Constants.cpp revision 8848680ce0ab416cb646d0a03aa6f4f6f25e7623
1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalValue.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54        return true;
55
56  // We've already handled true FP case; any other FP vectors can't represent -0.0.
57  if (getType()->isFPOrFPVectorTy())
58    return false;
59
60  // Otherwise, just use +0.0.
61  return isNullValue();
62}
63
64// Return true iff this constant is positive zero (floating point), negative
65// zero (floating point), or a null value.
66bool Constant::isZeroValue() const {
67  // Floating point values have an explicit -0.0 value.
68  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69    return CFP->isZero();
70
71  // Otherwise, just use +0.0.
72  return isNullValue();
73}
74
75bool Constant::isNullValue() const {
76  // 0 is null.
77  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78    return CI->isZero();
79
80  // +0.0 is null.
81  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82    return CFP->isZero() && !CFP->isNegative();
83
84  // constant zero is zero for aggregates and cpnull is null for pointers.
85  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86}
87
88bool Constant::isAllOnesValue() const {
89  // Check for -1 integers
90  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91    return CI->isMinusOne();
92
93  // Check for FP which are bitcasted from -1 integers
94  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97  // Check for constant vectors which are splats of -1 values.
98  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99    if (Constant *Splat = CV->getSplatValue())
100      return Splat->isAllOnesValue();
101
102  // Check for constant vectors which are splats of -1 values.
103  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104    if (Constant *Splat = CV->getSplatValue())
105      return Splat->isAllOnesValue();
106
107  return false;
108}
109
110// Constructor to create a '0' constant of arbitrary type...
111Constant *Constant::getNullValue(Type *Ty) {
112  switch (Ty->getTypeID()) {
113  case Type::IntegerTyID:
114    return ConstantInt::get(Ty, 0);
115  case Type::HalfTyID:
116    return ConstantFP::get(Ty->getContext(),
117                           APFloat::getZero(APFloat::IEEEhalf));
118  case Type::FloatTyID:
119    return ConstantFP::get(Ty->getContext(),
120                           APFloat::getZero(APFloat::IEEEsingle));
121  case Type::DoubleTyID:
122    return ConstantFP::get(Ty->getContext(),
123                           APFloat::getZero(APFloat::IEEEdouble));
124  case Type::X86_FP80TyID:
125    return ConstantFP::get(Ty->getContext(),
126                           APFloat::getZero(APFloat::x87DoubleExtended));
127  case Type::FP128TyID:
128    return ConstantFP::get(Ty->getContext(),
129                           APFloat::getZero(APFloat::IEEEquad));
130  case Type::PPC_FP128TyID:
131    return ConstantFP::get(Ty->getContext(),
132                           APFloat(APFloat::PPCDoubleDouble,
133                                   APInt::getNullValue(128)));
134  case Type::PointerTyID:
135    return ConstantPointerNull::get(cast<PointerType>(Ty));
136  case Type::StructTyID:
137  case Type::ArrayTyID:
138  case Type::VectorTyID:
139    return ConstantAggregateZero::get(Ty);
140  default:
141    // Function, Label, or Opaque type?
142    llvm_unreachable("Cannot create a null constant of that type!");
143  }
144}
145
146Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147  Type *ScalarTy = Ty->getScalarType();
148
149  // Create the base integer constant.
150  Constant *C = ConstantInt::get(Ty->getContext(), V);
151
152  // Convert an integer to a pointer, if necessary.
153  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154    C = ConstantExpr::getIntToPtr(C, PTy);
155
156  // Broadcast a scalar to a vector, if necessary.
157  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158    C = ConstantVector::getSplat(VTy->getNumElements(), C);
159
160  return C;
161}
162
163Constant *Constant::getAllOnesValue(Type *Ty) {
164  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165    return ConstantInt::get(Ty->getContext(),
166                            APInt::getAllOnesValue(ITy->getBitWidth()));
167
168  if (Ty->isFloatingPointTy()) {
169    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170                                          !Ty->isPPC_FP128Ty());
171    return ConstantFP::get(Ty->getContext(), FL);
172  }
173
174  VectorType *VTy = cast<VectorType>(Ty);
175  return ConstantVector::getSplat(VTy->getNumElements(),
176                                  getAllOnesValue(VTy->getElementType()));
177}
178
179/// getAggregateElement - For aggregates (struct/array/vector) return the
180/// constant that corresponds to the specified element if possible, or null if
181/// not.  This can return null if the element index is a ConstantExpr, or if
182/// 'this' is a constant expr.
183Constant *Constant::getAggregateElement(unsigned Elt) const {
184  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
186
187  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
189
190  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
192
193  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194    return CAZ->getElementValue(Elt);
195
196  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197    return UV->getElementValue(Elt);
198
199  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
201  return 0;
202}
203
204Constant *Constant::getAggregateElement(Constant *Elt) const {
205  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
206  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
207    return getAggregateElement(CI->getZExtValue());
208  return 0;
209}
210
211
212void Constant::destroyConstantImpl() {
213  // When a Constant is destroyed, there may be lingering
214  // references to the constant by other constants in the constant pool.  These
215  // constants are implicitly dependent on the module that is being deleted,
216  // but they don't know that.  Because we only find out when the CPV is
217  // deleted, we must now notify all of our users (that should only be
218  // Constants) that they are, in fact, invalid now and should be deleted.
219  //
220  while (!use_empty()) {
221    Value *V = use_back();
222#ifndef NDEBUG      // Only in -g mode...
223    if (!isa<Constant>(V)) {
224      dbgs() << "While deleting: " << *this
225             << "\n\nUse still stuck around after Def is destroyed: "
226             << *V << "\n\n";
227    }
228#endif
229    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
230    cast<Constant>(V)->destroyConstant();
231
232    // The constant should remove itself from our use list...
233    assert((use_empty() || use_back() != V) && "Constant not removed!");
234  }
235
236  // Value has no outstanding references it is safe to delete it now...
237  delete this;
238}
239
240static bool canTrapImpl(const Constant *C,
241                        SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
242  assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
243  // The only thing that could possibly trap are constant exprs.
244  const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
245  if (!CE)
246    return false;
247
248  // ConstantExpr traps if any operands can trap.
249  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
250    if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
251      if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
252        return true;
253    }
254  }
255
256  // Otherwise, only specific operations can trap.
257  switch (CE->getOpcode()) {
258  default:
259    return false;
260  case Instruction::UDiv:
261  case Instruction::SDiv:
262  case Instruction::FDiv:
263  case Instruction::URem:
264  case Instruction::SRem:
265  case Instruction::FRem:
266    // Div and rem can trap if the RHS is not known to be non-zero.
267    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268      return true;
269    return false;
270  }
271}
272
273/// canTrap - Return true if evaluation of this constant could trap.  This is
274/// true for things like constant expressions that could divide by zero.
275bool Constant::canTrap() const {
276  SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
277  return canTrapImpl(this, NonTrappingOps);
278}
279
280/// isThreadDependent - Return true if the value can vary between threads.
281bool Constant::isThreadDependent() const {
282  SmallPtrSet<const Constant*, 64> Visited;
283  SmallVector<const Constant*, 64> WorkList;
284  WorkList.push_back(this);
285  Visited.insert(this);
286
287  while (!WorkList.empty()) {
288    const Constant *C = WorkList.pop_back_val();
289
290    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
291      if (GV->isThreadLocal())
292        return true;
293    }
294
295    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
296      const Constant *D = dyn_cast<Constant>(C->getOperand(I));
297      if (!D)
298        continue;
299      if (Visited.insert(D))
300        WorkList.push_back(D);
301    }
302  }
303
304  return false;
305}
306
307/// isConstantUsed - Return true if the constant has users other than constant
308/// exprs and other dangling things.
309bool Constant::isConstantUsed() const {
310  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
311    const Constant *UC = dyn_cast<Constant>(*UI);
312    if (UC == 0 || isa<GlobalValue>(UC))
313      return true;
314
315    if (UC->isConstantUsed())
316      return true;
317  }
318  return false;
319}
320
321
322
323/// getRelocationInfo - This method classifies the entry according to
324/// whether or not it may generate a relocation entry.  This must be
325/// conservative, so if it might codegen to a relocatable entry, it should say
326/// so.  The return values are:
327///
328///  NoRelocation: This constant pool entry is guaranteed to never have a
329///     relocation applied to it (because it holds a simple constant like
330///     '4').
331///  LocalRelocation: This entry has relocations, but the entries are
332///     guaranteed to be resolvable by the static linker, so the dynamic
333///     linker will never see them.
334///  GlobalRelocations: This entry may have arbitrary relocations.
335///
336/// FIXME: This really should not be in IR.
337Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
338  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
339    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
340      return LocalRelocation;  // Local to this file/library.
341    return GlobalRelocations;    // Global reference.
342  }
343
344  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
345    return BA->getFunction()->getRelocationInfo();
346
347  // While raw uses of blockaddress need to be relocated, differences between
348  // two of them don't when they are for labels in the same function.  This is a
349  // common idiom when creating a table for the indirect goto extension, so we
350  // handle it efficiently here.
351  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
352    if (CE->getOpcode() == Instruction::Sub) {
353      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
354      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
355      if (LHS && RHS &&
356          LHS->getOpcode() == Instruction::PtrToInt &&
357          RHS->getOpcode() == Instruction::PtrToInt &&
358          isa<BlockAddress>(LHS->getOperand(0)) &&
359          isa<BlockAddress>(RHS->getOperand(0)) &&
360          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
361            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
362        return NoRelocation;
363    }
364
365  PossibleRelocationsTy Result = NoRelocation;
366  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
367    Result = std::max(Result,
368                      cast<Constant>(getOperand(i))->getRelocationInfo());
369
370  return Result;
371}
372
373/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
374/// it.  This involves recursively eliminating any dead users of the
375/// constantexpr.
376static bool removeDeadUsersOfConstant(const Constant *C) {
377  if (isa<GlobalValue>(C)) return false; // Cannot remove this
378
379  while (!C->use_empty()) {
380    const Constant *User = dyn_cast<Constant>(C->use_back());
381    if (!User) return false; // Non-constant usage;
382    if (!removeDeadUsersOfConstant(User))
383      return false; // Constant wasn't dead
384  }
385
386  const_cast<Constant*>(C)->destroyConstant();
387  return true;
388}
389
390
391/// removeDeadConstantUsers - If there are any dead constant users dangling
392/// off of this constant, remove them.  This method is useful for clients
393/// that want to check to see if a global is unused, but don't want to deal
394/// with potentially dead constants hanging off of the globals.
395void Constant::removeDeadConstantUsers() const {
396  Value::const_use_iterator I = use_begin(), E = use_end();
397  Value::const_use_iterator LastNonDeadUser = E;
398  while (I != E) {
399    const Constant *User = dyn_cast<Constant>(*I);
400    if (User == 0) {
401      LastNonDeadUser = I;
402      ++I;
403      continue;
404    }
405
406    if (!removeDeadUsersOfConstant(User)) {
407      // If the constant wasn't dead, remember that this was the last live use
408      // and move on to the next constant.
409      LastNonDeadUser = I;
410      ++I;
411      continue;
412    }
413
414    // If the constant was dead, then the iterator is invalidated.
415    if (LastNonDeadUser == E) {
416      I = use_begin();
417      if (I == E) break;
418    } else {
419      I = LastNonDeadUser;
420      ++I;
421    }
422  }
423}
424
425
426
427//===----------------------------------------------------------------------===//
428//                                ConstantInt
429//===----------------------------------------------------------------------===//
430
431void ConstantInt::anchor() { }
432
433ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
434  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
435  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
436}
437
438ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
439  LLVMContextImpl *pImpl = Context.pImpl;
440  if (!pImpl->TheTrueVal)
441    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
442  return pImpl->TheTrueVal;
443}
444
445ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
446  LLVMContextImpl *pImpl = Context.pImpl;
447  if (!pImpl->TheFalseVal)
448    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
449  return pImpl->TheFalseVal;
450}
451
452Constant *ConstantInt::getTrue(Type *Ty) {
453  VectorType *VTy = dyn_cast<VectorType>(Ty);
454  if (!VTy) {
455    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
456    return ConstantInt::getTrue(Ty->getContext());
457  }
458  assert(VTy->getElementType()->isIntegerTy(1) &&
459         "True must be vector of i1 or i1.");
460  return ConstantVector::getSplat(VTy->getNumElements(),
461                                  ConstantInt::getTrue(Ty->getContext()));
462}
463
464Constant *ConstantInt::getFalse(Type *Ty) {
465  VectorType *VTy = dyn_cast<VectorType>(Ty);
466  if (!VTy) {
467    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
468    return ConstantInt::getFalse(Ty->getContext());
469  }
470  assert(VTy->getElementType()->isIntegerTy(1) &&
471         "False must be vector of i1 or i1.");
472  return ConstantVector::getSplat(VTy->getNumElements(),
473                                  ConstantInt::getFalse(Ty->getContext()));
474}
475
476
477// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
478// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
479// operator== and operator!= to ensure that the DenseMap doesn't attempt to
480// compare APInt's of different widths, which would violate an APInt class
481// invariant which generates an assertion.
482ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
483  // Get the corresponding integer type for the bit width of the value.
484  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
485  // get an existing value or the insertion position
486  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
487  ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
488  if (!Slot) Slot = new ConstantInt(ITy, V);
489  return Slot;
490}
491
492Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
493  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
494
495  // For vectors, broadcast the value.
496  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
497    return ConstantVector::getSplat(VTy->getNumElements(), C);
498
499  return C;
500}
501
502ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
503                              bool isSigned) {
504  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
505}
506
507ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
508  return get(Ty, V, true);
509}
510
511Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
512  return get(Ty, V, true);
513}
514
515Constant *ConstantInt::get(Type *Ty, const APInt& V) {
516  ConstantInt *C = get(Ty->getContext(), V);
517  assert(C->getType() == Ty->getScalarType() &&
518         "ConstantInt type doesn't match the type implied by its value!");
519
520  // For vectors, broadcast the value.
521  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
522    return ConstantVector::getSplat(VTy->getNumElements(), C);
523
524  return C;
525}
526
527ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
528                              uint8_t radix) {
529  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
530}
531
532//===----------------------------------------------------------------------===//
533//                                ConstantFP
534//===----------------------------------------------------------------------===//
535
536static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
537  if (Ty->isHalfTy())
538    return &APFloat::IEEEhalf;
539  if (Ty->isFloatTy())
540    return &APFloat::IEEEsingle;
541  if (Ty->isDoubleTy())
542    return &APFloat::IEEEdouble;
543  if (Ty->isX86_FP80Ty())
544    return &APFloat::x87DoubleExtended;
545  else if (Ty->isFP128Ty())
546    return &APFloat::IEEEquad;
547
548  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
549  return &APFloat::PPCDoubleDouble;
550}
551
552void ConstantFP::anchor() { }
553
554/// get() - This returns a constant fp for the specified value in the
555/// specified type.  This should only be used for simple constant values like
556/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
557Constant *ConstantFP::get(Type *Ty, double V) {
558  LLVMContext &Context = Ty->getContext();
559
560  APFloat FV(V);
561  bool ignored;
562  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
563             APFloat::rmNearestTiesToEven, &ignored);
564  Constant *C = get(Context, FV);
565
566  // For vectors, broadcast the value.
567  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
568    return ConstantVector::getSplat(VTy->getNumElements(), C);
569
570  return C;
571}
572
573
574Constant *ConstantFP::get(Type *Ty, StringRef Str) {
575  LLVMContext &Context = Ty->getContext();
576
577  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
578  Constant *C = get(Context, FV);
579
580  // For vectors, broadcast the value.
581  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
582    return ConstantVector::getSplat(VTy->getNumElements(), C);
583
584  return C;
585}
586
587
588ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
589  LLVMContext &Context = Ty->getContext();
590  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
591  apf.changeSign();
592  return get(Context, apf);
593}
594
595
596Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
597  Type *ScalarTy = Ty->getScalarType();
598  if (ScalarTy->isFloatingPointTy()) {
599    Constant *C = getNegativeZero(ScalarTy);
600    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601      return ConstantVector::getSplat(VTy->getNumElements(), C);
602    return C;
603  }
604
605  return Constant::getNullValue(Ty);
606}
607
608
609// ConstantFP accessors.
610ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
611  DenseMapAPFloatKeyInfo::KeyTy Key(V);
612
613  LLVMContextImpl* pImpl = Context.pImpl;
614
615  ConstantFP *&Slot = pImpl->FPConstants[Key];
616
617  if (!Slot) {
618    Type *Ty;
619    if (&V.getSemantics() == &APFloat::IEEEhalf)
620      Ty = Type::getHalfTy(Context);
621    else if (&V.getSemantics() == &APFloat::IEEEsingle)
622      Ty = Type::getFloatTy(Context);
623    else if (&V.getSemantics() == &APFloat::IEEEdouble)
624      Ty = Type::getDoubleTy(Context);
625    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
626      Ty = Type::getX86_FP80Ty(Context);
627    else if (&V.getSemantics() == &APFloat::IEEEquad)
628      Ty = Type::getFP128Ty(Context);
629    else {
630      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
631             "Unknown FP format");
632      Ty = Type::getPPC_FP128Ty(Context);
633    }
634    Slot = new ConstantFP(Ty, V);
635  }
636
637  return Slot;
638}
639
640ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
641  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
642  return ConstantFP::get(Ty->getContext(),
643                         APFloat::getInf(Semantics, Negative));
644}
645
646ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
647  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
648  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
649         "FP type Mismatch");
650}
651
652bool ConstantFP::isExactlyValue(const APFloat &V) const {
653  return Val.bitwiseIsEqual(V);
654}
655
656//===----------------------------------------------------------------------===//
657//                   ConstantAggregateZero Implementation
658//===----------------------------------------------------------------------===//
659
660/// getSequentialElement - If this CAZ has array or vector type, return a zero
661/// with the right element type.
662Constant *ConstantAggregateZero::getSequentialElement() const {
663  return Constant::getNullValue(getType()->getSequentialElementType());
664}
665
666/// getStructElement - If this CAZ has struct type, return a zero with the
667/// right element type for the specified element.
668Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
669  return Constant::getNullValue(getType()->getStructElementType(Elt));
670}
671
672/// getElementValue - Return a zero of the right value for the specified GEP
673/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
674Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
675  if (isa<SequentialType>(getType()))
676    return getSequentialElement();
677  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
678}
679
680/// getElementValue - Return a zero of the right value for the specified GEP
681/// index.
682Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
683  if (isa<SequentialType>(getType()))
684    return getSequentialElement();
685  return getStructElement(Idx);
686}
687
688
689//===----------------------------------------------------------------------===//
690//                         UndefValue Implementation
691//===----------------------------------------------------------------------===//
692
693/// getSequentialElement - If this undef has array or vector type, return an
694/// undef with the right element type.
695UndefValue *UndefValue::getSequentialElement() const {
696  return UndefValue::get(getType()->getSequentialElementType());
697}
698
699/// getStructElement - If this undef has struct type, return a zero with the
700/// right element type for the specified element.
701UndefValue *UndefValue::getStructElement(unsigned Elt) const {
702  return UndefValue::get(getType()->getStructElementType(Elt));
703}
704
705/// getElementValue - Return an undef of the right value for the specified GEP
706/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
707UndefValue *UndefValue::getElementValue(Constant *C) const {
708  if (isa<SequentialType>(getType()))
709    return getSequentialElement();
710  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
711}
712
713/// getElementValue - Return an undef of the right value for the specified GEP
714/// index.
715UndefValue *UndefValue::getElementValue(unsigned Idx) const {
716  if (isa<SequentialType>(getType()))
717    return getSequentialElement();
718  return getStructElement(Idx);
719}
720
721
722
723//===----------------------------------------------------------------------===//
724//                            ConstantXXX Classes
725//===----------------------------------------------------------------------===//
726
727template <typename ItTy, typename EltTy>
728static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
729  for (; Start != End; ++Start)
730    if (*Start != Elt)
731      return false;
732  return true;
733}
734
735ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
736  : Constant(T, ConstantArrayVal,
737             OperandTraits<ConstantArray>::op_end(this) - V.size(),
738             V.size()) {
739  assert(V.size() == T->getNumElements() &&
740         "Invalid initializer vector for constant array");
741  for (unsigned i = 0, e = V.size(); i != e; ++i)
742    assert(V[i]->getType() == T->getElementType() &&
743           "Initializer for array element doesn't match array element type!");
744  std::copy(V.begin(), V.end(), op_begin());
745}
746
747Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
748  // Empty arrays are canonicalized to ConstantAggregateZero.
749  if (V.empty())
750    return ConstantAggregateZero::get(Ty);
751
752  for (unsigned i = 0, e = V.size(); i != e; ++i) {
753    assert(V[i]->getType() == Ty->getElementType() &&
754           "Wrong type in array element initializer");
755  }
756  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
757
758  // If this is an all-zero array, return a ConstantAggregateZero object.  If
759  // all undef, return an UndefValue, if "all simple", then return a
760  // ConstantDataArray.
761  Constant *C = V[0];
762  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
763    return UndefValue::get(Ty);
764
765  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
766    return ConstantAggregateZero::get(Ty);
767
768  // Check to see if all of the elements are ConstantFP or ConstantInt and if
769  // the element type is compatible with ConstantDataVector.  If so, use it.
770  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
771    // We speculatively build the elements here even if it turns out that there
772    // is a constantexpr or something else weird in the array, since it is so
773    // uncommon for that to happen.
774    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
775      if (CI->getType()->isIntegerTy(8)) {
776        SmallVector<uint8_t, 16> Elts;
777        for (unsigned i = 0, e = V.size(); i != e; ++i)
778          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
779            Elts.push_back(CI->getZExtValue());
780          else
781            break;
782        if (Elts.size() == V.size())
783          return ConstantDataArray::get(C->getContext(), Elts);
784      } else if (CI->getType()->isIntegerTy(16)) {
785        SmallVector<uint16_t, 16> Elts;
786        for (unsigned i = 0, e = V.size(); i != e; ++i)
787          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
788            Elts.push_back(CI->getZExtValue());
789          else
790            break;
791        if (Elts.size() == V.size())
792          return ConstantDataArray::get(C->getContext(), Elts);
793      } else if (CI->getType()->isIntegerTy(32)) {
794        SmallVector<uint32_t, 16> Elts;
795        for (unsigned i = 0, e = V.size(); i != e; ++i)
796          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
797            Elts.push_back(CI->getZExtValue());
798          else
799            break;
800        if (Elts.size() == V.size())
801          return ConstantDataArray::get(C->getContext(), Elts);
802      } else if (CI->getType()->isIntegerTy(64)) {
803        SmallVector<uint64_t, 16> Elts;
804        for (unsigned i = 0, e = V.size(); i != e; ++i)
805          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
806            Elts.push_back(CI->getZExtValue());
807          else
808            break;
809        if (Elts.size() == V.size())
810          return ConstantDataArray::get(C->getContext(), Elts);
811      }
812    }
813
814    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
815      if (CFP->getType()->isFloatTy()) {
816        SmallVector<float, 16> Elts;
817        for (unsigned i = 0, e = V.size(); i != e; ++i)
818          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
819            Elts.push_back(CFP->getValueAPF().convertToFloat());
820          else
821            break;
822        if (Elts.size() == V.size())
823          return ConstantDataArray::get(C->getContext(), Elts);
824      } else if (CFP->getType()->isDoubleTy()) {
825        SmallVector<double, 16> Elts;
826        for (unsigned i = 0, e = V.size(); i != e; ++i)
827          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
828            Elts.push_back(CFP->getValueAPF().convertToDouble());
829          else
830            break;
831        if (Elts.size() == V.size())
832          return ConstantDataArray::get(C->getContext(), Elts);
833      }
834    }
835  }
836
837  // Otherwise, we really do want to create a ConstantArray.
838  return pImpl->ArrayConstants.getOrCreate(Ty, V);
839}
840
841/// getTypeForElements - Return an anonymous struct type to use for a constant
842/// with the specified set of elements.  The list must not be empty.
843StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
844                                               ArrayRef<Constant*> V,
845                                               bool Packed) {
846  unsigned VecSize = V.size();
847  SmallVector<Type*, 16> EltTypes(VecSize);
848  for (unsigned i = 0; i != VecSize; ++i)
849    EltTypes[i] = V[i]->getType();
850
851  return StructType::get(Context, EltTypes, Packed);
852}
853
854
855StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
856                                               bool Packed) {
857  assert(!V.empty() &&
858         "ConstantStruct::getTypeForElements cannot be called on empty list");
859  return getTypeForElements(V[0]->getContext(), V, Packed);
860}
861
862
863ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
864  : Constant(T, ConstantStructVal,
865             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
866             V.size()) {
867  assert(V.size() == T->getNumElements() &&
868         "Invalid initializer vector for constant structure");
869  for (unsigned i = 0, e = V.size(); i != e; ++i)
870    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
871           "Initializer for struct element doesn't match struct element type!");
872  std::copy(V.begin(), V.end(), op_begin());
873}
874
875// ConstantStruct accessors.
876Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
877  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
878         "Incorrect # elements specified to ConstantStruct::get");
879
880  // Create a ConstantAggregateZero value if all elements are zeros.
881  bool isZero = true;
882  bool isUndef = false;
883
884  if (!V.empty()) {
885    isUndef = isa<UndefValue>(V[0]);
886    isZero = V[0]->isNullValue();
887    if (isUndef || isZero) {
888      for (unsigned i = 0, e = V.size(); i != e; ++i) {
889        if (!V[i]->isNullValue())
890          isZero = false;
891        if (!isa<UndefValue>(V[i]))
892          isUndef = false;
893      }
894    }
895  }
896  if (isZero)
897    return ConstantAggregateZero::get(ST);
898  if (isUndef)
899    return UndefValue::get(ST);
900
901  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
902}
903
904Constant *ConstantStruct::get(StructType *T, ...) {
905  va_list ap;
906  SmallVector<Constant*, 8> Values;
907  va_start(ap, T);
908  while (Constant *Val = va_arg(ap, llvm::Constant*))
909    Values.push_back(Val);
910  va_end(ap);
911  return get(T, Values);
912}
913
914ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
915  : Constant(T, ConstantVectorVal,
916             OperandTraits<ConstantVector>::op_end(this) - V.size(),
917             V.size()) {
918  for (size_t i = 0, e = V.size(); i != e; i++)
919    assert(V[i]->getType() == T->getElementType() &&
920           "Initializer for vector element doesn't match vector element type!");
921  std::copy(V.begin(), V.end(), op_begin());
922}
923
924// ConstantVector accessors.
925Constant *ConstantVector::get(ArrayRef<Constant*> V) {
926  assert(!V.empty() && "Vectors can't be empty");
927  VectorType *T = VectorType::get(V.front()->getType(), V.size());
928  LLVMContextImpl *pImpl = T->getContext().pImpl;
929
930  // If this is an all-undef or all-zero vector, return a
931  // ConstantAggregateZero or UndefValue.
932  Constant *C = V[0];
933  bool isZero = C->isNullValue();
934  bool isUndef = isa<UndefValue>(C);
935
936  if (isZero || isUndef) {
937    for (unsigned i = 1, e = V.size(); i != e; ++i)
938      if (V[i] != C) {
939        isZero = isUndef = false;
940        break;
941      }
942  }
943
944  if (isZero)
945    return ConstantAggregateZero::get(T);
946  if (isUndef)
947    return UndefValue::get(T);
948
949  // Check to see if all of the elements are ConstantFP or ConstantInt and if
950  // the element type is compatible with ConstantDataVector.  If so, use it.
951  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
952    // We speculatively build the elements here even if it turns out that there
953    // is a constantexpr or something else weird in the array, since it is so
954    // uncommon for that to happen.
955    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
956      if (CI->getType()->isIntegerTy(8)) {
957        SmallVector<uint8_t, 16> Elts;
958        for (unsigned i = 0, e = V.size(); i != e; ++i)
959          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
960            Elts.push_back(CI->getZExtValue());
961          else
962            break;
963        if (Elts.size() == V.size())
964          return ConstantDataVector::get(C->getContext(), Elts);
965      } else if (CI->getType()->isIntegerTy(16)) {
966        SmallVector<uint16_t, 16> Elts;
967        for (unsigned i = 0, e = V.size(); i != e; ++i)
968          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
969            Elts.push_back(CI->getZExtValue());
970          else
971            break;
972        if (Elts.size() == V.size())
973          return ConstantDataVector::get(C->getContext(), Elts);
974      } else if (CI->getType()->isIntegerTy(32)) {
975        SmallVector<uint32_t, 16> Elts;
976        for (unsigned i = 0, e = V.size(); i != e; ++i)
977          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
978            Elts.push_back(CI->getZExtValue());
979          else
980            break;
981        if (Elts.size() == V.size())
982          return ConstantDataVector::get(C->getContext(), Elts);
983      } else if (CI->getType()->isIntegerTy(64)) {
984        SmallVector<uint64_t, 16> Elts;
985        for (unsigned i = 0, e = V.size(); i != e; ++i)
986          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
987            Elts.push_back(CI->getZExtValue());
988          else
989            break;
990        if (Elts.size() == V.size())
991          return ConstantDataVector::get(C->getContext(), Elts);
992      }
993    }
994
995    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
996      if (CFP->getType()->isFloatTy()) {
997        SmallVector<float, 16> Elts;
998        for (unsigned i = 0, e = V.size(); i != e; ++i)
999          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1000            Elts.push_back(CFP->getValueAPF().convertToFloat());
1001          else
1002            break;
1003        if (Elts.size() == V.size())
1004          return ConstantDataVector::get(C->getContext(), Elts);
1005      } else if (CFP->getType()->isDoubleTy()) {
1006        SmallVector<double, 16> Elts;
1007        for (unsigned i = 0, e = V.size(); i != e; ++i)
1008          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1009            Elts.push_back(CFP->getValueAPF().convertToDouble());
1010          else
1011            break;
1012        if (Elts.size() == V.size())
1013          return ConstantDataVector::get(C->getContext(), Elts);
1014      }
1015    }
1016  }
1017
1018  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1019  // the operand list constants a ConstantExpr or something else strange.
1020  return pImpl->VectorConstants.getOrCreate(T, V);
1021}
1022
1023Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1024  // If this splat is compatible with ConstantDataVector, use it instead of
1025  // ConstantVector.
1026  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1027      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1028    return ConstantDataVector::getSplat(NumElts, V);
1029
1030  SmallVector<Constant*, 32> Elts(NumElts, V);
1031  return get(Elts);
1032}
1033
1034
1035// Utility function for determining if a ConstantExpr is a CastOp or not. This
1036// can't be inline because we don't want to #include Instruction.h into
1037// Constant.h
1038bool ConstantExpr::isCast() const {
1039  return Instruction::isCast(getOpcode());
1040}
1041
1042bool ConstantExpr::isCompare() const {
1043  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1044}
1045
1046bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1047  if (getOpcode() != Instruction::GetElementPtr) return false;
1048
1049  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1050  User::const_op_iterator OI = llvm::next(this->op_begin());
1051
1052  // Skip the first index, as it has no static limit.
1053  ++GEPI;
1054  ++OI;
1055
1056  // The remaining indices must be compile-time known integers within the
1057  // bounds of the corresponding notional static array types.
1058  for (; GEPI != E; ++GEPI, ++OI) {
1059    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1060    if (!CI) return false;
1061    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1062      if (CI->getValue().getActiveBits() > 64 ||
1063          CI->getZExtValue() >= ATy->getNumElements())
1064        return false;
1065  }
1066
1067  // All the indices checked out.
1068  return true;
1069}
1070
1071bool ConstantExpr::hasIndices() const {
1072  return getOpcode() == Instruction::ExtractValue ||
1073         getOpcode() == Instruction::InsertValue;
1074}
1075
1076ArrayRef<unsigned> ConstantExpr::getIndices() const {
1077  if (const ExtractValueConstantExpr *EVCE =
1078        dyn_cast<ExtractValueConstantExpr>(this))
1079    return EVCE->Indices;
1080
1081  return cast<InsertValueConstantExpr>(this)->Indices;
1082}
1083
1084unsigned ConstantExpr::getPredicate() const {
1085  assert(isCompare());
1086  return ((const CompareConstantExpr*)this)->predicate;
1087}
1088
1089/// getWithOperandReplaced - Return a constant expression identical to this
1090/// one, but with the specified operand set to the specified value.
1091Constant *
1092ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1093  assert(Op->getType() == getOperand(OpNo)->getType() &&
1094         "Replacing operand with value of different type!");
1095  if (getOperand(OpNo) == Op)
1096    return const_cast<ConstantExpr*>(this);
1097
1098  SmallVector<Constant*, 8> NewOps;
1099  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1100    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1101
1102  return getWithOperands(NewOps);
1103}
1104
1105/// getWithOperands - This returns the current constant expression with the
1106/// operands replaced with the specified values.  The specified array must
1107/// have the same number of operands as our current one.
1108Constant *ConstantExpr::
1109getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1110  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1111  bool AnyChange = Ty != getType();
1112  for (unsigned i = 0; i != Ops.size(); ++i)
1113    AnyChange |= Ops[i] != getOperand(i);
1114
1115  if (!AnyChange)  // No operands changed, return self.
1116    return const_cast<ConstantExpr*>(this);
1117
1118  switch (getOpcode()) {
1119  case Instruction::Trunc:
1120  case Instruction::ZExt:
1121  case Instruction::SExt:
1122  case Instruction::FPTrunc:
1123  case Instruction::FPExt:
1124  case Instruction::UIToFP:
1125  case Instruction::SIToFP:
1126  case Instruction::FPToUI:
1127  case Instruction::FPToSI:
1128  case Instruction::PtrToInt:
1129  case Instruction::IntToPtr:
1130  case Instruction::BitCast:
1131    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1132  case Instruction::Select:
1133    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1134  case Instruction::InsertElement:
1135    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1136  case Instruction::ExtractElement:
1137    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1138  case Instruction::InsertValue:
1139    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1140  case Instruction::ExtractValue:
1141    return ConstantExpr::getExtractValue(Ops[0], getIndices());
1142  case Instruction::ShuffleVector:
1143    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1144  case Instruction::GetElementPtr:
1145    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1146                                      cast<GEPOperator>(this)->isInBounds());
1147  case Instruction::ICmp:
1148  case Instruction::FCmp:
1149    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1150  default:
1151    assert(getNumOperands() == 2 && "Must be binary operator?");
1152    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1153  }
1154}
1155
1156
1157//===----------------------------------------------------------------------===//
1158//                      isValueValidForType implementations
1159
1160bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1161  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1162  if (Ty->isIntegerTy(1))
1163    return Val == 0 || Val == 1;
1164  if (NumBits >= 64)
1165    return true; // always true, has to fit in largest type
1166  uint64_t Max = (1ll << NumBits) - 1;
1167  return Val <= Max;
1168}
1169
1170bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1171  unsigned NumBits = Ty->getIntegerBitWidth();
1172  if (Ty->isIntegerTy(1))
1173    return Val == 0 || Val == 1 || Val == -1;
1174  if (NumBits >= 64)
1175    return true; // always true, has to fit in largest type
1176  int64_t Min = -(1ll << (NumBits-1));
1177  int64_t Max = (1ll << (NumBits-1)) - 1;
1178  return (Val >= Min && Val <= Max);
1179}
1180
1181bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1182  // convert modifies in place, so make a copy.
1183  APFloat Val2 = APFloat(Val);
1184  bool losesInfo;
1185  switch (Ty->getTypeID()) {
1186  default:
1187    return false;         // These can't be represented as floating point!
1188
1189  // FIXME rounding mode needs to be more flexible
1190  case Type::HalfTyID: {
1191    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1192      return true;
1193    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1194    return !losesInfo;
1195  }
1196  case Type::FloatTyID: {
1197    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1198      return true;
1199    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1200    return !losesInfo;
1201  }
1202  case Type::DoubleTyID: {
1203    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1204        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1205        &Val2.getSemantics() == &APFloat::IEEEdouble)
1206      return true;
1207    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1208    return !losesInfo;
1209  }
1210  case Type::X86_FP80TyID:
1211    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1212           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1213           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1214           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1215  case Type::FP128TyID:
1216    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1217           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1218           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1219           &Val2.getSemantics() == &APFloat::IEEEquad;
1220  case Type::PPC_FP128TyID:
1221    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1222           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1223           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1224           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1225  }
1226}
1227
1228
1229//===----------------------------------------------------------------------===//
1230//                      Factory Function Implementation
1231
1232ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1233  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1234         "Cannot create an aggregate zero of non-aggregate type!");
1235
1236  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1237  if (Entry == 0)
1238    Entry = new ConstantAggregateZero(Ty);
1239
1240  return Entry;
1241}
1242
1243/// destroyConstant - Remove the constant from the constant table.
1244///
1245void ConstantAggregateZero::destroyConstant() {
1246  getContext().pImpl->CAZConstants.erase(getType());
1247  destroyConstantImpl();
1248}
1249
1250/// destroyConstant - Remove the constant from the constant table...
1251///
1252void ConstantArray::destroyConstant() {
1253  getType()->getContext().pImpl->ArrayConstants.remove(this);
1254  destroyConstantImpl();
1255}
1256
1257
1258//---- ConstantStruct::get() implementation...
1259//
1260
1261// destroyConstant - Remove the constant from the constant table...
1262//
1263void ConstantStruct::destroyConstant() {
1264  getType()->getContext().pImpl->StructConstants.remove(this);
1265  destroyConstantImpl();
1266}
1267
1268// destroyConstant - Remove the constant from the constant table...
1269//
1270void ConstantVector::destroyConstant() {
1271  getType()->getContext().pImpl->VectorConstants.remove(this);
1272  destroyConstantImpl();
1273}
1274
1275/// getSplatValue - If this is a splat vector constant, meaning that all of
1276/// the elements have the same value, return that value. Otherwise return 0.
1277Constant *Constant::getSplatValue() const {
1278  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1279  if (isa<ConstantAggregateZero>(this))
1280    return getNullValue(this->getType()->getVectorElementType());
1281  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1282    return CV->getSplatValue();
1283  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1284    return CV->getSplatValue();
1285  return 0;
1286}
1287
1288/// getSplatValue - If this is a splat constant, where all of the
1289/// elements have the same value, return that value. Otherwise return null.
1290Constant *ConstantVector::getSplatValue() const {
1291  // Check out first element.
1292  Constant *Elt = getOperand(0);
1293  // Then make sure all remaining elements point to the same value.
1294  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1295    if (getOperand(I) != Elt)
1296      return 0;
1297  return Elt;
1298}
1299
1300/// If C is a constant integer then return its value, otherwise C must be a
1301/// vector of constant integers, all equal, and the common value is returned.
1302const APInt &Constant::getUniqueInteger() const {
1303  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1304    return CI->getValue();
1305  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1306  const Constant *C = this->getAggregateElement(0U);
1307  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1308  return cast<ConstantInt>(C)->getValue();
1309}
1310
1311
1312//---- ConstantPointerNull::get() implementation.
1313//
1314
1315ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1316  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1317  if (Entry == 0)
1318    Entry = new ConstantPointerNull(Ty);
1319
1320  return Entry;
1321}
1322
1323// destroyConstant - Remove the constant from the constant table...
1324//
1325void ConstantPointerNull::destroyConstant() {
1326  getContext().pImpl->CPNConstants.erase(getType());
1327  // Free the constant and any dangling references to it.
1328  destroyConstantImpl();
1329}
1330
1331
1332//---- UndefValue::get() implementation.
1333//
1334
1335UndefValue *UndefValue::get(Type *Ty) {
1336  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1337  if (Entry == 0)
1338    Entry = new UndefValue(Ty);
1339
1340  return Entry;
1341}
1342
1343// destroyConstant - Remove the constant from the constant table.
1344//
1345void UndefValue::destroyConstant() {
1346  // Free the constant and any dangling references to it.
1347  getContext().pImpl->UVConstants.erase(getType());
1348  destroyConstantImpl();
1349}
1350
1351//---- BlockAddress::get() implementation.
1352//
1353
1354BlockAddress *BlockAddress::get(BasicBlock *BB) {
1355  assert(BB->getParent() != 0 && "Block must have a parent");
1356  return get(BB->getParent(), BB);
1357}
1358
1359BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1360  BlockAddress *&BA =
1361    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1362  if (BA == 0)
1363    BA = new BlockAddress(F, BB);
1364
1365  assert(BA->getFunction() == F && "Basic block moved between functions");
1366  return BA;
1367}
1368
1369BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1370: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1371           &Op<0>(), 2) {
1372  setOperand(0, F);
1373  setOperand(1, BB);
1374  BB->AdjustBlockAddressRefCount(1);
1375}
1376
1377
1378// destroyConstant - Remove the constant from the constant table.
1379//
1380void BlockAddress::destroyConstant() {
1381  getFunction()->getType()->getContext().pImpl
1382    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1383  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1384  destroyConstantImpl();
1385}
1386
1387void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1388  // This could be replacing either the Basic Block or the Function.  In either
1389  // case, we have to remove the map entry.
1390  Function *NewF = getFunction();
1391  BasicBlock *NewBB = getBasicBlock();
1392
1393  if (U == &Op<0>())
1394    NewF = cast<Function>(To);
1395  else
1396    NewBB = cast<BasicBlock>(To);
1397
1398  // See if the 'new' entry already exists, if not, just update this in place
1399  // and return early.
1400  BlockAddress *&NewBA =
1401    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1402  if (NewBA == 0) {
1403    getBasicBlock()->AdjustBlockAddressRefCount(-1);
1404
1405    // Remove the old entry, this can't cause the map to rehash (just a
1406    // tombstone will get added).
1407    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1408                                                            getBasicBlock()));
1409    NewBA = this;
1410    setOperand(0, NewF);
1411    setOperand(1, NewBB);
1412    getBasicBlock()->AdjustBlockAddressRefCount(1);
1413    return;
1414  }
1415
1416  // Otherwise, I do need to replace this with an existing value.
1417  assert(NewBA != this && "I didn't contain From!");
1418
1419  // Everyone using this now uses the replacement.
1420  replaceAllUsesWith(NewBA);
1421
1422  destroyConstant();
1423}
1424
1425//---- ConstantExpr::get() implementations.
1426//
1427
1428/// This is a utility function to handle folding of casts and lookup of the
1429/// cast in the ExprConstants map. It is used by the various get* methods below.
1430static inline Constant *getFoldedCast(
1431  Instruction::CastOps opc, Constant *C, Type *Ty) {
1432  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1433  // Fold a few common cases
1434  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1435    return FC;
1436
1437  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1438
1439  // Look up the constant in the table first to ensure uniqueness.
1440  ExprMapKeyType Key(opc, C);
1441
1442  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1443}
1444
1445Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1446  Instruction::CastOps opc = Instruction::CastOps(oc);
1447  assert(Instruction::isCast(opc) && "opcode out of range");
1448  assert(C && Ty && "Null arguments to getCast");
1449  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1450
1451  switch (opc) {
1452  default:
1453    llvm_unreachable("Invalid cast opcode");
1454  case Instruction::Trunc:    return getTrunc(C, Ty);
1455  case Instruction::ZExt:     return getZExt(C, Ty);
1456  case Instruction::SExt:     return getSExt(C, Ty);
1457  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1458  case Instruction::FPExt:    return getFPExtend(C, Ty);
1459  case Instruction::UIToFP:   return getUIToFP(C, Ty);
1460  case Instruction::SIToFP:   return getSIToFP(C, Ty);
1461  case Instruction::FPToUI:   return getFPToUI(C, Ty);
1462  case Instruction::FPToSI:   return getFPToSI(C, Ty);
1463  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1464  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1465  case Instruction::BitCast:  return getBitCast(C, Ty);
1466  }
1467}
1468
1469Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1470  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1471    return getBitCast(C, Ty);
1472  return getZExt(C, Ty);
1473}
1474
1475Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1476  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1477    return getBitCast(C, Ty);
1478  return getSExt(C, Ty);
1479}
1480
1481Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1482  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1483    return getBitCast(C, Ty);
1484  return getTrunc(C, Ty);
1485}
1486
1487Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1488  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1489  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1490          "Invalid cast");
1491
1492  if (Ty->isIntOrIntVectorTy())
1493    return getPtrToInt(S, Ty);
1494  return getBitCast(S, Ty);
1495}
1496
1497Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1498                                       bool isSigned) {
1499  assert(C->getType()->isIntOrIntVectorTy() &&
1500         Ty->isIntOrIntVectorTy() && "Invalid cast");
1501  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1502  unsigned DstBits = Ty->getScalarSizeInBits();
1503  Instruction::CastOps opcode =
1504    (SrcBits == DstBits ? Instruction::BitCast :
1505     (SrcBits > DstBits ? Instruction::Trunc :
1506      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1507  return getCast(opcode, C, Ty);
1508}
1509
1510Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1511  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1512         "Invalid cast");
1513  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1514  unsigned DstBits = Ty->getScalarSizeInBits();
1515  if (SrcBits == DstBits)
1516    return C; // Avoid a useless cast
1517  Instruction::CastOps opcode =
1518    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1519  return getCast(opcode, C, Ty);
1520}
1521
1522Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1523#ifndef NDEBUG
1524  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1525  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1526#endif
1527  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1528  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1529  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1530  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1531         "SrcTy must be larger than DestTy for Trunc!");
1532
1533  return getFoldedCast(Instruction::Trunc, C, Ty);
1534}
1535
1536Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1537#ifndef NDEBUG
1538  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1539  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1540#endif
1541  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1542  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1543  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1544  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1545         "SrcTy must be smaller than DestTy for SExt!");
1546
1547  return getFoldedCast(Instruction::SExt, C, Ty);
1548}
1549
1550Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1551#ifndef NDEBUG
1552  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1553  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1554#endif
1555  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1556  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1557  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1558  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1559         "SrcTy must be smaller than DestTy for ZExt!");
1560
1561  return getFoldedCast(Instruction::ZExt, C, Ty);
1562}
1563
1564Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1565#ifndef NDEBUG
1566  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1567  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1568#endif
1569  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1570  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1571         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1572         "This is an illegal floating point truncation!");
1573  return getFoldedCast(Instruction::FPTrunc, C, Ty);
1574}
1575
1576Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1577#ifndef NDEBUG
1578  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1579  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1580#endif
1581  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1582  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1583         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1584         "This is an illegal floating point extension!");
1585  return getFoldedCast(Instruction::FPExt, C, Ty);
1586}
1587
1588Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1589#ifndef NDEBUG
1590  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1591  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1592#endif
1593  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1594  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1595         "This is an illegal uint to floating point cast!");
1596  return getFoldedCast(Instruction::UIToFP, C, Ty);
1597}
1598
1599Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1600#ifndef NDEBUG
1601  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1602  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1603#endif
1604  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1605  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1606         "This is an illegal sint to floating point cast!");
1607  return getFoldedCast(Instruction::SIToFP, C, Ty);
1608}
1609
1610Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1611#ifndef NDEBUG
1612  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1613  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1614#endif
1615  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1616  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1617         "This is an illegal floating point to uint cast!");
1618  return getFoldedCast(Instruction::FPToUI, C, Ty);
1619}
1620
1621Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1622#ifndef NDEBUG
1623  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1624  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1625#endif
1626  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1627  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1628         "This is an illegal floating point to sint cast!");
1629  return getFoldedCast(Instruction::FPToSI, C, Ty);
1630}
1631
1632Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1633  assert(C->getType()->getScalarType()->isPointerTy() &&
1634         "PtrToInt source must be pointer or pointer vector");
1635  assert(DstTy->getScalarType()->isIntegerTy() &&
1636         "PtrToInt destination must be integer or integer vector");
1637  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1638  if (isa<VectorType>(C->getType()))
1639    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1640           "Invalid cast between a different number of vector elements");
1641  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1642}
1643
1644Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1645  assert(C->getType()->getScalarType()->isIntegerTy() &&
1646         "IntToPtr source must be integer or integer vector");
1647  assert(DstTy->getScalarType()->isPointerTy() &&
1648         "IntToPtr destination must be a pointer or pointer vector");
1649  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1650  if (isa<VectorType>(C->getType()))
1651    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1652           "Invalid cast between a different number of vector elements");
1653  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1654}
1655
1656Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1657  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1658         "Invalid constantexpr bitcast!");
1659
1660  // It is common to ask for a bitcast of a value to its own type, handle this
1661  // speedily.
1662  if (C->getType() == DstTy) return C;
1663
1664  return getFoldedCast(Instruction::BitCast, C, DstTy);
1665}
1666
1667Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1668                            unsigned Flags) {
1669  // Check the operands for consistency first.
1670  assert(Opcode >= Instruction::BinaryOpsBegin &&
1671         Opcode <  Instruction::BinaryOpsEnd   &&
1672         "Invalid opcode in binary constant expression");
1673  assert(C1->getType() == C2->getType() &&
1674         "Operand types in binary constant expression should match");
1675
1676#ifndef NDEBUG
1677  switch (Opcode) {
1678  case Instruction::Add:
1679  case Instruction::Sub:
1680  case Instruction::Mul:
1681    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1682    assert(C1->getType()->isIntOrIntVectorTy() &&
1683           "Tried to create an integer operation on a non-integer type!");
1684    break;
1685  case Instruction::FAdd:
1686  case Instruction::FSub:
1687  case Instruction::FMul:
1688    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1689    assert(C1->getType()->isFPOrFPVectorTy() &&
1690           "Tried to create a floating-point operation on a "
1691           "non-floating-point type!");
1692    break;
1693  case Instruction::UDiv:
1694  case Instruction::SDiv:
1695    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1696    assert(C1->getType()->isIntOrIntVectorTy() &&
1697           "Tried to create an arithmetic operation on a non-arithmetic type!");
1698    break;
1699  case Instruction::FDiv:
1700    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1701    assert(C1->getType()->isFPOrFPVectorTy() &&
1702           "Tried to create an arithmetic operation on a non-arithmetic type!");
1703    break;
1704  case Instruction::URem:
1705  case Instruction::SRem:
1706    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1707    assert(C1->getType()->isIntOrIntVectorTy() &&
1708           "Tried to create an arithmetic operation on a non-arithmetic type!");
1709    break;
1710  case Instruction::FRem:
1711    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1712    assert(C1->getType()->isFPOrFPVectorTy() &&
1713           "Tried to create an arithmetic operation on a non-arithmetic type!");
1714    break;
1715  case Instruction::And:
1716  case Instruction::Or:
1717  case Instruction::Xor:
1718    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1719    assert(C1->getType()->isIntOrIntVectorTy() &&
1720           "Tried to create a logical operation on a non-integral type!");
1721    break;
1722  case Instruction::Shl:
1723  case Instruction::LShr:
1724  case Instruction::AShr:
1725    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1726    assert(C1->getType()->isIntOrIntVectorTy() &&
1727           "Tried to create a shift operation on a non-integer type!");
1728    break;
1729  default:
1730    break;
1731  }
1732#endif
1733
1734  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1735    return FC;          // Fold a few common cases.
1736
1737  Constant *ArgVec[] = { C1, C2 };
1738  ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1739
1740  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1741  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1742}
1743
1744Constant *ConstantExpr::getSizeOf(Type* Ty) {
1745  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1746  // Note that a non-inbounds gep is used, as null isn't within any object.
1747  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1748  Constant *GEP = getGetElementPtr(
1749                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1750  return getPtrToInt(GEP,
1751                     Type::getInt64Ty(Ty->getContext()));
1752}
1753
1754Constant *ConstantExpr::getAlignOf(Type* Ty) {
1755  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1756  // Note that a non-inbounds gep is used, as null isn't within any object.
1757  Type *AligningTy =
1758    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1759  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1760  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1761  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1762  Constant *Indices[2] = { Zero, One };
1763  Constant *GEP = getGetElementPtr(NullPtr, Indices);
1764  return getPtrToInt(GEP,
1765                     Type::getInt64Ty(Ty->getContext()));
1766}
1767
1768Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1769  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1770                                           FieldNo));
1771}
1772
1773Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1774  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1775  // Note that a non-inbounds gep is used, as null isn't within any object.
1776  Constant *GEPIdx[] = {
1777    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1778    FieldNo
1779  };
1780  Constant *GEP = getGetElementPtr(
1781                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1782  return getPtrToInt(GEP,
1783                     Type::getInt64Ty(Ty->getContext()));
1784}
1785
1786Constant *ConstantExpr::getCompare(unsigned short Predicate,
1787                                   Constant *C1, Constant *C2) {
1788  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1789
1790  switch (Predicate) {
1791  default: llvm_unreachable("Invalid CmpInst predicate");
1792  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1793  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1794  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1795  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1796  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1797  case CmpInst::FCMP_TRUE:
1798    return getFCmp(Predicate, C1, C2);
1799
1800  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1801  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1802  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1803  case CmpInst::ICMP_SLE:
1804    return getICmp(Predicate, C1, C2);
1805  }
1806}
1807
1808Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1809  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1810
1811  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1812    return SC;        // Fold common cases
1813
1814  Constant *ArgVec[] = { C, V1, V2 };
1815  ExprMapKeyType Key(Instruction::Select, ArgVec);
1816
1817  LLVMContextImpl *pImpl = C->getContext().pImpl;
1818  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1819}
1820
1821Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1822                                         bool InBounds) {
1823  assert(C->getType()->isPtrOrPtrVectorTy() &&
1824         "Non-pointer type for constant GetElementPtr expression");
1825
1826  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1827    return FC;          // Fold a few common cases.
1828
1829  // Get the result type of the getelementptr!
1830  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1831  assert(Ty && "GEP indices invalid!");
1832  unsigned AS = C->getType()->getPointerAddressSpace();
1833  Type *ReqTy = Ty->getPointerTo(AS);
1834  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1835    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1836
1837  // Look up the constant in the table first to ensure uniqueness
1838  std::vector<Constant*> ArgVec;
1839  ArgVec.reserve(1 + Idxs.size());
1840  ArgVec.push_back(C);
1841  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1842    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1843           "getelementptr index type missmatch");
1844    assert((!Idxs[i]->getType()->isVectorTy() ||
1845            ReqTy->getVectorNumElements() ==
1846            Idxs[i]->getType()->getVectorNumElements()) &&
1847           "getelementptr index type missmatch");
1848    ArgVec.push_back(cast<Constant>(Idxs[i]));
1849  }
1850  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1851                           InBounds ? GEPOperator::IsInBounds : 0);
1852
1853  LLVMContextImpl *pImpl = C->getContext().pImpl;
1854  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1855}
1856
1857Constant *
1858ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1859  assert(LHS->getType() == RHS->getType());
1860  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1861         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1862
1863  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1864    return FC;          // Fold a few common cases...
1865
1866  // Look up the constant in the table first to ensure uniqueness
1867  Constant *ArgVec[] = { LHS, RHS };
1868  // Get the key type with both the opcode and predicate
1869  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1870
1871  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1872  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1873    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1874
1875  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1876  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1877}
1878
1879Constant *
1880ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1881  assert(LHS->getType() == RHS->getType());
1882  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1883
1884  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1885    return FC;          // Fold a few common cases...
1886
1887  // Look up the constant in the table first to ensure uniqueness
1888  Constant *ArgVec[] = { LHS, RHS };
1889  // Get the key type with both the opcode and predicate
1890  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1891
1892  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1893  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1894    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1895
1896  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1897  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1898}
1899
1900Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1901  assert(Val->getType()->isVectorTy() &&
1902         "Tried to create extractelement operation on non-vector type!");
1903  assert(Idx->getType()->isIntegerTy(32) &&
1904         "Extractelement index must be i32 type!");
1905
1906  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1907    return FC;          // Fold a few common cases.
1908
1909  // Look up the constant in the table first to ensure uniqueness
1910  Constant *ArgVec[] = { Val, Idx };
1911  const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1912
1913  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1914  Type *ReqTy = Val->getType()->getVectorElementType();
1915  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1916}
1917
1918Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1919                                         Constant *Idx) {
1920  assert(Val->getType()->isVectorTy() &&
1921         "Tried to create insertelement operation on non-vector type!");
1922  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1923         "Insertelement types must match!");
1924  assert(Idx->getType()->isIntegerTy(32) &&
1925         "Insertelement index must be i32 type!");
1926
1927  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1928    return FC;          // Fold a few common cases.
1929  // Look up the constant in the table first to ensure uniqueness
1930  Constant *ArgVec[] = { Val, Elt, Idx };
1931  const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1932
1933  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1934  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1935}
1936
1937Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1938                                         Constant *Mask) {
1939  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1940         "Invalid shuffle vector constant expr operands!");
1941
1942  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1943    return FC;          // Fold a few common cases.
1944
1945  unsigned NElts = Mask->getType()->getVectorNumElements();
1946  Type *EltTy = V1->getType()->getVectorElementType();
1947  Type *ShufTy = VectorType::get(EltTy, NElts);
1948
1949  // Look up the constant in the table first to ensure uniqueness
1950  Constant *ArgVec[] = { V1, V2, Mask };
1951  const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1952
1953  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1954  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1955}
1956
1957Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1958                                       ArrayRef<unsigned> Idxs) {
1959  assert(ExtractValueInst::getIndexedType(Agg->getType(),
1960                                          Idxs) == Val->getType() &&
1961         "insertvalue indices invalid!");
1962  assert(Agg->getType()->isFirstClassType() &&
1963         "Non-first-class type for constant insertvalue expression");
1964  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1965  assert(FC && "insertvalue constant expr couldn't be folded!");
1966  return FC;
1967}
1968
1969Constant *ConstantExpr::getExtractValue(Constant *Agg,
1970                                        ArrayRef<unsigned> Idxs) {
1971  assert(Agg->getType()->isFirstClassType() &&
1972         "Tried to create extractelement operation on non-first-class type!");
1973
1974  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1975  (void)ReqTy;
1976  assert(ReqTy && "extractvalue indices invalid!");
1977
1978  assert(Agg->getType()->isFirstClassType() &&
1979         "Non-first-class type for constant extractvalue expression");
1980  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1981  assert(FC && "ExtractValue constant expr couldn't be folded!");
1982  return FC;
1983}
1984
1985Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1986  assert(C->getType()->isIntOrIntVectorTy() &&
1987         "Cannot NEG a nonintegral value!");
1988  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1989                C, HasNUW, HasNSW);
1990}
1991
1992Constant *ConstantExpr::getFNeg(Constant *C) {
1993  assert(C->getType()->isFPOrFPVectorTy() &&
1994         "Cannot FNEG a non-floating-point value!");
1995  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1996}
1997
1998Constant *ConstantExpr::getNot(Constant *C) {
1999  assert(C->getType()->isIntOrIntVectorTy() &&
2000         "Cannot NOT a nonintegral value!");
2001  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2002}
2003
2004Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2005                               bool HasNUW, bool HasNSW) {
2006  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2007                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2008  return get(Instruction::Add, C1, C2, Flags);
2009}
2010
2011Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2012  return get(Instruction::FAdd, C1, C2);
2013}
2014
2015Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2016                               bool HasNUW, bool HasNSW) {
2017  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2018                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2019  return get(Instruction::Sub, C1, C2, Flags);
2020}
2021
2022Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2023  return get(Instruction::FSub, C1, C2);
2024}
2025
2026Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2027                               bool HasNUW, bool HasNSW) {
2028  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2029                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2030  return get(Instruction::Mul, C1, C2, Flags);
2031}
2032
2033Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2034  return get(Instruction::FMul, C1, C2);
2035}
2036
2037Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2038  return get(Instruction::UDiv, C1, C2,
2039             isExact ? PossiblyExactOperator::IsExact : 0);
2040}
2041
2042Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2043  return get(Instruction::SDiv, C1, C2,
2044             isExact ? PossiblyExactOperator::IsExact : 0);
2045}
2046
2047Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2048  return get(Instruction::FDiv, C1, C2);
2049}
2050
2051Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2052  return get(Instruction::URem, C1, C2);
2053}
2054
2055Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2056  return get(Instruction::SRem, C1, C2);
2057}
2058
2059Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2060  return get(Instruction::FRem, C1, C2);
2061}
2062
2063Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2064  return get(Instruction::And, C1, C2);
2065}
2066
2067Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2068  return get(Instruction::Or, C1, C2);
2069}
2070
2071Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2072  return get(Instruction::Xor, C1, C2);
2073}
2074
2075Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2076                               bool HasNUW, bool HasNSW) {
2077  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2078                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2079  return get(Instruction::Shl, C1, C2, Flags);
2080}
2081
2082Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2083  return get(Instruction::LShr, C1, C2,
2084             isExact ? PossiblyExactOperator::IsExact : 0);
2085}
2086
2087Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2088  return get(Instruction::AShr, C1, C2,
2089             isExact ? PossiblyExactOperator::IsExact : 0);
2090}
2091
2092/// getBinOpIdentity - Return the identity for the given binary operation,
2093/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2094/// returns null if the operator doesn't have an identity.
2095Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2096  switch (Opcode) {
2097  default:
2098    // Doesn't have an identity.
2099    return 0;
2100
2101  case Instruction::Add:
2102  case Instruction::Or:
2103  case Instruction::Xor:
2104    return Constant::getNullValue(Ty);
2105
2106  case Instruction::Mul:
2107    return ConstantInt::get(Ty, 1);
2108
2109  case Instruction::And:
2110    return Constant::getAllOnesValue(Ty);
2111  }
2112}
2113
2114/// getBinOpAbsorber - Return the absorbing element for the given binary
2115/// operation, i.e. a constant C such that X op C = C and C op X = C for
2116/// every X.  For example, this returns zero for integer multiplication.
2117/// It returns null if the operator doesn't have an absorbing element.
2118Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2119  switch (Opcode) {
2120  default:
2121    // Doesn't have an absorber.
2122    return 0;
2123
2124  case Instruction::Or:
2125    return Constant::getAllOnesValue(Ty);
2126
2127  case Instruction::And:
2128  case Instruction::Mul:
2129    return Constant::getNullValue(Ty);
2130  }
2131}
2132
2133// destroyConstant - Remove the constant from the constant table...
2134//
2135void ConstantExpr::destroyConstant() {
2136  getType()->getContext().pImpl->ExprConstants.remove(this);
2137  destroyConstantImpl();
2138}
2139
2140const char *ConstantExpr::getOpcodeName() const {
2141  return Instruction::getOpcodeName(getOpcode());
2142}
2143
2144
2145
2146GetElementPtrConstantExpr::
2147GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2148                          Type *DestTy)
2149  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2150                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2151                 - (IdxList.size()+1), IdxList.size()+1) {
2152  OperandList[0] = C;
2153  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2154    OperandList[i+1] = IdxList[i];
2155}
2156
2157//===----------------------------------------------------------------------===//
2158//                       ConstantData* implementations
2159
2160void ConstantDataArray::anchor() {}
2161void ConstantDataVector::anchor() {}
2162
2163/// getElementType - Return the element type of the array/vector.
2164Type *ConstantDataSequential::getElementType() const {
2165  return getType()->getElementType();
2166}
2167
2168StringRef ConstantDataSequential::getRawDataValues() const {
2169  return StringRef(DataElements, getNumElements()*getElementByteSize());
2170}
2171
2172/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2173/// formed with a vector or array of the specified element type.
2174/// ConstantDataArray only works with normal float and int types that are
2175/// stored densely in memory, not with things like i42 or x86_f80.
2176bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2177  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2178  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2179    switch (IT->getBitWidth()) {
2180    case 8:
2181    case 16:
2182    case 32:
2183    case 64:
2184      return true;
2185    default: break;
2186    }
2187  }
2188  return false;
2189}
2190
2191/// getNumElements - Return the number of elements in the array or vector.
2192unsigned ConstantDataSequential::getNumElements() const {
2193  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2194    return AT->getNumElements();
2195  return getType()->getVectorNumElements();
2196}
2197
2198
2199/// getElementByteSize - Return the size in bytes of the elements in the data.
2200uint64_t ConstantDataSequential::getElementByteSize() const {
2201  return getElementType()->getPrimitiveSizeInBits()/8;
2202}
2203
2204/// getElementPointer - Return the start of the specified element.
2205const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2206  assert(Elt < getNumElements() && "Invalid Elt");
2207  return DataElements+Elt*getElementByteSize();
2208}
2209
2210
2211/// isAllZeros - return true if the array is empty or all zeros.
2212static bool isAllZeros(StringRef Arr) {
2213  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2214    if (*I != 0)
2215      return false;
2216  return true;
2217}
2218
2219/// getImpl - This is the underlying implementation of all of the
2220/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2221/// the correct element type.  We take the bytes in as a StringRef because
2222/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2223Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2224  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2225  // If the elements are all zero or there are no elements, return a CAZ, which
2226  // is more dense and canonical.
2227  if (isAllZeros(Elements))
2228    return ConstantAggregateZero::get(Ty);
2229
2230  // Do a lookup to see if we have already formed one of these.
2231  StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2232    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2233
2234  // The bucket can point to a linked list of different CDS's that have the same
2235  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2236  // of i8, or a 1-element array of i32.  They'll both end up in the same
2237  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2238  ConstantDataSequential **Entry = &Slot.getValue();
2239  for (ConstantDataSequential *Node = *Entry; Node != 0;
2240       Entry = &Node->Next, Node = *Entry)
2241    if (Node->getType() == Ty)
2242      return Node;
2243
2244  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2245  // and return it.
2246  if (isa<ArrayType>(Ty))
2247    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2248
2249  assert(isa<VectorType>(Ty));
2250  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2251}
2252
2253void ConstantDataSequential::destroyConstant() {
2254  // Remove the constant from the StringMap.
2255  StringMap<ConstantDataSequential*> &CDSConstants =
2256    getType()->getContext().pImpl->CDSConstants;
2257
2258  StringMap<ConstantDataSequential*>::iterator Slot =
2259    CDSConstants.find(getRawDataValues());
2260
2261  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2262
2263  ConstantDataSequential **Entry = &Slot->getValue();
2264
2265  // Remove the entry from the hash table.
2266  if ((*Entry)->Next == 0) {
2267    // If there is only one value in the bucket (common case) it must be this
2268    // entry, and removing the entry should remove the bucket completely.
2269    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2270    getContext().pImpl->CDSConstants.erase(Slot);
2271  } else {
2272    // Otherwise, there are multiple entries linked off the bucket, unlink the
2273    // node we care about but keep the bucket around.
2274    for (ConstantDataSequential *Node = *Entry; ;
2275         Entry = &Node->Next, Node = *Entry) {
2276      assert(Node && "Didn't find entry in its uniquing hash table!");
2277      // If we found our entry, unlink it from the list and we're done.
2278      if (Node == this) {
2279        *Entry = Node->Next;
2280        break;
2281      }
2282    }
2283  }
2284
2285  // If we were part of a list, make sure that we don't delete the list that is
2286  // still owned by the uniquing map.
2287  Next = 0;
2288
2289  // Finally, actually delete it.
2290  destroyConstantImpl();
2291}
2292
2293/// get() constructors - Return a constant with array type with an element
2294/// count and element type matching the ArrayRef passed in.  Note that this
2295/// can return a ConstantAggregateZero object.
2296Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2297  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2298  const char *Data = reinterpret_cast<const char *>(Elts.data());
2299  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2300}
2301Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2302  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2303  const char *Data = reinterpret_cast<const char *>(Elts.data());
2304  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2305}
2306Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2307  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2308  const char *Data = reinterpret_cast<const char *>(Elts.data());
2309  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2310}
2311Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2312  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2313  const char *Data = reinterpret_cast<const char *>(Elts.data());
2314  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2315}
2316Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2317  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2318  const char *Data = reinterpret_cast<const char *>(Elts.data());
2319  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2320}
2321Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2322  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2323  const char *Data = reinterpret_cast<const char *>(Elts.data());
2324  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2325}
2326
2327/// getString - This method constructs a CDS and initializes it with a text
2328/// string. The default behavior (AddNull==true) causes a null terminator to
2329/// be placed at the end of the array (increasing the length of the string by
2330/// one more than the StringRef would normally indicate.  Pass AddNull=false
2331/// to disable this behavior.
2332Constant *ConstantDataArray::getString(LLVMContext &Context,
2333                                       StringRef Str, bool AddNull) {
2334  if (!AddNull) {
2335    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2336    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2337               Str.size()));
2338  }
2339
2340  SmallVector<uint8_t, 64> ElementVals;
2341  ElementVals.append(Str.begin(), Str.end());
2342  ElementVals.push_back(0);
2343  return get(Context, ElementVals);
2344}
2345
2346/// get() constructors - Return a constant with vector type with an element
2347/// count and element type matching the ArrayRef passed in.  Note that this
2348/// can return a ConstantAggregateZero object.
2349Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2350  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2351  const char *Data = reinterpret_cast<const char *>(Elts.data());
2352  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2353}
2354Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2355  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2356  const char *Data = reinterpret_cast<const char *>(Elts.data());
2357  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2358}
2359Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2360  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2361  const char *Data = reinterpret_cast<const char *>(Elts.data());
2362  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2363}
2364Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2365  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2366  const char *Data = reinterpret_cast<const char *>(Elts.data());
2367  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2368}
2369Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2370  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2371  const char *Data = reinterpret_cast<const char *>(Elts.data());
2372  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2373}
2374Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2375  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2376  const char *Data = reinterpret_cast<const char *>(Elts.data());
2377  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2378}
2379
2380Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2381  assert(isElementTypeCompatible(V->getType()) &&
2382         "Element type not compatible with ConstantData");
2383  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2384    if (CI->getType()->isIntegerTy(8)) {
2385      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2386      return get(V->getContext(), Elts);
2387    }
2388    if (CI->getType()->isIntegerTy(16)) {
2389      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2390      return get(V->getContext(), Elts);
2391    }
2392    if (CI->getType()->isIntegerTy(32)) {
2393      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2394      return get(V->getContext(), Elts);
2395    }
2396    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2397    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2398    return get(V->getContext(), Elts);
2399  }
2400
2401  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2402    if (CFP->getType()->isFloatTy()) {
2403      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2404      return get(V->getContext(), Elts);
2405    }
2406    if (CFP->getType()->isDoubleTy()) {
2407      SmallVector<double, 16> Elts(NumElts,
2408                                   CFP->getValueAPF().convertToDouble());
2409      return get(V->getContext(), Elts);
2410    }
2411  }
2412  return ConstantVector::getSplat(NumElts, V);
2413}
2414
2415
2416/// getElementAsInteger - If this is a sequential container of integers (of
2417/// any size), return the specified element in the low bits of a uint64_t.
2418uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2419  assert(isa<IntegerType>(getElementType()) &&
2420         "Accessor can only be used when element is an integer");
2421  const char *EltPtr = getElementPointer(Elt);
2422
2423  // The data is stored in host byte order, make sure to cast back to the right
2424  // type to load with the right endianness.
2425  switch (getElementType()->getIntegerBitWidth()) {
2426  default: llvm_unreachable("Invalid bitwidth for CDS");
2427  case 8:
2428    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2429  case 16:
2430    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2431  case 32:
2432    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2433  case 64:
2434    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2435  }
2436}
2437
2438/// getElementAsAPFloat - If this is a sequential container of floating point
2439/// type, return the specified element as an APFloat.
2440APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2441  const char *EltPtr = getElementPointer(Elt);
2442
2443  switch (getElementType()->getTypeID()) {
2444  default:
2445    llvm_unreachable("Accessor can only be used when element is float/double!");
2446  case Type::FloatTyID: {
2447      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2448      return APFloat(*const_cast<float *>(FloatPrt));
2449    }
2450  case Type::DoubleTyID: {
2451      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2452      return APFloat(*const_cast<double *>(DoublePtr));
2453    }
2454  }
2455}
2456
2457/// getElementAsFloat - If this is an sequential container of floats, return
2458/// the specified element as a float.
2459float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2460  assert(getElementType()->isFloatTy() &&
2461         "Accessor can only be used when element is a 'float'");
2462  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2463  return *const_cast<float *>(EltPtr);
2464}
2465
2466/// getElementAsDouble - If this is an sequential container of doubles, return
2467/// the specified element as a float.
2468double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2469  assert(getElementType()->isDoubleTy() &&
2470         "Accessor can only be used when element is a 'float'");
2471  const double *EltPtr =
2472      reinterpret_cast<const double *>(getElementPointer(Elt));
2473  return *const_cast<double *>(EltPtr);
2474}
2475
2476/// getElementAsConstant - Return a Constant for a specified index's element.
2477/// Note that this has to compute a new constant to return, so it isn't as
2478/// efficient as getElementAsInteger/Float/Double.
2479Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2480  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2481    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2482
2483  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2484}
2485
2486/// isString - This method returns true if this is an array of i8.
2487bool ConstantDataSequential::isString() const {
2488  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2489}
2490
2491/// isCString - This method returns true if the array "isString", ends with a
2492/// nul byte, and does not contains any other nul bytes.
2493bool ConstantDataSequential::isCString() const {
2494  if (!isString())
2495    return false;
2496
2497  StringRef Str = getAsString();
2498
2499  // The last value must be nul.
2500  if (Str.back() != 0) return false;
2501
2502  // Other elements must be non-nul.
2503  return Str.drop_back().find(0) == StringRef::npos;
2504}
2505
2506/// getSplatValue - If this is a splat constant, meaning that all of the
2507/// elements have the same value, return that value. Otherwise return NULL.
2508Constant *ConstantDataVector::getSplatValue() const {
2509  const char *Base = getRawDataValues().data();
2510
2511  // Compare elements 1+ to the 0'th element.
2512  unsigned EltSize = getElementByteSize();
2513  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2514    if (memcmp(Base, Base+i*EltSize, EltSize))
2515      return 0;
2516
2517  // If they're all the same, return the 0th one as a representative.
2518  return getElementAsConstant(0);
2519}
2520
2521//===----------------------------------------------------------------------===//
2522//                replaceUsesOfWithOnConstant implementations
2523
2524/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2525/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2526/// etc.
2527///
2528/// Note that we intentionally replace all uses of From with To here.  Consider
2529/// a large array that uses 'From' 1000 times.  By handling this case all here,
2530/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2531/// single invocation handles all 1000 uses.  Handling them one at a time would
2532/// work, but would be really slow because it would have to unique each updated
2533/// array instance.
2534///
2535void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2536                                                Use *U) {
2537  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2538  Constant *ToC = cast<Constant>(To);
2539
2540  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2541
2542  SmallVector<Constant*, 8> Values;
2543  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2544  Lookup.first = cast<ArrayType>(getType());
2545  Values.reserve(getNumOperands());  // Build replacement array.
2546
2547  // Fill values with the modified operands of the constant array.  Also,
2548  // compute whether this turns into an all-zeros array.
2549  unsigned NumUpdated = 0;
2550
2551  // Keep track of whether all the values in the array are "ToC".
2552  bool AllSame = true;
2553  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2554    Constant *Val = cast<Constant>(O->get());
2555    if (Val == From) {
2556      Val = ToC;
2557      ++NumUpdated;
2558    }
2559    Values.push_back(Val);
2560    AllSame &= Val == ToC;
2561  }
2562
2563  Constant *Replacement = 0;
2564  if (AllSame && ToC->isNullValue()) {
2565    Replacement = ConstantAggregateZero::get(getType());
2566  } else if (AllSame && isa<UndefValue>(ToC)) {
2567    Replacement = UndefValue::get(getType());
2568  } else {
2569    // Check to see if we have this array type already.
2570    Lookup.second = makeArrayRef(Values);
2571    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2572      pImpl->ArrayConstants.find(Lookup);
2573
2574    if (I != pImpl->ArrayConstants.map_end()) {
2575      Replacement = I->first;
2576    } else {
2577      // Okay, the new shape doesn't exist in the system yet.  Instead of
2578      // creating a new constant array, inserting it, replaceallusesof'ing the
2579      // old with the new, then deleting the old... just update the current one
2580      // in place!
2581      pImpl->ArrayConstants.remove(this);
2582
2583      // Update to the new value.  Optimize for the case when we have a single
2584      // operand that we're changing, but handle bulk updates efficiently.
2585      if (NumUpdated == 1) {
2586        unsigned OperandToUpdate = U - OperandList;
2587        assert(getOperand(OperandToUpdate) == From &&
2588               "ReplaceAllUsesWith broken!");
2589        setOperand(OperandToUpdate, ToC);
2590      } else {
2591        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2592          if (getOperand(i) == From)
2593            setOperand(i, ToC);
2594      }
2595      pImpl->ArrayConstants.insert(this);
2596      return;
2597    }
2598  }
2599
2600  // Otherwise, I do need to replace this with an existing value.
2601  assert(Replacement != this && "I didn't contain From!");
2602
2603  // Everyone using this now uses the replacement.
2604  replaceAllUsesWith(Replacement);
2605
2606  // Delete the old constant!
2607  destroyConstant();
2608}
2609
2610void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2611                                                 Use *U) {
2612  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2613  Constant *ToC = cast<Constant>(To);
2614
2615  unsigned OperandToUpdate = U-OperandList;
2616  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2617
2618  SmallVector<Constant*, 8> Values;
2619  LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2620  Lookup.first = cast<StructType>(getType());
2621  Values.reserve(getNumOperands());  // Build replacement struct.
2622
2623  // Fill values with the modified operands of the constant struct.  Also,
2624  // compute whether this turns into an all-zeros struct.
2625  bool isAllZeros = false;
2626  bool isAllUndef = false;
2627  if (ToC->isNullValue()) {
2628    isAllZeros = true;
2629    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2630      Constant *Val = cast<Constant>(O->get());
2631      Values.push_back(Val);
2632      if (isAllZeros) isAllZeros = Val->isNullValue();
2633    }
2634  } else if (isa<UndefValue>(ToC)) {
2635    isAllUndef = true;
2636    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2637      Constant *Val = cast<Constant>(O->get());
2638      Values.push_back(Val);
2639      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2640    }
2641  } else {
2642    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2643      Values.push_back(cast<Constant>(O->get()));
2644  }
2645  Values[OperandToUpdate] = ToC;
2646
2647  LLVMContextImpl *pImpl = getContext().pImpl;
2648
2649  Constant *Replacement = 0;
2650  if (isAllZeros) {
2651    Replacement = ConstantAggregateZero::get(getType());
2652  } else if (isAllUndef) {
2653    Replacement = UndefValue::get(getType());
2654  } else {
2655    // Check to see if we have this struct type already.
2656    Lookup.second = makeArrayRef(Values);
2657    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2658      pImpl->StructConstants.find(Lookup);
2659
2660    if (I != pImpl->StructConstants.map_end()) {
2661      Replacement = I->first;
2662    } else {
2663      // Okay, the new shape doesn't exist in the system yet.  Instead of
2664      // creating a new constant struct, inserting it, replaceallusesof'ing the
2665      // old with the new, then deleting the old... just update the current one
2666      // in place!
2667      pImpl->StructConstants.remove(this);
2668
2669      // Update to the new value.
2670      setOperand(OperandToUpdate, ToC);
2671      pImpl->StructConstants.insert(this);
2672      return;
2673    }
2674  }
2675
2676  assert(Replacement != this && "I didn't contain From!");
2677
2678  // Everyone using this now uses the replacement.
2679  replaceAllUsesWith(Replacement);
2680
2681  // Delete the old constant!
2682  destroyConstant();
2683}
2684
2685void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2686                                                 Use *U) {
2687  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2688
2689  SmallVector<Constant*, 8> Values;
2690  Values.reserve(getNumOperands());  // Build replacement array...
2691  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2692    Constant *Val = getOperand(i);
2693    if (Val == From) Val = cast<Constant>(To);
2694    Values.push_back(Val);
2695  }
2696
2697  Constant *Replacement = get(Values);
2698  assert(Replacement != this && "I didn't contain From!");
2699
2700  // Everyone using this now uses the replacement.
2701  replaceAllUsesWith(Replacement);
2702
2703  // Delete the old constant!
2704  destroyConstant();
2705}
2706
2707void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2708                                               Use *U) {
2709  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2710  Constant *To = cast<Constant>(ToV);
2711
2712  SmallVector<Constant*, 8> NewOps;
2713  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2714    Constant *Op = getOperand(i);
2715    NewOps.push_back(Op == From ? To : Op);
2716  }
2717
2718  Constant *Replacement = getWithOperands(NewOps);
2719  assert(Replacement != this && "I didn't contain From!");
2720
2721  // Everyone using this now uses the replacement.
2722  replaceAllUsesWith(Replacement);
2723
2724  // Delete the old constant!
2725  destroyConstant();
2726}
2727
2728Instruction *ConstantExpr::getAsInstruction() {
2729  SmallVector<Value*,4> ValueOperands;
2730  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2731    ValueOperands.push_back(cast<Value>(I));
2732
2733  ArrayRef<Value*> Ops(ValueOperands);
2734
2735  switch (getOpcode()) {
2736  case Instruction::Trunc:
2737  case Instruction::ZExt:
2738  case Instruction::SExt:
2739  case Instruction::FPTrunc:
2740  case Instruction::FPExt:
2741  case Instruction::UIToFP:
2742  case Instruction::SIToFP:
2743  case Instruction::FPToUI:
2744  case Instruction::FPToSI:
2745  case Instruction::PtrToInt:
2746  case Instruction::IntToPtr:
2747  case Instruction::BitCast:
2748    return CastInst::Create((Instruction::CastOps)getOpcode(),
2749                            Ops[0], getType());
2750  case Instruction::Select:
2751    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2752  case Instruction::InsertElement:
2753    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2754  case Instruction::ExtractElement:
2755    return ExtractElementInst::Create(Ops[0], Ops[1]);
2756  case Instruction::InsertValue:
2757    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2758  case Instruction::ExtractValue:
2759    return ExtractValueInst::Create(Ops[0], getIndices());
2760  case Instruction::ShuffleVector:
2761    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2762
2763  case Instruction::GetElementPtr:
2764    if (cast<GEPOperator>(this)->isInBounds())
2765      return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2766    else
2767      return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2768
2769  case Instruction::ICmp:
2770  case Instruction::FCmp:
2771    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2772                           getPredicate(), Ops[0], Ops[1]);
2773
2774  default:
2775    assert(getNumOperands() == 2 && "Must be binary operator?");
2776    BinaryOperator *BO =
2777      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2778                             Ops[0], Ops[1]);
2779    if (isa<OverflowingBinaryOperator>(BO)) {
2780      BO->setHasNoUnsignedWrap(SubclassOptionalData &
2781                               OverflowingBinaryOperator::NoUnsignedWrap);
2782      BO->setHasNoSignedWrap(SubclassOptionalData &
2783                             OverflowingBinaryOperator::NoSignedWrap);
2784    }
2785    if (isa<PossiblyExactOperator>(BO))
2786      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2787    return BO;
2788  }
2789}
2790