Instructions.cpp revision 4c5e43da7792f75567b693105cc53e3f1992ad98
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/IR/Instructions.h"
16#include "LLVMContextImpl.h"
17#include "llvm/IR/CallSite.h"
18#include "llvm/IR/ConstantRange.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//                            CallSite Class
31//===----------------------------------------------------------------------===//
32
33User::op_iterator CallSite::getCallee() const {
34  Instruction *II(getInstruction());
35  return isCall()
36    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38}
39
40//===----------------------------------------------------------------------===//
41//                            TerminatorInst Class
42//===----------------------------------------------------------------------===//
43
44// Out of line virtual method, so the vtable, etc has a home.
45TerminatorInst::~TerminatorInst() {
46}
47
48//===----------------------------------------------------------------------===//
49//                           UnaryInstruction Class
50//===----------------------------------------------------------------------===//
51
52// Out of line virtual method, so the vtable, etc has a home.
53UnaryInstruction::~UnaryInstruction() {
54}
55
56//===----------------------------------------------------------------------===//
57//                              SelectInst Class
58//===----------------------------------------------------------------------===//
59
60/// areInvalidOperands - Return a string if the specified operands are invalid
61/// for a select operation, otherwise return null.
62const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63  if (Op1->getType() != Op2->getType())
64    return "both values to select must have same type";
65
66  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67    // Vector select.
68    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69      return "vector select condition element type must be i1";
70    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71    if (!ET)
72      return "selected values for vector select must be vectors";
73    if (ET->getNumElements() != VT->getNumElements())
74      return "vector select requires selected vectors to have "
75                   "the same vector length as select condition";
76  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77    return "select condition must be i1 or <n x i1>";
78  }
79  return nullptr;
80}
81
82
83//===----------------------------------------------------------------------===//
84//                               PHINode Class
85//===----------------------------------------------------------------------===//
86
87PHINode::PHINode(const PHINode &PN)
88  : Instruction(PN.getType(), Instruction::PHI,
89                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90    ReservedSpace(PN.getNumOperands()) {
91  std::copy(PN.op_begin(), PN.op_end(), op_begin());
92  std::copy(PN.block_begin(), PN.block_end(), block_begin());
93  SubclassOptionalData = PN.SubclassOptionalData;
94}
95
96PHINode::~PHINode() {
97  dropHungoffUses();
98}
99
100Use *PHINode::allocHungoffUses(unsigned N) const {
101  // Allocate the array of Uses of the incoming values, followed by a pointer
102  // (with bottom bit set) to the User, followed by the array of pointers to
103  // the incoming basic blocks.
104  size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105    + N * sizeof(BasicBlock*);
106  Use *Begin = static_cast<Use*>(::operator new(size));
107  Use *End = Begin + N;
108  (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109  return Use::initTags(Begin, End);
110}
111
112// removeIncomingValue - Remove an incoming value.  This is useful if a
113// predecessor basic block is deleted.
114Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115  Value *Removed = getIncomingValue(Idx);
116
117  // Move everything after this operand down.
118  //
119  // FIXME: we could just swap with the end of the list, then erase.  However,
120  // clients might not expect this to happen.  The code as it is thrashes the
121  // use/def lists, which is kinda lame.
122  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125  // Nuke the last value.
126  Op<-1>().set(nullptr);
127  --NumOperands;
128
129  // If the PHI node is dead, because it has zero entries, nuke it now.
130  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131    // If anyone is using this PHI, make them use a dummy value instead...
132    replaceAllUsesWith(UndefValue::get(getType()));
133    eraseFromParent();
134  }
135  return Removed;
136}
137
138/// growOperands - grow operands - This grows the operand list in response
139/// to a push_back style of operation.  This grows the number of ops by 1.5
140/// times.
141///
142void PHINode::growOperands() {
143  unsigned e = getNumOperands();
144  unsigned NumOps = e + e / 2;
145  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
146
147  Use *OldOps = op_begin();
148  BasicBlock **OldBlocks = block_begin();
149
150  ReservedSpace = NumOps;
151  OperandList = allocHungoffUses(ReservedSpace);
152
153  std::copy(OldOps, OldOps + e, op_begin());
154  std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156  Use::zap(OldOps, OldOps + e, true);
157}
158
159/// hasConstantValue - If the specified PHI node always merges together the same
160/// value, return the value, otherwise return null.
161Value *PHINode::hasConstantValue() const {
162  // Exploit the fact that phi nodes always have at least one entry.
163  Value *ConstantValue = getIncomingValue(0);
164  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166      if (ConstantValue != this)
167        return nullptr; // Incoming values not all the same.
168       // The case where the first value is this PHI.
169      ConstantValue = getIncomingValue(i);
170    }
171  if (ConstantValue == this)
172    return UndefValue::get(getType());
173  return ConstantValue;
174}
175
176//===----------------------------------------------------------------------===//
177//                       LandingPadInst Implementation
178//===----------------------------------------------------------------------===//
179
180LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181                               unsigned NumReservedValues, const Twine &NameStr,
182                               Instruction *InsertBefore)
183  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
184  init(PersonalityFn, 1 + NumReservedValues, NameStr);
185}
186
187LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188                               unsigned NumReservedValues, const Twine &NameStr,
189                               BasicBlock *InsertAtEnd)
190  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
191  init(PersonalityFn, 1 + NumReservedValues, NameStr);
192}
193
194LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195  : Instruction(LP.getType(), Instruction::LandingPad,
196                allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197    ReservedSpace(LP.getNumOperands()) {
198  Use *OL = OperandList, *InOL = LP.OperandList;
199  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200    OL[I] = InOL[I];
201
202  setCleanup(LP.isCleanup());
203}
204
205LandingPadInst::~LandingPadInst() {
206  dropHungoffUses();
207}
208
209LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210                                       unsigned NumReservedClauses,
211                                       const Twine &NameStr,
212                                       Instruction *InsertBefore) {
213  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214                            InsertBefore);
215}
216
217LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218                                       unsigned NumReservedClauses,
219                                       const Twine &NameStr,
220                                       BasicBlock *InsertAtEnd) {
221  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222                            InsertAtEnd);
223}
224
225void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226                          const Twine &NameStr) {
227  ReservedSpace = NumReservedValues;
228  NumOperands = 1;
229  OperandList = allocHungoffUses(ReservedSpace);
230  OperandList[0] = PersFn;
231  setName(NameStr);
232  setCleanup(false);
233}
234
235/// growOperands - grow operands - This grows the operand list in response to a
236/// push_back style of operation. This grows the number of ops by 2 times.
237void LandingPadInst::growOperands(unsigned Size) {
238  unsigned e = getNumOperands();
239  if (ReservedSpace >= e + Size) return;
240  ReservedSpace = (e + Size / 2) * 2;
241
242  Use *NewOps = allocHungoffUses(ReservedSpace);
243  Use *OldOps = OperandList;
244  for (unsigned i = 0; i != e; ++i)
245      NewOps[i] = OldOps[i];
246
247  OperandList = NewOps;
248  Use::zap(OldOps, OldOps + e, true);
249}
250
251void LandingPadInst::addClause(Constant *Val) {
252  unsigned OpNo = getNumOperands();
253  growOperands(1);
254  assert(OpNo < ReservedSpace && "Growing didn't work!");
255  ++NumOperands;
256  OperandList[OpNo] = Val;
257}
258
259//===----------------------------------------------------------------------===//
260//                        CallInst Implementation
261//===----------------------------------------------------------------------===//
262
263CallInst::~CallInst() {
264}
265
266void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267  assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268  Op<-1>() = Func;
269
270#ifndef NDEBUG
271  FunctionType *FTy =
272    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274  assert((Args.size() == FTy->getNumParams() ||
275          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276         "Calling a function with bad signature!");
277
278  for (unsigned i = 0; i != Args.size(); ++i)
279    assert((i >= FTy->getNumParams() ||
280            FTy->getParamType(i) == Args[i]->getType()) &&
281           "Calling a function with a bad signature!");
282#endif
283
284  std::copy(Args.begin(), Args.end(), op_begin());
285  setName(NameStr);
286}
287
288void CallInst::init(Value *Func, const Twine &NameStr) {
289  assert(NumOperands == 1 && "NumOperands not set up?");
290  Op<-1>() = Func;
291
292#ifndef NDEBUG
293  FunctionType *FTy =
294    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297#endif
298
299  setName(NameStr);
300}
301
302CallInst::CallInst(Value *Func, const Twine &Name,
303                   Instruction *InsertBefore)
304  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305                                   ->getElementType())->getReturnType(),
306                Instruction::Call,
307                OperandTraits<CallInst>::op_end(this) - 1,
308                1, InsertBefore) {
309  init(Func, Name);
310}
311
312CallInst::CallInst(Value *Func, const Twine &Name,
313                   BasicBlock *InsertAtEnd)
314  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315                                   ->getElementType())->getReturnType(),
316                Instruction::Call,
317                OperandTraits<CallInst>::op_end(this) - 1,
318                1, InsertAtEnd) {
319  init(Func, Name);
320}
321
322CallInst::CallInst(const CallInst &CI)
323  : Instruction(CI.getType(), Instruction::Call,
324                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325                CI.getNumOperands()) {
326  setAttributes(CI.getAttributes());
327  setTailCallKind(CI.getTailCallKind());
328  setCallingConv(CI.getCallingConv());
329
330  std::copy(CI.op_begin(), CI.op_end(), op_begin());
331  SubclassOptionalData = CI.SubclassOptionalData;
332}
333
334void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335  AttributeSet PAL = getAttributes();
336  PAL = PAL.addAttribute(getContext(), i, attr);
337  setAttributes(PAL);
338}
339
340void CallInst::removeAttribute(unsigned i, Attribute attr) {
341  AttributeSet PAL = getAttributes();
342  AttrBuilder B(attr);
343  LLVMContext &Context = getContext();
344  PAL = PAL.removeAttributes(Context, i,
345                             AttributeSet::get(Context, i, B));
346  setAttributes(PAL);
347}
348
349void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
350  AttributeSet PAL = getAttributes();
351  PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
352  setAttributes(PAL);
353}
354
355bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
356  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
357    return true;
358  if (const Function *F = getCalledFunction())
359    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
360  return false;
361}
362
363bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
364  if (AttributeList.hasAttribute(i, A))
365    return true;
366  if (const Function *F = getCalledFunction())
367    return F->getAttributes().hasAttribute(i, A);
368  return false;
369}
370
371/// IsConstantOne - Return true only if val is constant int 1
372static bool IsConstantOne(Value *val) {
373  assert(val && "IsConstantOne does not work with nullptr val");
374  const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
375  return CVal && CVal->isOne();
376}
377
378static Instruction *createMalloc(Instruction *InsertBefore,
379                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
380                                 Type *AllocTy, Value *AllocSize,
381                                 Value *ArraySize, Function *MallocF,
382                                 const Twine &Name) {
383  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
384         "createMalloc needs either InsertBefore or InsertAtEnd");
385
386  // malloc(type) becomes:
387  //       bitcast (i8* malloc(typeSize)) to type*
388  // malloc(type, arraySize) becomes:
389  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
390  if (!ArraySize)
391    ArraySize = ConstantInt::get(IntPtrTy, 1);
392  else if (ArraySize->getType() != IntPtrTy) {
393    if (InsertBefore)
394      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
395                                              "", InsertBefore);
396    else
397      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
398                                              "", InsertAtEnd);
399  }
400
401  if (!IsConstantOne(ArraySize)) {
402    if (IsConstantOne(AllocSize)) {
403      AllocSize = ArraySize;         // Operand * 1 = Operand
404    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
405      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
406                                                     false /*ZExt*/);
407      // Malloc arg is constant product of type size and array size
408      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
409    } else {
410      // Multiply type size by the array size...
411      if (InsertBefore)
412        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
413                                              "mallocsize", InsertBefore);
414      else
415        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
416                                              "mallocsize", InsertAtEnd);
417    }
418  }
419
420  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
421  // Create the call to Malloc.
422  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
423  Module* M = BB->getParent()->getParent();
424  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
425  Value *MallocFunc = MallocF;
426  if (!MallocFunc)
427    // prototype malloc as "void *malloc(size_t)"
428    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
429  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
430  CallInst *MCall = nullptr;
431  Instruction *Result = nullptr;
432  if (InsertBefore) {
433    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
434    Result = MCall;
435    if (Result->getType() != AllocPtrType)
436      // Create a cast instruction to convert to the right type...
437      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
438  } else {
439    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
440    Result = MCall;
441    if (Result->getType() != AllocPtrType) {
442      InsertAtEnd->getInstList().push_back(MCall);
443      // Create a cast instruction to convert to the right type...
444      Result = new BitCastInst(MCall, AllocPtrType, Name);
445    }
446  }
447  MCall->setTailCall();
448  if (Function *F = dyn_cast<Function>(MallocFunc)) {
449    MCall->setCallingConv(F->getCallingConv());
450    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
451  }
452  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
453
454  return Result;
455}
456
457/// CreateMalloc - Generate the IR for a call to malloc:
458/// 1. Compute the malloc call's argument as the specified type's size,
459///    possibly multiplied by the array size if the array size is not
460///    constant 1.
461/// 2. Call malloc with that argument.
462/// 3. Bitcast the result of the malloc call to the specified type.
463Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
464                                    Type *IntPtrTy, Type *AllocTy,
465                                    Value *AllocSize, Value *ArraySize,
466                                    Function * MallocF,
467                                    const Twine &Name) {
468  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
469                      ArraySize, MallocF, Name);
470}
471
472/// CreateMalloc - Generate the IR for a call to malloc:
473/// 1. Compute the malloc call's argument as the specified type's size,
474///    possibly multiplied by the array size if the array size is not
475///    constant 1.
476/// 2. Call malloc with that argument.
477/// 3. Bitcast the result of the malloc call to the specified type.
478/// Note: This function does not add the bitcast to the basic block, that is the
479/// responsibility of the caller.
480Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
481                                    Type *IntPtrTy, Type *AllocTy,
482                                    Value *AllocSize, Value *ArraySize,
483                                    Function *MallocF, const Twine &Name) {
484  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
485                      ArraySize, MallocF, Name);
486}
487
488static Instruction* createFree(Value* Source, Instruction *InsertBefore,
489                               BasicBlock *InsertAtEnd) {
490  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
491         "createFree needs either InsertBefore or InsertAtEnd");
492  assert(Source->getType()->isPointerTy() &&
493         "Can not free something of nonpointer type!");
494
495  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
496  Module* M = BB->getParent()->getParent();
497
498  Type *VoidTy = Type::getVoidTy(M->getContext());
499  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
500  // prototype free as "void free(void*)"
501  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
502  CallInst* Result = nullptr;
503  Value *PtrCast = Source;
504  if (InsertBefore) {
505    if (Source->getType() != IntPtrTy)
506      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
507    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
508  } else {
509    if (Source->getType() != IntPtrTy)
510      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
511    Result = CallInst::Create(FreeFunc, PtrCast, "");
512  }
513  Result->setTailCall();
514  if (Function *F = dyn_cast<Function>(FreeFunc))
515    Result->setCallingConv(F->getCallingConv());
516
517  return Result;
518}
519
520/// CreateFree - Generate the IR for a call to the builtin free function.
521Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
522  return createFree(Source, InsertBefore, nullptr);
523}
524
525/// CreateFree - Generate the IR for a call to the builtin free function.
526/// Note: This function does not add the call to the basic block, that is the
527/// responsibility of the caller.
528Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
529  Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
530  assert(FreeCall && "CreateFree did not create a CallInst");
531  return FreeCall;
532}
533
534//===----------------------------------------------------------------------===//
535//                        InvokeInst Implementation
536//===----------------------------------------------------------------------===//
537
538void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
539                      ArrayRef<Value *> Args, const Twine &NameStr) {
540  assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
541  Op<-3>() = Fn;
542  Op<-2>() = IfNormal;
543  Op<-1>() = IfException;
544
545#ifndef NDEBUG
546  FunctionType *FTy =
547    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
548
549  assert(((Args.size() == FTy->getNumParams()) ||
550          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
551         "Invoking a function with bad signature");
552
553  for (unsigned i = 0, e = Args.size(); i != e; i++)
554    assert((i >= FTy->getNumParams() ||
555            FTy->getParamType(i) == Args[i]->getType()) &&
556           "Invoking a function with a bad signature!");
557#endif
558
559  std::copy(Args.begin(), Args.end(), op_begin());
560  setName(NameStr);
561}
562
563InvokeInst::InvokeInst(const InvokeInst &II)
564  : TerminatorInst(II.getType(), Instruction::Invoke,
565                   OperandTraits<InvokeInst>::op_end(this)
566                   - II.getNumOperands(),
567                   II.getNumOperands()) {
568  setAttributes(II.getAttributes());
569  setCallingConv(II.getCallingConv());
570  std::copy(II.op_begin(), II.op_end(), op_begin());
571  SubclassOptionalData = II.SubclassOptionalData;
572}
573
574BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
575  return getSuccessor(idx);
576}
577unsigned InvokeInst::getNumSuccessorsV() const {
578  return getNumSuccessors();
579}
580void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
581  return setSuccessor(idx, B);
582}
583
584bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
585  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
586    return true;
587  if (const Function *F = getCalledFunction())
588    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
589  return false;
590}
591
592bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
593  if (AttributeList.hasAttribute(i, A))
594    return true;
595  if (const Function *F = getCalledFunction())
596    return F->getAttributes().hasAttribute(i, A);
597  return false;
598}
599
600void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
601  AttributeSet PAL = getAttributes();
602  PAL = PAL.addAttribute(getContext(), i, attr);
603  setAttributes(PAL);
604}
605
606void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
607  AttributeSet PAL = getAttributes();
608  AttrBuilder B(attr);
609  PAL = PAL.removeAttributes(getContext(), i,
610                             AttributeSet::get(getContext(), i, B));
611  setAttributes(PAL);
612}
613
614void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
615  AttributeSet PAL = getAttributes();
616  PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
617  setAttributes(PAL);
618}
619
620LandingPadInst *InvokeInst::getLandingPadInst() const {
621  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
622}
623
624//===----------------------------------------------------------------------===//
625//                        ReturnInst Implementation
626//===----------------------------------------------------------------------===//
627
628ReturnInst::ReturnInst(const ReturnInst &RI)
629  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
630                   OperandTraits<ReturnInst>::op_end(this) -
631                     RI.getNumOperands(),
632                   RI.getNumOperands()) {
633  if (RI.getNumOperands())
634    Op<0>() = RI.Op<0>();
635  SubclassOptionalData = RI.SubclassOptionalData;
636}
637
638ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
639  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
640                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
641                   InsertBefore) {
642  if (retVal)
643    Op<0>() = retVal;
644}
645ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
646  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
647                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
648                   InsertAtEnd) {
649  if (retVal)
650    Op<0>() = retVal;
651}
652ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
653  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
654                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
655}
656
657unsigned ReturnInst::getNumSuccessorsV() const {
658  return getNumSuccessors();
659}
660
661/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
662/// emit the vtable for the class in this translation unit.
663void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
664  llvm_unreachable("ReturnInst has no successors!");
665}
666
667BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
668  llvm_unreachable("ReturnInst has no successors!");
669}
670
671ReturnInst::~ReturnInst() {
672}
673
674//===----------------------------------------------------------------------===//
675//                        ResumeInst Implementation
676//===----------------------------------------------------------------------===//
677
678ResumeInst::ResumeInst(const ResumeInst &RI)
679  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
680                   OperandTraits<ResumeInst>::op_begin(this), 1) {
681  Op<0>() = RI.Op<0>();
682}
683
684ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
685  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
686                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
687  Op<0>() = Exn;
688}
689
690ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
691  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
692                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
693  Op<0>() = Exn;
694}
695
696unsigned ResumeInst::getNumSuccessorsV() const {
697  return getNumSuccessors();
698}
699
700void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
701  llvm_unreachable("ResumeInst has no successors!");
702}
703
704BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
705  llvm_unreachable("ResumeInst has no successors!");
706}
707
708//===----------------------------------------------------------------------===//
709//                      UnreachableInst Implementation
710//===----------------------------------------------------------------------===//
711
712UnreachableInst::UnreachableInst(LLVMContext &Context,
713                                 Instruction *InsertBefore)
714  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
715                   nullptr, 0, InsertBefore) {
716}
717UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
718  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
719                   nullptr, 0, InsertAtEnd) {
720}
721
722unsigned UnreachableInst::getNumSuccessorsV() const {
723  return getNumSuccessors();
724}
725
726void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
727  llvm_unreachable("UnreachableInst has no successors!");
728}
729
730BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
731  llvm_unreachable("UnreachableInst has no successors!");
732}
733
734//===----------------------------------------------------------------------===//
735//                        BranchInst Implementation
736//===----------------------------------------------------------------------===//
737
738void BranchInst::AssertOK() {
739  if (isConditional())
740    assert(getCondition()->getType()->isIntegerTy(1) &&
741           "May only branch on boolean predicates!");
742}
743
744BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
745  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
746                   OperandTraits<BranchInst>::op_end(this) - 1,
747                   1, InsertBefore) {
748  assert(IfTrue && "Branch destination may not be null!");
749  Op<-1>() = IfTrue;
750}
751BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
752                       Instruction *InsertBefore)
753  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
754                   OperandTraits<BranchInst>::op_end(this) - 3,
755                   3, InsertBefore) {
756  Op<-1>() = IfTrue;
757  Op<-2>() = IfFalse;
758  Op<-3>() = Cond;
759#ifndef NDEBUG
760  AssertOK();
761#endif
762}
763
764BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
765  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
766                   OperandTraits<BranchInst>::op_end(this) - 1,
767                   1, InsertAtEnd) {
768  assert(IfTrue && "Branch destination may not be null!");
769  Op<-1>() = IfTrue;
770}
771
772BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
773           BasicBlock *InsertAtEnd)
774  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
775                   OperandTraits<BranchInst>::op_end(this) - 3,
776                   3, InsertAtEnd) {
777  Op<-1>() = IfTrue;
778  Op<-2>() = IfFalse;
779  Op<-3>() = Cond;
780#ifndef NDEBUG
781  AssertOK();
782#endif
783}
784
785
786BranchInst::BranchInst(const BranchInst &BI) :
787  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
788                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
789                 BI.getNumOperands()) {
790  Op<-1>() = BI.Op<-1>();
791  if (BI.getNumOperands() != 1) {
792    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
793    Op<-3>() = BI.Op<-3>();
794    Op<-2>() = BI.Op<-2>();
795  }
796  SubclassOptionalData = BI.SubclassOptionalData;
797}
798
799void BranchInst::swapSuccessors() {
800  assert(isConditional() &&
801         "Cannot swap successors of an unconditional branch");
802  Op<-1>().swap(Op<-2>());
803
804  // Update profile metadata if present and it matches our structural
805  // expectations.
806  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
807  if (!ProfileData || ProfileData->getNumOperands() != 3)
808    return;
809
810  // The first operand is the name. Fetch them backwards and build a new one.
811  Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
812                     ProfileData->getOperand(1)};
813  setMetadata(LLVMContext::MD_prof,
814              MDNode::get(ProfileData->getContext(), Ops));
815}
816
817BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
818  return getSuccessor(idx);
819}
820unsigned BranchInst::getNumSuccessorsV() const {
821  return getNumSuccessors();
822}
823void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
824  setSuccessor(idx, B);
825}
826
827
828//===----------------------------------------------------------------------===//
829//                        AllocaInst Implementation
830//===----------------------------------------------------------------------===//
831
832static Value *getAISize(LLVMContext &Context, Value *Amt) {
833  if (!Amt)
834    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
835  else {
836    assert(!isa<BasicBlock>(Amt) &&
837           "Passed basic block into allocation size parameter! Use other ctor");
838    assert(Amt->getType()->isIntegerTy() &&
839           "Allocation array size is not an integer!");
840  }
841  return Amt;
842}
843
844AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore)
845    : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {}
846
847AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
848    : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
849
850AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
851                       Instruction *InsertBefore)
852    : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {}
853
854AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
855                       BasicBlock *InsertAtEnd)
856    : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
857
858AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
859                       const Twine &Name, Instruction *InsertBefore)
860  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
861                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
862  setAlignment(Align);
863  assert(!Ty->isVoidTy() && "Cannot allocate void!");
864  setName(Name);
865}
866
867AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
868                       const Twine &Name, BasicBlock *InsertAtEnd)
869  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
870                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
871  setAlignment(Align);
872  assert(!Ty->isVoidTy() && "Cannot allocate void!");
873  setName(Name);
874}
875
876// Out of line virtual method, so the vtable, etc has a home.
877AllocaInst::~AllocaInst() {
878}
879
880void AllocaInst::setAlignment(unsigned Align) {
881  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
882  assert(Align <= MaximumAlignment &&
883         "Alignment is greater than MaximumAlignment!");
884  setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
885                             (Log2_32(Align) + 1));
886  assert(getAlignment() == Align && "Alignment representation error!");
887}
888
889bool AllocaInst::isArrayAllocation() const {
890  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
891    return !CI->isOne();
892  return true;
893}
894
895Type *AllocaInst::getAllocatedType() const {
896  return getType()->getElementType();
897}
898
899/// isStaticAlloca - Return true if this alloca is in the entry block of the
900/// function and is a constant size.  If so, the code generator will fold it
901/// into the prolog/epilog code, so it is basically free.
902bool AllocaInst::isStaticAlloca() const {
903  // Must be constant size.
904  if (!isa<ConstantInt>(getArraySize())) return false;
905
906  // Must be in the entry block.
907  const BasicBlock *Parent = getParent();
908  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
909}
910
911//===----------------------------------------------------------------------===//
912//                           LoadInst Implementation
913//===----------------------------------------------------------------------===//
914
915void LoadInst::AssertOK() {
916  assert(getOperand(0)->getType()->isPointerTy() &&
917         "Ptr must have pointer type.");
918  assert(!(isAtomic() && getAlignment() == 0) &&
919         "Alignment required for atomic load");
920}
921
922LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
923    : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
924
925LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
926    : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
927
928LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
929                   Instruction *InsertBef)
930    : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
931
932LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
933                   BasicBlock *InsertAE)
934    : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
935
936LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
937                   unsigned Align, Instruction *InsertBef)
938    : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread,
939               InsertBef) {}
940
941LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
942                   unsigned Align, BasicBlock *InsertAE)
943    : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, InsertAE) {
944}
945
946LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
947                   unsigned Align, AtomicOrdering Order,
948                   SynchronizationScope SynchScope,
949                   Instruction *InsertBef)
950  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
951                     Load, Ptr, InsertBef) {
952  setVolatile(isVolatile);
953  setAlignment(Align);
954  setAtomic(Order, SynchScope);
955  AssertOK();
956  setName(Name);
957}
958
959LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
960                   unsigned Align, AtomicOrdering Order,
961                   SynchronizationScope SynchScope,
962                   BasicBlock *InsertAE)
963  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
964                     Load, Ptr, InsertAE) {
965  setVolatile(isVolatile);
966  setAlignment(Align);
967  setAtomic(Order, SynchScope);
968  AssertOK();
969  setName(Name);
970}
971
972LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
973  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
974                     Load, Ptr, InsertBef) {
975  setVolatile(false);
976  setAlignment(0);
977  setAtomic(NotAtomic);
978  AssertOK();
979  if (Name && Name[0]) setName(Name);
980}
981
982LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
983  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
984                     Load, Ptr, InsertAE) {
985  setVolatile(false);
986  setAlignment(0);
987  setAtomic(NotAtomic);
988  AssertOK();
989  if (Name && Name[0]) setName(Name);
990}
991
992LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
993                   Instruction *InsertBef)
994: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
995                   Load, Ptr, InsertBef) {
996  setVolatile(isVolatile);
997  setAlignment(0);
998  setAtomic(NotAtomic);
999  AssertOK();
1000  if (Name && Name[0]) setName(Name);
1001}
1002
1003LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1004                   BasicBlock *InsertAE)
1005  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1006                     Load, Ptr, InsertAE) {
1007  setVolatile(isVolatile);
1008  setAlignment(0);
1009  setAtomic(NotAtomic);
1010  AssertOK();
1011  if (Name && Name[0]) setName(Name);
1012}
1013
1014void LoadInst::setAlignment(unsigned Align) {
1015  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1016  assert(Align <= MaximumAlignment &&
1017         "Alignment is greater than MaximumAlignment!");
1018  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1019                             ((Log2_32(Align)+1)<<1));
1020  assert(getAlignment() == Align && "Alignment representation error!");
1021}
1022
1023//===----------------------------------------------------------------------===//
1024//                           StoreInst Implementation
1025//===----------------------------------------------------------------------===//
1026
1027void StoreInst::AssertOK() {
1028  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1029  assert(getOperand(1)->getType()->isPointerTy() &&
1030         "Ptr must have pointer type!");
1031  assert(getOperand(0)->getType() ==
1032                 cast<PointerType>(getOperand(1)->getType())->getElementType()
1033         && "Ptr must be a pointer to Val type!");
1034  assert(!(isAtomic() && getAlignment() == 0) &&
1035         "Alignment required for atomic store");
1036}
1037
1038StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1039    : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1040
1041StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1042    : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1043
1044StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1045                     Instruction *InsertBefore)
1046    : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1047
1048StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1049                     BasicBlock *InsertAtEnd)
1050    : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1051
1052StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1053                     Instruction *InsertBefore)
1054    : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1055                InsertBefore) {}
1056
1057StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1058                     BasicBlock *InsertAtEnd)
1059    : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1060                InsertAtEnd) {}
1061
1062StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1063                     unsigned Align, AtomicOrdering Order,
1064                     SynchronizationScope SynchScope,
1065                     Instruction *InsertBefore)
1066  : Instruction(Type::getVoidTy(val->getContext()), Store,
1067                OperandTraits<StoreInst>::op_begin(this),
1068                OperandTraits<StoreInst>::operands(this),
1069                InsertBefore) {
1070  Op<0>() = val;
1071  Op<1>() = addr;
1072  setVolatile(isVolatile);
1073  setAlignment(Align);
1074  setAtomic(Order, SynchScope);
1075  AssertOK();
1076}
1077
1078StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1079                     unsigned Align, AtomicOrdering Order,
1080                     SynchronizationScope SynchScope,
1081                     BasicBlock *InsertAtEnd)
1082  : Instruction(Type::getVoidTy(val->getContext()), Store,
1083                OperandTraits<StoreInst>::op_begin(this),
1084                OperandTraits<StoreInst>::operands(this),
1085                InsertAtEnd) {
1086  Op<0>() = val;
1087  Op<1>() = addr;
1088  setVolatile(isVolatile);
1089  setAlignment(Align);
1090  setAtomic(Order, SynchScope);
1091  AssertOK();
1092}
1093
1094void StoreInst::setAlignment(unsigned Align) {
1095  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1096  assert(Align <= MaximumAlignment &&
1097         "Alignment is greater than MaximumAlignment!");
1098  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1099                             ((Log2_32(Align)+1) << 1));
1100  assert(getAlignment() == Align && "Alignment representation error!");
1101}
1102
1103//===----------------------------------------------------------------------===//
1104//                       AtomicCmpXchgInst Implementation
1105//===----------------------------------------------------------------------===//
1106
1107void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1108                             AtomicOrdering SuccessOrdering,
1109                             AtomicOrdering FailureOrdering,
1110                             SynchronizationScope SynchScope) {
1111  Op<0>() = Ptr;
1112  Op<1>() = Cmp;
1113  Op<2>() = NewVal;
1114  setSuccessOrdering(SuccessOrdering);
1115  setFailureOrdering(FailureOrdering);
1116  setSynchScope(SynchScope);
1117
1118  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1119         "All operands must be non-null!");
1120  assert(getOperand(0)->getType()->isPointerTy() &&
1121         "Ptr must have pointer type!");
1122  assert(getOperand(1)->getType() ==
1123                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1124         && "Ptr must be a pointer to Cmp type!");
1125  assert(getOperand(2)->getType() ==
1126                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1127         && "Ptr must be a pointer to NewVal type!");
1128  assert(SuccessOrdering != NotAtomic &&
1129         "AtomicCmpXchg instructions must be atomic!");
1130  assert(FailureOrdering != NotAtomic &&
1131         "AtomicCmpXchg instructions must be atomic!");
1132  assert(SuccessOrdering >= FailureOrdering &&
1133         "AtomicCmpXchg success ordering must be at least as strong as fail");
1134  assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1135         "AtomicCmpXchg failure ordering cannot include release semantics");
1136}
1137
1138AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1139                                     AtomicOrdering SuccessOrdering,
1140                                     AtomicOrdering FailureOrdering,
1141                                     SynchronizationScope SynchScope,
1142                                     Instruction *InsertBefore)
1143    : Instruction(
1144          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1145                          nullptr),
1146          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1147          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1148  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1149}
1150
1151AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1152                                     AtomicOrdering SuccessOrdering,
1153                                     AtomicOrdering FailureOrdering,
1154                                     SynchronizationScope SynchScope,
1155                                     BasicBlock *InsertAtEnd)
1156    : Instruction(
1157          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1158                          nullptr),
1159          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1160          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1161  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1162}
1163
1164//===----------------------------------------------------------------------===//
1165//                       AtomicRMWInst Implementation
1166//===----------------------------------------------------------------------===//
1167
1168void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1169                         AtomicOrdering Ordering,
1170                         SynchronizationScope SynchScope) {
1171  Op<0>() = Ptr;
1172  Op<1>() = Val;
1173  setOperation(Operation);
1174  setOrdering(Ordering);
1175  setSynchScope(SynchScope);
1176
1177  assert(getOperand(0) && getOperand(1) &&
1178         "All operands must be non-null!");
1179  assert(getOperand(0)->getType()->isPointerTy() &&
1180         "Ptr must have pointer type!");
1181  assert(getOperand(1)->getType() ==
1182         cast<PointerType>(getOperand(0)->getType())->getElementType()
1183         && "Ptr must be a pointer to Val type!");
1184  assert(Ordering != NotAtomic &&
1185         "AtomicRMW instructions must be atomic!");
1186}
1187
1188AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1189                             AtomicOrdering Ordering,
1190                             SynchronizationScope SynchScope,
1191                             Instruction *InsertBefore)
1192  : Instruction(Val->getType(), AtomicRMW,
1193                OperandTraits<AtomicRMWInst>::op_begin(this),
1194                OperandTraits<AtomicRMWInst>::operands(this),
1195                InsertBefore) {
1196  Init(Operation, Ptr, Val, Ordering, SynchScope);
1197}
1198
1199AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1200                             AtomicOrdering Ordering,
1201                             SynchronizationScope SynchScope,
1202                             BasicBlock *InsertAtEnd)
1203  : Instruction(Val->getType(), AtomicRMW,
1204                OperandTraits<AtomicRMWInst>::op_begin(this),
1205                OperandTraits<AtomicRMWInst>::operands(this),
1206                InsertAtEnd) {
1207  Init(Operation, Ptr, Val, Ordering, SynchScope);
1208}
1209
1210//===----------------------------------------------------------------------===//
1211//                       FenceInst Implementation
1212//===----------------------------------------------------------------------===//
1213
1214FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1215                     SynchronizationScope SynchScope,
1216                     Instruction *InsertBefore)
1217  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1218  setOrdering(Ordering);
1219  setSynchScope(SynchScope);
1220}
1221
1222FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1223                     SynchronizationScope SynchScope,
1224                     BasicBlock *InsertAtEnd)
1225  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1226  setOrdering(Ordering);
1227  setSynchScope(SynchScope);
1228}
1229
1230//===----------------------------------------------------------------------===//
1231//                       GetElementPtrInst Implementation
1232//===----------------------------------------------------------------------===//
1233
1234void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1235                             const Twine &Name) {
1236  assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1237  OperandList[0] = Ptr;
1238  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1239  setName(Name);
1240}
1241
1242GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1243  : Instruction(GEPI.getType(), GetElementPtr,
1244                OperandTraits<GetElementPtrInst>::op_end(this)
1245                - GEPI.getNumOperands(),
1246                GEPI.getNumOperands()) {
1247  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1248  SubclassOptionalData = GEPI.SubclassOptionalData;
1249}
1250
1251/// getIndexedType - Returns the type of the element that would be accessed with
1252/// a gep instruction with the specified parameters.
1253///
1254/// The Idxs pointer should point to a continuous piece of memory containing the
1255/// indices, either as Value* or uint64_t.
1256///
1257/// A null type is returned if the indices are invalid for the specified
1258/// pointer type.
1259///
1260template <typename IndexTy>
1261static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1262  PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1263  if (!PTy) return nullptr;   // Type isn't a pointer type!
1264  Type *Agg = PTy->getElementType();
1265
1266  // Handle the special case of the empty set index set, which is always valid.
1267  if (IdxList.empty())
1268    return Agg;
1269
1270  // If there is at least one index, the top level type must be sized, otherwise
1271  // it cannot be 'stepped over'.
1272  if (!Agg->isSized())
1273    return nullptr;
1274
1275  unsigned CurIdx = 1;
1276  for (; CurIdx != IdxList.size(); ++CurIdx) {
1277    CompositeType *CT = dyn_cast<CompositeType>(Agg);
1278    if (!CT || CT->isPointerTy()) return nullptr;
1279    IndexTy Index = IdxList[CurIdx];
1280    if (!CT->indexValid(Index)) return nullptr;
1281    Agg = CT->getTypeAtIndex(Index);
1282  }
1283  return CurIdx == IdxList.size() ? Agg : nullptr;
1284}
1285
1286Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1287  return getIndexedTypeInternal(Ptr, IdxList);
1288}
1289
1290Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1291                                        ArrayRef<Constant *> IdxList) {
1292  return getIndexedTypeInternal(Ptr, IdxList);
1293}
1294
1295Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1296  return getIndexedTypeInternal(Ptr, IdxList);
1297}
1298
1299/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1300/// zeros.  If so, the result pointer and the first operand have the same
1301/// value, just potentially different types.
1302bool GetElementPtrInst::hasAllZeroIndices() const {
1303  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1304    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1305      if (!CI->isZero()) return false;
1306    } else {
1307      return false;
1308    }
1309  }
1310  return true;
1311}
1312
1313/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1314/// constant integers.  If so, the result pointer and the first operand have
1315/// a constant offset between them.
1316bool GetElementPtrInst::hasAllConstantIndices() const {
1317  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1318    if (!isa<ConstantInt>(getOperand(i)))
1319      return false;
1320  }
1321  return true;
1322}
1323
1324void GetElementPtrInst::setIsInBounds(bool B) {
1325  cast<GEPOperator>(this)->setIsInBounds(B);
1326}
1327
1328bool GetElementPtrInst::isInBounds() const {
1329  return cast<GEPOperator>(this)->isInBounds();
1330}
1331
1332bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1333                                                 APInt &Offset) const {
1334  // Delegate to the generic GEPOperator implementation.
1335  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1336}
1337
1338//===----------------------------------------------------------------------===//
1339//                           ExtractElementInst Implementation
1340//===----------------------------------------------------------------------===//
1341
1342ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1343                                       const Twine &Name,
1344                                       Instruction *InsertBef)
1345  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1346                ExtractElement,
1347                OperandTraits<ExtractElementInst>::op_begin(this),
1348                2, InsertBef) {
1349  assert(isValidOperands(Val, Index) &&
1350         "Invalid extractelement instruction operands!");
1351  Op<0>() = Val;
1352  Op<1>() = Index;
1353  setName(Name);
1354}
1355
1356ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1357                                       const Twine &Name,
1358                                       BasicBlock *InsertAE)
1359  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1360                ExtractElement,
1361                OperandTraits<ExtractElementInst>::op_begin(this),
1362                2, InsertAE) {
1363  assert(isValidOperands(Val, Index) &&
1364         "Invalid extractelement instruction operands!");
1365
1366  Op<0>() = Val;
1367  Op<1>() = Index;
1368  setName(Name);
1369}
1370
1371
1372bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1373  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1374    return false;
1375  return true;
1376}
1377
1378
1379//===----------------------------------------------------------------------===//
1380//                           InsertElementInst Implementation
1381//===----------------------------------------------------------------------===//
1382
1383InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1384                                     const Twine &Name,
1385                                     Instruction *InsertBef)
1386  : Instruction(Vec->getType(), InsertElement,
1387                OperandTraits<InsertElementInst>::op_begin(this),
1388                3, InsertBef) {
1389  assert(isValidOperands(Vec, Elt, Index) &&
1390         "Invalid insertelement instruction operands!");
1391  Op<0>() = Vec;
1392  Op<1>() = Elt;
1393  Op<2>() = Index;
1394  setName(Name);
1395}
1396
1397InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1398                                     const Twine &Name,
1399                                     BasicBlock *InsertAE)
1400  : Instruction(Vec->getType(), InsertElement,
1401                OperandTraits<InsertElementInst>::op_begin(this),
1402                3, InsertAE) {
1403  assert(isValidOperands(Vec, Elt, Index) &&
1404         "Invalid insertelement instruction operands!");
1405
1406  Op<0>() = Vec;
1407  Op<1>() = Elt;
1408  Op<2>() = Index;
1409  setName(Name);
1410}
1411
1412bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1413                                        const Value *Index) {
1414  if (!Vec->getType()->isVectorTy())
1415    return false;   // First operand of insertelement must be vector type.
1416
1417  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1418    return false;// Second operand of insertelement must be vector element type.
1419
1420  if (!Index->getType()->isIntegerTy())
1421    return false;  // Third operand of insertelement must be i32.
1422  return true;
1423}
1424
1425
1426//===----------------------------------------------------------------------===//
1427//                      ShuffleVectorInst Implementation
1428//===----------------------------------------------------------------------===//
1429
1430ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1431                                     const Twine &Name,
1432                                     Instruction *InsertBefore)
1433: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1434                cast<VectorType>(Mask->getType())->getNumElements()),
1435              ShuffleVector,
1436              OperandTraits<ShuffleVectorInst>::op_begin(this),
1437              OperandTraits<ShuffleVectorInst>::operands(this),
1438              InsertBefore) {
1439  assert(isValidOperands(V1, V2, Mask) &&
1440         "Invalid shuffle vector instruction operands!");
1441  Op<0>() = V1;
1442  Op<1>() = V2;
1443  Op<2>() = Mask;
1444  setName(Name);
1445}
1446
1447ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1448                                     const Twine &Name,
1449                                     BasicBlock *InsertAtEnd)
1450: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1451                cast<VectorType>(Mask->getType())->getNumElements()),
1452              ShuffleVector,
1453              OperandTraits<ShuffleVectorInst>::op_begin(this),
1454              OperandTraits<ShuffleVectorInst>::operands(this),
1455              InsertAtEnd) {
1456  assert(isValidOperands(V1, V2, Mask) &&
1457         "Invalid shuffle vector instruction operands!");
1458
1459  Op<0>() = V1;
1460  Op<1>() = V2;
1461  Op<2>() = Mask;
1462  setName(Name);
1463}
1464
1465bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1466                                        const Value *Mask) {
1467  // V1 and V2 must be vectors of the same type.
1468  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1469    return false;
1470
1471  // Mask must be vector of i32.
1472  VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1473  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1474    return false;
1475
1476  // Check to see if Mask is valid.
1477  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1478    return true;
1479
1480  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1481    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1482    for (Value *Op : MV->operands()) {
1483      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1484        if (CI->uge(V1Size*2))
1485          return false;
1486      } else if (!isa<UndefValue>(Op)) {
1487        return false;
1488      }
1489    }
1490    return true;
1491  }
1492
1493  if (const ConstantDataSequential *CDS =
1494        dyn_cast<ConstantDataSequential>(Mask)) {
1495    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1496    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1497      if (CDS->getElementAsInteger(i) >= V1Size*2)
1498        return false;
1499    return true;
1500  }
1501
1502  // The bitcode reader can create a place holder for a forward reference
1503  // used as the shuffle mask. When this occurs, the shuffle mask will
1504  // fall into this case and fail. To avoid this error, do this bit of
1505  // ugliness to allow such a mask pass.
1506  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1507    if (CE->getOpcode() == Instruction::UserOp1)
1508      return true;
1509
1510  return false;
1511}
1512
1513/// getMaskValue - Return the index from the shuffle mask for the specified
1514/// output result.  This is either -1 if the element is undef or a number less
1515/// than 2*numelements.
1516int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1517  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1518  if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1519    return CDS->getElementAsInteger(i);
1520  Constant *C = Mask->getAggregateElement(i);
1521  if (isa<UndefValue>(C))
1522    return -1;
1523  return cast<ConstantInt>(C)->getZExtValue();
1524}
1525
1526/// getShuffleMask - Return the full mask for this instruction, where each
1527/// element is the element number and undef's are returned as -1.
1528void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1529                                       SmallVectorImpl<int> &Result) {
1530  unsigned NumElts = Mask->getType()->getVectorNumElements();
1531
1532  if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1533    for (unsigned i = 0; i != NumElts; ++i)
1534      Result.push_back(CDS->getElementAsInteger(i));
1535    return;
1536  }
1537  for (unsigned i = 0; i != NumElts; ++i) {
1538    Constant *C = Mask->getAggregateElement(i);
1539    Result.push_back(isa<UndefValue>(C) ? -1 :
1540                     cast<ConstantInt>(C)->getZExtValue());
1541  }
1542}
1543
1544
1545//===----------------------------------------------------------------------===//
1546//                             InsertValueInst Class
1547//===----------------------------------------------------------------------===//
1548
1549void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1550                           const Twine &Name) {
1551  assert(NumOperands == 2 && "NumOperands not initialized?");
1552
1553  // There's no fundamental reason why we require at least one index
1554  // (other than weirdness with &*IdxBegin being invalid; see
1555  // getelementptr's init routine for example). But there's no
1556  // present need to support it.
1557  assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1558
1559  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1560         Val->getType() && "Inserted value must match indexed type!");
1561  Op<0>() = Agg;
1562  Op<1>() = Val;
1563
1564  Indices.append(Idxs.begin(), Idxs.end());
1565  setName(Name);
1566}
1567
1568InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1569  : Instruction(IVI.getType(), InsertValue,
1570                OperandTraits<InsertValueInst>::op_begin(this), 2),
1571    Indices(IVI.Indices) {
1572  Op<0>() = IVI.getOperand(0);
1573  Op<1>() = IVI.getOperand(1);
1574  SubclassOptionalData = IVI.SubclassOptionalData;
1575}
1576
1577//===----------------------------------------------------------------------===//
1578//                             ExtractValueInst Class
1579//===----------------------------------------------------------------------===//
1580
1581void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1582  assert(NumOperands == 1 && "NumOperands not initialized?");
1583
1584  // There's no fundamental reason why we require at least one index.
1585  // But there's no present need to support it.
1586  assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1587
1588  Indices.append(Idxs.begin(), Idxs.end());
1589  setName(Name);
1590}
1591
1592ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1593  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1594    Indices(EVI.Indices) {
1595  SubclassOptionalData = EVI.SubclassOptionalData;
1596}
1597
1598// getIndexedType - Returns the type of the element that would be extracted
1599// with an extractvalue instruction with the specified parameters.
1600//
1601// A null type is returned if the indices are invalid for the specified
1602// pointer type.
1603//
1604Type *ExtractValueInst::getIndexedType(Type *Agg,
1605                                       ArrayRef<unsigned> Idxs) {
1606  for (unsigned Index : Idxs) {
1607    // We can't use CompositeType::indexValid(Index) here.
1608    // indexValid() always returns true for arrays because getelementptr allows
1609    // out-of-bounds indices. Since we don't allow those for extractvalue and
1610    // insertvalue we need to check array indexing manually.
1611    // Since the only other types we can index into are struct types it's just
1612    // as easy to check those manually as well.
1613    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1614      if (Index >= AT->getNumElements())
1615        return nullptr;
1616    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1617      if (Index >= ST->getNumElements())
1618        return nullptr;
1619    } else {
1620      // Not a valid type to index into.
1621      return nullptr;
1622    }
1623
1624    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1625  }
1626  return const_cast<Type*>(Agg);
1627}
1628
1629//===----------------------------------------------------------------------===//
1630//                             BinaryOperator Class
1631//===----------------------------------------------------------------------===//
1632
1633BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1634                               Type *Ty, const Twine &Name,
1635                               Instruction *InsertBefore)
1636  : Instruction(Ty, iType,
1637                OperandTraits<BinaryOperator>::op_begin(this),
1638                OperandTraits<BinaryOperator>::operands(this),
1639                InsertBefore) {
1640  Op<0>() = S1;
1641  Op<1>() = S2;
1642  init(iType);
1643  setName(Name);
1644}
1645
1646BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1647                               Type *Ty, const Twine &Name,
1648                               BasicBlock *InsertAtEnd)
1649  : Instruction(Ty, iType,
1650                OperandTraits<BinaryOperator>::op_begin(this),
1651                OperandTraits<BinaryOperator>::operands(this),
1652                InsertAtEnd) {
1653  Op<0>() = S1;
1654  Op<1>() = S2;
1655  init(iType);
1656  setName(Name);
1657}
1658
1659
1660void BinaryOperator::init(BinaryOps iType) {
1661  Value *LHS = getOperand(0), *RHS = getOperand(1);
1662  (void)LHS; (void)RHS; // Silence warnings.
1663  assert(LHS->getType() == RHS->getType() &&
1664         "Binary operator operand types must match!");
1665#ifndef NDEBUG
1666  switch (iType) {
1667  case Add: case Sub:
1668  case Mul:
1669    assert(getType() == LHS->getType() &&
1670           "Arithmetic operation should return same type as operands!");
1671    assert(getType()->isIntOrIntVectorTy() &&
1672           "Tried to create an integer operation on a non-integer type!");
1673    break;
1674  case FAdd: case FSub:
1675  case FMul:
1676    assert(getType() == LHS->getType() &&
1677           "Arithmetic operation should return same type as operands!");
1678    assert(getType()->isFPOrFPVectorTy() &&
1679           "Tried to create a floating-point operation on a "
1680           "non-floating-point type!");
1681    break;
1682  case UDiv:
1683  case SDiv:
1684    assert(getType() == LHS->getType() &&
1685           "Arithmetic operation should return same type as operands!");
1686    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1687            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1688           "Incorrect operand type (not integer) for S/UDIV");
1689    break;
1690  case FDiv:
1691    assert(getType() == LHS->getType() &&
1692           "Arithmetic operation should return same type as operands!");
1693    assert(getType()->isFPOrFPVectorTy() &&
1694           "Incorrect operand type (not floating point) for FDIV");
1695    break;
1696  case URem:
1697  case SRem:
1698    assert(getType() == LHS->getType() &&
1699           "Arithmetic operation should return same type as operands!");
1700    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1701            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1702           "Incorrect operand type (not integer) for S/UREM");
1703    break;
1704  case FRem:
1705    assert(getType() == LHS->getType() &&
1706           "Arithmetic operation should return same type as operands!");
1707    assert(getType()->isFPOrFPVectorTy() &&
1708           "Incorrect operand type (not floating point) for FREM");
1709    break;
1710  case Shl:
1711  case LShr:
1712  case AShr:
1713    assert(getType() == LHS->getType() &&
1714           "Shift operation should return same type as operands!");
1715    assert((getType()->isIntegerTy() ||
1716            (getType()->isVectorTy() &&
1717             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1718           "Tried to create a shift operation on a non-integral type!");
1719    break;
1720  case And: case Or:
1721  case Xor:
1722    assert(getType() == LHS->getType() &&
1723           "Logical operation should return same type as operands!");
1724    assert((getType()->isIntegerTy() ||
1725            (getType()->isVectorTy() &&
1726             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1727           "Tried to create a logical operation on a non-integral type!");
1728    break;
1729  default:
1730    break;
1731  }
1732#endif
1733}
1734
1735BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1736                                       const Twine &Name,
1737                                       Instruction *InsertBefore) {
1738  assert(S1->getType() == S2->getType() &&
1739         "Cannot create binary operator with two operands of differing type!");
1740  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1741}
1742
1743BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1744                                       const Twine &Name,
1745                                       BasicBlock *InsertAtEnd) {
1746  BinaryOperator *Res = Create(Op, S1, S2, Name);
1747  InsertAtEnd->getInstList().push_back(Res);
1748  return Res;
1749}
1750
1751BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1752                                          Instruction *InsertBefore) {
1753  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1754  return new BinaryOperator(Instruction::Sub,
1755                            zero, Op,
1756                            Op->getType(), Name, InsertBefore);
1757}
1758
1759BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1760                                          BasicBlock *InsertAtEnd) {
1761  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1762  return new BinaryOperator(Instruction::Sub,
1763                            zero, Op,
1764                            Op->getType(), Name, InsertAtEnd);
1765}
1766
1767BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1768                                             Instruction *InsertBefore) {
1769  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1770  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1771}
1772
1773BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1774                                             BasicBlock *InsertAtEnd) {
1775  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1776  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1777}
1778
1779BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1780                                             Instruction *InsertBefore) {
1781  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1782  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1783}
1784
1785BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1786                                             BasicBlock *InsertAtEnd) {
1787  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1788  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1789}
1790
1791BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1792                                           Instruction *InsertBefore) {
1793  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1794  return new BinaryOperator(Instruction::FSub, zero, Op,
1795                            Op->getType(), Name, InsertBefore);
1796}
1797
1798BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1799                                           BasicBlock *InsertAtEnd) {
1800  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1801  return new BinaryOperator(Instruction::FSub, zero, Op,
1802                            Op->getType(), Name, InsertAtEnd);
1803}
1804
1805BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1806                                          Instruction *InsertBefore) {
1807  Constant *C = Constant::getAllOnesValue(Op->getType());
1808  return new BinaryOperator(Instruction::Xor, Op, C,
1809                            Op->getType(), Name, InsertBefore);
1810}
1811
1812BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1813                                          BasicBlock *InsertAtEnd) {
1814  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1815  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1816                            Op->getType(), Name, InsertAtEnd);
1817}
1818
1819
1820// isConstantAllOnes - Helper function for several functions below
1821static inline bool isConstantAllOnes(const Value *V) {
1822  if (const Constant *C = dyn_cast<Constant>(V))
1823    return C->isAllOnesValue();
1824  return false;
1825}
1826
1827bool BinaryOperator::isNeg(const Value *V) {
1828  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1829    if (Bop->getOpcode() == Instruction::Sub)
1830      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1831        return C->isNegativeZeroValue();
1832  return false;
1833}
1834
1835bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1836  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1837    if (Bop->getOpcode() == Instruction::FSub)
1838      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1839        if (!IgnoreZeroSign)
1840          IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1841        return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1842      }
1843  return false;
1844}
1845
1846bool BinaryOperator::isNot(const Value *V) {
1847  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1848    return (Bop->getOpcode() == Instruction::Xor &&
1849            (isConstantAllOnes(Bop->getOperand(1)) ||
1850             isConstantAllOnes(Bop->getOperand(0))));
1851  return false;
1852}
1853
1854Value *BinaryOperator::getNegArgument(Value *BinOp) {
1855  return cast<BinaryOperator>(BinOp)->getOperand(1);
1856}
1857
1858const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1859  return getNegArgument(const_cast<Value*>(BinOp));
1860}
1861
1862Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1863  return cast<BinaryOperator>(BinOp)->getOperand(1);
1864}
1865
1866const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1867  return getFNegArgument(const_cast<Value*>(BinOp));
1868}
1869
1870Value *BinaryOperator::getNotArgument(Value *BinOp) {
1871  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1872  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1873  Value *Op0 = BO->getOperand(0);
1874  Value *Op1 = BO->getOperand(1);
1875  if (isConstantAllOnes(Op0)) return Op1;
1876
1877  assert(isConstantAllOnes(Op1));
1878  return Op0;
1879}
1880
1881const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1882  return getNotArgument(const_cast<Value*>(BinOp));
1883}
1884
1885
1886// swapOperands - Exchange the two operands to this instruction.  This
1887// instruction is safe to use on any binary instruction and does not
1888// modify the semantics of the instruction.  If the instruction is
1889// order dependent (SetLT f.e.) the opcode is changed.
1890//
1891bool BinaryOperator::swapOperands() {
1892  if (!isCommutative())
1893    return true; // Can't commute operands
1894  Op<0>().swap(Op<1>());
1895  return false;
1896}
1897
1898void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1899  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1900}
1901
1902void BinaryOperator::setHasNoSignedWrap(bool b) {
1903  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1904}
1905
1906void BinaryOperator::setIsExact(bool b) {
1907  cast<PossiblyExactOperator>(this)->setIsExact(b);
1908}
1909
1910bool BinaryOperator::hasNoUnsignedWrap() const {
1911  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1912}
1913
1914bool BinaryOperator::hasNoSignedWrap() const {
1915  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1916}
1917
1918bool BinaryOperator::isExact() const {
1919  return cast<PossiblyExactOperator>(this)->isExact();
1920}
1921
1922void BinaryOperator::copyIRFlags(const Value *V) {
1923  // Copy the wrapping flags.
1924  if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
1925    setHasNoSignedWrap(OB->hasNoSignedWrap());
1926    setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
1927  }
1928
1929  // Copy the exact flag.
1930  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
1931    setIsExact(PE->isExact());
1932
1933  // Copy the fast-math flags.
1934  if (auto *FP = dyn_cast<FPMathOperator>(V))
1935    copyFastMathFlags(FP->getFastMathFlags());
1936}
1937
1938void BinaryOperator::andIRFlags(const Value *V) {
1939  if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
1940    setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
1941    setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
1942  }
1943
1944  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
1945    setIsExact(isExact() & PE->isExact());
1946
1947  if (auto *FP = dyn_cast<FPMathOperator>(V)) {
1948    FastMathFlags FM = getFastMathFlags();
1949    FM &= FP->getFastMathFlags();
1950    copyFastMathFlags(FM);
1951  }
1952}
1953
1954
1955//===----------------------------------------------------------------------===//
1956//                             FPMathOperator Class
1957//===----------------------------------------------------------------------===//
1958
1959/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
1960/// An accuracy of 0.0 means that the operation should be performed with the
1961/// default precision.
1962float FPMathOperator::getFPAccuracy() const {
1963  const MDNode *MD =
1964      cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
1965  if (!MD)
1966    return 0.0;
1967  ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
1968  return Accuracy->getValueAPF().convertToFloat();
1969}
1970
1971
1972//===----------------------------------------------------------------------===//
1973//                                CastInst Class
1974//===----------------------------------------------------------------------===//
1975
1976void CastInst::anchor() {}
1977
1978// Just determine if this cast only deals with integral->integral conversion.
1979bool CastInst::isIntegerCast() const {
1980  switch (getOpcode()) {
1981    default: return false;
1982    case Instruction::ZExt:
1983    case Instruction::SExt:
1984    case Instruction::Trunc:
1985      return true;
1986    case Instruction::BitCast:
1987      return getOperand(0)->getType()->isIntegerTy() &&
1988        getType()->isIntegerTy();
1989  }
1990}
1991
1992bool CastInst::isLosslessCast() const {
1993  // Only BitCast can be lossless, exit fast if we're not BitCast
1994  if (getOpcode() != Instruction::BitCast)
1995    return false;
1996
1997  // Identity cast is always lossless
1998  Type* SrcTy = getOperand(0)->getType();
1999  Type* DstTy = getType();
2000  if (SrcTy == DstTy)
2001    return true;
2002
2003  // Pointer to pointer is always lossless.
2004  if (SrcTy->isPointerTy())
2005    return DstTy->isPointerTy();
2006  return false;  // Other types have no identity values
2007}
2008
2009/// This function determines if the CastInst does not require any bits to be
2010/// changed in order to effect the cast. Essentially, it identifies cases where
2011/// no code gen is necessary for the cast, hence the name no-op cast.  For
2012/// example, the following are all no-op casts:
2013/// # bitcast i32* %x to i8*
2014/// # bitcast <2 x i32> %x to <4 x i16>
2015/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2016/// @brief Determine if the described cast is a no-op.
2017bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2018                          Type *SrcTy,
2019                          Type *DestTy,
2020                          Type *IntPtrTy) {
2021  switch (Opcode) {
2022    default: llvm_unreachable("Invalid CastOp");
2023    case Instruction::Trunc:
2024    case Instruction::ZExt:
2025    case Instruction::SExt:
2026    case Instruction::FPTrunc:
2027    case Instruction::FPExt:
2028    case Instruction::UIToFP:
2029    case Instruction::SIToFP:
2030    case Instruction::FPToUI:
2031    case Instruction::FPToSI:
2032    case Instruction::AddrSpaceCast:
2033      // TODO: Target informations may give a more accurate answer here.
2034      return false;
2035    case Instruction::BitCast:
2036      return true;  // BitCast never modifies bits.
2037    case Instruction::PtrToInt:
2038      return IntPtrTy->getScalarSizeInBits() ==
2039             DestTy->getScalarSizeInBits();
2040    case Instruction::IntToPtr:
2041      return IntPtrTy->getScalarSizeInBits() ==
2042             SrcTy->getScalarSizeInBits();
2043  }
2044}
2045
2046/// @brief Determine if a cast is a no-op.
2047bool CastInst::isNoopCast(Type *IntPtrTy) const {
2048  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2049}
2050
2051bool CastInst::isNoopCast(const DataLayout &DL) const {
2052  Type *PtrOpTy = nullptr;
2053  if (getOpcode() == Instruction::PtrToInt)
2054    PtrOpTy = getOperand(0)->getType();
2055  else if (getOpcode() == Instruction::IntToPtr)
2056    PtrOpTy = getType();
2057
2058  Type *IntPtrTy =
2059      PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2060
2061  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2062}
2063
2064/// This function determines if a pair of casts can be eliminated and what
2065/// opcode should be used in the elimination. This assumes that there are two
2066/// instructions like this:
2067/// *  %F = firstOpcode SrcTy %x to MidTy
2068/// *  %S = secondOpcode MidTy %F to DstTy
2069/// The function returns a resultOpcode so these two casts can be replaced with:
2070/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2071/// If no such cast is permited, the function returns 0.
2072unsigned CastInst::isEliminableCastPair(
2073  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2074  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2075  Type *DstIntPtrTy) {
2076  // Define the 144 possibilities for these two cast instructions. The values
2077  // in this matrix determine what to do in a given situation and select the
2078  // case in the switch below.  The rows correspond to firstOp, the columns
2079  // correspond to secondOp.  In looking at the table below, keep in  mind
2080  // the following cast properties:
2081  //
2082  //          Size Compare       Source               Destination
2083  // Operator  Src ? Size   Type       Sign         Type       Sign
2084  // -------- ------------ -------------------   ---------------------
2085  // TRUNC         >       Integer      Any        Integral     Any
2086  // ZEXT          <       Integral   Unsigned     Integer      Any
2087  // SEXT          <       Integral    Signed      Integer      Any
2088  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2089  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2090  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2091  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2092  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2093  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2094  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2095  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2096  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2097  // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2098  //
2099  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2100  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2101  // into "fptoui double to i64", but this loses information about the range
2102  // of the produced value (we no longer know the top-part is all zeros).
2103  // Further this conversion is often much more expensive for typical hardware,
2104  // and causes issues when building libgcc.  We disallow fptosi+sext for the
2105  // same reason.
2106  const unsigned numCastOps =
2107    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2108  static const uint8_t CastResults[numCastOps][numCastOps] = {
2109    // T        F  F  U  S  F  F  P  I  B  A  -+
2110    // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2111    // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2112    // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2113    // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2114    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2115    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt           |
2116    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2117    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2118    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2119    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2120    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2121    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc        |
2122    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
2123    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2124    { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2125    {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2126    {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2127  };
2128
2129  // If either of the casts are a bitcast from scalar to vector, disallow the
2130  // merging. However, bitcast of A->B->A are allowed.
2131  bool isFirstBitcast  = (firstOp == Instruction::BitCast);
2132  bool isSecondBitcast = (secondOp == Instruction::BitCast);
2133  bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2134
2135  // Check if any of the bitcasts convert scalars<->vectors.
2136  if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2137      (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2138    // Unless we are bitcasing to the original type, disallow optimizations.
2139    if (!chainedBitcast) return 0;
2140
2141  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2142                            [secondOp-Instruction::CastOpsBegin];
2143  switch (ElimCase) {
2144    case 0:
2145      // Categorically disallowed.
2146      return 0;
2147    case 1:
2148      // Allowed, use first cast's opcode.
2149      return firstOp;
2150    case 2:
2151      // Allowed, use second cast's opcode.
2152      return secondOp;
2153    case 3:
2154      // No-op cast in second op implies firstOp as long as the DestTy
2155      // is integer and we are not converting between a vector and a
2156      // non-vector type.
2157      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2158        return firstOp;
2159      return 0;
2160    case 4:
2161      // No-op cast in second op implies firstOp as long as the DestTy
2162      // is floating point.
2163      if (DstTy->isFloatingPointTy())
2164        return firstOp;
2165      return 0;
2166    case 5:
2167      // No-op cast in first op implies secondOp as long as the SrcTy
2168      // is an integer.
2169      if (SrcTy->isIntegerTy())
2170        return secondOp;
2171      return 0;
2172    case 6:
2173      // No-op cast in first op implies secondOp as long as the SrcTy
2174      // is a floating point.
2175      if (SrcTy->isFloatingPointTy())
2176        return secondOp;
2177      return 0;
2178    case 7: {
2179      // Cannot simplify if address spaces are different!
2180      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2181        return 0;
2182
2183      unsigned MidSize = MidTy->getScalarSizeInBits();
2184      // We can still fold this without knowing the actual sizes as long we
2185      // know that the intermediate pointer is the largest possible
2186      // pointer size.
2187      // FIXME: Is this always true?
2188      if (MidSize == 64)
2189        return Instruction::BitCast;
2190
2191      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2192      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2193        return 0;
2194      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2195      if (MidSize >= PtrSize)
2196        return Instruction::BitCast;
2197      return 0;
2198    }
2199    case 8: {
2200      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2201      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2202      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2203      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2204      unsigned DstSize = DstTy->getScalarSizeInBits();
2205      if (SrcSize == DstSize)
2206        return Instruction::BitCast;
2207      else if (SrcSize < DstSize)
2208        return firstOp;
2209      return secondOp;
2210    }
2211    case 9:
2212      // zext, sext -> zext, because sext can't sign extend after zext
2213      return Instruction::ZExt;
2214    case 10:
2215      // fpext followed by ftrunc is allowed if the bit size returned to is
2216      // the same as the original, in which case its just a bitcast
2217      if (SrcTy == DstTy)
2218        return Instruction::BitCast;
2219      return 0; // If the types are not the same we can't eliminate it.
2220    case 11: {
2221      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2222      if (!MidIntPtrTy)
2223        return 0;
2224      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2225      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2226      unsigned DstSize = DstTy->getScalarSizeInBits();
2227      if (SrcSize <= PtrSize && SrcSize == DstSize)
2228        return Instruction::BitCast;
2229      return 0;
2230    }
2231    case 12: {
2232      // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2233      // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2234      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2235        return Instruction::AddrSpaceCast;
2236      return Instruction::BitCast;
2237    }
2238    case 13:
2239      // FIXME: this state can be merged with (1), but the following assert
2240      // is useful to check the correcteness of the sequence due to semantic
2241      // change of bitcast.
2242      assert(
2243        SrcTy->isPtrOrPtrVectorTy() &&
2244        MidTy->isPtrOrPtrVectorTy() &&
2245        DstTy->isPtrOrPtrVectorTy() &&
2246        SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2247        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2248        "Illegal addrspacecast, bitcast sequence!");
2249      // Allowed, use first cast's opcode
2250      return firstOp;
2251    case 14:
2252      // bitcast, addrspacecast -> addrspacecast if the element type of
2253      // bitcast's source is the same as that of addrspacecast's destination.
2254      if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2255        return Instruction::AddrSpaceCast;
2256      return 0;
2257
2258    case 15:
2259      // FIXME: this state can be merged with (1), but the following assert
2260      // is useful to check the correcteness of the sequence due to semantic
2261      // change of bitcast.
2262      assert(
2263        SrcTy->isIntOrIntVectorTy() &&
2264        MidTy->isPtrOrPtrVectorTy() &&
2265        DstTy->isPtrOrPtrVectorTy() &&
2266        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2267        "Illegal inttoptr, bitcast sequence!");
2268      // Allowed, use first cast's opcode
2269      return firstOp;
2270    case 16:
2271      // FIXME: this state can be merged with (2), but the following assert
2272      // is useful to check the correcteness of the sequence due to semantic
2273      // change of bitcast.
2274      assert(
2275        SrcTy->isPtrOrPtrVectorTy() &&
2276        MidTy->isPtrOrPtrVectorTy() &&
2277        DstTy->isIntOrIntVectorTy() &&
2278        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2279        "Illegal bitcast, ptrtoint sequence!");
2280      // Allowed, use second cast's opcode
2281      return secondOp;
2282    case 99:
2283      // Cast combination can't happen (error in input). This is for all cases
2284      // where the MidTy is not the same for the two cast instructions.
2285      llvm_unreachable("Invalid Cast Combination");
2286    default:
2287      llvm_unreachable("Error in CastResults table!!!");
2288  }
2289}
2290
2291CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2292  const Twine &Name, Instruction *InsertBefore) {
2293  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2294  // Construct and return the appropriate CastInst subclass
2295  switch (op) {
2296  case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2297  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2298  case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2299  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2300  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2301  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2302  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2303  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2304  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2305  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2306  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2307  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2308  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2309  default: llvm_unreachable("Invalid opcode provided");
2310  }
2311}
2312
2313CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2314  const Twine &Name, BasicBlock *InsertAtEnd) {
2315  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2316  // Construct and return the appropriate CastInst subclass
2317  switch (op) {
2318  case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2319  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2320  case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2321  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2322  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2323  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2324  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2325  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2326  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2327  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2328  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2329  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2330  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2331  default: llvm_unreachable("Invalid opcode provided");
2332  }
2333}
2334
2335CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2336                                        const Twine &Name,
2337                                        Instruction *InsertBefore) {
2338  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2339    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2340  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2341}
2342
2343CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2344                                        const Twine &Name,
2345                                        BasicBlock *InsertAtEnd) {
2346  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2347    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2348  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2349}
2350
2351CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2352                                        const Twine &Name,
2353                                        Instruction *InsertBefore) {
2354  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2355    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2356  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2357}
2358
2359CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2360                                        const Twine &Name,
2361                                        BasicBlock *InsertAtEnd) {
2362  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2363    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2364  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2365}
2366
2367CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2368                                         const Twine &Name,
2369                                         Instruction *InsertBefore) {
2370  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2371    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2372  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2373}
2374
2375CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2376                                         const Twine &Name,
2377                                         BasicBlock *InsertAtEnd) {
2378  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2379    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2380  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2381}
2382
2383CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2384                                      const Twine &Name,
2385                                      BasicBlock *InsertAtEnd) {
2386  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2387  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2388         "Invalid cast");
2389  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2390  assert((!Ty->isVectorTy() ||
2391          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2392         "Invalid cast");
2393
2394  if (Ty->isIntOrIntVectorTy())
2395    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2396
2397  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2398}
2399
2400/// @brief Create a BitCast or a PtrToInt cast instruction
2401CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2402                                      const Twine &Name,
2403                                      Instruction *InsertBefore) {
2404  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2405  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2406         "Invalid cast");
2407  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2408  assert((!Ty->isVectorTy() ||
2409          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2410         "Invalid cast");
2411
2412  if (Ty->isIntOrIntVectorTy())
2413    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2414
2415  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2416}
2417
2418CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2419  Value *S, Type *Ty,
2420  const Twine &Name,
2421  BasicBlock *InsertAtEnd) {
2422  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2423  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2424
2425  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2426    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2427
2428  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2429}
2430
2431CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2432  Value *S, Type *Ty,
2433  const Twine &Name,
2434  Instruction *InsertBefore) {
2435  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2436  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2437
2438  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2439    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2440
2441  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2442}
2443
2444CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2445                                           const Twine &Name,
2446                                           Instruction *InsertBefore) {
2447  if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2448    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2449  if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2450    return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2451
2452  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2453}
2454
2455CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2456                                      bool isSigned, const Twine &Name,
2457                                      Instruction *InsertBefore) {
2458  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2459         "Invalid integer cast");
2460  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2461  unsigned DstBits = Ty->getScalarSizeInBits();
2462  Instruction::CastOps opcode =
2463    (SrcBits == DstBits ? Instruction::BitCast :
2464     (SrcBits > DstBits ? Instruction::Trunc :
2465      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2466  return Create(opcode, C, Ty, Name, InsertBefore);
2467}
2468
2469CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2470                                      bool isSigned, const Twine &Name,
2471                                      BasicBlock *InsertAtEnd) {
2472  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2473         "Invalid cast");
2474  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2475  unsigned DstBits = Ty->getScalarSizeInBits();
2476  Instruction::CastOps opcode =
2477    (SrcBits == DstBits ? Instruction::BitCast :
2478     (SrcBits > DstBits ? Instruction::Trunc :
2479      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2480  return Create(opcode, C, Ty, Name, InsertAtEnd);
2481}
2482
2483CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2484                                 const Twine &Name,
2485                                 Instruction *InsertBefore) {
2486  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2487         "Invalid cast");
2488  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2489  unsigned DstBits = Ty->getScalarSizeInBits();
2490  Instruction::CastOps opcode =
2491    (SrcBits == DstBits ? Instruction::BitCast :
2492     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2493  return Create(opcode, C, Ty, Name, InsertBefore);
2494}
2495
2496CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2497                                 const Twine &Name,
2498                                 BasicBlock *InsertAtEnd) {
2499  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2500         "Invalid cast");
2501  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2502  unsigned DstBits = Ty->getScalarSizeInBits();
2503  Instruction::CastOps opcode =
2504    (SrcBits == DstBits ? Instruction::BitCast :
2505     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2506  return Create(opcode, C, Ty, Name, InsertAtEnd);
2507}
2508
2509// Check whether it is valid to call getCastOpcode for these types.
2510// This routine must be kept in sync with getCastOpcode.
2511bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2512  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2513    return false;
2514
2515  if (SrcTy == DestTy)
2516    return true;
2517
2518  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2519    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2520      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2521        // An element by element cast.  Valid if casting the elements is valid.
2522        SrcTy = SrcVecTy->getElementType();
2523        DestTy = DestVecTy->getElementType();
2524      }
2525
2526  // Get the bit sizes, we'll need these
2527  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2528  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2529
2530  // Run through the possibilities ...
2531  if (DestTy->isIntegerTy()) {               // Casting to integral
2532    if (SrcTy->isIntegerTy())                // Casting from integral
2533        return true;
2534    if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2535      return true;
2536    if (SrcTy->isVectorTy())          // Casting from vector
2537      return DestBits == SrcBits;
2538                                      // Casting from something else
2539    return SrcTy->isPointerTy();
2540  }
2541  if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2542    if (SrcTy->isIntegerTy())                // Casting from integral
2543      return true;
2544    if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2545      return true;
2546    if (SrcTy->isVectorTy())          // Casting from vector
2547      return DestBits == SrcBits;
2548                                    // Casting from something else
2549    return false;
2550  }
2551  if (DestTy->isVectorTy())         // Casting to vector
2552    return DestBits == SrcBits;
2553  if (DestTy->isPointerTy()) {        // Casting to pointer
2554    if (SrcTy->isPointerTy())                // Casting from pointer
2555      return true;
2556    return SrcTy->isIntegerTy();             // Casting from integral
2557  }
2558  if (DestTy->isX86_MMXTy()) {
2559    if (SrcTy->isVectorTy())
2560      return DestBits == SrcBits;       // 64-bit vector to MMX
2561    return false;
2562  }                                    // Casting to something else
2563  return false;
2564}
2565
2566bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2567  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2568    return false;
2569
2570  if (SrcTy == DestTy)
2571    return true;
2572
2573  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2574    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2575      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2576        // An element by element cast. Valid if casting the elements is valid.
2577        SrcTy = SrcVecTy->getElementType();
2578        DestTy = DestVecTy->getElementType();
2579      }
2580    }
2581  }
2582
2583  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2584    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2585      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2586    }
2587  }
2588
2589  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2590  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2591
2592  // Could still have vectors of pointers if the number of elements doesn't
2593  // match
2594  if (SrcBits == 0 || DestBits == 0)
2595    return false;
2596
2597  if (SrcBits != DestBits)
2598    return false;
2599
2600  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2601    return false;
2602
2603  return true;
2604}
2605
2606bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2607                                          const DataLayout &DL) {
2608  if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2609    if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2610      return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2611  if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2612    if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2613      return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2614
2615  return isBitCastable(SrcTy, DestTy);
2616}
2617
2618// Provide a way to get a "cast" where the cast opcode is inferred from the
2619// types and size of the operand. This, basically, is a parallel of the
2620// logic in the castIsValid function below.  This axiom should hold:
2621//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2622// should not assert in castIsValid. In other words, this produces a "correct"
2623// casting opcode for the arguments passed to it.
2624// This routine must be kept in sync with isCastable.
2625Instruction::CastOps
2626CastInst::getCastOpcode(
2627  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2628  Type *SrcTy = Src->getType();
2629
2630  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2631         "Only first class types are castable!");
2632
2633  if (SrcTy == DestTy)
2634    return BitCast;
2635
2636  // FIXME: Check address space sizes here
2637  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2638    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2639      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2640        // An element by element cast.  Find the appropriate opcode based on the
2641        // element types.
2642        SrcTy = SrcVecTy->getElementType();
2643        DestTy = DestVecTy->getElementType();
2644      }
2645
2646  // Get the bit sizes, we'll need these
2647  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2648  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2649
2650  // Run through the possibilities ...
2651  if (DestTy->isIntegerTy()) {                      // Casting to integral
2652    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2653      if (DestBits < SrcBits)
2654        return Trunc;                               // int -> smaller int
2655      else if (DestBits > SrcBits) {                // its an extension
2656        if (SrcIsSigned)
2657          return SExt;                              // signed -> SEXT
2658        else
2659          return ZExt;                              // unsigned -> ZEXT
2660      } else {
2661        return BitCast;                             // Same size, No-op cast
2662      }
2663    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2664      if (DestIsSigned)
2665        return FPToSI;                              // FP -> sint
2666      else
2667        return FPToUI;                              // FP -> uint
2668    } else if (SrcTy->isVectorTy()) {
2669      assert(DestBits == SrcBits &&
2670             "Casting vector to integer of different width");
2671      return BitCast;                             // Same size, no-op cast
2672    } else {
2673      assert(SrcTy->isPointerTy() &&
2674             "Casting from a value that is not first-class type");
2675      return PtrToInt;                              // ptr -> int
2676    }
2677  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2678    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2679      if (SrcIsSigned)
2680        return SIToFP;                              // sint -> FP
2681      else
2682        return UIToFP;                              // uint -> FP
2683    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2684      if (DestBits < SrcBits) {
2685        return FPTrunc;                             // FP -> smaller FP
2686      } else if (DestBits > SrcBits) {
2687        return FPExt;                               // FP -> larger FP
2688      } else  {
2689        return BitCast;                             // same size, no-op cast
2690      }
2691    } else if (SrcTy->isVectorTy()) {
2692      assert(DestBits == SrcBits &&
2693             "Casting vector to floating point of different width");
2694      return BitCast;                             // same size, no-op cast
2695    }
2696    llvm_unreachable("Casting pointer or non-first class to float");
2697  } else if (DestTy->isVectorTy()) {
2698    assert(DestBits == SrcBits &&
2699           "Illegal cast to vector (wrong type or size)");
2700    return BitCast;
2701  } else if (DestTy->isPointerTy()) {
2702    if (SrcTy->isPointerTy()) {
2703      if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2704        return AddrSpaceCast;
2705      return BitCast;                               // ptr -> ptr
2706    } else if (SrcTy->isIntegerTy()) {
2707      return IntToPtr;                              // int -> ptr
2708    }
2709    llvm_unreachable("Casting pointer to other than pointer or int");
2710  } else if (DestTy->isX86_MMXTy()) {
2711    if (SrcTy->isVectorTy()) {
2712      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2713      return BitCast;                               // 64-bit vector to MMX
2714    }
2715    llvm_unreachable("Illegal cast to X86_MMX");
2716  }
2717  llvm_unreachable("Casting to type that is not first-class");
2718}
2719
2720//===----------------------------------------------------------------------===//
2721//                    CastInst SubClass Constructors
2722//===----------------------------------------------------------------------===//
2723
2724/// Check that the construction parameters for a CastInst are correct. This
2725/// could be broken out into the separate constructors but it is useful to have
2726/// it in one place and to eliminate the redundant code for getting the sizes
2727/// of the types involved.
2728bool
2729CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2730
2731  // Check for type sanity on the arguments
2732  Type *SrcTy = S->getType();
2733
2734  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2735      SrcTy->isAggregateType() || DstTy->isAggregateType())
2736    return false;
2737
2738  // Get the size of the types in bits, we'll need this later
2739  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2740  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2741
2742  // If these are vector types, get the lengths of the vectors (using zero for
2743  // scalar types means that checking that vector lengths match also checks that
2744  // scalars are not being converted to vectors or vectors to scalars).
2745  unsigned SrcLength = SrcTy->isVectorTy() ?
2746    cast<VectorType>(SrcTy)->getNumElements() : 0;
2747  unsigned DstLength = DstTy->isVectorTy() ?
2748    cast<VectorType>(DstTy)->getNumElements() : 0;
2749
2750  // Switch on the opcode provided
2751  switch (op) {
2752  default: return false; // This is an input error
2753  case Instruction::Trunc:
2754    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2755      SrcLength == DstLength && SrcBitSize > DstBitSize;
2756  case Instruction::ZExt:
2757    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2758      SrcLength == DstLength && SrcBitSize < DstBitSize;
2759  case Instruction::SExt:
2760    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2761      SrcLength == DstLength && SrcBitSize < DstBitSize;
2762  case Instruction::FPTrunc:
2763    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2764      SrcLength == DstLength && SrcBitSize > DstBitSize;
2765  case Instruction::FPExt:
2766    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2767      SrcLength == DstLength && SrcBitSize < DstBitSize;
2768  case Instruction::UIToFP:
2769  case Instruction::SIToFP:
2770    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2771      SrcLength == DstLength;
2772  case Instruction::FPToUI:
2773  case Instruction::FPToSI:
2774    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2775      SrcLength == DstLength;
2776  case Instruction::PtrToInt:
2777    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2778      return false;
2779    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2780      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2781        return false;
2782    return SrcTy->getScalarType()->isPointerTy() &&
2783           DstTy->getScalarType()->isIntegerTy();
2784  case Instruction::IntToPtr:
2785    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2786      return false;
2787    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2788      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2789        return false;
2790    return SrcTy->getScalarType()->isIntegerTy() &&
2791           DstTy->getScalarType()->isPointerTy();
2792  case Instruction::BitCast: {
2793    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2794    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2795
2796    // BitCast implies a no-op cast of type only. No bits change.
2797    // However, you can't cast pointers to anything but pointers.
2798    if (!SrcPtrTy != !DstPtrTy)
2799      return false;
2800
2801    // For non-pointer cases, the cast is okay if the source and destination bit
2802    // widths are identical.
2803    if (!SrcPtrTy)
2804      return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2805
2806    // If both are pointers then the address spaces must match.
2807    if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
2808      return false;
2809
2810    // A vector of pointers must have the same number of elements.
2811    if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2812      if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2813        return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2814
2815      return false;
2816    }
2817
2818    return true;
2819  }
2820  case Instruction::AddrSpaceCast: {
2821    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2822    if (!SrcPtrTy)
2823      return false;
2824
2825    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2826    if (!DstPtrTy)
2827      return false;
2828
2829    if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2830      return false;
2831
2832    if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2833      if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2834        return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2835
2836      return false;
2837    }
2838
2839    return true;
2840  }
2841  }
2842}
2843
2844TruncInst::TruncInst(
2845  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2846) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2847  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2848}
2849
2850TruncInst::TruncInst(
2851  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2852) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2853  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2854}
2855
2856ZExtInst::ZExtInst(
2857  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2858)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2859  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2860}
2861
2862ZExtInst::ZExtInst(
2863  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2864)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2865  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2866}
2867SExtInst::SExtInst(
2868  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2869) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2870  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2871}
2872
2873SExtInst::SExtInst(
2874  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2875)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2876  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2877}
2878
2879FPTruncInst::FPTruncInst(
2880  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2881) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2882  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2883}
2884
2885FPTruncInst::FPTruncInst(
2886  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2887) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2888  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2889}
2890
2891FPExtInst::FPExtInst(
2892  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2893) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2894  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2895}
2896
2897FPExtInst::FPExtInst(
2898  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2899) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2900  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2901}
2902
2903UIToFPInst::UIToFPInst(
2904  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2905) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2906  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2907}
2908
2909UIToFPInst::UIToFPInst(
2910  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2911) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2912  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2913}
2914
2915SIToFPInst::SIToFPInst(
2916  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2917) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2918  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2919}
2920
2921SIToFPInst::SIToFPInst(
2922  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2923) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2924  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2925}
2926
2927FPToUIInst::FPToUIInst(
2928  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2929) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2930  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2931}
2932
2933FPToUIInst::FPToUIInst(
2934  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2935) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2936  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2937}
2938
2939FPToSIInst::FPToSIInst(
2940  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2941) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2942  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2943}
2944
2945FPToSIInst::FPToSIInst(
2946  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2947) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2948  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2949}
2950
2951PtrToIntInst::PtrToIntInst(
2952  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2953) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2954  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2955}
2956
2957PtrToIntInst::PtrToIntInst(
2958  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2959) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2960  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2961}
2962
2963IntToPtrInst::IntToPtrInst(
2964  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2965) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2966  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2967}
2968
2969IntToPtrInst::IntToPtrInst(
2970  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2971) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2972  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2973}
2974
2975BitCastInst::BitCastInst(
2976  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2977) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2978  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2979}
2980
2981BitCastInst::BitCastInst(
2982  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2983) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2984  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2985}
2986
2987AddrSpaceCastInst::AddrSpaceCastInst(
2988  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2989) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
2990  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
2991}
2992
2993AddrSpaceCastInst::AddrSpaceCastInst(
2994  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2995) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
2996  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
2997}
2998
2999//===----------------------------------------------------------------------===//
3000//                               CmpInst Classes
3001//===----------------------------------------------------------------------===//
3002
3003void CmpInst::anchor() {}
3004
3005CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3006                 Value *LHS, Value *RHS, const Twine &Name,
3007                 Instruction *InsertBefore)
3008  : Instruction(ty, op,
3009                OperandTraits<CmpInst>::op_begin(this),
3010                OperandTraits<CmpInst>::operands(this),
3011                InsertBefore) {
3012    Op<0>() = LHS;
3013    Op<1>() = RHS;
3014  setPredicate((Predicate)predicate);
3015  setName(Name);
3016}
3017
3018CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3019                 Value *LHS, Value *RHS, const Twine &Name,
3020                 BasicBlock *InsertAtEnd)
3021  : Instruction(ty, op,
3022                OperandTraits<CmpInst>::op_begin(this),
3023                OperandTraits<CmpInst>::operands(this),
3024                InsertAtEnd) {
3025  Op<0>() = LHS;
3026  Op<1>() = RHS;
3027  setPredicate((Predicate)predicate);
3028  setName(Name);
3029}
3030
3031CmpInst *
3032CmpInst::Create(OtherOps Op, unsigned short predicate,
3033                Value *S1, Value *S2,
3034                const Twine &Name, Instruction *InsertBefore) {
3035  if (Op == Instruction::ICmp) {
3036    if (InsertBefore)
3037      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3038                          S1, S2, Name);
3039    else
3040      return new ICmpInst(CmpInst::Predicate(predicate),
3041                          S1, S2, Name);
3042  }
3043
3044  if (InsertBefore)
3045    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3046                        S1, S2, Name);
3047  else
3048    return new FCmpInst(CmpInst::Predicate(predicate),
3049                        S1, S2, Name);
3050}
3051
3052CmpInst *
3053CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
3054                const Twine &Name, BasicBlock *InsertAtEnd) {
3055  if (Op == Instruction::ICmp) {
3056    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3057                        S1, S2, Name);
3058  }
3059  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3060                      S1, S2, Name);
3061}
3062
3063void CmpInst::swapOperands() {
3064  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3065    IC->swapOperands();
3066  else
3067    cast<FCmpInst>(this)->swapOperands();
3068}
3069
3070bool CmpInst::isCommutative() const {
3071  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3072    return IC->isCommutative();
3073  return cast<FCmpInst>(this)->isCommutative();
3074}
3075
3076bool CmpInst::isEquality() const {
3077  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3078    return IC->isEquality();
3079  return cast<FCmpInst>(this)->isEquality();
3080}
3081
3082
3083CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3084  switch (pred) {
3085    default: llvm_unreachable("Unknown cmp predicate!");
3086    case ICMP_EQ: return ICMP_NE;
3087    case ICMP_NE: return ICMP_EQ;
3088    case ICMP_UGT: return ICMP_ULE;
3089    case ICMP_ULT: return ICMP_UGE;
3090    case ICMP_UGE: return ICMP_ULT;
3091    case ICMP_ULE: return ICMP_UGT;
3092    case ICMP_SGT: return ICMP_SLE;
3093    case ICMP_SLT: return ICMP_SGE;
3094    case ICMP_SGE: return ICMP_SLT;
3095    case ICMP_SLE: return ICMP_SGT;
3096
3097    case FCMP_OEQ: return FCMP_UNE;
3098    case FCMP_ONE: return FCMP_UEQ;
3099    case FCMP_OGT: return FCMP_ULE;
3100    case FCMP_OLT: return FCMP_UGE;
3101    case FCMP_OGE: return FCMP_ULT;
3102    case FCMP_OLE: return FCMP_UGT;
3103    case FCMP_UEQ: return FCMP_ONE;
3104    case FCMP_UNE: return FCMP_OEQ;
3105    case FCMP_UGT: return FCMP_OLE;
3106    case FCMP_ULT: return FCMP_OGE;
3107    case FCMP_UGE: return FCMP_OLT;
3108    case FCMP_ULE: return FCMP_OGT;
3109    case FCMP_ORD: return FCMP_UNO;
3110    case FCMP_UNO: return FCMP_ORD;
3111    case FCMP_TRUE: return FCMP_FALSE;
3112    case FCMP_FALSE: return FCMP_TRUE;
3113  }
3114}
3115
3116ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3117  switch (pred) {
3118    default: llvm_unreachable("Unknown icmp predicate!");
3119    case ICMP_EQ: case ICMP_NE:
3120    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3121       return pred;
3122    case ICMP_UGT: return ICMP_SGT;
3123    case ICMP_ULT: return ICMP_SLT;
3124    case ICMP_UGE: return ICMP_SGE;
3125    case ICMP_ULE: return ICMP_SLE;
3126  }
3127}
3128
3129ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3130  switch (pred) {
3131    default: llvm_unreachable("Unknown icmp predicate!");
3132    case ICMP_EQ: case ICMP_NE:
3133    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3134       return pred;
3135    case ICMP_SGT: return ICMP_UGT;
3136    case ICMP_SLT: return ICMP_ULT;
3137    case ICMP_SGE: return ICMP_UGE;
3138    case ICMP_SLE: return ICMP_ULE;
3139  }
3140}
3141
3142/// Initialize a set of values that all satisfy the condition with C.
3143///
3144ConstantRange
3145ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3146  APInt Lower(C);
3147  APInt Upper(C);
3148  uint32_t BitWidth = C.getBitWidth();
3149  switch (pred) {
3150  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3151  case ICmpInst::ICMP_EQ: ++Upper; break;
3152  case ICmpInst::ICMP_NE: ++Lower; break;
3153  case ICmpInst::ICMP_ULT:
3154    Lower = APInt::getMinValue(BitWidth);
3155    // Check for an empty-set condition.
3156    if (Lower == Upper)
3157      return ConstantRange(BitWidth, /*isFullSet=*/false);
3158    break;
3159  case ICmpInst::ICMP_SLT:
3160    Lower = APInt::getSignedMinValue(BitWidth);
3161    // Check for an empty-set condition.
3162    if (Lower == Upper)
3163      return ConstantRange(BitWidth, /*isFullSet=*/false);
3164    break;
3165  case ICmpInst::ICMP_UGT:
3166    ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3167    // Check for an empty-set condition.
3168    if (Lower == Upper)
3169      return ConstantRange(BitWidth, /*isFullSet=*/false);
3170    break;
3171  case ICmpInst::ICMP_SGT:
3172    ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3173    // Check for an empty-set condition.
3174    if (Lower == Upper)
3175      return ConstantRange(BitWidth, /*isFullSet=*/false);
3176    break;
3177  case ICmpInst::ICMP_ULE:
3178    Lower = APInt::getMinValue(BitWidth); ++Upper;
3179    // Check for a full-set condition.
3180    if (Lower == Upper)
3181      return ConstantRange(BitWidth, /*isFullSet=*/true);
3182    break;
3183  case ICmpInst::ICMP_SLE:
3184    Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3185    // Check for a full-set condition.
3186    if (Lower == Upper)
3187      return ConstantRange(BitWidth, /*isFullSet=*/true);
3188    break;
3189  case ICmpInst::ICMP_UGE:
3190    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3191    // Check for a full-set condition.
3192    if (Lower == Upper)
3193      return ConstantRange(BitWidth, /*isFullSet=*/true);
3194    break;
3195  case ICmpInst::ICMP_SGE:
3196    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3197    // Check for a full-set condition.
3198    if (Lower == Upper)
3199      return ConstantRange(BitWidth, /*isFullSet=*/true);
3200    break;
3201  }
3202  return ConstantRange(Lower, Upper);
3203}
3204
3205CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3206  switch (pred) {
3207    default: llvm_unreachable("Unknown cmp predicate!");
3208    case ICMP_EQ: case ICMP_NE:
3209      return pred;
3210    case ICMP_SGT: return ICMP_SLT;
3211    case ICMP_SLT: return ICMP_SGT;
3212    case ICMP_SGE: return ICMP_SLE;
3213    case ICMP_SLE: return ICMP_SGE;
3214    case ICMP_UGT: return ICMP_ULT;
3215    case ICMP_ULT: return ICMP_UGT;
3216    case ICMP_UGE: return ICMP_ULE;
3217    case ICMP_ULE: return ICMP_UGE;
3218
3219    case FCMP_FALSE: case FCMP_TRUE:
3220    case FCMP_OEQ: case FCMP_ONE:
3221    case FCMP_UEQ: case FCMP_UNE:
3222    case FCMP_ORD: case FCMP_UNO:
3223      return pred;
3224    case FCMP_OGT: return FCMP_OLT;
3225    case FCMP_OLT: return FCMP_OGT;
3226    case FCMP_OGE: return FCMP_OLE;
3227    case FCMP_OLE: return FCMP_OGE;
3228    case FCMP_UGT: return FCMP_ULT;
3229    case FCMP_ULT: return FCMP_UGT;
3230    case FCMP_UGE: return FCMP_ULE;
3231    case FCMP_ULE: return FCMP_UGE;
3232  }
3233}
3234
3235bool CmpInst::isUnsigned(unsigned short predicate) {
3236  switch (predicate) {
3237    default: return false;
3238    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3239    case ICmpInst::ICMP_UGE: return true;
3240  }
3241}
3242
3243bool CmpInst::isSigned(unsigned short predicate) {
3244  switch (predicate) {
3245    default: return false;
3246    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3247    case ICmpInst::ICMP_SGE: return true;
3248  }
3249}
3250
3251bool CmpInst::isOrdered(unsigned short predicate) {
3252  switch (predicate) {
3253    default: return false;
3254    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3255    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3256    case FCmpInst::FCMP_ORD: return true;
3257  }
3258}
3259
3260bool CmpInst::isUnordered(unsigned short predicate) {
3261  switch (predicate) {
3262    default: return false;
3263    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3264    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3265    case FCmpInst::FCMP_UNO: return true;
3266  }
3267}
3268
3269bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3270  switch(predicate) {
3271    default: return false;
3272    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3273    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3274  }
3275}
3276
3277bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3278  switch(predicate) {
3279  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3280  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3281  default: return false;
3282  }
3283}
3284
3285
3286//===----------------------------------------------------------------------===//
3287//                        SwitchInst Implementation
3288//===----------------------------------------------------------------------===//
3289
3290void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3291  assert(Value && Default && NumReserved);
3292  ReservedSpace = NumReserved;
3293  NumOperands = 2;
3294  OperandList = allocHungoffUses(ReservedSpace);
3295
3296  OperandList[0] = Value;
3297  OperandList[1] = Default;
3298}
3299
3300/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3301/// switch on and a default destination.  The number of additional cases can
3302/// be specified here to make memory allocation more efficient.  This
3303/// constructor can also autoinsert before another instruction.
3304SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3305                       Instruction *InsertBefore)
3306  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3307                   nullptr, 0, InsertBefore) {
3308  init(Value, Default, 2+NumCases*2);
3309}
3310
3311/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3312/// switch on and a default destination.  The number of additional cases can
3313/// be specified here to make memory allocation more efficient.  This
3314/// constructor also autoinserts at the end of the specified BasicBlock.
3315SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3316                       BasicBlock *InsertAtEnd)
3317  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3318                   nullptr, 0, InsertAtEnd) {
3319  init(Value, Default, 2+NumCases*2);
3320}
3321
3322SwitchInst::SwitchInst(const SwitchInst &SI)
3323  : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3324  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3325  NumOperands = SI.getNumOperands();
3326  Use *OL = OperandList, *InOL = SI.OperandList;
3327  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3328    OL[i] = InOL[i];
3329    OL[i+1] = InOL[i+1];
3330  }
3331  SubclassOptionalData = SI.SubclassOptionalData;
3332}
3333
3334SwitchInst::~SwitchInst() {
3335  dropHungoffUses();
3336}
3337
3338
3339/// addCase - Add an entry to the switch instruction...
3340///
3341void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3342  unsigned NewCaseIdx = getNumCases();
3343  unsigned OpNo = NumOperands;
3344  if (OpNo+2 > ReservedSpace)
3345    growOperands();  // Get more space!
3346  // Initialize some new operands.
3347  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3348  NumOperands = OpNo+2;
3349  CaseIt Case(this, NewCaseIdx);
3350  Case.setValue(OnVal);
3351  Case.setSuccessor(Dest);
3352}
3353
3354/// removeCase - This method removes the specified case and its successor
3355/// from the switch instruction.
3356void SwitchInst::removeCase(CaseIt i) {
3357  unsigned idx = i.getCaseIndex();
3358
3359  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3360
3361  unsigned NumOps = getNumOperands();
3362  Use *OL = OperandList;
3363
3364  // Overwrite this case with the end of the list.
3365  if (2 + (idx + 1) * 2 != NumOps) {
3366    OL[2 + idx * 2] = OL[NumOps - 2];
3367    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3368  }
3369
3370  // Nuke the last value.
3371  OL[NumOps-2].set(nullptr);
3372  OL[NumOps-2+1].set(nullptr);
3373  NumOperands = NumOps-2;
3374}
3375
3376/// growOperands - grow operands - This grows the operand list in response
3377/// to a push_back style of operation.  This grows the number of ops by 3 times.
3378///
3379void SwitchInst::growOperands() {
3380  unsigned e = getNumOperands();
3381  unsigned NumOps = e*3;
3382
3383  ReservedSpace = NumOps;
3384  Use *NewOps = allocHungoffUses(NumOps);
3385  Use *OldOps = OperandList;
3386  for (unsigned i = 0; i != e; ++i) {
3387      NewOps[i] = OldOps[i];
3388  }
3389  OperandList = NewOps;
3390  Use::zap(OldOps, OldOps + e, true);
3391}
3392
3393
3394BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3395  return getSuccessor(idx);
3396}
3397unsigned SwitchInst::getNumSuccessorsV() const {
3398  return getNumSuccessors();
3399}
3400void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3401  setSuccessor(idx, B);
3402}
3403
3404//===----------------------------------------------------------------------===//
3405//                        IndirectBrInst Implementation
3406//===----------------------------------------------------------------------===//
3407
3408void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3409  assert(Address && Address->getType()->isPointerTy() &&
3410         "Address of indirectbr must be a pointer");
3411  ReservedSpace = 1+NumDests;
3412  NumOperands = 1;
3413  OperandList = allocHungoffUses(ReservedSpace);
3414
3415  OperandList[0] = Address;
3416}
3417
3418
3419/// growOperands - grow operands - This grows the operand list in response
3420/// to a push_back style of operation.  This grows the number of ops by 2 times.
3421///
3422void IndirectBrInst::growOperands() {
3423  unsigned e = getNumOperands();
3424  unsigned NumOps = e*2;
3425
3426  ReservedSpace = NumOps;
3427  Use *NewOps = allocHungoffUses(NumOps);
3428  Use *OldOps = OperandList;
3429  for (unsigned i = 0; i != e; ++i)
3430    NewOps[i] = OldOps[i];
3431  OperandList = NewOps;
3432  Use::zap(OldOps, OldOps + e, true);
3433}
3434
3435IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3436                               Instruction *InsertBefore)
3437: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3438                 nullptr, 0, InsertBefore) {
3439  init(Address, NumCases);
3440}
3441
3442IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3443                               BasicBlock *InsertAtEnd)
3444: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3445                 nullptr, 0, InsertAtEnd) {
3446  init(Address, NumCases);
3447}
3448
3449IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3450  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3451                   allocHungoffUses(IBI.getNumOperands()),
3452                   IBI.getNumOperands()) {
3453  Use *OL = OperandList, *InOL = IBI.OperandList;
3454  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3455    OL[i] = InOL[i];
3456  SubclassOptionalData = IBI.SubclassOptionalData;
3457}
3458
3459IndirectBrInst::~IndirectBrInst() {
3460  dropHungoffUses();
3461}
3462
3463/// addDestination - Add a destination.
3464///
3465void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3466  unsigned OpNo = NumOperands;
3467  if (OpNo+1 > ReservedSpace)
3468    growOperands();  // Get more space!
3469  // Initialize some new operands.
3470  assert(OpNo < ReservedSpace && "Growing didn't work!");
3471  NumOperands = OpNo+1;
3472  OperandList[OpNo] = DestBB;
3473}
3474
3475/// removeDestination - This method removes the specified successor from the
3476/// indirectbr instruction.
3477void IndirectBrInst::removeDestination(unsigned idx) {
3478  assert(idx < getNumOperands()-1 && "Successor index out of range!");
3479
3480  unsigned NumOps = getNumOperands();
3481  Use *OL = OperandList;
3482
3483  // Replace this value with the last one.
3484  OL[idx+1] = OL[NumOps-1];
3485
3486  // Nuke the last value.
3487  OL[NumOps-1].set(nullptr);
3488  NumOperands = NumOps-1;
3489}
3490
3491BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3492  return getSuccessor(idx);
3493}
3494unsigned IndirectBrInst::getNumSuccessorsV() const {
3495  return getNumSuccessors();
3496}
3497void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3498  setSuccessor(idx, B);
3499}
3500
3501//===----------------------------------------------------------------------===//
3502//                           clone_impl() implementations
3503//===----------------------------------------------------------------------===//
3504
3505// Define these methods here so vtables don't get emitted into every translation
3506// unit that uses these classes.
3507
3508GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3509  return new (getNumOperands()) GetElementPtrInst(*this);
3510}
3511
3512BinaryOperator *BinaryOperator::clone_impl() const {
3513  return Create(getOpcode(), Op<0>(), Op<1>());
3514}
3515
3516FCmpInst* FCmpInst::clone_impl() const {
3517  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3518}
3519
3520ICmpInst* ICmpInst::clone_impl() const {
3521  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3522}
3523
3524ExtractValueInst *ExtractValueInst::clone_impl() const {
3525  return new ExtractValueInst(*this);
3526}
3527
3528InsertValueInst *InsertValueInst::clone_impl() const {
3529  return new InsertValueInst(*this);
3530}
3531
3532AllocaInst *AllocaInst::clone_impl() const {
3533  AllocaInst *Result = new AllocaInst(getAllocatedType(),
3534                                      (Value *)getOperand(0), getAlignment());
3535  Result->setUsedWithInAlloca(isUsedWithInAlloca());
3536  return Result;
3537}
3538
3539LoadInst *LoadInst::clone_impl() const {
3540  return new LoadInst(getOperand(0), Twine(), isVolatile(),
3541                      getAlignment(), getOrdering(), getSynchScope());
3542}
3543
3544StoreInst *StoreInst::clone_impl() const {
3545  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3546                       getAlignment(), getOrdering(), getSynchScope());
3547
3548}
3549
3550AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3551  AtomicCmpXchgInst *Result =
3552    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3553                          getSuccessOrdering(), getFailureOrdering(),
3554                          getSynchScope());
3555  Result->setVolatile(isVolatile());
3556  Result->setWeak(isWeak());
3557  return Result;
3558}
3559
3560AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3561  AtomicRMWInst *Result =
3562    new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3563                      getOrdering(), getSynchScope());
3564  Result->setVolatile(isVolatile());
3565  return Result;
3566}
3567
3568FenceInst *FenceInst::clone_impl() const {
3569  return new FenceInst(getContext(), getOrdering(), getSynchScope());
3570}
3571
3572TruncInst *TruncInst::clone_impl() const {
3573  return new TruncInst(getOperand(0), getType());
3574}
3575
3576ZExtInst *ZExtInst::clone_impl() const {
3577  return new ZExtInst(getOperand(0), getType());
3578}
3579
3580SExtInst *SExtInst::clone_impl() const {
3581  return new SExtInst(getOperand(0), getType());
3582}
3583
3584FPTruncInst *FPTruncInst::clone_impl() const {
3585  return new FPTruncInst(getOperand(0), getType());
3586}
3587
3588FPExtInst *FPExtInst::clone_impl() const {
3589  return new FPExtInst(getOperand(0), getType());
3590}
3591
3592UIToFPInst *UIToFPInst::clone_impl() const {
3593  return new UIToFPInst(getOperand(0), getType());
3594}
3595
3596SIToFPInst *SIToFPInst::clone_impl() const {
3597  return new SIToFPInst(getOperand(0), getType());
3598}
3599
3600FPToUIInst *FPToUIInst::clone_impl() const {
3601  return new FPToUIInst(getOperand(0), getType());
3602}
3603
3604FPToSIInst *FPToSIInst::clone_impl() const {
3605  return new FPToSIInst(getOperand(0), getType());
3606}
3607
3608PtrToIntInst *PtrToIntInst::clone_impl() const {
3609  return new PtrToIntInst(getOperand(0), getType());
3610}
3611
3612IntToPtrInst *IntToPtrInst::clone_impl() const {
3613  return new IntToPtrInst(getOperand(0), getType());
3614}
3615
3616BitCastInst *BitCastInst::clone_impl() const {
3617  return new BitCastInst(getOperand(0), getType());
3618}
3619
3620AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
3621  return new AddrSpaceCastInst(getOperand(0), getType());
3622}
3623
3624CallInst *CallInst::clone_impl() const {
3625  return  new(getNumOperands()) CallInst(*this);
3626}
3627
3628SelectInst *SelectInst::clone_impl() const {
3629  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3630}
3631
3632VAArgInst *VAArgInst::clone_impl() const {
3633  return new VAArgInst(getOperand(0), getType());
3634}
3635
3636ExtractElementInst *ExtractElementInst::clone_impl() const {
3637  return ExtractElementInst::Create(getOperand(0), getOperand(1));
3638}
3639
3640InsertElementInst *InsertElementInst::clone_impl() const {
3641  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3642}
3643
3644ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3645  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3646}
3647
3648PHINode *PHINode::clone_impl() const {
3649  return new PHINode(*this);
3650}
3651
3652LandingPadInst *LandingPadInst::clone_impl() const {
3653  return new LandingPadInst(*this);
3654}
3655
3656ReturnInst *ReturnInst::clone_impl() const {
3657  return new(getNumOperands()) ReturnInst(*this);
3658}
3659
3660BranchInst *BranchInst::clone_impl() const {
3661  return new(getNumOperands()) BranchInst(*this);
3662}
3663
3664SwitchInst *SwitchInst::clone_impl() const {
3665  return new SwitchInst(*this);
3666}
3667
3668IndirectBrInst *IndirectBrInst::clone_impl() const {
3669  return new IndirectBrInst(*this);
3670}
3671
3672
3673InvokeInst *InvokeInst::clone_impl() const {
3674  return new(getNumOperands()) InvokeInst(*this);
3675}
3676
3677ResumeInst *ResumeInst::clone_impl() const {
3678  return new(1) ResumeInst(*this);
3679}
3680
3681UnreachableInst *UnreachableInst::clone_impl() const {
3682  LLVMContext &Context = getContext();
3683  return new UnreachableInst(Context);
3684}
3685