StringRef.cpp revision 63c133b67d61b0c457ff46c957aed2b8d90b599c
1//===-- StringRef.cpp - Lightweight String References ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/ADT/StringRef.h"
11#include "llvm/ADT/APInt.h"
12#include "llvm/ADT/OwningPtr.h"
13#include <bitset>
14
15using namespace llvm;
16
17// MSVC emits references to this into the translation units which reference it.
18#ifndef _MSC_VER
19const size_t StringRef::npos;
20#endif
21
22static char ascii_tolower(char x) {
23  if (x >= 'A' && x <= 'Z')
24    return x - 'A' + 'a';
25  return x;
26}
27
28static bool ascii_isdigit(char x) {
29  return x >= '0' && x <= '9';
30}
31
32/// compare_lower - Compare strings, ignoring case.
33int StringRef::compare_lower(StringRef RHS) const {
34  for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
35    unsigned char LHC = ascii_tolower(Data[I]);
36    unsigned char RHC = ascii_tolower(RHS.Data[I]);
37    if (LHC != RHC)
38      return LHC < RHC ? -1 : 1;
39  }
40
41  if (Length == RHS.Length)
42    return 0;
43  return Length < RHS.Length ? -1 : 1;
44}
45
46/// compare_numeric - Compare strings, handle embedded numbers.
47int StringRef::compare_numeric(StringRef RHS) const {
48  for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
49    if (Data[I] == RHS.Data[I])
50      continue;
51    if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
52      // The longer sequence of numbers is larger. This doesn't really handle
53      // prefixed zeros well.
54      for (size_t J = I+1; J != E+1; ++J) {
55        bool ld = J < Length && ascii_isdigit(Data[J]);
56        bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
57        if (ld != rd)
58          return rd ? -1 : 1;
59        if (!rd)
60          break;
61      }
62    }
63    return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
64  }
65  if (Length == RHS.Length)
66    return 0;
67  return Length < RHS.Length ? -1 : 1;
68}
69
70// Compute the edit distance between the two given strings.
71unsigned StringRef::edit_distance(llvm::StringRef Other,
72                                  bool AllowReplacements,
73                                  unsigned MaxEditDistance) {
74  // The algorithm implemented below is the "classic"
75  // dynamic-programming algorithm for computing the Levenshtein
76  // distance, which is described here:
77  //
78  //   http://en.wikipedia.org/wiki/Levenshtein_distance
79  //
80  // Although the algorithm is typically described using an m x n
81  // array, only two rows are used at a time, so this implemenation
82  // just keeps two separate vectors for those two rows.
83  size_type m = size();
84  size_type n = Other.size();
85
86  const unsigned SmallBufferSize = 64;
87  unsigned SmallBuffer[SmallBufferSize];
88  llvm::OwningArrayPtr<unsigned> Allocated;
89  unsigned *previous = SmallBuffer;
90  if (2*(n + 1) > SmallBufferSize) {
91    previous = new unsigned [2*(n+1)];
92    Allocated.reset(previous);
93  }
94  unsigned *current = previous + (n + 1);
95
96  for (unsigned i = 0; i <= n; ++i)
97    previous[i] = i;
98
99  for (size_type y = 1; y <= m; ++y) {
100    current[0] = y;
101    unsigned BestThisRow = current[0];
102
103    for (size_type x = 1; x <= n; ++x) {
104      if (AllowReplacements) {
105        current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u),
106                         min(current[x-1], previous[x])+1);
107      }
108      else {
109        if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1];
110        else current[x] = min(current[x-1], previous[x]) + 1;
111      }
112      BestThisRow = min(BestThisRow, current[x]);
113    }
114
115    if (MaxEditDistance && BestThisRow > MaxEditDistance)
116      return MaxEditDistance + 1;
117
118    unsigned *tmp = current;
119    current = previous;
120    previous = tmp;
121  }
122
123  unsigned Result = previous[n];
124  return Result;
125}
126
127//===----------------------------------------------------------------------===//
128// String Searching
129//===----------------------------------------------------------------------===//
130
131
132/// find - Search for the first string \arg Str in the string.
133///
134/// \return - The index of the first occurence of \arg Str, or npos if not
135/// found.
136size_t StringRef::find(StringRef Str, size_t From) const {
137  size_t N = Str.size();
138  if (N > Length)
139    return npos;
140  for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
141    if (substr(i, N).equals(Str))
142      return i;
143  return npos;
144}
145
146/// rfind - Search for the last string \arg Str in the string.
147///
148/// \return - The index of the last occurence of \arg Str, or npos if not
149/// found.
150size_t StringRef::rfind(StringRef Str) const {
151  size_t N = Str.size();
152  if (N > Length)
153    return npos;
154  for (size_t i = Length - N + 1, e = 0; i != e;) {
155    --i;
156    if (substr(i, N).equals(Str))
157      return i;
158  }
159  return npos;
160}
161
162/// find_first_of - Find the first character in the string that is in \arg
163/// Chars, or npos if not found.
164///
165/// Note: O(size() + Chars.size())
166StringRef::size_type StringRef::find_first_of(StringRef Chars,
167                                              size_t From) const {
168  std::bitset<1 << CHAR_BIT> CharBits;
169  for (size_type i = 0; i != Chars.size(); ++i)
170    CharBits.set((unsigned char)Chars[i]);
171
172  for (size_type i = min(From, Length), e = Length; i != e; ++i)
173    if (CharBits.test((unsigned char)Data[i]))
174      return i;
175  return npos;
176}
177
178/// find_first_not_of - Find the first character in the string that is not
179/// \arg C or npos if not found.
180StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
181  for (size_type i = min(From, Length), e = Length; i != e; ++i)
182    if (Data[i] != C)
183      return i;
184  return npos;
185}
186
187/// find_first_not_of - Find the first character in the string that is not
188/// in the string \arg Chars, or npos if not found.
189///
190/// Note: O(size() + Chars.size())
191StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
192                                                  size_t From) const {
193  std::bitset<1 << CHAR_BIT> CharBits;
194  for (size_type i = 0; i != Chars.size(); ++i)
195    CharBits.set((unsigned char)Chars[i]);
196
197  for (size_type i = min(From, Length), e = Length; i != e; ++i)
198    if (!CharBits.test((unsigned char)Data[i]))
199      return i;
200  return npos;
201}
202
203/// find_last_of - Find the last character in the string that is in \arg C,
204/// or npos if not found.
205///
206/// Note: O(size() + Chars.size())
207StringRef::size_type StringRef::find_last_of(StringRef Chars,
208                                             size_t From) const {
209  std::bitset<1 << CHAR_BIT> CharBits;
210  for (size_type i = 0; i != Chars.size(); ++i)
211    CharBits.set((unsigned char)Chars[i]);
212
213  for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
214    if (CharBits.test((unsigned char)Data[i]))
215      return i;
216  return npos;
217}
218
219//===----------------------------------------------------------------------===//
220// Helpful Algorithms
221//===----------------------------------------------------------------------===//
222
223/// count - Return the number of non-overlapped occurrences of \arg Str in
224/// the string.
225size_t StringRef::count(StringRef Str) const {
226  size_t Count = 0;
227  size_t N = Str.size();
228  if (N > Length)
229    return 0;
230  for (size_t i = 0, e = Length - N + 1; i != e; ++i)
231    if (substr(i, N).equals(Str))
232      ++Count;
233  return Count;
234}
235
236static unsigned GetAutoSenseRadix(StringRef &Str) {
237  if (Str.startswith("0x")) {
238    Str = Str.substr(2);
239    return 16;
240  } else if (Str.startswith("0b")) {
241    Str = Str.substr(2);
242    return 2;
243  } else if (Str.startswith("0")) {
244    return 8;
245  } else {
246    return 10;
247  }
248}
249
250
251/// GetAsUnsignedInteger - Workhorse method that converts a integer character
252/// sequence of radix up to 36 to an unsigned long long value.
253static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix,
254                                 unsigned long long &Result) {
255  // Autosense radix if not specified.
256  if (Radix == 0)
257    Radix = GetAutoSenseRadix(Str);
258
259  // Empty strings (after the radix autosense) are invalid.
260  if (Str.empty()) return true;
261
262  // Parse all the bytes of the string given this radix.  Watch for overflow.
263  Result = 0;
264  while (!Str.empty()) {
265    unsigned CharVal;
266    if (Str[0] >= '0' && Str[0] <= '9')
267      CharVal = Str[0]-'0';
268    else if (Str[0] >= 'a' && Str[0] <= 'z')
269      CharVal = Str[0]-'a'+10;
270    else if (Str[0] >= 'A' && Str[0] <= 'Z')
271      CharVal = Str[0]-'A'+10;
272    else
273      return true;
274
275    // If the parsed value is larger than the integer radix, the string is
276    // invalid.
277    if (CharVal >= Radix)
278      return true;
279
280    // Add in this character.
281    unsigned long long PrevResult = Result;
282    Result = Result*Radix+CharVal;
283
284    // Check for overflow.
285    if (Result < PrevResult)
286      return true;
287
288    Str = Str.substr(1);
289  }
290
291  return false;
292}
293
294bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const {
295  return GetAsUnsignedInteger(*this, Radix, Result);
296}
297
298
299bool StringRef::getAsInteger(unsigned Radix, long long &Result) const {
300  unsigned long long ULLVal;
301
302  // Handle positive strings first.
303  if (empty() || front() != '-') {
304    if (GetAsUnsignedInteger(*this, Radix, ULLVal) ||
305        // Check for value so large it overflows a signed value.
306        (long long)ULLVal < 0)
307      return true;
308    Result = ULLVal;
309    return false;
310  }
311
312  // Get the positive part of the value.
313  if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) ||
314      // Reject values so large they'd overflow as negative signed, but allow
315      // "-0".  This negates the unsigned so that the negative isn't undefined
316      // on signed overflow.
317      (long long)-ULLVal > 0)
318    return true;
319
320  Result = -ULLVal;
321  return false;
322}
323
324bool StringRef::getAsInteger(unsigned Radix, int &Result) const {
325  long long Val;
326  if (getAsInteger(Radix, Val) ||
327      (int)Val != Val)
328    return true;
329  Result = Val;
330  return false;
331}
332
333bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const {
334  unsigned long long Val;
335  if (getAsInteger(Radix, Val) ||
336      (unsigned)Val != Val)
337    return true;
338  Result = Val;
339  return false;
340}
341
342bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
343  StringRef Str = *this;
344
345  // Autosense radix if not specified.
346  if (Radix == 0)
347    Radix = GetAutoSenseRadix(Str);
348
349  assert(Radix > 1 && Radix <= 36);
350
351  // Empty strings (after the radix autosense) are invalid.
352  if (Str.empty()) return true;
353
354  // Skip leading zeroes.  This can be a significant improvement if
355  // it means we don't need > 64 bits.
356  while (!Str.empty() && Str.front() == '0')
357    Str = Str.substr(1);
358
359  // If it was nothing but zeroes....
360  if (Str.empty()) {
361    Result = APInt(64, 0);
362    return false;
363  }
364
365  // (Over-)estimate the required number of bits.
366  unsigned Log2Radix = 0;
367  while ((1U << Log2Radix) < Radix) Log2Radix++;
368  bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
369
370  unsigned BitWidth = Log2Radix * Str.size();
371  if (BitWidth < Result.getBitWidth())
372    BitWidth = Result.getBitWidth(); // don't shrink the result
373  else
374    Result.zext(BitWidth);
375
376  APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
377  if (!IsPowerOf2Radix) {
378    // These must have the same bit-width as Result.
379    RadixAP = APInt(BitWidth, Radix);
380    CharAP = APInt(BitWidth, 0);
381  }
382
383  // Parse all the bytes of the string given this radix.
384  Result = 0;
385  while (!Str.empty()) {
386    unsigned CharVal;
387    if (Str[0] >= '0' && Str[0] <= '9')
388      CharVal = Str[0]-'0';
389    else if (Str[0] >= 'a' && Str[0] <= 'z')
390      CharVal = Str[0]-'a'+10;
391    else if (Str[0] >= 'A' && Str[0] <= 'Z')
392      CharVal = Str[0]-'A'+10;
393    else
394      return true;
395
396    // If the parsed value is larger than the integer radix, the string is
397    // invalid.
398    if (CharVal >= Radix)
399      return true;
400
401    // Add in this character.
402    if (IsPowerOf2Radix) {
403      Result <<= Log2Radix;
404      Result |= CharVal;
405    } else {
406      Result *= RadixAP;
407      CharAP = CharVal;
408      Result += CharAP;
409    }
410
411    Str = Str.substr(1);
412  }
413
414  return false;
415}
416