Dominators.cpp revision ebe69fe11e48d322045d5949c83283927a0d790b
1//===- Dominators.cpp - Dominator Calculation -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements simple dominator construction algorithms for finding
11// forward dominators.  Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed.  Forward dominators are
13// needed to support the Verifier pass.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/IR/Dominators.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/PassManager.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/GenericDomTreeConstruction.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30using namespace llvm;
31
32// Always verify dominfo if expensive checking is enabled.
33#ifdef XDEBUG
34static bool VerifyDomInfo = true;
35#else
36static bool VerifyDomInfo = false;
37#endif
38static cl::opt<bool,true>
39VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40               cl::desc("Verify dominator info (time consuming)"));
41
42bool BasicBlockEdge::isSingleEdge() const {
43  const TerminatorInst *TI = Start->getTerminator();
44  unsigned NumEdgesToEnd = 0;
45  for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46    if (TI->getSuccessor(i) == End)
47      ++NumEdgesToEnd;
48    if (NumEdgesToEnd >= 2)
49      return false;
50  }
51  assert(NumEdgesToEnd == 1);
52  return true;
53}
54
55//===----------------------------------------------------------------------===//
56//  DominatorTree Implementation
57//===----------------------------------------------------------------------===//
58//
59// Provide public access to DominatorTree information.  Implementation details
60// can be found in Dominators.h, GenericDomTree.h, and
61// GenericDomTreeConstruction.h.
62//
63//===----------------------------------------------------------------------===//
64
65TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
66TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
67
68#define LLVM_COMMA ,
69TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
70    DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
71        Function &F));
72TEMPLATE_INSTANTIATION(
73    void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
74        DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
75            LLVM_COMMA Function &F));
76#undef LLVM_COMMA
77
78// dominates - Return true if Def dominates a use in User. This performs
79// the special checks necessary if Def and User are in the same basic block.
80// Note that Def doesn't dominate a use in Def itself!
81bool DominatorTree::dominates(const Instruction *Def,
82                              const Instruction *User) const {
83  const BasicBlock *UseBB = User->getParent();
84  const BasicBlock *DefBB = Def->getParent();
85
86  // Any unreachable use is dominated, even if Def == User.
87  if (!isReachableFromEntry(UseBB))
88    return true;
89
90  // Unreachable definitions don't dominate anything.
91  if (!isReachableFromEntry(DefBB))
92    return false;
93
94  // An instruction doesn't dominate a use in itself.
95  if (Def == User)
96    return false;
97
98  // The value defined by an invoke dominates an instruction only if
99  // it dominates every instruction in UseBB.
100  // A PHI is dominated only if the instruction dominates every possible use
101  // in the UseBB.
102  if (isa<InvokeInst>(Def) || isa<PHINode>(User))
103    return dominates(Def, UseBB);
104
105  if (DefBB != UseBB)
106    return dominates(DefBB, UseBB);
107
108  // Loop through the basic block until we find Def or User.
109  BasicBlock::const_iterator I = DefBB->begin();
110  for (; &*I != Def && &*I != User; ++I)
111    /*empty*/;
112
113  return &*I == Def;
114}
115
116// true if Def would dominate a use in any instruction in UseBB.
117// note that dominates(Def, Def->getParent()) is false.
118bool DominatorTree::dominates(const Instruction *Def,
119                              const BasicBlock *UseBB) const {
120  const BasicBlock *DefBB = Def->getParent();
121
122  // Any unreachable use is dominated, even if DefBB == UseBB.
123  if (!isReachableFromEntry(UseBB))
124    return true;
125
126  // Unreachable definitions don't dominate anything.
127  if (!isReachableFromEntry(DefBB))
128    return false;
129
130  if (DefBB == UseBB)
131    return false;
132
133  const InvokeInst *II = dyn_cast<InvokeInst>(Def);
134  if (!II)
135    return dominates(DefBB, UseBB);
136
137  // Invoke results are only usable in the normal destination, not in the
138  // exceptional destination.
139  BasicBlock *NormalDest = II->getNormalDest();
140  BasicBlockEdge E(DefBB, NormalDest);
141  return dominates(E, UseBB);
142}
143
144bool DominatorTree::dominates(const BasicBlockEdge &BBE,
145                              const BasicBlock *UseBB) const {
146  // Assert that we have a single edge. We could handle them by simply
147  // returning false, but since isSingleEdge is linear on the number of
148  // edges, the callers can normally handle them more efficiently.
149  assert(BBE.isSingleEdge());
150
151  // If the BB the edge ends in doesn't dominate the use BB, then the
152  // edge also doesn't.
153  const BasicBlock *Start = BBE.getStart();
154  const BasicBlock *End = BBE.getEnd();
155  if (!dominates(End, UseBB))
156    return false;
157
158  // Simple case: if the end BB has a single predecessor, the fact that it
159  // dominates the use block implies that the edge also does.
160  if (End->getSinglePredecessor())
161    return true;
162
163  // The normal edge from the invoke is critical. Conceptually, what we would
164  // like to do is split it and check if the new block dominates the use.
165  // With X being the new block, the graph would look like:
166  //
167  //        DefBB
168  //          /\      .  .
169  //         /  \     .  .
170  //        /    \    .  .
171  //       /      \   |  |
172  //      A        X  B  C
173  //      |         \ | /
174  //      .          \|/
175  //      .      NormalDest
176  //      .
177  //
178  // Given the definition of dominance, NormalDest is dominated by X iff X
179  // dominates all of NormalDest's predecessors (X, B, C in the example). X
180  // trivially dominates itself, so we only have to find if it dominates the
181  // other predecessors. Since the only way out of X is via NormalDest, X can
182  // only properly dominate a node if NormalDest dominates that node too.
183  for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
184       PI != E; ++PI) {
185    const BasicBlock *BB = *PI;
186    if (BB == Start)
187      continue;
188
189    if (!dominates(End, BB))
190      return false;
191  }
192  return true;
193}
194
195bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
196  // Assert that we have a single edge. We could handle them by simply
197  // returning false, but since isSingleEdge is linear on the number of
198  // edges, the callers can normally handle them more efficiently.
199  assert(BBE.isSingleEdge());
200
201  Instruction *UserInst = cast<Instruction>(U.getUser());
202  // A PHI in the end of the edge is dominated by it.
203  PHINode *PN = dyn_cast<PHINode>(UserInst);
204  if (PN && PN->getParent() == BBE.getEnd() &&
205      PN->getIncomingBlock(U) == BBE.getStart())
206    return true;
207
208  // Otherwise use the edge-dominates-block query, which
209  // handles the crazy critical edge cases properly.
210  const BasicBlock *UseBB;
211  if (PN)
212    UseBB = PN->getIncomingBlock(U);
213  else
214    UseBB = UserInst->getParent();
215  return dominates(BBE, UseBB);
216}
217
218bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
219  Instruction *UserInst = cast<Instruction>(U.getUser());
220  const BasicBlock *DefBB = Def->getParent();
221
222  // Determine the block in which the use happens. PHI nodes use
223  // their operands on edges; simulate this by thinking of the use
224  // happening at the end of the predecessor block.
225  const BasicBlock *UseBB;
226  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
227    UseBB = PN->getIncomingBlock(U);
228  else
229    UseBB = UserInst->getParent();
230
231  // Any unreachable use is dominated, even if Def == User.
232  if (!isReachableFromEntry(UseBB))
233    return true;
234
235  // Unreachable definitions don't dominate anything.
236  if (!isReachableFromEntry(DefBB))
237    return false;
238
239  // Invoke instructions define their return values on the edges
240  // to their normal successors, so we have to handle them specially.
241  // Among other things, this means they don't dominate anything in
242  // their own block, except possibly a phi, so we don't need to
243  // walk the block in any case.
244  if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
245    BasicBlock *NormalDest = II->getNormalDest();
246    BasicBlockEdge E(DefBB, NormalDest);
247    return dominates(E, U);
248  }
249
250  // If the def and use are in different blocks, do a simple CFG dominator
251  // tree query.
252  if (DefBB != UseBB)
253    return dominates(DefBB, UseBB);
254
255  // Ok, def and use are in the same block. If the def is an invoke, it
256  // doesn't dominate anything in the block. If it's a PHI, it dominates
257  // everything in the block.
258  if (isa<PHINode>(UserInst))
259    return true;
260
261  // Otherwise, just loop through the basic block until we find Def or User.
262  BasicBlock::const_iterator I = DefBB->begin();
263  for (; &*I != Def && &*I != UserInst; ++I)
264    /*empty*/;
265
266  return &*I != UserInst;
267}
268
269bool DominatorTree::isReachableFromEntry(const Use &U) const {
270  Instruction *I = dyn_cast<Instruction>(U.getUser());
271
272  // ConstantExprs aren't really reachable from the entry block, but they
273  // don't need to be treated like unreachable code either.
274  if (!I) return true;
275
276  // PHI nodes use their operands on their incoming edges.
277  if (PHINode *PN = dyn_cast<PHINode>(I))
278    return isReachableFromEntry(PN->getIncomingBlock(U));
279
280  // Everything else uses their operands in their own block.
281  return isReachableFromEntry(I->getParent());
282}
283
284void DominatorTree::verifyDomTree() const {
285  if (!VerifyDomInfo)
286    return;
287
288  Function &F = *getRoot()->getParent();
289
290  DominatorTree OtherDT;
291  OtherDT.recalculate(F);
292  if (compare(OtherDT)) {
293    errs() << "DominatorTree is not up to date!\nComputed:\n";
294    print(errs());
295    errs() << "\nActual:\n";
296    OtherDT.print(errs());
297    abort();
298  }
299}
300
301//===----------------------------------------------------------------------===//
302//  DominatorTreeAnalysis and related pass implementations
303//===----------------------------------------------------------------------===//
304//
305// This implements the DominatorTreeAnalysis which is used with the new pass
306// manager. It also implements some methods from utility passes.
307//
308//===----------------------------------------------------------------------===//
309
310DominatorTree DominatorTreeAnalysis::run(Function &F) {
311  DominatorTree DT;
312  DT.recalculate(F);
313  return DT;
314}
315
316char DominatorTreeAnalysis::PassID;
317
318DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
319
320PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
321                                                FunctionAnalysisManager *AM) {
322  OS << "DominatorTree for function: " << F.getName() << "\n";
323  AM->getResult<DominatorTreeAnalysis>(F).print(OS);
324
325  return PreservedAnalyses::all();
326}
327
328PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
329                                                 FunctionAnalysisManager *AM) {
330  AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
331
332  return PreservedAnalyses::all();
333}
334
335//===----------------------------------------------------------------------===//
336//  DominatorTreeWrapperPass Implementation
337//===----------------------------------------------------------------------===//
338//
339// The implementation details of the wrapper pass that holds a DominatorTree
340// suitable for use with the legacy pass manager.
341//
342//===----------------------------------------------------------------------===//
343
344char DominatorTreeWrapperPass::ID = 0;
345INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
346                "Dominator Tree Construction", true, true)
347
348bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
349  DT.recalculate(F);
350  return false;
351}
352
353void DominatorTreeWrapperPass::verifyAnalysis() const { DT.verifyDomTree(); }
354
355void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
356  DT.print(OS);
357}
358
359