Verifier.cpp revision 8e47daf2858e980210f3e1f007036b24da342c29
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * All landingpad instructions must use the same personality function with
43//    the same function.
44//  * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/Analysis/Verifier.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/Analysis/Dominators.h"
55#include "llvm/Assembly/Writer.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/Constants.h"
58#include "llvm/IR/DerivedTypes.h"
59#include "llvm/IR/InlineAsm.h"
60#include "llvm/IR/IntrinsicInst.h"
61#include "llvm/IR/LLVMContext.h"
62#include "llvm/IR/Metadata.h"
63#include "llvm/IR/Module.h"
64#include "llvm/InstVisitor.h"
65#include "llvm/Pass.h"
66#include "llvm/PassManager.h"
67#include "llvm/Support/CFG.h"
68#include "llvm/Support/CallSite.h"
69#include "llvm/Support/ConstantRange.h"
70#include "llvm/Support/Debug.h"
71#include "llvm/Support/ErrorHandling.h"
72#include "llvm/Support/raw_ostream.h"
73#include <algorithm>
74#include <cstdarg>
75using namespace llvm;
76
77namespace {  // Anonymous namespace for class
78  struct PreVerifier : public FunctionPass {
79    static char ID; // Pass ID, replacement for typeid
80
81    PreVerifier() : FunctionPass(ID) {
82      initializePreVerifierPass(*PassRegistry::getPassRegistry());
83    }
84
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesAll();
87    }
88
89    // Check that the prerequisites for successful DominatorTree construction
90    // are satisfied.
91    bool runOnFunction(Function &F) {
92      bool Broken = false;
93
94      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
95        if (I->empty() || !I->back().isTerminator()) {
96          dbgs() << "Basic Block in function '" << F.getName()
97                 << "' does not have terminator!\n";
98          WriteAsOperand(dbgs(), I, true);
99          dbgs() << "\n";
100          Broken = true;
101        }
102      }
103
104      if (Broken)
105        report_fatal_error("Broken module, no Basic Block terminator!");
106
107      return false;
108    }
109  };
110}
111
112char PreVerifier::ID = 0;
113INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
114                false, false)
115static char &PreVerifyID = PreVerifier::ID;
116
117namespace {
118  struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
119    static char ID; // Pass ID, replacement for typeid
120    bool Broken;          // Is this module found to be broken?
121    VerifierFailureAction action;
122                          // What to do if verification fails.
123    Module *Mod;          // Module we are verifying right now
124    LLVMContext *Context; // Context within which we are verifying
125    DominatorTree *DT;    // Dominator Tree, caution can be null!
126
127    std::string Messages;
128    raw_string_ostream MessagesStr;
129
130    /// InstInThisBlock - when verifying a basic block, keep track of all of the
131    /// instructions we have seen so far.  This allows us to do efficient
132    /// dominance checks for the case when an instruction has an operand that is
133    /// an instruction in the same block.
134    SmallPtrSet<Instruction*, 16> InstsInThisBlock;
135
136    /// MDNodes - keep track of the metadata nodes that have been checked
137    /// already.
138    SmallPtrSet<MDNode *, 32> MDNodes;
139
140    /// PersonalityFn - The personality function referenced by the
141    /// LandingPadInsts. All LandingPadInsts within the same function must use
142    /// the same personality function.
143    const Value *PersonalityFn;
144
145    Verifier()
146      : FunctionPass(ID), Broken(false),
147        action(AbortProcessAction), Mod(0), Context(0), DT(0),
148        MessagesStr(Messages), PersonalityFn(0) {
149      initializeVerifierPass(*PassRegistry::getPassRegistry());
150    }
151    explicit Verifier(VerifierFailureAction ctn)
152      : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
153        Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
154      initializeVerifierPass(*PassRegistry::getPassRegistry());
155    }
156
157    bool doInitialization(Module &M) {
158      Mod = &M;
159      Context = &M.getContext();
160
161      // We must abort before returning back to the pass manager, or else the
162      // pass manager may try to run other passes on the broken module.
163      return abortIfBroken();
164    }
165
166    bool runOnFunction(Function &F) {
167      // Get dominator information if we are being run by PassManager
168      DT = &getAnalysis<DominatorTree>();
169
170      Mod = F.getParent();
171      if (!Context) Context = &F.getContext();
172
173      visit(F);
174      InstsInThisBlock.clear();
175      PersonalityFn = 0;
176
177      // We must abort before returning back to the pass manager, or else the
178      // pass manager may try to run other passes on the broken module.
179      return abortIfBroken();
180    }
181
182    bool doFinalization(Module &M) {
183      // Scan through, checking all of the external function's linkage now...
184      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
185        visitGlobalValue(*I);
186
187        // Check to make sure function prototypes are okay.
188        if (I->isDeclaration()) visitFunction(*I);
189      }
190
191      for (Module::global_iterator I = M.global_begin(), E = M.global_end();
192           I != E; ++I)
193        visitGlobalVariable(*I);
194
195      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
196           I != E; ++I)
197        visitGlobalAlias(*I);
198
199      for (Module::named_metadata_iterator I = M.named_metadata_begin(),
200           E = M.named_metadata_end(); I != E; ++I)
201        visitNamedMDNode(*I);
202
203      visitModuleFlags(M);
204
205      // If the module is broken, abort at this time.
206      return abortIfBroken();
207    }
208
209    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
210      AU.setPreservesAll();
211      AU.addRequiredID(PreVerifyID);
212      AU.addRequired<DominatorTree>();
213    }
214
215    /// abortIfBroken - If the module is broken and we are supposed to abort on
216    /// this condition, do so.
217    ///
218    bool abortIfBroken() {
219      if (!Broken) return false;
220      MessagesStr << "Broken module found, ";
221      switch (action) {
222      case AbortProcessAction:
223        MessagesStr << "compilation aborted!\n";
224        dbgs() << MessagesStr.str();
225        // Client should choose different reaction if abort is not desired
226        abort();
227      case PrintMessageAction:
228        MessagesStr << "verification continues.\n";
229        dbgs() << MessagesStr.str();
230        return false;
231      case ReturnStatusAction:
232        MessagesStr << "compilation terminated.\n";
233        return true;
234      }
235      llvm_unreachable("Invalid action");
236    }
237
238
239    // Verification methods...
240    void visitGlobalValue(GlobalValue &GV);
241    void visitGlobalVariable(GlobalVariable &GV);
242    void visitGlobalAlias(GlobalAlias &GA);
243    void visitNamedMDNode(NamedMDNode &NMD);
244    void visitMDNode(MDNode &MD, Function *F);
245    void visitModuleFlags(Module &M);
246    void visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*> &SeenIDs,
247                         SmallVectorImpl<MDNode*> &Requirements);
248    void visitFunction(Function &F);
249    void visitBasicBlock(BasicBlock &BB);
250    using InstVisitor<Verifier>::visit;
251
252    void visit(Instruction &I);
253
254    void visitTruncInst(TruncInst &I);
255    void visitZExtInst(ZExtInst &I);
256    void visitSExtInst(SExtInst &I);
257    void visitFPTruncInst(FPTruncInst &I);
258    void visitFPExtInst(FPExtInst &I);
259    void visitFPToUIInst(FPToUIInst &I);
260    void visitFPToSIInst(FPToSIInst &I);
261    void visitUIToFPInst(UIToFPInst &I);
262    void visitSIToFPInst(SIToFPInst &I);
263    void visitIntToPtrInst(IntToPtrInst &I);
264    void visitPtrToIntInst(PtrToIntInst &I);
265    void visitBitCastInst(BitCastInst &I);
266    void visitPHINode(PHINode &PN);
267    void visitBinaryOperator(BinaryOperator &B);
268    void visitICmpInst(ICmpInst &IC);
269    void visitFCmpInst(FCmpInst &FC);
270    void visitExtractElementInst(ExtractElementInst &EI);
271    void visitInsertElementInst(InsertElementInst &EI);
272    void visitShuffleVectorInst(ShuffleVectorInst &EI);
273    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
274    void visitCallInst(CallInst &CI);
275    void visitInvokeInst(InvokeInst &II);
276    void visitGetElementPtrInst(GetElementPtrInst &GEP);
277    void visitLoadInst(LoadInst &LI);
278    void visitStoreInst(StoreInst &SI);
279    void verifyDominatesUse(Instruction &I, unsigned i);
280    void visitInstruction(Instruction &I);
281    void visitTerminatorInst(TerminatorInst &I);
282    void visitBranchInst(BranchInst &BI);
283    void visitReturnInst(ReturnInst &RI);
284    void visitSwitchInst(SwitchInst &SI);
285    void visitIndirectBrInst(IndirectBrInst &BI);
286    void visitSelectInst(SelectInst &SI);
287    void visitUserOp1(Instruction &I);
288    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
289    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
290    void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
291    void visitAtomicRMWInst(AtomicRMWInst &RMWI);
292    void visitFenceInst(FenceInst &FI);
293    void visitAllocaInst(AllocaInst &AI);
294    void visitExtractValueInst(ExtractValueInst &EVI);
295    void visitInsertValueInst(InsertValueInst &IVI);
296    void visitLandingPadInst(LandingPadInst &LPI);
297
298    void VerifyCallSite(CallSite CS);
299    bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
300                          int VT, unsigned ArgNo, std::string &Suffix);
301    bool VerifyIntrinsicType(Type *Ty,
302                             ArrayRef<Intrinsic::IITDescriptor> &Infos,
303                             SmallVectorImpl<Type*> &ArgTys);
304    void VerifyParameterAttrs(AttributeSet Attrs, uint64_t Idx, Type *Ty,
305                              bool isReturnValue, const Value *V);
306    void VerifyFunctionAttrs(FunctionType *FT, const AttributeSet &Attrs,
307                             const Value *V);
308
309    void WriteValue(const Value *V) {
310      if (!V) return;
311      if (isa<Instruction>(V)) {
312        MessagesStr << *V << '\n';
313      } else {
314        WriteAsOperand(MessagesStr, V, true, Mod);
315        MessagesStr << '\n';
316      }
317    }
318
319    void WriteType(Type *T) {
320      if (!T) return;
321      MessagesStr << ' ' << *T;
322    }
323
324
325    // CheckFailed - A check failed, so print out the condition and the message
326    // that failed.  This provides a nice place to put a breakpoint if you want
327    // to see why something is not correct.
328    void CheckFailed(const Twine &Message,
329                     const Value *V1 = 0, const Value *V2 = 0,
330                     const Value *V3 = 0, const Value *V4 = 0) {
331      MessagesStr << Message.str() << "\n";
332      WriteValue(V1);
333      WriteValue(V2);
334      WriteValue(V3);
335      WriteValue(V4);
336      Broken = true;
337    }
338
339    void CheckFailed(const Twine &Message, const Value *V1,
340                     Type *T2, const Value *V3 = 0) {
341      MessagesStr << Message.str() << "\n";
342      WriteValue(V1);
343      WriteType(T2);
344      WriteValue(V3);
345      Broken = true;
346    }
347
348    void CheckFailed(const Twine &Message, Type *T1,
349                     Type *T2 = 0, Type *T3 = 0) {
350      MessagesStr << Message.str() << "\n";
351      WriteType(T1);
352      WriteType(T2);
353      WriteType(T3);
354      Broken = true;
355    }
356  };
357} // End anonymous namespace
358
359char Verifier::ID = 0;
360INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
361INITIALIZE_PASS_DEPENDENCY(PreVerifier)
362INITIALIZE_PASS_DEPENDENCY(DominatorTree)
363INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
364
365// Assert - We know that cond should be true, if not print an error message.
366#define Assert(C, M) \
367  do { if (!(C)) { CheckFailed(M); return; } } while (0)
368#define Assert1(C, M, V1) \
369  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
370#define Assert2(C, M, V1, V2) \
371  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
372#define Assert3(C, M, V1, V2, V3) \
373  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
374#define Assert4(C, M, V1, V2, V3, V4) \
375  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
376
377void Verifier::visit(Instruction &I) {
378  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
379    Assert1(I.getOperand(i) != 0, "Operand is null", &I);
380  InstVisitor<Verifier>::visit(I);
381}
382
383
384void Verifier::visitGlobalValue(GlobalValue &GV) {
385  Assert1(!GV.isDeclaration() ||
386          GV.isMaterializable() ||
387          GV.hasExternalLinkage() ||
388          GV.hasDLLImportLinkage() ||
389          GV.hasExternalWeakLinkage() ||
390          (isa<GlobalAlias>(GV) &&
391           (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
392  "Global is external, but doesn't have external or dllimport or weak linkage!",
393          &GV);
394
395  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
396          "Global is marked as dllimport, but not external", &GV);
397
398  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
399          "Only global variables can have appending linkage!", &GV);
400
401  if (GV.hasAppendingLinkage()) {
402    GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
403    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
404            "Only global arrays can have appending linkage!", GVar);
405  }
406
407  Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
408          "linkonce_odr_auto_hide can only have default visibility!",
409          &GV);
410}
411
412void Verifier::visitGlobalVariable(GlobalVariable &GV) {
413  if (GV.hasInitializer()) {
414    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
415            "Global variable initializer type does not match global "
416            "variable type!", &GV);
417
418    // If the global has common linkage, it must have a zero initializer and
419    // cannot be constant.
420    if (GV.hasCommonLinkage()) {
421      Assert1(GV.getInitializer()->isNullValue(),
422              "'common' global must have a zero initializer!", &GV);
423      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
424              &GV);
425    }
426  } else {
427    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
428            GV.hasExternalWeakLinkage(),
429            "invalid linkage type for global declaration", &GV);
430  }
431
432  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
433                       GV.getName() == "llvm.global_dtors")) {
434    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
435            "invalid linkage for intrinsic global variable", &GV);
436    // Don't worry about emitting an error for it not being an array,
437    // visitGlobalValue will complain on appending non-array.
438    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
439      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
440      PointerType *FuncPtrTy =
441          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
442      Assert1(STy && STy->getNumElements() == 2 &&
443              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
444              STy->getTypeAtIndex(1) == FuncPtrTy,
445              "wrong type for intrinsic global variable", &GV);
446    }
447  }
448
449  visitGlobalValue(GV);
450}
451
452void Verifier::visitGlobalAlias(GlobalAlias &GA) {
453  Assert1(!GA.getName().empty(),
454          "Alias name cannot be empty!", &GA);
455  Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
456          GA.hasWeakLinkage(),
457          "Alias should have external or external weak linkage!", &GA);
458  Assert1(GA.getAliasee(),
459          "Aliasee cannot be NULL!", &GA);
460  Assert1(GA.getType() == GA.getAliasee()->getType(),
461          "Alias and aliasee types should match!", &GA);
462  Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
463
464  if (!isa<GlobalValue>(GA.getAliasee())) {
465    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
466    Assert1(CE &&
467            (CE->getOpcode() == Instruction::BitCast ||
468             CE->getOpcode() == Instruction::GetElementPtr) &&
469            isa<GlobalValue>(CE->getOperand(0)),
470            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
471            &GA);
472  }
473
474  const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
475  Assert1(Aliasee,
476          "Aliasing chain should end with function or global variable", &GA);
477
478  visitGlobalValue(GA);
479}
480
481void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
482  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
483    MDNode *MD = NMD.getOperand(i);
484    if (!MD)
485      continue;
486
487    Assert1(!MD->isFunctionLocal(),
488            "Named metadata operand cannot be function local!", MD);
489    visitMDNode(*MD, 0);
490  }
491}
492
493void Verifier::visitMDNode(MDNode &MD, Function *F) {
494  // Only visit each node once.  Metadata can be mutually recursive, so this
495  // avoids infinite recursion here, as well as being an optimization.
496  if (!MDNodes.insert(&MD))
497    return;
498
499  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
500    Value *Op = MD.getOperand(i);
501    if (!Op)
502      continue;
503    if (isa<Constant>(Op) || isa<MDString>(Op))
504      continue;
505    if (MDNode *N = dyn_cast<MDNode>(Op)) {
506      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
507              "Global metadata operand cannot be function local!", &MD, N);
508      visitMDNode(*N, F);
509      continue;
510    }
511    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
512
513    // If this was an instruction, bb, or argument, verify that it is in the
514    // function that we expect.
515    Function *ActualF = 0;
516    if (Instruction *I = dyn_cast<Instruction>(Op))
517      ActualF = I->getParent()->getParent();
518    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
519      ActualF = BB->getParent();
520    else if (Argument *A = dyn_cast<Argument>(Op))
521      ActualF = A->getParent();
522    assert(ActualF && "Unimplemented function local metadata case!");
523
524    Assert2(ActualF == F, "function-local metadata used in wrong function",
525            &MD, Op);
526  }
527}
528
529void Verifier::visitModuleFlags(Module &M) {
530  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
531  if (!Flags) return;
532
533  // Scan each flag, and track the flags and requirements.
534  DenseMap<MDString*, MDNode*> SeenIDs;
535  SmallVector<MDNode*, 16> Requirements;
536  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
537    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
538  }
539
540  // Validate that the requirements in the module are valid.
541  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
542    MDNode *Requirement = Requirements[I];
543    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
544    Value *ReqValue = Requirement->getOperand(1);
545
546    MDNode *Op = SeenIDs.lookup(Flag);
547    if (!Op) {
548      CheckFailed("invalid requirement on flag, flag is not present in module",
549                  Flag);
550      continue;
551    }
552
553    if (Op->getOperand(2) != ReqValue) {
554      CheckFailed(("invalid requirement on flag, "
555                   "flag does not have the required value"),
556                  Flag);
557      continue;
558    }
559  }
560}
561
562void Verifier::visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*>&SeenIDs,
563                               SmallVectorImpl<MDNode*> &Requirements) {
564  // Each module flag should have three arguments, the merge behavior (a
565  // constant int), the flag ID (an MDString), and the value.
566  Assert1(Op->getNumOperands() == 3,
567          "incorrect number of operands in module flag", Op);
568  ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
569  MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
570  Assert1(Behavior,
571          "invalid behavior operand in module flag (expected constant integer)",
572          Op->getOperand(0));
573  unsigned BehaviorValue = Behavior->getZExtValue();
574  Assert1(ID,
575          "invalid ID operand in module flag (expected metadata string)",
576          Op->getOperand(1));
577
578  // Sanity check the values for behaviors with additional requirements.
579  switch (BehaviorValue) {
580  default:
581    Assert1(false,
582            "invalid behavior operand in module flag (unexpected constant)",
583            Op->getOperand(0));
584    break;
585
586  case Module::Error:
587  case Module::Warning:
588  case Module::Override:
589    // These behavior types accept any value.
590    break;
591
592  case Module::Require: {
593    // The value should itself be an MDNode with two operands, a flag ID (an
594    // MDString), and a value.
595    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
596    Assert1(Value && Value->getNumOperands() == 2,
597            "invalid value for 'require' module flag (expected metadata pair)",
598            Op->getOperand(2));
599    Assert1(isa<MDString>(Value->getOperand(0)),
600            ("invalid value for 'require' module flag "
601             "(first value operand should be a string)"),
602            Value->getOperand(0));
603
604    // Append it to the list of requirements, to check once all module flags are
605    // scanned.
606    Requirements.push_back(Value);
607    break;
608  }
609
610  case Module::Append:
611  case Module::AppendUnique: {
612    // These behavior types require the operand be an MDNode.
613    Assert1(isa<MDNode>(Op->getOperand(2)),
614            "invalid value for 'append'-type module flag "
615            "(expected a metadata node)", Op->getOperand(2));
616    break;
617  }
618  }
619
620  // Unless this is a "requires" flag, check the ID is unique.
621  if (BehaviorValue != Module::Require) {
622    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
623    Assert1(Inserted,
624            "module flag identifiers must be unique (or of 'require' type)",
625            ID);
626  }
627}
628
629// VerifyParameterAttrs - Check the given attributes for an argument or return
630// value of the specified type.  The value V is printed in error messages.
631void Verifier::VerifyParameterAttrs(AttributeSet Attrs, uint64_t Idx, Type *Ty,
632                                    bool isReturnValue, const Value *V) {
633  if (!Attrs.hasAttributes(Idx))
634    return;
635
636  Assert1(!Attrs.hasAttribute(Idx, Attribute::NoReturn) &&
637          !Attrs.hasAttribute(Idx, Attribute::NoUnwind) &&
638          !Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
639          !Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
640          !Attrs.hasAttribute(Idx, Attribute::NoInline) &&
641          !Attrs.hasAttribute(Idx, Attribute::AlwaysInline) &&
642          !Attrs.hasAttribute(Idx, Attribute::OptimizeForSize) &&
643          !Attrs.hasAttribute(Idx, Attribute::StackProtect) &&
644          !Attrs.hasAttribute(Idx, Attribute::StackProtectReq) &&
645          !Attrs.hasAttribute(Idx, Attribute::NoRedZone) &&
646          !Attrs.hasAttribute(Idx, Attribute::NoImplicitFloat) &&
647          !Attrs.hasAttribute(Idx, Attribute::Naked) &&
648          !Attrs.hasAttribute(Idx, Attribute::InlineHint) &&
649          !Attrs.hasAttribute(Idx, Attribute::StackAlignment) &&
650          !Attrs.hasAttribute(Idx, Attribute::UWTable) &&
651          !Attrs.hasAttribute(Idx, Attribute::NonLazyBind) &&
652          !Attrs.hasAttribute(Idx, Attribute::ReturnsTwice) &&
653          !Attrs.hasAttribute(Idx, Attribute::AddressSafety) &&
654          !Attrs.hasAttribute(Idx, Attribute::MinSize),
655          "Some attributes in '" + Attrs.getAsString(Idx) +
656          "' only apply to functions!", V);
657
658  if (isReturnValue)
659    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
660            !Attrs.hasAttribute(Idx, Attribute::Nest) &&
661            !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
662            !Attrs.hasAttribute(Idx, Attribute::NoCapture),
663            "Attribute 'byval', 'nest', 'sret', and 'nocapture' "
664            "do not apply to return values!", V);
665
666  // Check for mutually incompatible attributes.
667  Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
668             Attrs.hasAttribute(Idx, Attribute::Nest)) ||
669            (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
670             Attrs.hasAttribute(Idx, Attribute::StructRet)) ||
671            (Attrs.hasAttribute(Idx, Attribute::Nest) &&
672             Attrs.hasAttribute(Idx, Attribute::StructRet))), "Attributes "
673          "'byval, nest, and sret' are incompatible!", V);
674
675  Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
676             Attrs.hasAttribute(Idx, Attribute::Nest)) ||
677            (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
678             Attrs.hasAttribute(Idx, Attribute::InReg)) ||
679            (Attrs.hasAttribute(Idx, Attribute::Nest) &&
680             Attrs.hasAttribute(Idx, Attribute::InReg))), "Attributes "
681          "'byval, nest, and inreg' are incompatible!", V);
682
683  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
684            Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
685          "'zeroext and signext' are incompatible!", V);
686
687  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
688            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
689          "'readnone and readonly' are incompatible!", V);
690
691  Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
692            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
693          "'noinline and alwaysinline' are incompatible!", V);
694
695  Assert1(!AttrBuilder(Attrs, Idx).
696            hasAttributes(AttributeFuncs::typeIncompatible(Ty)),
697          "Wrong types for attribute: " +
698          AttributeFuncs::typeIncompatible(Ty).getAsString(), V);
699
700  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
701    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) ||
702            PTy->getElementType()->isSized(),
703            "Attribute 'byval' does not support unsized types!", V);
704  else
705    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
706            "Attribute 'byval' only applies to parameters with pointer type!",
707            V);
708}
709
710// VerifyFunctionAttrs - Check parameter attributes against a function type.
711// The value V is printed in error messages.
712void Verifier::VerifyFunctionAttrs(FunctionType *FT,
713                                   const AttributeSet &Attrs,
714                                   const Value *V) {
715  if (Attrs.isEmpty())
716    return;
717
718  bool SawNest = false;
719
720  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
721    unsigned Index = Attrs.getSlotIndex(i);
722
723    Type *Ty;
724    if (Index == 0)
725      Ty = FT->getReturnType();
726    else if (Index-1 < FT->getNumParams())
727      Ty = FT->getParamType(Index-1);
728    else
729      break;  // VarArgs attributes, verified elsewhere.
730
731    VerifyParameterAttrs(Attrs, Index, Ty, Index == 0, V);
732
733    if (Attrs.hasAttribute(i, Attribute::Nest)) {
734      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
735      SawNest = true;
736    }
737
738    if (Attrs.hasAttribute(Index, Attribute::StructRet))
739      Assert1(Index == 1, "Attribute sret is not on first parameter!", V);
740  }
741
742  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
743    return;
744
745  AttrBuilder NotFn(Attrs, AttributeSet::FunctionIndex);
746  NotFn.removeFunctionOnlyAttrs();
747  Assert1(!NotFn.hasAttributes(), "Attribute '" +
748          Attribute::get(V->getContext(), NotFn).getAsString() +
749          "' do not apply to the function!", V);
750
751  // Check for mutually incompatible attributes.
752  Assert1(!((Attrs.hasAttribute(AttributeSet::FunctionIndex,
753                                Attribute::ByVal) &&
754             Attrs.hasAttribute(AttributeSet::FunctionIndex,
755                                Attribute::Nest)) ||
756            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
757                                Attribute::ByVal) &&
758             Attrs.hasAttribute(AttributeSet::FunctionIndex,
759                                Attribute::StructRet)) ||
760            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
761                                Attribute::Nest) &&
762             Attrs.hasAttribute(AttributeSet::FunctionIndex,
763                                Attribute::StructRet))),
764          "Attributes 'byval, nest, and sret' are incompatible!", V);
765
766  Assert1(!((Attrs.hasAttribute(AttributeSet::FunctionIndex,
767                                Attribute::ByVal) &&
768             Attrs.hasAttribute(AttributeSet::FunctionIndex,
769                                Attribute::Nest)) ||
770            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
771                                Attribute::ByVal) &&
772             Attrs.hasAttribute(AttributeSet::FunctionIndex,
773                                Attribute::InReg)) ||
774            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
775                                Attribute::Nest) &&
776             Attrs.hasAttribute(AttributeSet::FunctionIndex,
777                                Attribute::InReg))),
778          "Attributes 'byval, nest, and inreg' are incompatible!", V);
779
780  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
781                               Attribute::ZExt) &&
782            Attrs.hasAttribute(AttributeSet::FunctionIndex,
783                               Attribute::SExt)),
784          "Attributes 'zeroext and signext' are incompatible!", V);
785
786  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
787                               Attribute::ReadNone) &&
788            Attrs.hasAttribute(AttributeSet::FunctionIndex,
789                               Attribute::ReadOnly)),
790          "Attributes 'readnone and readonly' are incompatible!", V);
791
792  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
793                               Attribute::NoInline) &&
794            Attrs.hasAttribute(AttributeSet::FunctionIndex,
795                               Attribute::AlwaysInline)),
796          "Attributes 'noinline and alwaysinline' are incompatible!", V);
797}
798
799static bool VerifyAttributeCount(const AttributeSet &Attrs, unsigned Params) {
800  if (Attrs.isEmpty())
801    return true;
802
803  unsigned LastSlot = Attrs.getNumSlots() - 1;
804  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
805  if (LastIndex <= Params
806      || (LastIndex == AttributeSet::FunctionIndex
807          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
808    return true;
809
810  return false;
811}
812
813// visitFunction - Verify that a function is ok.
814//
815void Verifier::visitFunction(Function &F) {
816  // Check function arguments.
817  FunctionType *FT = F.getFunctionType();
818  unsigned NumArgs = F.arg_size();
819
820  Assert1(Context == &F.getContext(),
821          "Function context does not match Module context!", &F);
822
823  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
824  Assert2(FT->getNumParams() == NumArgs,
825          "# formal arguments must match # of arguments for function type!",
826          &F, FT);
827  Assert1(F.getReturnType()->isFirstClassType() ||
828          F.getReturnType()->isVoidTy() ||
829          F.getReturnType()->isStructTy(),
830          "Functions cannot return aggregate values!", &F);
831
832  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
833          "Invalid struct return type!", &F);
834
835  const AttributeSet &Attrs = F.getAttributes();
836
837  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
838          "Attribute after last parameter!", &F);
839
840  // Check function attributes.
841  VerifyFunctionAttrs(FT, Attrs, &F);
842
843  // Check that this function meets the restrictions on this calling convention.
844  switch (F.getCallingConv()) {
845  default:
846    break;
847  case CallingConv::C:
848    break;
849  case CallingConv::Fast:
850  case CallingConv::Cold:
851  case CallingConv::X86_FastCall:
852  case CallingConv::X86_ThisCall:
853  case CallingConv::Intel_OCL_BI:
854  case CallingConv::PTX_Kernel:
855  case CallingConv::PTX_Device:
856    Assert1(!F.isVarArg(),
857            "Varargs functions must have C calling conventions!", &F);
858    break;
859  }
860
861  bool isLLVMdotName = F.getName().size() >= 5 &&
862                       F.getName().substr(0, 5) == "llvm.";
863
864  // Check that the argument values match the function type for this function...
865  unsigned i = 0;
866  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
867       I != E; ++I, ++i) {
868    Assert2(I->getType() == FT->getParamType(i),
869            "Argument value does not match function argument type!",
870            I, FT->getParamType(i));
871    Assert1(I->getType()->isFirstClassType(),
872            "Function arguments must have first-class types!", I);
873    if (!isLLVMdotName)
874      Assert2(!I->getType()->isMetadataTy(),
875              "Function takes metadata but isn't an intrinsic", I, &F);
876  }
877
878  if (F.isMaterializable()) {
879    // Function has a body somewhere we can't see.
880  } else if (F.isDeclaration()) {
881    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
882            F.hasExternalWeakLinkage(),
883            "invalid linkage type for function declaration", &F);
884  } else {
885    // Verify that this function (which has a body) is not named "llvm.*".  It
886    // is not legal to define intrinsics.
887    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
888
889    // Check the entry node
890    BasicBlock *Entry = &F.getEntryBlock();
891    Assert1(pred_begin(Entry) == pred_end(Entry),
892            "Entry block to function must not have predecessors!", Entry);
893
894    // The address of the entry block cannot be taken, unless it is dead.
895    if (Entry->hasAddressTaken()) {
896      Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
897              "blockaddress may not be used with the entry block!", Entry);
898    }
899  }
900
901  // If this function is actually an intrinsic, verify that it is only used in
902  // direct call/invokes, never having its "address taken".
903  if (F.getIntrinsicID()) {
904    const User *U;
905    if (F.hasAddressTaken(&U))
906      Assert1(0, "Invalid user of intrinsic instruction!", U);
907  }
908}
909
910// verifyBasicBlock - Verify that a basic block is well formed...
911//
912void Verifier::visitBasicBlock(BasicBlock &BB) {
913  InstsInThisBlock.clear();
914
915  // Ensure that basic blocks have terminators!
916  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
917
918  // Check constraints that this basic block imposes on all of the PHI nodes in
919  // it.
920  if (isa<PHINode>(BB.front())) {
921    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
922    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
923    std::sort(Preds.begin(), Preds.end());
924    PHINode *PN;
925    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
926      // Ensure that PHI nodes have at least one entry!
927      Assert1(PN->getNumIncomingValues() != 0,
928              "PHI nodes must have at least one entry.  If the block is dead, "
929              "the PHI should be removed!", PN);
930      Assert1(PN->getNumIncomingValues() == Preds.size(),
931              "PHINode should have one entry for each predecessor of its "
932              "parent basic block!", PN);
933
934      // Get and sort all incoming values in the PHI node...
935      Values.clear();
936      Values.reserve(PN->getNumIncomingValues());
937      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
938        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
939                                        PN->getIncomingValue(i)));
940      std::sort(Values.begin(), Values.end());
941
942      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
943        // Check to make sure that if there is more than one entry for a
944        // particular basic block in this PHI node, that the incoming values are
945        // all identical.
946        //
947        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
948                Values[i].second == Values[i-1].second,
949                "PHI node has multiple entries for the same basic block with "
950                "different incoming values!", PN, Values[i].first,
951                Values[i].second, Values[i-1].second);
952
953        // Check to make sure that the predecessors and PHI node entries are
954        // matched up.
955        Assert3(Values[i].first == Preds[i],
956                "PHI node entries do not match predecessors!", PN,
957                Values[i].first, Preds[i]);
958      }
959    }
960  }
961}
962
963void Verifier::visitTerminatorInst(TerminatorInst &I) {
964  // Ensure that terminators only exist at the end of the basic block.
965  Assert1(&I == I.getParent()->getTerminator(),
966          "Terminator found in the middle of a basic block!", I.getParent());
967  visitInstruction(I);
968}
969
970void Verifier::visitBranchInst(BranchInst &BI) {
971  if (BI.isConditional()) {
972    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
973            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
974  }
975  visitTerminatorInst(BI);
976}
977
978void Verifier::visitReturnInst(ReturnInst &RI) {
979  Function *F = RI.getParent()->getParent();
980  unsigned N = RI.getNumOperands();
981  if (F->getReturnType()->isVoidTy())
982    Assert2(N == 0,
983            "Found return instr that returns non-void in Function of void "
984            "return type!", &RI, F->getReturnType());
985  else
986    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
987            "Function return type does not match operand "
988            "type of return inst!", &RI, F->getReturnType());
989
990  // Check to make sure that the return value has necessary properties for
991  // terminators...
992  visitTerminatorInst(RI);
993}
994
995void Verifier::visitSwitchInst(SwitchInst &SI) {
996  // Check to make sure that all of the constants in the switch instruction
997  // have the same type as the switched-on value.
998  Type *SwitchTy = SI.getCondition()->getType();
999  IntegerType *IntTy = cast<IntegerType>(SwitchTy);
1000  IntegersSubsetToBB Mapping;
1001  std::map<IntegersSubset::Range, unsigned> RangeSetMap;
1002  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1003    IntegersSubset CaseRanges = i.getCaseValueEx();
1004    for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
1005      IntegersSubset::Range r = CaseRanges.getItem(ri);
1006      Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
1007              "Switch constants must all be same type as switch value!", &SI);
1008      Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
1009              "Switch constants must all be same type as switch value!", &SI);
1010      Mapping.add(r);
1011      RangeSetMap[r] = i.getCaseIndex();
1012    }
1013  }
1014
1015  IntegersSubsetToBB::RangeIterator errItem;
1016  if (!Mapping.verify(errItem)) {
1017    unsigned CaseIndex = RangeSetMap[errItem->first];
1018    SwitchInst::CaseIt i(&SI, CaseIndex);
1019    Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
1020  }
1021
1022  visitTerminatorInst(SI);
1023}
1024
1025void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1026  Assert1(BI.getAddress()->getType()->isPointerTy(),
1027          "Indirectbr operand must have pointer type!", &BI);
1028  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1029    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1030            "Indirectbr destinations must all have pointer type!", &BI);
1031
1032  visitTerminatorInst(BI);
1033}
1034
1035void Verifier::visitSelectInst(SelectInst &SI) {
1036  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1037                                          SI.getOperand(2)),
1038          "Invalid operands for select instruction!", &SI);
1039
1040  Assert1(SI.getTrueValue()->getType() == SI.getType(),
1041          "Select values must have same type as select instruction!", &SI);
1042  visitInstruction(SI);
1043}
1044
1045/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1046/// a pass, if any exist, it's an error.
1047///
1048void Verifier::visitUserOp1(Instruction &I) {
1049  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1050}
1051
1052void Verifier::visitTruncInst(TruncInst &I) {
1053  // Get the source and destination types
1054  Type *SrcTy = I.getOperand(0)->getType();
1055  Type *DestTy = I.getType();
1056
1057  // Get the size of the types in bits, we'll need this later
1058  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1059  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1060
1061  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1062  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1063  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1064          "trunc source and destination must both be a vector or neither", &I);
1065  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1066
1067  visitInstruction(I);
1068}
1069
1070void Verifier::visitZExtInst(ZExtInst &I) {
1071  // Get the source and destination types
1072  Type *SrcTy = I.getOperand(0)->getType();
1073  Type *DestTy = I.getType();
1074
1075  // Get the size of the types in bits, we'll need this later
1076  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1077  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1078  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1079          "zext source and destination must both be a vector or neither", &I);
1080  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1081  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1082
1083  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1084
1085  visitInstruction(I);
1086}
1087
1088void Verifier::visitSExtInst(SExtInst &I) {
1089  // Get the source and destination types
1090  Type *SrcTy = I.getOperand(0)->getType();
1091  Type *DestTy = I.getType();
1092
1093  // Get the size of the types in bits, we'll need this later
1094  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1095  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1096
1097  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1098  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1099  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1100          "sext source and destination must both be a vector or neither", &I);
1101  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1102
1103  visitInstruction(I);
1104}
1105
1106void Verifier::visitFPTruncInst(FPTruncInst &I) {
1107  // Get the source and destination types
1108  Type *SrcTy = I.getOperand(0)->getType();
1109  Type *DestTy = I.getType();
1110  // Get the size of the types in bits, we'll need this later
1111  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1112  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1113
1114  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1115  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1116  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1117          "fptrunc source and destination must both be a vector or neither",&I);
1118  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1119
1120  visitInstruction(I);
1121}
1122
1123void Verifier::visitFPExtInst(FPExtInst &I) {
1124  // Get the source and destination types
1125  Type *SrcTy = I.getOperand(0)->getType();
1126  Type *DestTy = I.getType();
1127
1128  // Get the size of the types in bits, we'll need this later
1129  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1130  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1131
1132  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1133  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1134  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1135          "fpext source and destination must both be a vector or neither", &I);
1136  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1137
1138  visitInstruction(I);
1139}
1140
1141void Verifier::visitUIToFPInst(UIToFPInst &I) {
1142  // Get the source and destination types
1143  Type *SrcTy = I.getOperand(0)->getType();
1144  Type *DestTy = I.getType();
1145
1146  bool SrcVec = SrcTy->isVectorTy();
1147  bool DstVec = DestTy->isVectorTy();
1148
1149  Assert1(SrcVec == DstVec,
1150          "UIToFP source and dest must both be vector or scalar", &I);
1151  Assert1(SrcTy->isIntOrIntVectorTy(),
1152          "UIToFP source must be integer or integer vector", &I);
1153  Assert1(DestTy->isFPOrFPVectorTy(),
1154          "UIToFP result must be FP or FP vector", &I);
1155
1156  if (SrcVec && DstVec)
1157    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1158            cast<VectorType>(DestTy)->getNumElements(),
1159            "UIToFP source and dest vector length mismatch", &I);
1160
1161  visitInstruction(I);
1162}
1163
1164void Verifier::visitSIToFPInst(SIToFPInst &I) {
1165  // Get the source and destination types
1166  Type *SrcTy = I.getOperand(0)->getType();
1167  Type *DestTy = I.getType();
1168
1169  bool SrcVec = SrcTy->isVectorTy();
1170  bool DstVec = DestTy->isVectorTy();
1171
1172  Assert1(SrcVec == DstVec,
1173          "SIToFP source and dest must both be vector or scalar", &I);
1174  Assert1(SrcTy->isIntOrIntVectorTy(),
1175          "SIToFP source must be integer or integer vector", &I);
1176  Assert1(DestTy->isFPOrFPVectorTy(),
1177          "SIToFP result must be FP or FP vector", &I);
1178
1179  if (SrcVec && DstVec)
1180    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1181            cast<VectorType>(DestTy)->getNumElements(),
1182            "SIToFP source and dest vector length mismatch", &I);
1183
1184  visitInstruction(I);
1185}
1186
1187void Verifier::visitFPToUIInst(FPToUIInst &I) {
1188  // Get the source and destination types
1189  Type *SrcTy = I.getOperand(0)->getType();
1190  Type *DestTy = I.getType();
1191
1192  bool SrcVec = SrcTy->isVectorTy();
1193  bool DstVec = DestTy->isVectorTy();
1194
1195  Assert1(SrcVec == DstVec,
1196          "FPToUI source and dest must both be vector or scalar", &I);
1197  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1198          &I);
1199  Assert1(DestTy->isIntOrIntVectorTy(),
1200          "FPToUI result must be integer or integer vector", &I);
1201
1202  if (SrcVec && DstVec)
1203    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1204            cast<VectorType>(DestTy)->getNumElements(),
1205            "FPToUI source and dest vector length mismatch", &I);
1206
1207  visitInstruction(I);
1208}
1209
1210void Verifier::visitFPToSIInst(FPToSIInst &I) {
1211  // Get the source and destination types
1212  Type *SrcTy = I.getOperand(0)->getType();
1213  Type *DestTy = I.getType();
1214
1215  bool SrcVec = SrcTy->isVectorTy();
1216  bool DstVec = DestTy->isVectorTy();
1217
1218  Assert1(SrcVec == DstVec,
1219          "FPToSI source and dest must both be vector or scalar", &I);
1220  Assert1(SrcTy->isFPOrFPVectorTy(),
1221          "FPToSI source must be FP or FP vector", &I);
1222  Assert1(DestTy->isIntOrIntVectorTy(),
1223          "FPToSI result must be integer or integer vector", &I);
1224
1225  if (SrcVec && DstVec)
1226    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1227            cast<VectorType>(DestTy)->getNumElements(),
1228            "FPToSI source and dest vector length mismatch", &I);
1229
1230  visitInstruction(I);
1231}
1232
1233void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1234  // Get the source and destination types
1235  Type *SrcTy = I.getOperand(0)->getType();
1236  Type *DestTy = I.getType();
1237
1238  Assert1(SrcTy->getScalarType()->isPointerTy(),
1239          "PtrToInt source must be pointer", &I);
1240  Assert1(DestTy->getScalarType()->isIntegerTy(),
1241          "PtrToInt result must be integral", &I);
1242  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1243          "PtrToInt type mismatch", &I);
1244
1245  if (SrcTy->isVectorTy()) {
1246    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1247    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1248    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1249          "PtrToInt Vector width mismatch", &I);
1250  }
1251
1252  visitInstruction(I);
1253}
1254
1255void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1256  // Get the source and destination types
1257  Type *SrcTy = I.getOperand(0)->getType();
1258  Type *DestTy = I.getType();
1259
1260  Assert1(SrcTy->getScalarType()->isIntegerTy(),
1261          "IntToPtr source must be an integral", &I);
1262  Assert1(DestTy->getScalarType()->isPointerTy(),
1263          "IntToPtr result must be a pointer",&I);
1264  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1265          "IntToPtr type mismatch", &I);
1266  if (SrcTy->isVectorTy()) {
1267    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1268    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1269    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1270          "IntToPtr Vector width mismatch", &I);
1271  }
1272  visitInstruction(I);
1273}
1274
1275void Verifier::visitBitCastInst(BitCastInst &I) {
1276  // Get the source and destination types
1277  Type *SrcTy = I.getOperand(0)->getType();
1278  Type *DestTy = I.getType();
1279
1280  // Get the size of the types in bits, we'll need this later
1281  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1282  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1283
1284  // BitCast implies a no-op cast of type only. No bits change.
1285  // However, you can't cast pointers to anything but pointers.
1286  Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
1287          "Bitcast requires both operands to be pointer or neither", &I);
1288  Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1289
1290  // Disallow aggregates.
1291  Assert1(!SrcTy->isAggregateType(),
1292          "Bitcast operand must not be aggregate", &I);
1293  Assert1(!DestTy->isAggregateType(),
1294          "Bitcast type must not be aggregate", &I);
1295
1296  visitInstruction(I);
1297}
1298
1299/// visitPHINode - Ensure that a PHI node is well formed.
1300///
1301void Verifier::visitPHINode(PHINode &PN) {
1302  // Ensure that the PHI nodes are all grouped together at the top of the block.
1303  // This can be tested by checking whether the instruction before this is
1304  // either nonexistent (because this is begin()) or is a PHI node.  If not,
1305  // then there is some other instruction before a PHI.
1306  Assert2(&PN == &PN.getParent()->front() ||
1307          isa<PHINode>(--BasicBlock::iterator(&PN)),
1308          "PHI nodes not grouped at top of basic block!",
1309          &PN, PN.getParent());
1310
1311  // Check that all of the values of the PHI node have the same type as the
1312  // result, and that the incoming blocks are really basic blocks.
1313  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1314    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1315            "PHI node operands are not the same type as the result!", &PN);
1316  }
1317
1318  // All other PHI node constraints are checked in the visitBasicBlock method.
1319
1320  visitInstruction(PN);
1321}
1322
1323void Verifier::VerifyCallSite(CallSite CS) {
1324  Instruction *I = CS.getInstruction();
1325
1326  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1327          "Called function must be a pointer!", I);
1328  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1329
1330  Assert1(FPTy->getElementType()->isFunctionTy(),
1331          "Called function is not pointer to function type!", I);
1332  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1333
1334  // Verify that the correct number of arguments are being passed
1335  if (FTy->isVarArg())
1336    Assert1(CS.arg_size() >= FTy->getNumParams(),
1337            "Called function requires more parameters than were provided!",I);
1338  else
1339    Assert1(CS.arg_size() == FTy->getNumParams(),
1340            "Incorrect number of arguments passed to called function!", I);
1341
1342  // Verify that all arguments to the call match the function type.
1343  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1344    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1345            "Call parameter type does not match function signature!",
1346            CS.getArgument(i), FTy->getParamType(i), I);
1347
1348  const AttributeSet &Attrs = CS.getAttributes();
1349
1350  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1351          "Attribute after last parameter!", I);
1352
1353  // Verify call attributes.
1354  VerifyFunctionAttrs(FTy, Attrs, I);
1355
1356  if (FTy->isVarArg())
1357    // Check attributes on the varargs part.
1358    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1359      VerifyParameterAttrs(Attrs, Idx, CS.getArgument(Idx-1)->getType(),
1360                           false, I);
1361
1362      Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1363              "Attribute 'sret' cannot be used for vararg call arguments!", I);
1364    }
1365
1366  // Verify that there's no metadata unless it's a direct call to an intrinsic.
1367  if (CS.getCalledFunction() == 0 ||
1368      !CS.getCalledFunction()->getName().startswith("llvm.")) {
1369    for (FunctionType::param_iterator PI = FTy->param_begin(),
1370           PE = FTy->param_end(); PI != PE; ++PI)
1371      Assert1(!(*PI)->isMetadataTy(),
1372              "Function has metadata parameter but isn't an intrinsic", I);
1373  }
1374
1375  visitInstruction(*I);
1376}
1377
1378void Verifier::visitCallInst(CallInst &CI) {
1379  VerifyCallSite(&CI);
1380
1381  if (Function *F = CI.getCalledFunction())
1382    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1383      visitIntrinsicFunctionCall(ID, CI);
1384}
1385
1386void Verifier::visitInvokeInst(InvokeInst &II) {
1387  VerifyCallSite(&II);
1388
1389  // Verify that there is a landingpad instruction as the first non-PHI
1390  // instruction of the 'unwind' destination.
1391  Assert1(II.getUnwindDest()->isLandingPad(),
1392          "The unwind destination does not have a landingpad instruction!",&II);
1393
1394  visitTerminatorInst(II);
1395}
1396
1397/// visitBinaryOperator - Check that both arguments to the binary operator are
1398/// of the same type!
1399///
1400void Verifier::visitBinaryOperator(BinaryOperator &B) {
1401  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1402          "Both operands to a binary operator are not of the same type!", &B);
1403
1404  switch (B.getOpcode()) {
1405  // Check that integer arithmetic operators are only used with
1406  // integral operands.
1407  case Instruction::Add:
1408  case Instruction::Sub:
1409  case Instruction::Mul:
1410  case Instruction::SDiv:
1411  case Instruction::UDiv:
1412  case Instruction::SRem:
1413  case Instruction::URem:
1414    Assert1(B.getType()->isIntOrIntVectorTy(),
1415            "Integer arithmetic operators only work with integral types!", &B);
1416    Assert1(B.getType() == B.getOperand(0)->getType(),
1417            "Integer arithmetic operators must have same type "
1418            "for operands and result!", &B);
1419    break;
1420  // Check that floating-point arithmetic operators are only used with
1421  // floating-point operands.
1422  case Instruction::FAdd:
1423  case Instruction::FSub:
1424  case Instruction::FMul:
1425  case Instruction::FDiv:
1426  case Instruction::FRem:
1427    Assert1(B.getType()->isFPOrFPVectorTy(),
1428            "Floating-point arithmetic operators only work with "
1429            "floating-point types!", &B);
1430    Assert1(B.getType() == B.getOperand(0)->getType(),
1431            "Floating-point arithmetic operators must have same type "
1432            "for operands and result!", &B);
1433    break;
1434  // Check that logical operators are only used with integral operands.
1435  case Instruction::And:
1436  case Instruction::Or:
1437  case Instruction::Xor:
1438    Assert1(B.getType()->isIntOrIntVectorTy(),
1439            "Logical operators only work with integral types!", &B);
1440    Assert1(B.getType() == B.getOperand(0)->getType(),
1441            "Logical operators must have same type for operands and result!",
1442            &B);
1443    break;
1444  case Instruction::Shl:
1445  case Instruction::LShr:
1446  case Instruction::AShr:
1447    Assert1(B.getType()->isIntOrIntVectorTy(),
1448            "Shifts only work with integral types!", &B);
1449    Assert1(B.getType() == B.getOperand(0)->getType(),
1450            "Shift return type must be same as operands!", &B);
1451    break;
1452  default:
1453    llvm_unreachable("Unknown BinaryOperator opcode!");
1454  }
1455
1456  visitInstruction(B);
1457}
1458
1459void Verifier::visitICmpInst(ICmpInst &IC) {
1460  // Check that the operands are the same type
1461  Type *Op0Ty = IC.getOperand(0)->getType();
1462  Type *Op1Ty = IC.getOperand(1)->getType();
1463  Assert1(Op0Ty == Op1Ty,
1464          "Both operands to ICmp instruction are not of the same type!", &IC);
1465  // Check that the operands are the right type
1466  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1467          "Invalid operand types for ICmp instruction", &IC);
1468  // Check that the predicate is valid.
1469  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1470          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1471          "Invalid predicate in ICmp instruction!", &IC);
1472
1473  visitInstruction(IC);
1474}
1475
1476void Verifier::visitFCmpInst(FCmpInst &FC) {
1477  // Check that the operands are the same type
1478  Type *Op0Ty = FC.getOperand(0)->getType();
1479  Type *Op1Ty = FC.getOperand(1)->getType();
1480  Assert1(Op0Ty == Op1Ty,
1481          "Both operands to FCmp instruction are not of the same type!", &FC);
1482  // Check that the operands are the right type
1483  Assert1(Op0Ty->isFPOrFPVectorTy(),
1484          "Invalid operand types for FCmp instruction", &FC);
1485  // Check that the predicate is valid.
1486  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1487          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1488          "Invalid predicate in FCmp instruction!", &FC);
1489
1490  visitInstruction(FC);
1491}
1492
1493void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1494  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1495                                              EI.getOperand(1)),
1496          "Invalid extractelement operands!", &EI);
1497  visitInstruction(EI);
1498}
1499
1500void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1501  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1502                                             IE.getOperand(1),
1503                                             IE.getOperand(2)),
1504          "Invalid insertelement operands!", &IE);
1505  visitInstruction(IE);
1506}
1507
1508void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1509  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1510                                             SV.getOperand(2)),
1511          "Invalid shufflevector operands!", &SV);
1512  visitInstruction(SV);
1513}
1514
1515void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1516  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1517
1518  Assert1(isa<PointerType>(TargetTy),
1519    "GEP base pointer is not a vector or a vector of pointers", &GEP);
1520  Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1521          "GEP into unsized type!", &GEP);
1522  Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1523          GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1524          &GEP);
1525
1526  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1527  Type *ElTy =
1528    GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1529  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1530
1531  Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1532          cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1533          == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1534
1535  if (GEP.getPointerOperandType()->isVectorTy()) {
1536    // Additional checks for vector GEPs.
1537    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1538    Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1539            "Vector GEP result width doesn't match operand's", &GEP);
1540    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1541      Type *IndexTy = Idxs[i]->getType();
1542      Assert1(IndexTy->isVectorTy(),
1543              "Vector GEP must have vector indices!", &GEP);
1544      unsigned IndexWidth = IndexTy->getVectorNumElements();
1545      Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1546    }
1547  }
1548  visitInstruction(GEP);
1549}
1550
1551static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1552  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1553}
1554
1555void Verifier::visitLoadInst(LoadInst &LI) {
1556  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1557  Assert1(PTy, "Load operand must be a pointer.", &LI);
1558  Type *ElTy = PTy->getElementType();
1559  Assert2(ElTy == LI.getType(),
1560          "Load result type does not match pointer operand type!", &LI, ElTy);
1561  if (LI.isAtomic()) {
1562    Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1563            "Load cannot have Release ordering", &LI);
1564    Assert1(LI.getAlignment() != 0,
1565            "Atomic load must specify explicit alignment", &LI);
1566    if (!ElTy->isPointerTy()) {
1567      Assert2(ElTy->isIntegerTy(),
1568              "atomic store operand must have integer type!",
1569              &LI, ElTy);
1570      unsigned Size = ElTy->getPrimitiveSizeInBits();
1571      Assert2(Size >= 8 && !(Size & (Size - 1)),
1572              "atomic store operand must be power-of-two byte-sized integer",
1573              &LI, ElTy);
1574    }
1575  } else {
1576    Assert1(LI.getSynchScope() == CrossThread,
1577            "Non-atomic load cannot have SynchronizationScope specified", &LI);
1578  }
1579
1580  if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1581    unsigned NumOperands = Range->getNumOperands();
1582    Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1583    unsigned NumRanges = NumOperands / 2;
1584    Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1585
1586    ConstantRange LastRange(1); // Dummy initial value
1587    for (unsigned i = 0; i < NumRanges; ++i) {
1588      ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1589      Assert1(Low, "The lower limit must be an integer!", Low);
1590      ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1591      Assert1(High, "The upper limit must be an integer!", High);
1592      Assert1(High->getType() == Low->getType() &&
1593              High->getType() == ElTy, "Range types must match load type!",
1594              &LI);
1595
1596      APInt HighV = High->getValue();
1597      APInt LowV = Low->getValue();
1598      ConstantRange CurRange(LowV, HighV);
1599      Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1600              "Range must not be empty!", Range);
1601      if (i != 0) {
1602        Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1603                "Intervals are overlapping", Range);
1604        Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1605                Range);
1606        Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1607                Range);
1608      }
1609      LastRange = ConstantRange(LowV, HighV);
1610    }
1611    if (NumRanges > 2) {
1612      APInt FirstLow =
1613        dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1614      APInt FirstHigh =
1615        dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1616      ConstantRange FirstRange(FirstLow, FirstHigh);
1617      Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1618              "Intervals are overlapping", Range);
1619      Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1620              Range);
1621    }
1622
1623
1624  }
1625
1626  visitInstruction(LI);
1627}
1628
1629void Verifier::visitStoreInst(StoreInst &SI) {
1630  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1631  Assert1(PTy, "Store operand must be a pointer.", &SI);
1632  Type *ElTy = PTy->getElementType();
1633  Assert2(ElTy == SI.getOperand(0)->getType(),
1634          "Stored value type does not match pointer operand type!",
1635          &SI, ElTy);
1636  if (SI.isAtomic()) {
1637    Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1638            "Store cannot have Acquire ordering", &SI);
1639    Assert1(SI.getAlignment() != 0,
1640            "Atomic store must specify explicit alignment", &SI);
1641    if (!ElTy->isPointerTy()) {
1642      Assert2(ElTy->isIntegerTy(),
1643              "atomic store operand must have integer type!",
1644              &SI, ElTy);
1645      unsigned Size = ElTy->getPrimitiveSizeInBits();
1646      Assert2(Size >= 8 && !(Size & (Size - 1)),
1647              "atomic store operand must be power-of-two byte-sized integer",
1648              &SI, ElTy);
1649    }
1650  } else {
1651    Assert1(SI.getSynchScope() == CrossThread,
1652            "Non-atomic store cannot have SynchronizationScope specified", &SI);
1653  }
1654  visitInstruction(SI);
1655}
1656
1657void Verifier::visitAllocaInst(AllocaInst &AI) {
1658  PointerType *PTy = AI.getType();
1659  Assert1(PTy->getAddressSpace() == 0,
1660          "Allocation instruction pointer not in the generic address space!",
1661          &AI);
1662  Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1663          &AI);
1664  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1665          "Alloca array size must have integer type", &AI);
1666  visitInstruction(AI);
1667}
1668
1669void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1670  Assert1(CXI.getOrdering() != NotAtomic,
1671          "cmpxchg instructions must be atomic.", &CXI);
1672  Assert1(CXI.getOrdering() != Unordered,
1673          "cmpxchg instructions cannot be unordered.", &CXI);
1674  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1675  Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1676  Type *ElTy = PTy->getElementType();
1677  Assert2(ElTy->isIntegerTy(),
1678          "cmpxchg operand must have integer type!",
1679          &CXI, ElTy);
1680  unsigned Size = ElTy->getPrimitiveSizeInBits();
1681  Assert2(Size >= 8 && !(Size & (Size - 1)),
1682          "cmpxchg operand must be power-of-two byte-sized integer",
1683          &CXI, ElTy);
1684  Assert2(ElTy == CXI.getOperand(1)->getType(),
1685          "Expected value type does not match pointer operand type!",
1686          &CXI, ElTy);
1687  Assert2(ElTy == CXI.getOperand(2)->getType(),
1688          "Stored value type does not match pointer operand type!",
1689          &CXI, ElTy);
1690  visitInstruction(CXI);
1691}
1692
1693void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1694  Assert1(RMWI.getOrdering() != NotAtomic,
1695          "atomicrmw instructions must be atomic.", &RMWI);
1696  Assert1(RMWI.getOrdering() != Unordered,
1697          "atomicrmw instructions cannot be unordered.", &RMWI);
1698  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1699  Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1700  Type *ElTy = PTy->getElementType();
1701  Assert2(ElTy->isIntegerTy(),
1702          "atomicrmw operand must have integer type!",
1703          &RMWI, ElTy);
1704  unsigned Size = ElTy->getPrimitiveSizeInBits();
1705  Assert2(Size >= 8 && !(Size & (Size - 1)),
1706          "atomicrmw operand must be power-of-two byte-sized integer",
1707          &RMWI, ElTy);
1708  Assert2(ElTy == RMWI.getOperand(1)->getType(),
1709          "Argument value type does not match pointer operand type!",
1710          &RMWI, ElTy);
1711  Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1712          RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1713          "Invalid binary operation!", &RMWI);
1714  visitInstruction(RMWI);
1715}
1716
1717void Verifier::visitFenceInst(FenceInst &FI) {
1718  const AtomicOrdering Ordering = FI.getOrdering();
1719  Assert1(Ordering == Acquire || Ordering == Release ||
1720          Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1721          "fence instructions may only have "
1722          "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1723  visitInstruction(FI);
1724}
1725
1726void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1727  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1728                                           EVI.getIndices()) ==
1729          EVI.getType(),
1730          "Invalid ExtractValueInst operands!", &EVI);
1731
1732  visitInstruction(EVI);
1733}
1734
1735void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1736  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1737                                           IVI.getIndices()) ==
1738          IVI.getOperand(1)->getType(),
1739          "Invalid InsertValueInst operands!", &IVI);
1740
1741  visitInstruction(IVI);
1742}
1743
1744void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1745  BasicBlock *BB = LPI.getParent();
1746
1747  // The landingpad instruction is ill-formed if it doesn't have any clauses and
1748  // isn't a cleanup.
1749  Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1750          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1751
1752  // The landingpad instruction defines its parent as a landing pad block. The
1753  // landing pad block may be branched to only by the unwind edge of an invoke.
1754  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1755    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1756    Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
1757            "Block containing LandingPadInst must be jumped to "
1758            "only by the unwind edge of an invoke.", &LPI);
1759  }
1760
1761  // The landingpad instruction must be the first non-PHI instruction in the
1762  // block.
1763  Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
1764          "LandingPadInst not the first non-PHI instruction in the block.",
1765          &LPI);
1766
1767  // The personality functions for all landingpad instructions within the same
1768  // function should match.
1769  if (PersonalityFn)
1770    Assert1(LPI.getPersonalityFn() == PersonalityFn,
1771            "Personality function doesn't match others in function", &LPI);
1772  PersonalityFn = LPI.getPersonalityFn();
1773
1774  // All operands must be constants.
1775  Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
1776          &LPI);
1777  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
1778    Value *Clause = LPI.getClause(i);
1779    Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
1780    if (LPI.isCatch(i)) {
1781      Assert1(isa<PointerType>(Clause->getType()),
1782              "Catch operand does not have pointer type!", &LPI);
1783    } else {
1784      Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
1785      Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
1786              "Filter operand is not an array of constants!", &LPI);
1787    }
1788  }
1789
1790  visitInstruction(LPI);
1791}
1792
1793void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
1794  Instruction *Op = cast<Instruction>(I.getOperand(i));
1795  // If the we have an invalid invoke, don't try to compute the dominance.
1796  // We already reject it in the invoke specific checks and the dominance
1797  // computation doesn't handle multiple edges.
1798  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1799    if (II->getNormalDest() == II->getUnwindDest())
1800      return;
1801  }
1802
1803  const Use &U = I.getOperandUse(i);
1804  Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
1805          "Instruction does not dominate all uses!", Op, &I);
1806}
1807
1808/// verifyInstruction - Verify that an instruction is well formed.
1809///
1810void Verifier::visitInstruction(Instruction &I) {
1811  BasicBlock *BB = I.getParent();
1812  Assert1(BB, "Instruction not embedded in basic block!", &I);
1813
1814  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
1815    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1816         UI != UE; ++UI)
1817      Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1818              "Only PHI nodes may reference their own value!", &I);
1819  }
1820
1821  // Check that void typed values don't have names
1822  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1823          "Instruction has a name, but provides a void value!", &I);
1824
1825  // Check that the return value of the instruction is either void or a legal
1826  // value type.
1827  Assert1(I.getType()->isVoidTy() ||
1828          I.getType()->isFirstClassType(),
1829          "Instruction returns a non-scalar type!", &I);
1830
1831  // Check that the instruction doesn't produce metadata. Calls are already
1832  // checked against the callee type.
1833  Assert1(!I.getType()->isMetadataTy() ||
1834          isa<CallInst>(I) || isa<InvokeInst>(I),
1835          "Invalid use of metadata!", &I);
1836
1837  // Check that all uses of the instruction, if they are instructions
1838  // themselves, actually have parent basic blocks.  If the use is not an
1839  // instruction, it is an error!
1840  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1841       UI != UE; ++UI) {
1842    if (Instruction *Used = dyn_cast<Instruction>(*UI))
1843      Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1844              " embedded in a basic block!", &I, Used);
1845    else {
1846      CheckFailed("Use of instruction is not an instruction!", *UI);
1847      return;
1848    }
1849  }
1850
1851  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1852    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1853
1854    // Check to make sure that only first-class-values are operands to
1855    // instructions.
1856    if (!I.getOperand(i)->getType()->isFirstClassType()) {
1857      Assert1(0, "Instruction operands must be first-class values!", &I);
1858    }
1859
1860    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1861      // Check to make sure that the "address of" an intrinsic function is never
1862      // taken.
1863      Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
1864              "Cannot take the address of an intrinsic!", &I);
1865      Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
1866              F->getIntrinsicID() == Intrinsic::donothing,
1867              "Cannot invoke an intrinsinc other than donothing", &I);
1868      Assert1(F->getParent() == Mod, "Referencing function in another module!",
1869              &I);
1870    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1871      Assert1(OpBB->getParent() == BB->getParent(),
1872              "Referring to a basic block in another function!", &I);
1873    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1874      Assert1(OpArg->getParent() == BB->getParent(),
1875              "Referring to an argument in another function!", &I);
1876    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1877      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1878              &I);
1879    } else if (isa<Instruction>(I.getOperand(i))) {
1880      verifyDominatesUse(I, i);
1881    } else if (isa<InlineAsm>(I.getOperand(i))) {
1882      Assert1((i + 1 == e && isa<CallInst>(I)) ||
1883              (i + 3 == e && isa<InvokeInst>(I)),
1884              "Cannot take the address of an inline asm!", &I);
1885    }
1886  }
1887
1888  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
1889    Assert1(I.getType()->isFPOrFPVectorTy(),
1890            "fpmath requires a floating point result!", &I);
1891    Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
1892    Value *Op0 = MD->getOperand(0);
1893    if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
1894      APFloat Accuracy = CFP0->getValueAPF();
1895      Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
1896              "fpmath accuracy not a positive number!", &I);
1897    } else {
1898      Assert1(false, "invalid fpmath accuracy!", &I);
1899    }
1900  }
1901
1902  MDNode *MD = I.getMetadata(LLVMContext::MD_range);
1903  Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
1904
1905  InstsInThisBlock.insert(&I);
1906}
1907
1908/// VerifyIntrinsicType - Verify that the specified type (which comes from an
1909/// intrinsic argument or return value) matches the type constraints specified
1910/// by the .td file (e.g. an "any integer" argument really is an integer).
1911///
1912/// This return true on error but does not print a message.
1913bool Verifier::VerifyIntrinsicType(Type *Ty,
1914                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
1915                                   SmallVectorImpl<Type*> &ArgTys) {
1916  using namespace Intrinsic;
1917
1918  // If we ran out of descriptors, there are too many arguments.
1919  if (Infos.empty()) return true;
1920  IITDescriptor D = Infos.front();
1921  Infos = Infos.slice(1);
1922
1923  switch (D.Kind) {
1924  case IITDescriptor::Void: return !Ty->isVoidTy();
1925  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1926  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1927  case IITDescriptor::Half: return !Ty->isHalfTy();
1928  case IITDescriptor::Float: return !Ty->isFloatTy();
1929  case IITDescriptor::Double: return !Ty->isDoubleTy();
1930  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1931  case IITDescriptor::Vector: {
1932    VectorType *VT = dyn_cast<VectorType>(Ty);
1933    return VT == 0 || VT->getNumElements() != D.Vector_Width ||
1934           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
1935  }
1936  case IITDescriptor::Pointer: {
1937    PointerType *PT = dyn_cast<PointerType>(Ty);
1938    return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1939           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
1940  }
1941
1942  case IITDescriptor::Struct: {
1943    StructType *ST = dyn_cast<StructType>(Ty);
1944    if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
1945      return true;
1946
1947    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1948      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1949        return true;
1950    return false;
1951  }
1952
1953  case IITDescriptor::Argument:
1954    // Two cases here - If this is the second occurrence of an argument, verify
1955    // that the later instance matches the previous instance.
1956    if (D.getArgumentNumber() < ArgTys.size())
1957      return Ty != ArgTys[D.getArgumentNumber()];
1958
1959    // Otherwise, if this is the first instance of an argument, record it and
1960    // verify the "Any" kind.
1961    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1962    ArgTys.push_back(Ty);
1963
1964    switch (D.getArgumentKind()) {
1965    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1966    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1967    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1968    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1969    }
1970    llvm_unreachable("all argument kinds not covered");
1971
1972  case IITDescriptor::ExtendVecArgument:
1973    // This may only be used when referring to a previous vector argument.
1974    return D.getArgumentNumber() >= ArgTys.size() ||
1975           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1976           VectorType::getExtendedElementVectorType(
1977                       cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1978
1979  case IITDescriptor::TruncVecArgument:
1980    // This may only be used when referring to a previous vector argument.
1981    return D.getArgumentNumber() >= ArgTys.size() ||
1982           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1983           VectorType::getTruncatedElementVectorType(
1984                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1985  }
1986  llvm_unreachable("unhandled");
1987}
1988
1989/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1990///
1991void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1992  Function *IF = CI.getCalledFunction();
1993  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1994          IF);
1995
1996  // Verify that the intrinsic prototype lines up with what the .td files
1997  // describe.
1998  FunctionType *IFTy = IF->getFunctionType();
1999  Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
2000
2001  SmallVector<Intrinsic::IITDescriptor, 8> Table;
2002  getIntrinsicInfoTableEntries(ID, Table);
2003  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2004
2005  SmallVector<Type *, 4> ArgTys;
2006  Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2007          "Intrinsic has incorrect return type!", IF);
2008  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2009    Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2010            "Intrinsic has incorrect argument type!", IF);
2011  Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2012
2013  // Now that we have the intrinsic ID and the actual argument types (and we
2014  // know they are legal for the intrinsic!) get the intrinsic name through the
2015  // usual means.  This allows us to verify the mangling of argument types into
2016  // the name.
2017  Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
2018          "Intrinsic name not mangled correctly for type arguments!", IF);
2019
2020  // If the intrinsic takes MDNode arguments, verify that they are either global
2021  // or are local to *this* function.
2022  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2023    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2024      visitMDNode(*MD, CI.getParent()->getParent());
2025
2026  switch (ID) {
2027  default:
2028    break;
2029  case Intrinsic::ctlz:  // llvm.ctlz
2030  case Intrinsic::cttz:  // llvm.cttz
2031    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2032            "is_zero_undef argument of bit counting intrinsics must be a "
2033            "constant int", &CI);
2034    break;
2035  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
2036    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2037                "invalid llvm.dbg.declare intrinsic call 1", &CI);
2038    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2039    Assert1(MD->getNumOperands() == 1,
2040                "invalid llvm.dbg.declare intrinsic call 2", &CI);
2041  } break;
2042  case Intrinsic::memcpy:
2043  case Intrinsic::memmove:
2044  case Intrinsic::memset:
2045    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2046            "alignment argument of memory intrinsics must be a constant int",
2047            &CI);
2048    Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2049            "isvolatile argument of memory intrinsics must be a constant int",
2050            &CI);
2051    break;
2052  case Intrinsic::gcroot:
2053  case Intrinsic::gcwrite:
2054  case Intrinsic::gcread:
2055    if (ID == Intrinsic::gcroot) {
2056      AllocaInst *AI =
2057        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2058      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2059      Assert1(isa<Constant>(CI.getArgOperand(1)),
2060              "llvm.gcroot parameter #2 must be a constant.", &CI);
2061      if (!AI->getType()->getElementType()->isPointerTy()) {
2062        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2063                "llvm.gcroot parameter #1 must either be a pointer alloca, "
2064                "or argument #2 must be a non-null constant.", &CI);
2065      }
2066    }
2067
2068    Assert1(CI.getParent()->getParent()->hasGC(),
2069            "Enclosing function does not use GC.", &CI);
2070    break;
2071  case Intrinsic::init_trampoline:
2072    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2073            "llvm.init_trampoline parameter #2 must resolve to a function.",
2074            &CI);
2075    break;
2076  case Intrinsic::prefetch:
2077    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2078            isa<ConstantInt>(CI.getArgOperand(2)) &&
2079            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2080            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2081            "invalid arguments to llvm.prefetch",
2082            &CI);
2083    break;
2084  case Intrinsic::stackprotector:
2085    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2086            "llvm.stackprotector parameter #2 must resolve to an alloca.",
2087            &CI);
2088    break;
2089  case Intrinsic::lifetime_start:
2090  case Intrinsic::lifetime_end:
2091  case Intrinsic::invariant_start:
2092    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2093            "size argument of memory use markers must be a constant integer",
2094            &CI);
2095    break;
2096  case Intrinsic::invariant_end:
2097    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2098            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2099    break;
2100  }
2101}
2102
2103//===----------------------------------------------------------------------===//
2104//  Implement the public interfaces to this file...
2105//===----------------------------------------------------------------------===//
2106
2107FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
2108  return new Verifier(action);
2109}
2110
2111
2112/// verifyFunction - Check a function for errors, printing messages on stderr.
2113/// Return true if the function is corrupt.
2114///
2115bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
2116  Function &F = const_cast<Function&>(f);
2117  assert(!F.isDeclaration() && "Cannot verify external functions");
2118
2119  FunctionPassManager FPM(F.getParent());
2120  Verifier *V = new Verifier(action);
2121  FPM.add(V);
2122  FPM.run(F);
2123  return V->Broken;
2124}
2125
2126/// verifyModule - Check a module for errors, printing messages on stderr.
2127/// Return true if the module is corrupt.
2128///
2129bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
2130                        std::string *ErrorInfo) {
2131  PassManager PM;
2132  Verifier *V = new Verifier(action);
2133  PM.add(V);
2134  PM.run(const_cast<Module&>(M));
2135
2136  if (ErrorInfo && V->Broken)
2137    *ErrorInfo = V->MessagesStr.str();
2138  return V->Broken;
2139}
2140