LoOps[0].getValueType()),
1474                   LoOps[0], LoOps[1], ISD::SETULT);
1475    SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
1476                                 DAG.getConstant(1, NVT),
1477                                 DAG.getConstant(0, NVT));
1478    Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1479  }
1480}
1481
1482void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1483                                            SDValue &Lo, SDValue &Hi) {
1484  // Expand the subcomponents.
1485  SDValue LHSL, LHSH, RHSL, RHSH;
1486  DebugLoc dl = N->getDebugLoc();
1487  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1488  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1489  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1490  SDValue LoOps[2] = { LHSL, RHSL };
1491  SDValue HiOps[3] = { LHSH, RHSH };
1492
1493  if (N->getOpcode() == ISD::ADDC) {
1494    Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1495    HiOps[2] = Lo.getValue(1);
1496    Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1497  } else {
1498    Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1499    HiOps[2] = Lo.getValue(1);
1500    Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1501  }
1502
1503  // Legalized the flag result - switch anything that used the old flag to
1504  // use the new one.
1505  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1506}
1507
1508void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1509                                            SDValue &Lo, SDValue &Hi) {
1510  // Expand the subcomponents.
1511  SDValue LHSL, LHSH, RHSL, RHSH;
1512  DebugLoc dl = N->getDebugLoc();
1513  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1514  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1515  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1516  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1517  SDValue HiOps[3] = { LHSH, RHSH };
1518
1519  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1520  HiOps[2] = Lo.getValue(1);
1521  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1522
1523  // Legalized the flag result - switch anything that used the old flag to
1524  // use the new one.
1525  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1526}
1527
1528void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1529                                               SDValue &Lo, SDValue &Hi) {
1530  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1531  DebugLoc dl = N->getDebugLoc();
1532  SDValue Op = N->getOperand(0);
1533  if (Op.getValueType().bitsLE(NVT)) {
1534    // The low part is any extension of the input (which degenerates to a copy).
1535    Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1536    Hi = DAG.getUNDEF(NVT);   // The high part is undefined.
1537  } else {
1538    // For example, extension of an i48 to an i64.  The operand type necessarily
1539    // promotes to the result type, so will end up being expanded too.
1540    assert(getTypeAction(Op.getValueType()) ==
1541           TargetLowering::TypePromoteInteger &&
1542           "Only know how to promote this result!");
1543    SDValue Res = GetPromotedInteger(Op);
1544    assert(Res.getValueType() == N->getValueType(0) &&
1545           "Operand over promoted?");
1546    // Split the promoted operand.  This will simplify when it is expanded.
1547    SplitInteger(Res, Lo, Hi);
1548  }
1549}
1550
1551void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1552                                               SDValue &Lo, SDValue &Hi) {
1553  DebugLoc dl = N->getDebugLoc();
1554  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1555  EVT NVT = Lo.getValueType();
1556  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1557  unsigned NVTBits = NVT.getSizeInBits();
1558  unsigned EVTBits = EVT.getSizeInBits();
1559
1560  if (NVTBits < EVTBits) {
1561    Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1562                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1563                                                        EVTBits - NVTBits)));
1564  } else {
1565    Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1566    // The high part replicates the sign bit of Lo, make it explicit.
1567    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1568                     DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1569  }
1570}
1571
1572void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1573                                               SDValue &Lo, SDValue &Hi) {
1574  DebugLoc dl = N->getDebugLoc();
1575  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1576  EVT NVT = Lo.getValueType();
1577  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1578  unsigned NVTBits = NVT.getSizeInBits();
1579  unsigned EVTBits = EVT.getSizeInBits();
1580
1581  if (NVTBits < EVTBits) {
1582    Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1583                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1584                                                        EVTBits - NVTBits)));
1585  } else {
1586    Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1587    // The high part must be zero, make it explicit.
1588    Hi = DAG.getConstant(0, NVT);
1589  }
1590}
1591
1592void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1593                                          SDValue &Lo, SDValue &Hi) {
1594  DebugLoc dl = N->getDebugLoc();
1595  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
1596  Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1597  Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1598}
1599
1600void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1601                                             SDValue &Lo, SDValue &Hi) {
1602  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1603  unsigned NBitWidth = NVT.getSizeInBits();
1604  const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1605  Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1606  Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1607}
1608
1609void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1610                                         SDValue &Lo, SDValue &Hi) {
1611  DebugLoc dl = N->getDebugLoc();
1612  // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1613  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1614  EVT NVT = Lo.getValueType();
1615
1616  SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
1617                                   DAG.getConstant(0, NVT), ISD::SETNE);
1618
1619  SDValue LoLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Lo);
1620  SDValue HiLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi);
1621
1622  Lo = DAG.getNode(ISD::SELECT, dl, NVT, HiNotZero, HiLZ,
1623                   DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1624                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1625  Hi = DAG.getConstant(0, NVT);
1626}
1627
1628void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1629                                          SDValue &Lo, SDValue &Hi) {
1630  DebugLoc dl = N->getDebugLoc();
1631  // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1632  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1633  EVT NVT = Lo.getValueType();
1634  Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1635                   DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1636  Hi = DAG.getConstant(0, NVT);
1637}
1638
1639void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1640                                         SDValue &Lo, SDValue &Hi) {
1641  DebugLoc dl = N->getDebugLoc();
1642  // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1643  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1644  EVT NVT = Lo.getValueType();
1645
1646  SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
1647                                   DAG.getConstant(0, NVT), ISD::SETNE);
1648
1649  SDValue LoLZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo);
1650  SDValue HiLZ = DAG.getNode(ISD::CTTZ, dl, NVT, Hi);
1651
1652  Lo = DAG.getNode(ISD::SELECT, dl, NVT, LoNotZero, LoLZ,
1653                   DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1654                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1655  Hi = DAG.getConstant(0, NVT);
1656}
1657
1658void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1659                                               SDValue &Hi) {
1660  DebugLoc dl = N->getDebugLoc();
1661  EVT VT = N->getValueType(0);
1662  SDValue Op = N->getOperand(0);
1663  RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1664  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1665  SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*irrelevant*/, dl), Lo, Hi);
1666}
1667
1668void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1669                                               SDValue &Hi) {
1670  DebugLoc dl = N->getDebugLoc();
1671  EVT VT = N->getValueType(0);
1672  SDValue Op = N->getOperand(0);
1673  RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1674  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1675  SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*irrelevant*/, dl), Lo, Hi);
1676}
1677
1678void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1679                                         SDValue &Lo, SDValue &Hi) {
1680  if (ISD::isNormalLoad(N)) {
1681    ExpandRes_NormalLoad(N, Lo, Hi);
1682    return;
1683  }
1684
1685  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1686
1687  EVT VT = N->getValueType(0);
1688  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1689  SDValue Ch  = N->getChain();
1690  SDValue Ptr = N->getBasePtr();
1691  ISD::LoadExtType ExtType = N->getExtensionType();
1692  unsigned Alignment = N->getAlignment();
1693  bool isVolatile = N->isVolatile();
1694  bool isNonTemporal = N->isNonTemporal();
1695  DebugLoc dl = N->getDebugLoc();
1696
1697  assert(NVT.isByteSized() && "Expanded type not byte sized!");
1698
1699  if (N->getMemoryVT().bitsLE(NVT)) {
1700    EVT MemVT = N->getMemoryVT();
1701
1702    Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1703                        MemVT, isVolatile, isNonTemporal, Alignment);
1704
1705    // Remember the chain.
1706    Ch = Lo.getValue(1);
1707
1708    if (ExtType == ISD::SEXTLOAD) {
1709      // The high part is obtained by SRA'ing all but one of the bits of the
1710      // lo part.
1711      unsigned LoSize = Lo.getValueType().getSizeInBits();
1712      Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1713                       DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1714    } else if (ExtType == ISD::ZEXTLOAD) {
1715      // The high part is just a zero.
1716      Hi = DAG.getConstant(0, NVT);
1717    } else {
1718      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1719      // The high part is undefined.
1720      Hi = DAG.getUNDEF(NVT);
1721    }
1722  } else if (TLI.isLittleEndian()) {
1723    // Little-endian - low bits are at low addresses.
1724    Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1725                     isVolatile, isNonTemporal, Alignment);
1726
1727    unsigned ExcessBits =
1728      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1729    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1730
1731    // Increment the pointer to the other half.
1732    unsigned IncrementSize = NVT.getSizeInBits()/8;
1733    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1734                      DAG.getIntPtrConstant(IncrementSize));
1735    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1736                        N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1737                        isVolatile, isNonTemporal,
1738                        MinAlign(Alignment, IncrementSize));
1739
1740    // Build a factor node to remember that this load is independent of the
1741    // other one.
1742    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1743                     Hi.getValue(1));
1744  } else {
1745    // Big-endian - high bits are at low addresses.  Favor aligned loads at
1746    // the cost of some bit-fiddling.
1747    EVT MemVT = N->getMemoryVT();
1748    unsigned EBytes = MemVT.getStoreSize();
1749    unsigned IncrementSize = NVT.getSizeInBits()/8;
1750    unsigned ExcessBits = (EBytes - IncrementSize)*8;
1751
1752    // Load both the high bits and maybe some of the low bits.
1753    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1754                        EVT::getIntegerVT(*DAG.getContext(),
1755                                          MemVT.getSizeInBits() - ExcessBits),
1756                        isVolatile, isNonTemporal, Alignment);
1757
1758    // Increment the pointer to the other half.
1759    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1760                      DAG.getIntPtrConstant(IncrementSize));
1761    // Load the rest of the low bits.
1762    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1763                        N->getPointerInfo().getWithOffset(IncrementSize),
1764                        EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1765                        isVolatile, isNonTemporal,
1766                        MinAlign(Alignment, IncrementSize));
1767
1768    // Build a factor node to remember that this load is independent of the
1769    // other one.
1770    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1771                     Hi.getValue(1));
1772
1773    if (ExcessBits < NVT.getSizeInBits()) {
1774      // Transfer low bits from the bottom of Hi to the top of Lo.
1775      Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1776                       DAG.getNode(ISD::SHL, dl, NVT, Hi,
1777                                   DAG.getConstant(ExcessBits,
1778                                                   TLI.getPointerTy())));
1779      // Move high bits to the right position in Hi.
1780      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1781                       NVT, Hi,
1782                       DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1783                                       TLI.getPointerTy()));
1784    }
1785  }
1786
1787  // Legalized the chain result - switch anything that used the old chain to
1788  // use the new one.
1789  ReplaceValueWith(SDValue(N, 1), Ch);
1790}
1791
1792void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1793                                            SDValue &Lo, SDValue &Hi) {
1794  DebugLoc dl = N->getDebugLoc();
1795  SDValue LL, LH, RL, RH;
1796  GetExpandedInteger(N->getOperand(0), LL, LH);
1797  GetExpandedInteger(N->getOperand(1), RL, RH);
1798  Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1799  Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1800}
1801
1802void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1803                                        SDValue &Lo, SDValue &Hi) {
1804  EVT VT = N->getValueType(0);
1805  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1806  DebugLoc dl = N->getDebugLoc();
1807
1808  bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1809  bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1810  bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1811  bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1812  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1813    SDValue LL, LH, RL, RH;
1814    GetExpandedInteger(N->getOperand(0), LL, LH);
1815    GetExpandedInteger(N->getOperand(1), RL, RH);
1816    unsigned OuterBitSize = VT.getSizeInBits();
1817    unsigned InnerBitSize = NVT.getSizeInBits();
1818    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1819    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1820
1821    APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1822    if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1823        DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1824      // The inputs are both zero-extended.
1825      if (HasUMUL_LOHI) {
1826        // We can emit a umul_lohi.
1827        Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1828        Hi = SDValue(Lo.getNode(), 1);
1829        return;
1830      }
1831      if (HasMULHU) {
1832        // We can emit a mulhu+mul.
1833        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1834        Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1835        return;
1836      }
1837    }
1838    if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1839      // The input values are both sign-extended.
1840      if (HasSMUL_LOHI) {
1841        // We can emit a smul_lohi.
1842        Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1843        Hi = SDValue(Lo.getNode(), 1);
1844        return;
1845      }
1846      if (HasMULHS) {
1847        // We can emit a mulhs+mul.
1848        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1849        Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1850        return;
1851      }
1852    }
1853    if (HasUMUL_LOHI) {
1854      // Lo,Hi = umul LHS, RHS.
1855      SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1856                                       DAG.getVTList(NVT, NVT), LL, RL);
1857      Lo = UMulLOHI;
1858      Hi = UMulLOHI.getValue(1);
1859      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1860      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1861      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1862      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1863      return;
1864    }
1865    if (HasMULHU) {
1866      Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1867      Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1868      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1869      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1870      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1871      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1872      return;
1873    }
1874  }
1875
1876  // If nothing else, we can make a libcall.
1877  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1878  if (VT == MVT::i16)
1879    LC = RTLIB::MUL_I16;
1880  else if (VT == MVT::i32)
1881    LC = RTLIB::MUL_I32;
1882  else if (VT == MVT::i64)
1883    LC = RTLIB::MUL_I64;
1884  else if (VT == MVT::i128)
1885    LC = RTLIB::MUL_I128;
1886  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1887
1888  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1889  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*irrelevant*/, dl), Lo, Hi);
1890}
1891
1892void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
1893                                             SDValue &Lo, SDValue &Hi) {
1894  SDValue LHS = Node->getOperand(0);
1895  SDValue RHS = Node->getOperand(1);
1896  DebugLoc dl = Node->getDebugLoc();
1897
1898  // Expand the result by simply replacing it with the equivalent
1899  // non-overflow-checking operation.
1900  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
1901                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
1902                            LHS, RHS);
1903  SplitInteger(Sum, Lo, Hi);
1904
1905  // Compute the overflow.
1906  //
1907  //   LHSSign -> LHS >= 0
1908  //   RHSSign -> RHS >= 0
1909  //   SumSign -> Sum >= 0
1910  //
1911  //   Add:
1912  //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1913  //   Sub:
1914  //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1915  //
1916  EVT OType = Node->getValueType(1);
1917  SDValue Zero = DAG.getConstant(0, LHS.getValueType());
1918
1919  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
1920  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
1921  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
1922                                    Node->getOpcode() == ISD::SADDO ?
1923                                    ISD::SETEQ : ISD::SETNE);
1924
1925  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
1926  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
1927
1928  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
1929
1930  // Use the calculated overflow everywhere.
1931  ReplaceValueWith(SDValue(Node, 1), Cmp);
1932}
1933
1934void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
1935                                         SDValue &Lo, SDValue &Hi) {
1936  EVT VT = N->getValueType(0);
1937  DebugLoc dl = N->getDebugLoc();
1938
1939  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1940  if (VT == MVT::i16)
1941    LC = RTLIB::SDIV_I16;
1942  else if (VT == MVT::i32)
1943    LC = RTLIB::SDIV_I32;
1944  else if (VT == MVT::i64)
1945    LC = RTLIB::SDIV_I64;
1946  else if (VT == MVT::i128)
1947    LC = RTLIB::SDIV_I128;
1948  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1949
1950  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1951  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
1952}
1953
1954void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
1955                                          SDValue &Lo, SDValue &Hi) {
1956  EVT VT = N->getValueType(0);
1957  DebugLoc dl = N->getDebugLoc();
1958
1959  // If we can emit an efficient shift operation, do so now.  Check to see if
1960  // the RHS is a constant.
1961  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1962    return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
1963
1964  // If we can determine that the high bit of the shift is zero or one, even if
1965  // the low bits are variable, emit this shift in an optimized form.
1966  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
1967    return;
1968
1969  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
1970  unsigned PartsOpc;
1971  if (N->getOpcode() == ISD::SHL) {
1972    PartsOpc = ISD::SHL_PARTS;
1973  } else if (N->getOpcode() == ISD::SRL) {
1974    PartsOpc = ISD::SRL_PARTS;
1975  } else {
1976    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1977    PartsOpc = ISD::SRA_PARTS;
1978  }
1979
1980  // Next check to see if the target supports this SHL_PARTS operation or if it
1981  // will custom expand it.
1982  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1983  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
1984  if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
1985      Action == TargetLowering::Custom) {
1986    // Expand the subcomponents.
1987    SDValue LHSL, LHSH;
1988    GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1989
1990    SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) };
1991    EVT VT = LHSL.getValueType();
1992    Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
1993    Hi = Lo.getValue(1);
1994    return;
1995  }
1996
1997  // Otherwise, emit a libcall.
1998  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1999  bool isSigned;
2000  if (N->getOpcode() == ISD::SHL) {
2001    isSigned = false; /*sign irrelevant*/
2002    if (VT == MVT::i16)
2003      LC = RTLIB::SHL_I16;
2004    else if (VT == MVT::i32)
2005      LC = RTLIB::SHL_I32;
2006    else if (VT == MVT::i64)
2007      LC = RTLIB::SHL_I64;
2008    else if (VT == MVT::i128)
2009      LC = RTLIB::SHL_I128;
2010  } else if (N->getOpcode() == ISD::SRL) {
2011    isSigned = false;
2012    if (VT == MVT::i16)
2013      LC = RTLIB::SRL_I16;
2014    else if (VT == MVT::i32)
2015      LC = RTLIB::SRL_I32;
2016    else if (VT == MVT::i64)
2017      LC = RTLIB::SRL_I64;
2018    else if (VT == MVT::i128)
2019      LC = RTLIB::SRL_I128;
2020  } else {
2021    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2022    isSigned = true;
2023    if (VT == MVT::i16)
2024      LC = RTLIB::SRA_I16;
2025    else if (VT == MVT::i32)
2026      LC = RTLIB::SRA_I32;
2027    else if (VT == MVT::i64)
2028      LC = RTLIB::SRA_I64;
2029    else if (VT == MVT::i128)
2030      LC = RTLIB::SRA_I128;
2031  }
2032
2033  if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2034    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2035    SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
2036    return;
2037  }
2038
2039  if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2040    llvm_unreachable("Unsupported shift!");
2041}
2042
2043void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2044                                                SDValue &Lo, SDValue &Hi) {
2045  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2046  DebugLoc dl = N->getDebugLoc();
2047  SDValue Op = N->getOperand(0);
2048  if (Op.getValueType().bitsLE(NVT)) {
2049    // The low part is sign extension of the input (degenerates to a copy).
2050    Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2051    // The high part is obtained by SRA'ing all but one of the bits of low part.
2052    unsigned LoSize = NVT.getSizeInBits();
2053    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2054                     DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2055  } else {
2056    // For example, extension of an i48 to an i64.  The operand type necessarily
2057    // promotes to the result type, so will end up being expanded too.
2058    assert(getTypeAction(Op.getValueType()) ==
2059           TargetLowering::TypePromoteInteger &&
2060           "Only know how to promote this result!");
2061    SDValue Res = GetPromotedInteger(Op);
2062    assert(Res.getValueType() == N->getValueType(0) &&
2063           "Operand over promoted?");
2064    // Split the promoted operand.  This will simplify when it is expanded.
2065    SplitInteger(Res, Lo, Hi);
2066    unsigned ExcessBits =
2067      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2068    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2069                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2070                                                        ExcessBits)));
2071  }
2072}
2073
2074void DAGTypeLegalizer::
2075ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2076  DebugLoc dl = N->getDebugLoc();
2077  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2078  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2079
2080  if (EVT.bitsLE(Lo.getValueType())) {
2081    // sext_inreg the low part if needed.
2082    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2083                     N->getOperand(1));
2084
2085    // The high part gets the sign extension from the lo-part.  This handles
2086    // things like sextinreg V:i64 from i8.
2087    Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2088                     DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2089                                     TLI.getPointerTy()));
2090  } else {
2091    // For example, extension of an i48 to an i64.  Leave the low part alone,
2092    // sext_inreg the high part.
2093    unsigned ExcessBits =
2094      EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2095    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2096                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2097                                                        ExcessBits)));
2098  }
2099}
2100
2101void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2102                                         SDValue &Lo, SDValue &Hi) {
2103  EVT VT = N->getValueType(0);
2104  DebugLoc dl = N->getDebugLoc();
2105
2106  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2107  if (VT == MVT::i16)
2108    LC = RTLIB::SREM_I16;
2109  else if (VT == MVT::i32)
2110    LC = RTLIB::SREM_I32;
2111  else if (VT == MVT::i64)
2112    LC = RTLIB::SREM_I64;
2113  else if (VT == MVT::i128)
2114    LC = RTLIB::SREM_I128;
2115  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2116
2117  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2118  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2119}
2120
2121void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2122                                             SDValue &Lo, SDValue &Hi) {
2123  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2124  DebugLoc dl = N->getDebugLoc();
2125  Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2126  Hi = DAG.getNode(ISD::SRL, dl,
2127                   N->getOperand(0).getValueType(), N->getOperand(0),
2128                   DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2129  Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2130}
2131
2132void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2133                                             SDValue &Lo, SDValue &Hi) {
2134  SDValue LHS = N->getOperand(0);
2135  SDValue RHS = N->getOperand(1);
2136  DebugLoc dl = N->getDebugLoc();
2137
2138  // Expand the result by simply replacing it with the equivalent
2139  // non-overflow-checking operation.
2140  SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2141                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2142                            LHS, RHS);
2143  SplitInteger(Sum, Lo, Hi);
2144
2145  // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2146  // overflows iff a - b > a.
2147  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2148                             N->getOpcode () == ISD::UADDO ?
2149                             ISD::SETULT : ISD::SETUGT);
2150
2151  // Use the calculated overflow everywhere.
2152  ReplaceValueWith(SDValue(N, 1), Ofl);
2153}
2154
2155void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2156                                          SDValue &Lo, SDValue &Hi) {
2157  EVT VT = N->getValueType(0);
2158  const Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2159  EVT PtrVT = TLI.getPointerTy();
2160  const Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2161  DebugLoc dl = N->getDebugLoc();
2162
2163  // Replace this with a libcall that will check overflow.
2164  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2165  if (VT == MVT::i32)
2166    LC = RTLIB::MULO_I32;
2167  else if (VT == MVT::i64)
2168    LC = RTLIB::MULO_I64;
2169  else if (VT == MVT::i128)
2170    LC = RTLIB::MULO_I128;
2171  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2172
2173  SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2174  // Temporary for the overflow value, default it to zero.
2175  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2176			       DAG.getConstant(0, PtrVT), Temp,
2177			       MachinePointerInfo(), false, false, 0);
2178
2179  TargetLowering::ArgListTy Args;
2180  TargetLowering::ArgListEntry Entry;
2181  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2182    EVT ArgVT = N->getOperand(i).getValueType();
2183    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2184    Entry.Node = N->getOperand(i);
2185    Entry.Ty = ArgTy;
2186    Entry.isSExt = true;
2187    Entry.isZExt = false;
2188    Args.push_back(Entry);
2189  }
2190
2191  // Also pass the address of the overflow check.
2192  Entry.Node = Temp;
2193  Entry.Ty = PtrTy->getPointerTo();
2194  Entry.isSExt = true;
2195  Entry.isZExt = false;
2196  Args.push_back(Entry);
2197
2198  SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2199  std::pair<SDValue, SDValue> CallInfo =
2200    TLI.LowerCallTo(Chain, RetTy, true, false, false, false,
2201		    0, TLI.getLibcallCallingConv(LC), false,
2202		    true, Func, Args, DAG, dl);
2203
2204  SplitInteger(CallInfo.first, Lo, Hi);
2205  SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2206			      MachinePointerInfo(), false, false, 0);
2207  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2208                             DAG.getConstant(0, PtrVT),
2209                             ISD::SETNE);
2210  // Use the overflow from the libcall everywhere.
2211  ReplaceValueWith(SDValue(N, 1), Ofl);
2212}
2213
2214void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2215                                         SDValue &Lo, SDValue &Hi) {
2216  EVT VT = N->getValueType(0);
2217  DebugLoc dl = N->getDebugLoc();
2218
2219  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2220  if (VT == MVT::i16)
2221    LC = RTLIB::UDIV_I16;
2222  else if (VT == MVT::i32)
2223    LC = RTLIB::UDIV_I32;
2224  else if (VT == MVT::i64)
2225    LC = RTLIB::UDIV_I64;
2226  else if (VT == MVT::i128)
2227    LC = RTLIB::UDIV_I128;
2228  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2229
2230  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2231  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2232}
2233
2234void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2235                                         SDValue &Lo, SDValue &Hi) {
2236  EVT VT = N->getValueType(0);
2237  DebugLoc dl = N->getDebugLoc();
2238
2239  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2240  if (VT == MVT::i16)
2241    LC = RTLIB::UREM_I16;
2242  else if (VT == MVT::i32)
2243    LC = RTLIB::UREM_I32;
2244  else if (VT == MVT::i64)
2245    LC = RTLIB::UREM_I64;
2246  else if (VT == MVT::i128)
2247    LC = RTLIB::UREM_I128;
2248  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2249
2250  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2251  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2252}
2253
2254void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2255                                                SDValue &Lo, SDValue &Hi) {
2256  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2257  DebugLoc dl = N->getDebugLoc();
2258  SDValue Op = N->getOperand(0);
2259  if (Op.getValueType().bitsLE(NVT)) {
2260    // The low part is zero extension of the input (degenerates to a copy).
2261    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2262    Hi = DAG.getConstant(0, NVT);   // The high part is just a zero.
2263  } else {
2264    // For example, extension of an i48 to an i64.  The operand type necessarily
2265    // promotes to the result type, so will end up being expanded too.
2266    assert(getTypeAction(Op.getValueType()) ==
2267           TargetLowering::TypePromoteInteger &&
2268           "Only know how to promote this result!");
2269    SDValue Res = GetPromotedInteger(Op);
2270    assert(Res.getValueType() == N->getValueType(0) &&
2271           "Operand over promoted?");
2272    // Split the promoted operand.  This will simplify when it is expanded.
2273    SplitInteger(Res, Lo, Hi);
2274    unsigned ExcessBits =
2275      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2276    Hi = DAG.getZeroExtendInReg(Hi, dl,
2277                                EVT::getIntegerVT(*DAG.getContext(),
2278                                                  ExcessBits));
2279  }
2280}
2281
2282
2283//===----------------------------------------------------------------------===//
2284//  Integer Operand Expansion
2285//===----------------------------------------------------------------------===//
2286
2287/// ExpandIntegerOperand - This method is called when the specified operand of
2288/// the specified node is found to need expansion.  At this point, all of the
2289/// result types of the node are known to be legal, but other operands of the
2290/// node may need promotion or expansion as well as the specified one.
2291bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2292  DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2293  SDValue Res = SDValue();
2294
2295  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2296    return false;
2297
2298  switch (N->getOpcode()) {
2299  default:
2300  #ifndef NDEBUG
2301    dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2302    N->dump(&DAG); dbgs() << "\n";
2303  #endif
2304    llvm_unreachable("Do not know how to expand this operator's operand!");
2305
2306  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
2307  case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
2308  case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
2309  case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2310  case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2311  case ISD::SCALAR_TO_VECTOR:  Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2312  case ISD::SELECT_CC:         Res = ExpandIntOp_SELECT_CC(N); break;
2313  case ISD::SETCC:             Res = ExpandIntOp_SETCC(N); break;
2314  case ISD::SINT_TO_FP:        Res = ExpandIntOp_SINT_TO_FP(N); break;
2315  case ISD::STORE:   Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2316  case ISD::TRUNCATE:          Res = ExpandIntOp_TRUNCATE(N); break;
2317  case ISD::UINT_TO_FP:        Res = ExpandIntOp_UINT_TO_FP(N); break;
2318
2319  case ISD::SHL:
2320  case ISD::SRA:
2321  case ISD::SRL:
2322  case ISD::ROTL:
2323  case ISD::ROTR:              Res = ExpandIntOp_Shift(N); break;
2324  case ISD::RETURNADDR:
2325  case ISD::FRAMEADDR:         Res = ExpandIntOp_RETURNADDR(N); break;
2326  }
2327
2328  // If the result is null, the sub-method took care of registering results etc.
2329  if (!Res.getNode()) return false;
2330
2331  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2332  // core about this.
2333  if (Res.getNode() == N)
2334    return true;
2335
2336  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2337         "Invalid operand expansion");
2338
2339  ReplaceValueWith(SDValue(N, 0), Res);
2340  return false;
2341}
2342
2343/// IntegerExpandSetCCOperands - Expand the operands of a comparison.  This code
2344/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2345void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2346                                                  SDValue &NewRHS,
2347                                                  ISD::CondCode &CCCode,
2348                                                  DebugLoc dl) {
2349  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2350  GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2351  GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2352
2353  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2354    if (RHSLo == RHSHi) {
2355      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2356        if (RHSCST->isAllOnesValue()) {
2357          // Equality comparison to -1.
2358          NewLHS = DAG.getNode(ISD::AND, dl,
2359                               LHSLo.getValueType(), LHSLo, LHSHi);
2360          NewRHS = RHSLo;
2361          return;
2362        }
2363      }
2364    }
2365
2366    NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2367    NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2368    NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2369    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2370    return;
2371  }
2372
2373  // If this is a comparison of the sign bit, just look at the top part.
2374  // X > -1,  x < 0
2375  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2376    if ((CCCode == ISD::SETLT && CST->isNullValue()) ||     // X < 0
2377        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
2378      NewLHS = LHSHi;
2379      NewRHS = RHSHi;
2380      return;
2381    }
2382
2383  // FIXME: This generated code sucks.
2384  ISD::CondCode LowCC;
2385  switch (CCCode) {
2386  default: llvm_unreachable("Unknown integer setcc!");
2387  case ISD::SETLT:
2388  case ISD::SETULT: LowCC = ISD::SETULT; break;
2389  case ISD::SETGT:
2390  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2391  case ISD::SETLE:
2392  case ISD::SETULE: LowCC = ISD::SETULE; break;
2393  case ISD::SETGE:
2394  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2395  }
2396
2397  // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
2398  // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
2399  // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2400
2401  // NOTE: on targets without efficient SELECT of bools, we can always use
2402  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2403  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, true, NULL);
2404  SDValue Tmp1, Tmp2;
2405  Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
2406                           LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2407  if (!Tmp1.getNode())
2408    Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
2409                        LHSLo, RHSLo, LowCC);
2410  Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2411                           LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2412  if (!Tmp2.getNode())
2413    Tmp2 = DAG.getNode(ISD::SETCC, dl,
2414                       TLI.getSetCCResultType(LHSHi.getValueType()),
2415                       LHSHi, RHSHi, DAG.getCondCode(CCCode));
2416
2417  ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2418  ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2419  if ((Tmp1C && Tmp1C->isNullValue()) ||
2420      (Tmp2C && Tmp2C->isNullValue() &&
2421       (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2422        CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2423      (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2424       (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2425        CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2426    // low part is known false, returns high part.
2427    // For LE / GE, if high part is known false, ignore the low part.
2428    // For LT / GT, if high part is known true, ignore the low part.
2429    NewLHS = Tmp2;
2430    NewRHS = SDValue();
2431    return;
2432  }
2433
2434  NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2435                             LHSHi, RHSHi, ISD::SETEQ, false,
2436                             DagCombineInfo, dl);
2437  if (!NewLHS.getNode())
2438    NewLHS = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
2439                          LHSHi, RHSHi, ISD::SETEQ);
2440  NewLHS = DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
2441                       NewLHS, Tmp1, Tmp2);
2442  NewRHS = SDValue();
2443}
2444
2445SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2446  SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2447  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2448  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2449
2450  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2451  // against zero to select between true and false values.
2452  if (NewRHS.getNode() == 0) {
2453    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2454    CCCode = ISD::SETNE;
2455  }
2456
2457  // Update N to have the operands specified.
2458  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2459                                DAG.getCondCode(CCCode), NewLHS, NewRHS,
2460                                N->getOperand(4)), 0);
2461}
2462
2463SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2464  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2465  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2466  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2467
2468  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2469  // against zero to select between true and false values.
2470  if (NewRHS.getNode() == 0) {
2471    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2472    CCCode = ISD::SETNE;
2473  }
2474
2475  // Update N to have the operands specified.
2476  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2477                                N->getOperand(2), N->getOperand(3),
2478                                DAG.getCondCode(CCCode)), 0);
2479}
2480
2481SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2482  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2483  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2484  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2485
2486  // If ExpandSetCCOperands returned a scalar, use it.
2487  if (NewRHS.getNode() == 0) {
2488    assert(NewLHS.getValueType() == N->getValueType(0) &&
2489           "Unexpected setcc expansion!");
2490    return NewLHS;
2491  }
2492
2493  // Otherwise, update N to have the operands specified.
2494  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2495                                DAG.getCondCode(CCCode)), 0);
2496}
2497
2498SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2499  // The value being shifted is legal, but the shift amount is too big.
2500  // It follows that either the result of the shift is undefined, or the
2501  // upper half of the shift amount is zero.  Just use the lower half.
2502  SDValue Lo, Hi;
2503  GetExpandedInteger(N->getOperand(1), Lo, Hi);
2504  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2505}
2506
2507SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2508  // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant.  This
2509  // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2510  // constant to valid type.
2511  SDValue Lo, Hi;
2512  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2513  return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2514}
2515
2516SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2517  SDValue Op = N->getOperand(0);
2518  EVT DstVT = N->getValueType(0);
2519  RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2520  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2521         "Don't know how to expand this SINT_TO_FP!");
2522  return MakeLibCall(LC, DstVT, &Op, 1, true, N->getDebugLoc());
2523}
2524
2525SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2526  if (ISD::isNormalStore(N))
2527    return ExpandOp_NormalStore(N, OpNo);
2528
2529  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2530  assert(OpNo == 1 && "Can only expand the stored value so far");
2531
2532  EVT VT = N->getOperand(1).getValueType();
2533  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2534  SDValue Ch  = N->getChain();
2535  SDValue Ptr = N->getBasePtr();
2536  unsigned Alignment = N->getAlignment();
2537  bool isVolatile = N->isVolatile();
2538  bool isNonTemporal = N->isNonTemporal();
2539  DebugLoc dl = N->getDebugLoc();
2540  SDValue Lo, Hi;
2541
2542  assert(NVT.isByteSized() && "Expanded type not byte sized!");
2543
2544  if (N->getMemoryVT().bitsLE(NVT)) {
2545    GetExpandedInteger(N->getValue(), Lo, Hi);
2546    return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2547                             N->getMemoryVT(), isVolatile, isNonTemporal,
2548                             Alignment);
2549  }
2550
2551  if (TLI.isLittleEndian()) {
2552    // Little-endian - low bits are at low addresses.
2553    GetExpandedInteger(N->getValue(), Lo, Hi);
2554
2555    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2556                      isVolatile, isNonTemporal, Alignment);
2557
2558    unsigned ExcessBits =
2559      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2560    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2561
2562    // Increment the pointer to the other half.
2563    unsigned IncrementSize = NVT.getSizeInBits()/8;
2564    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2565                      DAG.getIntPtrConstant(IncrementSize));
2566    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2567                           N->getPointerInfo().getWithOffset(IncrementSize),
2568                           NEVT, isVolatile, isNonTemporal,
2569                           MinAlign(Alignment, IncrementSize));
2570    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2571  }
2572
2573  // Big-endian - high bits are at low addresses.  Favor aligned stores at
2574  // the cost of some bit-fiddling.
2575  GetExpandedInteger(N->getValue(), Lo, Hi);
2576
2577  EVT ExtVT = N->getMemoryVT();
2578  unsigned EBytes = ExtVT.getStoreSize();
2579  unsigned IncrementSize = NVT.getSizeInBits()/8;
2580  unsigned ExcessBits = (EBytes - IncrementSize)*8;
2581  EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2582                               ExtVT.getSizeInBits() - ExcessBits);
2583
2584  if (ExcessBits < NVT.getSizeInBits()) {
2585    // Transfer high bits from the top of Lo to the bottom of Hi.
2586    Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2587                     DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2588                                     TLI.getPointerTy()));
2589    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2590                     DAG.getNode(ISD::SRL, dl, NVT, Lo,
2591                                 DAG.getConstant(ExcessBits,
2592                                                 TLI.getPointerTy())));
2593  }
2594
2595  // Store both the high bits and maybe some of the low bits.
2596  Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2597                         HiVT, isVolatile, isNonTemporal, Alignment);
2598
2599  // Increment the pointer to the other half.
2600  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2601                    DAG.getIntPtrConstant(IncrementSize));
2602  // Store the lowest ExcessBits bits in the second half.
2603  Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2604                         N->getPointerInfo().getWithOffset(IncrementSize),
2605                         EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2606                         isVolatile, isNonTemporal,
2607                         MinAlign(Alignment, IncrementSize));
2608  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2609}
2610
2611SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2612  SDValue InL, InH;
2613  GetExpandedInteger(N->getOperand(0), InL, InH);
2614  // Just truncate the low part of the source.
2615  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
2616}
2617
2618static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
2619  switch (VT.getSimpleVT().SimpleTy) {
2620  default: llvm_unreachable("Unknown FP format");
2621  case MVT::f32:     return &APFloat::IEEEsingle;
2622  case MVT::f64:     return &APFloat::IEEEdouble;
2623  case MVT::f80:     return &APFloat::x87DoubleExtended;
2624  case MVT::f128:    return &APFloat::IEEEquad;
2625  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
2626  }
2627}
2628
2629SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2630  SDValue Op = N->getOperand(0);
2631  EVT SrcVT = Op.getValueType();
2632  EVT DstVT = N->getValueType(0);
2633  DebugLoc dl = N->getDebugLoc();
2634
2635  // The following optimization is valid only if every value in SrcVT (when
2636  // treated as signed) is representable in DstVT.  Check that the mantissa
2637  // size of DstVT is >= than the number of bits in SrcVT -1.
2638  const fltSemantics *sem = EVTToAPFloatSemantics(DstVT);
2639  if (APFloat::semanticsPrecision(*sem) >= SrcVT.getSizeInBits()-1 &&
2640      TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2641    // Do a signed conversion then adjust the result.
2642    SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2643    SignedConv = TLI.LowerOperation(SignedConv, DAG);
2644
2645    // The result of the signed conversion needs adjusting if the 'sign bit' of
2646    // the incoming integer was set.  To handle this, we dynamically test to see
2647    // if it is set, and, if so, add a fudge factor.
2648
2649    const uint64_t F32TwoE32  = 0x4F800000ULL;
2650    const uint64_t F32TwoE64  = 0x5F800000ULL;
2651    const uint64_t F32TwoE128 = 0x7F800000ULL;
2652
2653    APInt FF(32, 0);
2654    if (SrcVT == MVT::i32)
2655      FF = APInt(32, F32TwoE32);
2656    else if (SrcVT == MVT::i64)
2657      FF = APInt(32, F32TwoE64);
2658    else if (SrcVT == MVT::i128)
2659      FF = APInt(32, F32TwoE128);
2660    else
2661      assert(false && "Unsupported UINT_TO_FP!");
2662
2663    // Check whether the sign bit is set.
2664    SDValue Lo, Hi;
2665    GetExpandedInteger(Op, Lo, Hi);
2666    SDValue SignSet = DAG.getSetCC(dl,
2667                                   TLI.getSetCCResultType(Hi.getValueType()),
2668                                   Hi, DAG.getConstant(0, Hi.getValueType()),
2669                                   ISD::SETLT);
2670
2671    // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2672    SDValue FudgePtr = DAG.getConstantPool(
2673                               ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2674                                           TLI.getPointerTy());
2675
2676    // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2677    SDValue Zero = DAG.getIntPtrConstant(0);
2678    SDValue Four = DAG.getIntPtrConstant(4);
2679    if (TLI.isBigEndian()) std::swap(Zero, Four);
2680    SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
2681                                 Zero, Four);
2682    unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2683    FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
2684    Alignment = std::min(Alignment, 4u);
2685
2686    // Load the value out, extending it from f32 to the destination float type.
2687    // FIXME: Avoid the extend by constructing the right constant pool?
2688    SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2689                                   FudgePtr,
2690                                   MachinePointerInfo::getConstantPool(),
2691                                   MVT::f32,
2692                                   false, false, Alignment);
2693    return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2694  }
2695
2696  // Otherwise, use a libcall.
2697  RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2698  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2699         "Don't know how to expand this UINT_TO_FP!");
2700  return MakeLibCall(LC, DstVT, &Op, 1, true, dl);
2701}
2702
2703SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2704  SDValue InOp0 = N->getOperand(0);
2705  EVT InVT = InOp0.getValueType();
2706  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
2707
2708  EVT OutVT = N->getValueType(0);
2709  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2710  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2711  unsigned OutNumElems = N->getValueType(0).getVectorNumElements();
2712  EVT NOutVTElem = NOutVT.getVectorElementType();
2713
2714  DebugLoc dl = N->getDebugLoc();
2715  SDValue BaseIdx = N->getOperand(1);
2716
2717  SmallVector<SDValue, 8> Ops;
2718  for (unsigned i = 0; i != OutNumElems; ++i) {
2719
2720    // Extract the element from the original vector.
2721    SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2722      BaseIdx, DAG.getIntPtrConstant(i));
2723    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2724      InVT.getVectorElementType(), N->getOperand(0), Index);
2725
2726    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2727    // Insert the converted element to the new vector.
2728    Ops.push_back(Op);
2729  }
2730
2731  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2732}
2733
2734
2735SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2736
2737  ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2738  EVT VT = N->getValueType(0);
2739  DebugLoc dl = N->getDebugLoc();
2740
2741  unsigned NumElts = VT.getVectorNumElements();
2742  SmallVector<int, 8> NewMask;
2743  for (unsigned i = 0; i != NumElts; ++i) {
2744    NewMask.push_back(SV->getMaskElt(i));
2745  }
2746
2747  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2748  SDValue V1 = GetPromotedInteger(N->getOperand(1));
2749  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2750
2751  return DAG.getVectorShuffle(OutVT, dl, V0,V1, &NewMask[0]);
2752}
2753
2754
2755SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2756
2757  SDValue InOp0 = N->getOperand(0);
2758  EVT InVT = InOp0.getValueType();
2759  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
2760
2761  EVT OutVT = N->getValueType(0);
2762  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2763  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2764  unsigned NumElems = N->getNumOperands();
2765  EVT NOutVTElem = NOutVT.getVectorElementType();
2766
2767  DebugLoc dl = N->getDebugLoc();
2768
2769  SmallVector<SDValue, 8> Ops;
2770  for (unsigned i = 0; i != NumElems; ++i) {
2771    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2772    Ops.push_back(Op);
2773  }
2774
2775  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2776}
2777
2778SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2779
2780  DebugLoc dl = N->getDebugLoc();
2781
2782  SDValue InOp0 = N->getOperand(0);
2783  EVT InVT = InOp0.getValueType();
2784  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
2785  assert(!InVT.isVector() && "Input must not be a scalar");
2786
2787  EVT OutVT = N->getValueType(0);
2788  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2789  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2790  EVT NOutVTElem = NOutVT.getVectorElementType();
2791
2792  SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2793
2794  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2795}
2796
2797SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
2798
2799  SDValue InOp0 = N->getOperand(0);
2800  EVT InVT = InOp0.getValueType();
2801  EVT InElVT = InVT.getVectorElementType();
2802  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
2803
2804  EVT OutVT = N->getValueType(0);
2805  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2806  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2807
2808  EVT NOutVTElem = NOutVT.getVectorElementType();
2809
2810  DebugLoc dl = N->getDebugLoc();
2811
2812  SDValue ConvertedVector = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, InOp0);
2813
2814  SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
2815    NOutVTElem, N->getOperand(1));
2816  return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,NOutVT,
2817    ConvertedVector, ConvElem, N->getOperand(2));
2818}
2819
2820SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2821  DebugLoc dl = N->getDebugLoc();
2822  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2823  SDValue V1 = N->getOperand(1);
2824  SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2825    V0->getValueType(0).getScalarType(), V0, V1);
2826
2827  return DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), Ext);
2828
2829}
2830
2831SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
2832
2833  DebugLoc dl = N->getDebugLoc();
2834
2835  EVT RetSclrTy = N->getValueType(0).getVectorElementType();
2836
2837  SmallVector<SDValue, 8> NewOps;
2838
2839  // For each incoming vector
2840  for (unsigned VecIdx = 0, E = N->getNumOperands(); VecIdx!= E; ++VecIdx) {
2841    SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
2842    EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
2843    unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
2844
2845    for (unsigned i=0; i<NumElem; ++i) {
2846      // Extract element from incoming vector
2847      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
2848      Incoming, DAG.getIntPtrConstant(i));
2849      SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
2850      NewOps.push_back(Tr);
2851    }
2852  }
2853
2854  return DAG.getNode(ISD::BUILD_VECTOR, dl,  N->getValueType(0),
2855    &NewOps[0], NewOps.size());
2856  }
2857