MCJIT.h revision f14bb8f5e664cda4cd720d638ad99cc635531442
1//===-- MCJIT.h - Class definition for the MCJIT ----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_H
11#define LLVM_LIB_EXECUTIONENGINE_MCJIT_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ExecutionEngine/ExecutionEngine.h"
16#include "llvm/ExecutionEngine/ObjectCache.h"
17#include "llvm/ExecutionEngine/ObjectImage.h"
18#include "llvm/ExecutionEngine/RuntimeDyld.h"
19#include "llvm/PassManager.h"
20
21namespace llvm {
22
23class MCJIT;
24
25// This is a helper class that the MCJIT execution engine uses for linking
26// functions across modules that it owns.  It aggregates the memory manager
27// that is passed in to the MCJIT constructor and defers most functionality
28// to that object.
29class LinkingMemoryManager : public RTDyldMemoryManager {
30public:
31  LinkingMemoryManager(MCJIT *Parent, RTDyldMemoryManager *MM)
32    : ParentEngine(Parent), ClientMM(MM) {}
33
34  virtual uint64_t getSymbolAddress(const std::string &Name);
35
36  // Functions deferred to client memory manager
37  virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
38                                       unsigned SectionID, StringRef SectionName) {
39    return ClientMM->allocateCodeSection(Size, Alignment, SectionID, SectionName);
40  }
41
42  virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
43                                       unsigned SectionID, StringRef SectionName,
44                                       bool IsReadOnly) {
45    return ClientMM->allocateDataSection(Size, Alignment,
46                                         SectionID, SectionName, IsReadOnly);
47  }
48
49  virtual void notifyObjectLoaded(ExecutionEngine *EE,
50                                  const ObjectImage *Obj) {
51    ClientMM->notifyObjectLoaded(EE, Obj);
52  }
53
54  virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) {
55    ClientMM->registerEHFrames(Addr, LoadAddr, Size);
56  }
57
58  virtual void deregisterEHFrames(uint8_t *Addr,
59                                  uint64_t LoadAddr,
60                                  size_t Size) {
61    ClientMM->deregisterEHFrames(Addr, LoadAddr, Size);
62  }
63
64  virtual bool finalizeMemory(std::string *ErrMsg = 0) {
65    return ClientMM->finalizeMemory(ErrMsg);
66  }
67
68private:
69  MCJIT *ParentEngine;
70  OwningPtr<RTDyldMemoryManager> ClientMM;
71};
72
73// FIXME: This makes all kinds of horrible assumptions for the time being,
74// like only having one module, not needing to worry about multi-threading,
75// blah blah. Purely in get-it-up-and-limping mode for now.
76
77// About Module states:
78//
79// The purpose of the "added" state is having modules in standby. (added=known
80// but not compiled). The idea is that you can add a module to provide function
81// definitions but if nothing in that module is referenced by a module in which
82// a function is executed (note the wording here because it�s not exactly the
83// ideal case) then the module never gets compiled. This is sort of lazy
84// compilation.
85//
86// The purpose of the "loaded" state (loaded=compiled and required sections
87// copied into local memory but not yet ready for execution) is to have an
88// intermediate state wherein clients can remap the addresses of sections, using
89// MCJIT::mapSectionAddress, (in preparation for later copying to a new location
90// or an external process) before relocations and page permissions are applied.
91//
92// It might not be obvious at first glance, but the "remote-mcjit" case in the
93// lli tool does this.  In that case, the intermediate action is taken by the
94// RemoteMemoryManager in response to the notifyObjectLoaded function being
95// called.
96
97class MCJIT : public ExecutionEngine {
98  MCJIT(Module *M, TargetMachine *tm, RTDyldMemoryManager *MemMgr,
99        bool AllocateGVsWithCode);
100
101  enum ModuleState {
102    ModuleAdded,
103    ModuleEmitted,
104    ModuleLoading,
105    ModuleLoaded,
106    ModuleFinalizing,
107    ModuleFinalized
108  };
109
110  class MCJITModuleState {
111  public:
112    MCJITModuleState() : State(ModuleAdded) {}
113
114    MCJITModuleState & operator=(ModuleState s) { State = s; return *this; }
115    bool hasBeenEmitted() { return State != ModuleAdded; }
116    bool hasBeenLoaded() { return State != ModuleAdded &&
117                                  State != ModuleEmitted; }
118    bool hasBeenFinalized() { return State == ModuleFinalized; }
119
120  private:
121    ModuleState State;
122  };
123
124  TargetMachine *TM;
125  MCContext *Ctx;
126  LinkingMemoryManager MemMgr;
127  RuntimeDyld Dyld;
128  SmallVector<JITEventListener*, 2> EventListeners;
129
130  typedef DenseMap<Module *, MCJITModuleState> ModuleStateMap;
131  ModuleStateMap  ModuleStates;
132
133  typedef DenseMap<Module *, ObjectImage *> LoadedObjectMap;
134  LoadedObjectMap  LoadedObjects;
135
136  // An optional ObjectCache to be notified of compiled objects and used to
137  // perform lookup of pre-compiled code to avoid re-compilation.
138  ObjectCache *ObjCache;
139
140public:
141  ~MCJIT();
142
143  /// @name ExecutionEngine interface implementation
144  /// @{
145  virtual void addModule(Module *M);
146
147  /// Sets the object manager that MCJIT should use to avoid compilation.
148  virtual void setObjectCache(ObjectCache *manager);
149
150  virtual void generateCodeForModule(Module *M);
151
152  /// finalizeObject - ensure the module is fully processed and is usable.
153  ///
154  /// It is the user-level function for completing the process of making the
155  /// object usable for execution. It should be called after sections within an
156  /// object have been relocated using mapSectionAddress.  When this method is
157  /// called the MCJIT execution engine will reapply relocations for a loaded
158  /// object.
159  /// Is it OK to finalize a set of modules, add modules and finalize again.
160  /// FIXME: Do we really need both of these?
161  virtual void finalizeObject();
162  virtual void finalizeModule(Module *);
163  void finalizeLoadedModules();
164
165  virtual void *getPointerToBasicBlock(BasicBlock *BB);
166
167  virtual void *getPointerToFunction(Function *F);
168
169  virtual void *recompileAndRelinkFunction(Function *F);
170
171  virtual void freeMachineCodeForFunction(Function *F);
172
173  virtual GenericValue runFunction(Function *F,
174                                   const std::vector<GenericValue> &ArgValues);
175
176  /// getPointerToNamedFunction - This method returns the address of the
177  /// specified function by using the dlsym function call.  As such it is only
178  /// useful for resolving library symbols, not code generated symbols.
179  ///
180  /// If AbortOnFailure is false and no function with the given name is
181  /// found, this function silently returns a null pointer. Otherwise,
182  /// it prints a message to stderr and aborts.
183  ///
184  virtual void *getPointerToNamedFunction(const std::string &Name,
185                                          bool AbortOnFailure = true);
186
187  /// mapSectionAddress - map a section to its target address space value.
188  /// Map the address of a JIT section as returned from the memory manager
189  /// to the address in the target process as the running code will see it.
190  /// This is the address which will be used for relocation resolution.
191  virtual void mapSectionAddress(const void *LocalAddress,
192                                 uint64_t TargetAddress) {
193    Dyld.mapSectionAddress(LocalAddress, TargetAddress);
194  }
195  virtual void RegisterJITEventListener(JITEventListener *L);
196  virtual void UnregisterJITEventListener(JITEventListener *L);
197
198  // If successful, these function will implicitly finalize all loaded objects.
199  // To get a function address within MCJIT without causing a finalize, use
200  // getSymbolAddress.
201  virtual uint64_t getGlobalValueAddress(const std::string &Name);
202  virtual uint64_t getFunctionAddress(const std::string &Name);
203
204  /// @}
205  /// @name (Private) Registration Interfaces
206  /// @{
207
208  static void Register() {
209    MCJITCtor = createJIT;
210  }
211
212  static ExecutionEngine *createJIT(Module *M,
213                                    std::string *ErrorStr,
214                                    RTDyldMemoryManager *MemMgr,
215                                    bool GVsWithCode,
216                                    TargetMachine *TM);
217
218  // @}
219
220  // This is not directly exposed via the ExecutionEngine API, but it is
221  // used by the LinkingMemoryManager.
222  uint64_t getSymbolAddress(const std::string &Name,
223                          bool CheckFunctionsOnly);
224
225protected:
226  /// emitObject -- Generate a JITed object in memory from the specified module
227  /// Currently, MCJIT only supports a single module and the module passed to
228  /// this function call is expected to be the contained module.  The module
229  /// is passed as a parameter here to prepare for multiple module support in
230  /// the future.
231  ObjectBufferStream* emitObject(Module *M);
232
233  void NotifyObjectEmitted(const ObjectImage& Obj);
234  void NotifyFreeingObject(const ObjectImage& Obj);
235
236  uint64_t getExistingSymbolAddress(const std::string &Name);
237  Module *findModuleForSymbol(const std::string &Name,
238                              bool CheckFunctionsOnly);
239};
240
241} // End llvm namespace
242
243#endif
244