ARMBaseInstrInfo.cpp revision 3c8ad92455ff06c8e69085702ef1f13944eab4dd
1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMHazardRecognizer.h"
19#include "ARMMachineFunctionInfo.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/STLExtras.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48static cl::opt<bool>
49WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50           cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52/// ARM_MLxEntry - Record information about MLA / MLS instructions.
53struct ARM_MLxEntry {
54  uint16_t MLxOpc;     // MLA / MLS opcode
55  uint16_t MulOpc;     // Expanded multiplication opcode
56  uint16_t AddSubOpc;  // Expanded add / sub opcode
57  bool NegAcc;         // True if the acc is negated before the add / sub.
58  bool HasLane;        // True if instruction has an extra "lane" operand.
59};
60
61static const ARM_MLxEntry ARM_MLxTable[] = {
62  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
63  // fp scalar ops
64  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
65  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
66  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
67  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
68  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
69  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
70  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
71  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
72
73  // fp SIMD ops
74  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
75  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
76  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
77  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
78  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
79  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
80  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
81  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
82};
83
84ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
85  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
86    Subtarget(STI) {
87  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
88    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
89      assert(false && "Duplicated entries?");
90    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
91    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
92  }
93}
94
95// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
96// currently defaults to no prepass hazard recognizer.
97ScheduleHazardRecognizer *ARMBaseInstrInfo::
98CreateTargetHazardRecognizer(const TargetMachine *TM,
99                             const ScheduleDAG *DAG) const {
100  if (usePreRAHazardRecognizer()) {
101    const InstrItineraryData *II = TM->getInstrItineraryData();
102    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
103  }
104  return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
105}
106
107ScheduleHazardRecognizer *ARMBaseInstrInfo::
108CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
109                                   const ScheduleDAG *DAG) const {
110  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
111    return (ScheduleHazardRecognizer *)
112      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
113  return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
114}
115
116MachineInstr *
117ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
118                                        MachineBasicBlock::iterator &MBBI,
119                                        LiveVariables *LV) const {
120  // FIXME: Thumb2 support.
121
122  if (!EnableARM3Addr)
123    return NULL;
124
125  MachineInstr *MI = MBBI;
126  MachineFunction &MF = *MI->getParent()->getParent();
127  uint64_t TSFlags = MI->getDesc().TSFlags;
128  bool isPre = false;
129  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
130  default: return NULL;
131  case ARMII::IndexModePre:
132    isPre = true;
133    break;
134  case ARMII::IndexModePost:
135    break;
136  }
137
138  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
139  // operation.
140  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
141  if (MemOpc == 0)
142    return NULL;
143
144  MachineInstr *UpdateMI = NULL;
145  MachineInstr *MemMI = NULL;
146  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
147  const MCInstrDesc &MCID = MI->getDesc();
148  unsigned NumOps = MCID.getNumOperands();
149  bool isLoad = !MI->mayStore();
150  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
151  const MachineOperand &Base = MI->getOperand(2);
152  const MachineOperand &Offset = MI->getOperand(NumOps-3);
153  unsigned WBReg = WB.getReg();
154  unsigned BaseReg = Base.getReg();
155  unsigned OffReg = Offset.getReg();
156  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
157  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
158  switch (AddrMode) {
159  default: llvm_unreachable("Unknown indexed op!");
160  case ARMII::AddrMode2: {
161    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
162    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
163    if (OffReg == 0) {
164      if (ARM_AM::getSOImmVal(Amt) == -1)
165        // Can't encode it in a so_imm operand. This transformation will
166        // add more than 1 instruction. Abandon!
167        return NULL;
168      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
169                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
170        .addReg(BaseReg).addImm(Amt)
171        .addImm(Pred).addReg(0).addReg(0);
172    } else if (Amt != 0) {
173      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
174      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
175      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
176                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
177        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
178        .addImm(Pred).addReg(0).addReg(0);
179    } else
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
182        .addReg(BaseReg).addReg(OffReg)
183        .addImm(Pred).addReg(0).addReg(0);
184    break;
185  }
186  case ARMII::AddrMode3 : {
187    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
188    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
189    if (OffReg == 0)
190      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
191      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
192                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193        .addReg(BaseReg).addImm(Amt)
194        .addImm(Pred).addReg(0).addReg(0);
195    else
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
198        .addReg(BaseReg).addReg(OffReg)
199        .addImm(Pred).addReg(0).addReg(0);
200    break;
201  }
202  }
203
204  std::vector<MachineInstr*> NewMIs;
205  if (isPre) {
206    if (isLoad)
207      MemMI = BuildMI(MF, MI->getDebugLoc(),
208                      get(MemOpc), MI->getOperand(0).getReg())
209        .addReg(WBReg).addImm(0).addImm(Pred);
210    else
211      MemMI = BuildMI(MF, MI->getDebugLoc(),
212                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
213        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
214    NewMIs.push_back(MemMI);
215    NewMIs.push_back(UpdateMI);
216  } else {
217    if (isLoad)
218      MemMI = BuildMI(MF, MI->getDebugLoc(),
219                      get(MemOpc), MI->getOperand(0).getReg())
220        .addReg(BaseReg).addImm(0).addImm(Pred);
221    else
222      MemMI = BuildMI(MF, MI->getDebugLoc(),
223                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
224        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
225    if (WB.isDead())
226      UpdateMI->getOperand(0).setIsDead();
227    NewMIs.push_back(UpdateMI);
228    NewMIs.push_back(MemMI);
229  }
230
231  // Transfer LiveVariables states, kill / dead info.
232  if (LV) {
233    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234      MachineOperand &MO = MI->getOperand(i);
235      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
236        unsigned Reg = MO.getReg();
237
238        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
239        if (MO.isDef()) {
240          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
241          if (MO.isDead())
242            LV->addVirtualRegisterDead(Reg, NewMI);
243        }
244        if (MO.isUse() && MO.isKill()) {
245          for (unsigned j = 0; j < 2; ++j) {
246            // Look at the two new MI's in reverse order.
247            MachineInstr *NewMI = NewMIs[j];
248            if (!NewMI->readsRegister(Reg))
249              continue;
250            LV->addVirtualRegisterKilled(Reg, NewMI);
251            if (VI.removeKill(MI))
252              VI.Kills.push_back(NewMI);
253            break;
254          }
255        }
256      }
257    }
258  }
259
260  MFI->insert(MBBI, NewMIs[1]);
261  MFI->insert(MBBI, NewMIs[0]);
262  return NewMIs[0];
263}
264
265// Branch analysis.
266bool
267ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
268                                MachineBasicBlock *&FBB,
269                                SmallVectorImpl<MachineOperand> &Cond,
270                                bool AllowModify) const {
271  // If the block has no terminators, it just falls into the block after it.
272  MachineBasicBlock::iterator I = MBB.end();
273  if (I == MBB.begin())
274    return false;
275  --I;
276  while (I->isDebugValue()) {
277    if (I == MBB.begin())
278      return false;
279    --I;
280  }
281  if (!isUnpredicatedTerminator(I))
282    return false;
283
284  // Get the last instruction in the block.
285  MachineInstr *LastInst = I;
286
287  // If there is only one terminator instruction, process it.
288  unsigned LastOpc = LastInst->getOpcode();
289  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
290    if (isUncondBranchOpcode(LastOpc)) {
291      TBB = LastInst->getOperand(0).getMBB();
292      return false;
293    }
294    if (isCondBranchOpcode(LastOpc)) {
295      // Block ends with fall-through condbranch.
296      TBB = LastInst->getOperand(0).getMBB();
297      Cond.push_back(LastInst->getOperand(1));
298      Cond.push_back(LastInst->getOperand(2));
299      return false;
300    }
301    return true;  // Can't handle indirect branch.
302  }
303
304  // Get the instruction before it if it is a terminator.
305  MachineInstr *SecondLastInst = I;
306  unsigned SecondLastOpc = SecondLastInst->getOpcode();
307
308  // If AllowModify is true and the block ends with two or more unconditional
309  // branches, delete all but the first unconditional branch.
310  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
311    while (isUncondBranchOpcode(SecondLastOpc)) {
312      LastInst->eraseFromParent();
313      LastInst = SecondLastInst;
314      LastOpc = LastInst->getOpcode();
315      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
316        // Return now the only terminator is an unconditional branch.
317        TBB = LastInst->getOperand(0).getMBB();
318        return false;
319      } else {
320        SecondLastInst = I;
321        SecondLastOpc = SecondLastInst->getOpcode();
322      }
323    }
324  }
325
326  // If there are three terminators, we don't know what sort of block this is.
327  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
328    return true;
329
330  // If the block ends with a B and a Bcc, handle it.
331  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
332    TBB =  SecondLastInst->getOperand(0).getMBB();
333    Cond.push_back(SecondLastInst->getOperand(1));
334    Cond.push_back(SecondLastInst->getOperand(2));
335    FBB = LastInst->getOperand(0).getMBB();
336    return false;
337  }
338
339  // If the block ends with two unconditional branches, handle it.  The second
340  // one is not executed, so remove it.
341  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
342    TBB = SecondLastInst->getOperand(0).getMBB();
343    I = LastInst;
344    if (AllowModify)
345      I->eraseFromParent();
346    return false;
347  }
348
349  // ...likewise if it ends with a branch table followed by an unconditional
350  // branch. The branch folder can create these, and we must get rid of them for
351  // correctness of Thumb constant islands.
352  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
353       isIndirectBranchOpcode(SecondLastOpc)) &&
354      isUncondBranchOpcode(LastOpc)) {
355    I = LastInst;
356    if (AllowModify)
357      I->eraseFromParent();
358    return true;
359  }
360
361  // Otherwise, can't handle this.
362  return true;
363}
364
365
366unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
367  MachineBasicBlock::iterator I = MBB.end();
368  if (I == MBB.begin()) return 0;
369  --I;
370  while (I->isDebugValue()) {
371    if (I == MBB.begin())
372      return 0;
373    --I;
374  }
375  if (!isUncondBranchOpcode(I->getOpcode()) &&
376      !isCondBranchOpcode(I->getOpcode()))
377    return 0;
378
379  // Remove the branch.
380  I->eraseFromParent();
381
382  I = MBB.end();
383
384  if (I == MBB.begin()) return 1;
385  --I;
386  if (!isCondBranchOpcode(I->getOpcode()))
387    return 1;
388
389  // Remove the branch.
390  I->eraseFromParent();
391  return 2;
392}
393
394unsigned
395ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
396                               MachineBasicBlock *FBB,
397                               const SmallVectorImpl<MachineOperand> &Cond,
398                               DebugLoc DL) const {
399  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
400  int BOpc   = !AFI->isThumbFunction()
401    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
402  int BccOpc = !AFI->isThumbFunction()
403    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
404  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
405
406  // Shouldn't be a fall through.
407  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
408  assert((Cond.size() == 2 || Cond.size() == 0) &&
409         "ARM branch conditions have two components!");
410
411  if (FBB == 0) {
412    if (Cond.empty()) { // Unconditional branch?
413      if (isThumb)
414        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
415      else
416        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
417    } else
418      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
419        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
420    return 1;
421  }
422
423  // Two-way conditional branch.
424  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
425    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
426  if (isThumb)
427    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
428  else
429    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
430  return 2;
431}
432
433bool ARMBaseInstrInfo::
434ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
435  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
436  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
437  return false;
438}
439
440bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
441  if (MI->isBundle()) {
442    MachineBasicBlock::const_instr_iterator I = MI;
443    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
444    while (++I != E && I->isInsideBundle()) {
445      int PIdx = I->findFirstPredOperandIdx();
446      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
447        return true;
448    }
449    return false;
450  }
451
452  int PIdx = MI->findFirstPredOperandIdx();
453  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
454}
455
456bool ARMBaseInstrInfo::
457PredicateInstruction(MachineInstr *MI,
458                     const SmallVectorImpl<MachineOperand> &Pred) const {
459  unsigned Opc = MI->getOpcode();
460  if (isUncondBranchOpcode(Opc)) {
461    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
462    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
463    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
464    return true;
465  }
466
467  int PIdx = MI->findFirstPredOperandIdx();
468  if (PIdx != -1) {
469    MachineOperand &PMO = MI->getOperand(PIdx);
470    PMO.setImm(Pred[0].getImm());
471    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
472    return true;
473  }
474  return false;
475}
476
477bool ARMBaseInstrInfo::
478SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
479                  const SmallVectorImpl<MachineOperand> &Pred2) const {
480  if (Pred1.size() > 2 || Pred2.size() > 2)
481    return false;
482
483  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
484  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
485  if (CC1 == CC2)
486    return true;
487
488  switch (CC1) {
489  default:
490    return false;
491  case ARMCC::AL:
492    return true;
493  case ARMCC::HS:
494    return CC2 == ARMCC::HI;
495  case ARMCC::LS:
496    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
497  case ARMCC::GE:
498    return CC2 == ARMCC::GT;
499  case ARMCC::LE:
500    return CC2 == ARMCC::LT;
501  }
502}
503
504bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
505                                    std::vector<MachineOperand> &Pred) const {
506  bool Found = false;
507  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
508    const MachineOperand &MO = MI->getOperand(i);
509    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
510        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
511      Pred.push_back(MO);
512      Found = true;
513    }
514  }
515
516  return Found;
517}
518
519/// isPredicable - Return true if the specified instruction can be predicated.
520/// By default, this returns true for every instruction with a
521/// PredicateOperand.
522bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
523  if (!MI->isPredicable())
524    return false;
525
526  if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
527    ARMFunctionInfo *AFI =
528      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
529    return AFI->isThumb2Function();
530  }
531  return true;
532}
533
534/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
535LLVM_ATTRIBUTE_NOINLINE
536static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
537                                unsigned JTI);
538static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
539                                unsigned JTI) {
540  assert(JTI < JT.size());
541  return JT[JTI].MBBs.size();
542}
543
544/// GetInstSize - Return the size of the specified MachineInstr.
545///
546unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
547  const MachineBasicBlock &MBB = *MI->getParent();
548  const MachineFunction *MF = MBB.getParent();
549  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
550
551  const MCInstrDesc &MCID = MI->getDesc();
552  if (MCID.getSize())
553    return MCID.getSize();
554
555  // If this machine instr is an inline asm, measure it.
556  if (MI->getOpcode() == ARM::INLINEASM)
557    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
558  if (MI->isLabel())
559    return 0;
560  unsigned Opc = MI->getOpcode();
561  switch (Opc) {
562  case TargetOpcode::IMPLICIT_DEF:
563  case TargetOpcode::KILL:
564  case TargetOpcode::PROLOG_LABEL:
565  case TargetOpcode::EH_LABEL:
566  case TargetOpcode::DBG_VALUE:
567    return 0;
568  case TargetOpcode::BUNDLE:
569    return getInstBundleLength(MI);
570  case ARM::MOVi16_ga_pcrel:
571  case ARM::MOVTi16_ga_pcrel:
572  case ARM::t2MOVi16_ga_pcrel:
573  case ARM::t2MOVTi16_ga_pcrel:
574    return 4;
575  case ARM::MOVi32imm:
576  case ARM::t2MOVi32imm:
577    return 8;
578  case ARM::CONSTPOOL_ENTRY:
579    // If this machine instr is a constant pool entry, its size is recorded as
580    // operand #2.
581    return MI->getOperand(2).getImm();
582  case ARM::Int_eh_sjlj_longjmp:
583    return 16;
584  case ARM::tInt_eh_sjlj_longjmp:
585    return 10;
586  case ARM::Int_eh_sjlj_setjmp:
587  case ARM::Int_eh_sjlj_setjmp_nofp:
588    return 20;
589  case ARM::tInt_eh_sjlj_setjmp:
590  case ARM::t2Int_eh_sjlj_setjmp:
591  case ARM::t2Int_eh_sjlj_setjmp_nofp:
592    return 12;
593  case ARM::BR_JTr:
594  case ARM::BR_JTm:
595  case ARM::BR_JTadd:
596  case ARM::tBR_JTr:
597  case ARM::t2BR_JT:
598  case ARM::t2TBB_JT:
599  case ARM::t2TBH_JT: {
600    // These are jumptable branches, i.e. a branch followed by an inlined
601    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
602    // entry is one byte; TBH two byte each.
603    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
604      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
605    unsigned NumOps = MCID.getNumOperands();
606    MachineOperand JTOP =
607      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
608    unsigned JTI = JTOP.getIndex();
609    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
610    assert(MJTI != 0);
611    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
612    assert(JTI < JT.size());
613    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
614    // 4 aligned. The assembler / linker may add 2 byte padding just before
615    // the JT entries.  The size does not include this padding; the
616    // constant islands pass does separate bookkeeping for it.
617    // FIXME: If we know the size of the function is less than (1 << 16) *2
618    // bytes, we can use 16-bit entries instead. Then there won't be an
619    // alignment issue.
620    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
621    unsigned NumEntries = getNumJTEntries(JT, JTI);
622    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
623      // Make sure the instruction that follows TBB is 2-byte aligned.
624      // FIXME: Constant island pass should insert an "ALIGN" instruction
625      // instead.
626      ++NumEntries;
627    return NumEntries * EntrySize + InstSize;
628  }
629  default:
630    // Otherwise, pseudo-instruction sizes are zero.
631    return 0;
632  }
633}
634
635unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
636  unsigned Size = 0;
637  MachineBasicBlock::const_instr_iterator I = MI;
638  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
639  while (++I != E && I->isInsideBundle()) {
640    assert(!I->isBundle() && "No nested bundle!");
641    Size += GetInstSizeInBytes(&*I);
642  }
643  return Size;
644}
645
646void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
647                                   MachineBasicBlock::iterator I, DebugLoc DL,
648                                   unsigned DestReg, unsigned SrcReg,
649                                   bool KillSrc) const {
650  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
651  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
652
653  if (GPRDest && GPRSrc) {
654    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
655                                  .addReg(SrcReg, getKillRegState(KillSrc))));
656    return;
657  }
658
659  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
660  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
661
662  unsigned Opc = 0;
663  if (SPRDest && SPRSrc)
664    Opc = ARM::VMOVS;
665  else if (GPRDest && SPRSrc)
666    Opc = ARM::VMOVRS;
667  else if (SPRDest && GPRSrc)
668    Opc = ARM::VMOVSR;
669  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
670    Opc = ARM::VMOVD;
671  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
672    Opc = ARM::VORRq;
673
674  if (Opc) {
675    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
676    MIB.addReg(SrcReg, getKillRegState(KillSrc));
677    if (Opc == ARM::VORRq)
678      MIB.addReg(SrcReg, getKillRegState(KillSrc));
679    AddDefaultPred(MIB);
680    return;
681  }
682
683  // Handle register classes that require multiple instructions.
684  unsigned BeginIdx = 0;
685  unsigned SubRegs = 0;
686  unsigned Spacing = 1;
687
688  // Use VORRq when possible.
689  if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
690    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
691  else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
692    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
693  // Fall back to VMOVD.
694  else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
695    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
696  else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
697    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
698  else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
699    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
700
701  else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
702    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
703  else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
704    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
705  else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
706    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
707
708  if (Opc) {
709    const TargetRegisterInfo *TRI = &getRegisterInfo();
710    MachineInstrBuilder Mov;
711    for (unsigned i = 0; i != SubRegs; ++i) {
712      unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
713      unsigned Src = TRI->getSubReg(SrcReg,  BeginIdx + i*Spacing);
714      assert(Dst && Src && "Bad sub-register");
715      Mov = AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
716                             .addReg(Src));
717      // VORR takes two source operands.
718      if (Opc == ARM::VORRq)
719        Mov.addReg(Src);
720    }
721    // Add implicit super-register defs and kills to the last instruction.
722    Mov->addRegisterDefined(DestReg, TRI);
723    if (KillSrc)
724      Mov->addRegisterKilled(SrcReg, TRI);
725    return;
726  }
727
728  llvm_unreachable("Impossible reg-to-reg copy");
729}
730
731static const
732MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
733                             unsigned Reg, unsigned SubIdx, unsigned State,
734                             const TargetRegisterInfo *TRI) {
735  if (!SubIdx)
736    return MIB.addReg(Reg, State);
737
738  if (TargetRegisterInfo::isPhysicalRegister(Reg))
739    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
740  return MIB.addReg(Reg, State, SubIdx);
741}
742
743void ARMBaseInstrInfo::
744storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
745                    unsigned SrcReg, bool isKill, int FI,
746                    const TargetRegisterClass *RC,
747                    const TargetRegisterInfo *TRI) const {
748  DebugLoc DL;
749  if (I != MBB.end()) DL = I->getDebugLoc();
750  MachineFunction &MF = *MBB.getParent();
751  MachineFrameInfo &MFI = *MF.getFrameInfo();
752  unsigned Align = MFI.getObjectAlignment(FI);
753
754  MachineMemOperand *MMO =
755    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
756                            MachineMemOperand::MOStore,
757                            MFI.getObjectSize(FI),
758                            Align);
759
760  switch (RC->getSize()) {
761    case 4:
762      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
763        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
764                   .addReg(SrcReg, getKillRegState(isKill))
765                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
766      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
767        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
768                   .addReg(SrcReg, getKillRegState(isKill))
769                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
770      } else
771        llvm_unreachable("Unknown reg class!");
772      break;
773    case 8:
774      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
775        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
776                   .addReg(SrcReg, getKillRegState(isKill))
777                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
778      } else
779        llvm_unreachable("Unknown reg class!");
780      break;
781    case 16:
782      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
783        // Use aligned spills if the stack can be realigned.
784        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
785          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
786                     .addFrameIndex(FI).addImm(16)
787                     .addReg(SrcReg, getKillRegState(isKill))
788                     .addMemOperand(MMO));
789        } else {
790          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
791                     .addReg(SrcReg, getKillRegState(isKill))
792                     .addFrameIndex(FI)
793                     .addMemOperand(MMO));
794        }
795      } else
796        llvm_unreachable("Unknown reg class!");
797      break;
798    case 24:
799      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
800        // Use aligned spills if the stack can be realigned.
801        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
802          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
803                     .addFrameIndex(FI).addImm(16)
804                     .addReg(SrcReg, getKillRegState(isKill))
805                     .addMemOperand(MMO));
806        } else {
807          MachineInstrBuilder MIB =
808          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
809                       .addFrameIndex(FI))
810                       .addMemOperand(MMO);
811          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
812          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
813          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
814        }
815      } else
816        llvm_unreachable("Unknown reg class!");
817      break;
818    case 32:
819      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
820        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
821          // FIXME: It's possible to only store part of the QQ register if the
822          // spilled def has a sub-register index.
823          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
824                     .addFrameIndex(FI).addImm(16)
825                     .addReg(SrcReg, getKillRegState(isKill))
826                     .addMemOperand(MMO));
827        } else {
828          MachineInstrBuilder MIB =
829          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
830                       .addFrameIndex(FI))
831                       .addMemOperand(MMO);
832          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
833          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
834          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
835                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
836        }
837      } else
838        llvm_unreachable("Unknown reg class!");
839      break;
840    case 64:
841      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
842        MachineInstrBuilder MIB =
843          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
844                         .addFrameIndex(FI))
845                         .addMemOperand(MMO);
846        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
847        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
848        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
849        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
850        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
851        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
852        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
853              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
854      } else
855        llvm_unreachable("Unknown reg class!");
856      break;
857    default:
858      llvm_unreachable("Unknown reg class!");
859  }
860}
861
862unsigned
863ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
864                                     int &FrameIndex) const {
865  switch (MI->getOpcode()) {
866  default: break;
867  case ARM::STRrs:
868  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
869    if (MI->getOperand(1).isFI() &&
870        MI->getOperand(2).isReg() &&
871        MI->getOperand(3).isImm() &&
872        MI->getOperand(2).getReg() == 0 &&
873        MI->getOperand(3).getImm() == 0) {
874      FrameIndex = MI->getOperand(1).getIndex();
875      return MI->getOperand(0).getReg();
876    }
877    break;
878  case ARM::STRi12:
879  case ARM::t2STRi12:
880  case ARM::tSTRspi:
881  case ARM::VSTRD:
882  case ARM::VSTRS:
883    if (MI->getOperand(1).isFI() &&
884        MI->getOperand(2).isImm() &&
885        MI->getOperand(2).getImm() == 0) {
886      FrameIndex = MI->getOperand(1).getIndex();
887      return MI->getOperand(0).getReg();
888    }
889    break;
890  case ARM::VST1q64:
891  case ARM::VST1d64TPseudo:
892  case ARM::VST1d64QPseudo:
893    if (MI->getOperand(0).isFI() &&
894        MI->getOperand(2).getSubReg() == 0) {
895      FrameIndex = MI->getOperand(0).getIndex();
896      return MI->getOperand(2).getReg();
897    }
898    break;
899  case ARM::VSTMQIA:
900    if (MI->getOperand(1).isFI() &&
901        MI->getOperand(0).getSubReg() == 0) {
902      FrameIndex = MI->getOperand(1).getIndex();
903      return MI->getOperand(0).getReg();
904    }
905    break;
906  }
907
908  return 0;
909}
910
911unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
912                                                    int &FrameIndex) const {
913  const MachineMemOperand *Dummy;
914  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
915}
916
917void ARMBaseInstrInfo::
918loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
919                     unsigned DestReg, int FI,
920                     const TargetRegisterClass *RC,
921                     const TargetRegisterInfo *TRI) const {
922  DebugLoc DL;
923  if (I != MBB.end()) DL = I->getDebugLoc();
924  MachineFunction &MF = *MBB.getParent();
925  MachineFrameInfo &MFI = *MF.getFrameInfo();
926  unsigned Align = MFI.getObjectAlignment(FI);
927  MachineMemOperand *MMO =
928    MF.getMachineMemOperand(
929                    MachinePointerInfo::getFixedStack(FI),
930                            MachineMemOperand::MOLoad,
931                            MFI.getObjectSize(FI),
932                            Align);
933
934  switch (RC->getSize()) {
935  case 4:
936    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
937      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
938                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
939
940    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
941      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
942                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
943    } else
944      llvm_unreachable("Unknown reg class!");
945    break;
946  case 8:
947    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
948      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
949                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
950    } else
951      llvm_unreachable("Unknown reg class!");
952    break;
953  case 16:
954    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
955      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
956        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
957                     .addFrameIndex(FI).addImm(16)
958                     .addMemOperand(MMO));
959      } else {
960        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
961                       .addFrameIndex(FI)
962                       .addMemOperand(MMO));
963      }
964    } else
965      llvm_unreachable("Unknown reg class!");
966    break;
967  case 24:
968    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
969      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
970        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
971                     .addFrameIndex(FI).addImm(16)
972                     .addMemOperand(MMO));
973      } else {
974        MachineInstrBuilder MIB =
975          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
976                         .addFrameIndex(FI)
977                         .addMemOperand(MMO));
978        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
979        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
980        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
981        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
982          MIB.addReg(DestReg, RegState::ImplicitDefine);
983      }
984    } else
985      llvm_unreachable("Unknown reg class!");
986    break;
987   case 32:
988    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
989      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
990        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
991                     .addFrameIndex(FI).addImm(16)
992                     .addMemOperand(MMO));
993      } else {
994        MachineInstrBuilder MIB =
995        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
996                       .addFrameIndex(FI))
997                       .addMemOperand(MMO);
998        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
999        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1000        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1001        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1002        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1003          MIB.addReg(DestReg, RegState::ImplicitDefine);
1004      }
1005    } else
1006      llvm_unreachable("Unknown reg class!");
1007    break;
1008  case 64:
1009    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1010      MachineInstrBuilder MIB =
1011      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1012                     .addFrameIndex(FI))
1013                     .addMemOperand(MMO);
1014      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1015      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1016      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1017      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1018      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1019      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1020      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1021      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1022      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1023        MIB.addReg(DestReg, RegState::ImplicitDefine);
1024    } else
1025      llvm_unreachable("Unknown reg class!");
1026    break;
1027  default:
1028    llvm_unreachable("Unknown regclass!");
1029  }
1030}
1031
1032unsigned
1033ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1034                                      int &FrameIndex) const {
1035  switch (MI->getOpcode()) {
1036  default: break;
1037  case ARM::LDRrs:
1038  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1039    if (MI->getOperand(1).isFI() &&
1040        MI->getOperand(2).isReg() &&
1041        MI->getOperand(3).isImm() &&
1042        MI->getOperand(2).getReg() == 0 &&
1043        MI->getOperand(3).getImm() == 0) {
1044      FrameIndex = MI->getOperand(1).getIndex();
1045      return MI->getOperand(0).getReg();
1046    }
1047    break;
1048  case ARM::LDRi12:
1049  case ARM::t2LDRi12:
1050  case ARM::tLDRspi:
1051  case ARM::VLDRD:
1052  case ARM::VLDRS:
1053    if (MI->getOperand(1).isFI() &&
1054        MI->getOperand(2).isImm() &&
1055        MI->getOperand(2).getImm() == 0) {
1056      FrameIndex = MI->getOperand(1).getIndex();
1057      return MI->getOperand(0).getReg();
1058    }
1059    break;
1060  case ARM::VLD1q64:
1061  case ARM::VLD1d64TPseudo:
1062  case ARM::VLD1d64QPseudo:
1063    if (MI->getOperand(1).isFI() &&
1064        MI->getOperand(0).getSubReg() == 0) {
1065      FrameIndex = MI->getOperand(1).getIndex();
1066      return MI->getOperand(0).getReg();
1067    }
1068    break;
1069  case ARM::VLDMQIA:
1070    if (MI->getOperand(1).isFI() &&
1071        MI->getOperand(0).getSubReg() == 0) {
1072      FrameIndex = MI->getOperand(1).getIndex();
1073      return MI->getOperand(0).getReg();
1074    }
1075    break;
1076  }
1077
1078  return 0;
1079}
1080
1081unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1082                                             int &FrameIndex) const {
1083  const MachineMemOperand *Dummy;
1084  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1085}
1086
1087bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1088  // This hook gets to expand COPY instructions before they become
1089  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1090  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1091  // changed into a VORR that can go down the NEON pipeline.
1092  if (!WidenVMOVS || !MI->isCopy())
1093    return false;
1094
1095  // Look for a copy between even S-registers.  That is where we keep floats
1096  // when using NEON v2f32 instructions for f32 arithmetic.
1097  unsigned DstRegS = MI->getOperand(0).getReg();
1098  unsigned SrcRegS = MI->getOperand(1).getReg();
1099  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1100    return false;
1101
1102  const TargetRegisterInfo *TRI = &getRegisterInfo();
1103  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1104                                              &ARM::DPRRegClass);
1105  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1106                                              &ARM::DPRRegClass);
1107  if (!DstRegD || !SrcRegD)
1108    return false;
1109
1110  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1111  // legal if the COPY already defines the full DstRegD, and it isn't a
1112  // sub-register insertion.
1113  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1114    return false;
1115
1116  // A dead copy shouldn't show up here, but reject it just in case.
1117  if (MI->getOperand(0).isDead())
1118    return false;
1119
1120  // All clear, widen the COPY.
1121  DEBUG(dbgs() << "widening:    " << *MI);
1122
1123  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1124  // or some other super-register.
1125  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1126  if (ImpDefIdx != -1)
1127    MI->RemoveOperand(ImpDefIdx);
1128
1129  // Change the opcode and operands.
1130  MI->setDesc(get(ARM::VMOVD));
1131  MI->getOperand(0).setReg(DstRegD);
1132  MI->getOperand(1).setReg(SrcRegD);
1133  AddDefaultPred(MachineInstrBuilder(MI));
1134
1135  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1136  // register scavenger and machine verifier, so we need to indicate that we
1137  // are reading an undefined value from SrcRegD, but a proper value from
1138  // SrcRegS.
1139  MI->getOperand(1).setIsUndef();
1140  MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1141
1142  // SrcRegD may actually contain an unrelated value in the ssub_1
1143  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1144  if (MI->getOperand(1).isKill()) {
1145    MI->getOperand(1).setIsKill(false);
1146    MI->addRegisterKilled(SrcRegS, TRI, true);
1147  }
1148
1149  DEBUG(dbgs() << "replaced by: " << *MI);
1150  return true;
1151}
1152
1153MachineInstr*
1154ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1155                                           int FrameIx, uint64_t Offset,
1156                                           const MDNode *MDPtr,
1157                                           DebugLoc DL) const {
1158  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1159    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1160  return &*MIB;
1161}
1162
1163/// Create a copy of a const pool value. Update CPI to the new index and return
1164/// the label UID.
1165static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1166  MachineConstantPool *MCP = MF.getConstantPool();
1167  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1168
1169  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1170  assert(MCPE.isMachineConstantPoolEntry() &&
1171         "Expecting a machine constantpool entry!");
1172  ARMConstantPoolValue *ACPV =
1173    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1174
1175  unsigned PCLabelId = AFI->createPICLabelUId();
1176  ARMConstantPoolValue *NewCPV = 0;
1177  // FIXME: The below assumes PIC relocation model and that the function
1178  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1179  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1180  // instructions, so that's probably OK, but is PIC always correct when
1181  // we get here?
1182  if (ACPV->isGlobalValue())
1183    NewCPV = ARMConstantPoolConstant::
1184      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1185             ARMCP::CPValue, 4);
1186  else if (ACPV->isExtSymbol())
1187    NewCPV = ARMConstantPoolSymbol::
1188      Create(MF.getFunction()->getContext(),
1189             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1190  else if (ACPV->isBlockAddress())
1191    NewCPV = ARMConstantPoolConstant::
1192      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1193             ARMCP::CPBlockAddress, 4);
1194  else if (ACPV->isLSDA())
1195    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1196                                             ARMCP::CPLSDA, 4);
1197  else if (ACPV->isMachineBasicBlock())
1198    NewCPV = ARMConstantPoolMBB::
1199      Create(MF.getFunction()->getContext(),
1200             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1201  else
1202    llvm_unreachable("Unexpected ARM constantpool value type!!");
1203  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1204  return PCLabelId;
1205}
1206
1207void ARMBaseInstrInfo::
1208reMaterialize(MachineBasicBlock &MBB,
1209              MachineBasicBlock::iterator I,
1210              unsigned DestReg, unsigned SubIdx,
1211              const MachineInstr *Orig,
1212              const TargetRegisterInfo &TRI) const {
1213  unsigned Opcode = Orig->getOpcode();
1214  switch (Opcode) {
1215  default: {
1216    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1217    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1218    MBB.insert(I, MI);
1219    break;
1220  }
1221  case ARM::tLDRpci_pic:
1222  case ARM::t2LDRpci_pic: {
1223    MachineFunction &MF = *MBB.getParent();
1224    unsigned CPI = Orig->getOperand(1).getIndex();
1225    unsigned PCLabelId = duplicateCPV(MF, CPI);
1226    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1227                                      DestReg)
1228      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1229    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1230    break;
1231  }
1232  }
1233}
1234
1235MachineInstr *
1236ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1237  MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1238  switch(Orig->getOpcode()) {
1239  case ARM::tLDRpci_pic:
1240  case ARM::t2LDRpci_pic: {
1241    unsigned CPI = Orig->getOperand(1).getIndex();
1242    unsigned PCLabelId = duplicateCPV(MF, CPI);
1243    Orig->getOperand(1).setIndex(CPI);
1244    Orig->getOperand(2).setImm(PCLabelId);
1245    break;
1246  }
1247  }
1248  return MI;
1249}
1250
1251bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1252                                        const MachineInstr *MI1,
1253                                        const MachineRegisterInfo *MRI) const {
1254  int Opcode = MI0->getOpcode();
1255  if (Opcode == ARM::t2LDRpci ||
1256      Opcode == ARM::t2LDRpci_pic ||
1257      Opcode == ARM::tLDRpci ||
1258      Opcode == ARM::tLDRpci_pic ||
1259      Opcode == ARM::MOV_ga_dyn ||
1260      Opcode == ARM::MOV_ga_pcrel ||
1261      Opcode == ARM::MOV_ga_pcrel_ldr ||
1262      Opcode == ARM::t2MOV_ga_dyn ||
1263      Opcode == ARM::t2MOV_ga_pcrel) {
1264    if (MI1->getOpcode() != Opcode)
1265      return false;
1266    if (MI0->getNumOperands() != MI1->getNumOperands())
1267      return false;
1268
1269    const MachineOperand &MO0 = MI0->getOperand(1);
1270    const MachineOperand &MO1 = MI1->getOperand(1);
1271    if (MO0.getOffset() != MO1.getOffset())
1272      return false;
1273
1274    if (Opcode == ARM::MOV_ga_dyn ||
1275        Opcode == ARM::MOV_ga_pcrel ||
1276        Opcode == ARM::MOV_ga_pcrel_ldr ||
1277        Opcode == ARM::t2MOV_ga_dyn ||
1278        Opcode == ARM::t2MOV_ga_pcrel)
1279      // Ignore the PC labels.
1280      return MO0.getGlobal() == MO1.getGlobal();
1281
1282    const MachineFunction *MF = MI0->getParent()->getParent();
1283    const MachineConstantPool *MCP = MF->getConstantPool();
1284    int CPI0 = MO0.getIndex();
1285    int CPI1 = MO1.getIndex();
1286    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1287    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1288    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1289    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1290    if (isARMCP0 && isARMCP1) {
1291      ARMConstantPoolValue *ACPV0 =
1292        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1293      ARMConstantPoolValue *ACPV1 =
1294        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1295      return ACPV0->hasSameValue(ACPV1);
1296    } else if (!isARMCP0 && !isARMCP1) {
1297      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1298    }
1299    return false;
1300  } else if (Opcode == ARM::PICLDR) {
1301    if (MI1->getOpcode() != Opcode)
1302      return false;
1303    if (MI0->getNumOperands() != MI1->getNumOperands())
1304      return false;
1305
1306    unsigned Addr0 = MI0->getOperand(1).getReg();
1307    unsigned Addr1 = MI1->getOperand(1).getReg();
1308    if (Addr0 != Addr1) {
1309      if (!MRI ||
1310          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1311          !TargetRegisterInfo::isVirtualRegister(Addr1))
1312        return false;
1313
1314      // This assumes SSA form.
1315      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1316      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1317      // Check if the loaded value, e.g. a constantpool of a global address, are
1318      // the same.
1319      if (!produceSameValue(Def0, Def1, MRI))
1320        return false;
1321    }
1322
1323    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1324      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1325      const MachineOperand &MO0 = MI0->getOperand(i);
1326      const MachineOperand &MO1 = MI1->getOperand(i);
1327      if (!MO0.isIdenticalTo(MO1))
1328        return false;
1329    }
1330    return true;
1331  }
1332
1333  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1334}
1335
1336/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1337/// determine if two loads are loading from the same base address. It should
1338/// only return true if the base pointers are the same and the only differences
1339/// between the two addresses is the offset. It also returns the offsets by
1340/// reference.
1341bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1342                                               int64_t &Offset1,
1343                                               int64_t &Offset2) const {
1344  // Don't worry about Thumb: just ARM and Thumb2.
1345  if (Subtarget.isThumb1Only()) return false;
1346
1347  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1348    return false;
1349
1350  switch (Load1->getMachineOpcode()) {
1351  default:
1352    return false;
1353  case ARM::LDRi12:
1354  case ARM::LDRBi12:
1355  case ARM::LDRD:
1356  case ARM::LDRH:
1357  case ARM::LDRSB:
1358  case ARM::LDRSH:
1359  case ARM::VLDRD:
1360  case ARM::VLDRS:
1361  case ARM::t2LDRi8:
1362  case ARM::t2LDRDi8:
1363  case ARM::t2LDRSHi8:
1364  case ARM::t2LDRi12:
1365  case ARM::t2LDRSHi12:
1366    break;
1367  }
1368
1369  switch (Load2->getMachineOpcode()) {
1370  default:
1371    return false;
1372  case ARM::LDRi12:
1373  case ARM::LDRBi12:
1374  case ARM::LDRD:
1375  case ARM::LDRH:
1376  case ARM::LDRSB:
1377  case ARM::LDRSH:
1378  case ARM::VLDRD:
1379  case ARM::VLDRS:
1380  case ARM::t2LDRi8:
1381  case ARM::t2LDRDi8:
1382  case ARM::t2LDRSHi8:
1383  case ARM::t2LDRi12:
1384  case ARM::t2LDRSHi12:
1385    break;
1386  }
1387
1388  // Check if base addresses and chain operands match.
1389  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1390      Load1->getOperand(4) != Load2->getOperand(4))
1391    return false;
1392
1393  // Index should be Reg0.
1394  if (Load1->getOperand(3) != Load2->getOperand(3))
1395    return false;
1396
1397  // Determine the offsets.
1398  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1399      isa<ConstantSDNode>(Load2->getOperand(1))) {
1400    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1401    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1402    return true;
1403  }
1404
1405  return false;
1406}
1407
1408/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1409/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1410/// be scheduled togther. On some targets if two loads are loading from
1411/// addresses in the same cache line, it's better if they are scheduled
1412/// together. This function takes two integers that represent the load offsets
1413/// from the common base address. It returns true if it decides it's desirable
1414/// to schedule the two loads together. "NumLoads" is the number of loads that
1415/// have already been scheduled after Load1.
1416bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1417                                               int64_t Offset1, int64_t Offset2,
1418                                               unsigned NumLoads) const {
1419  // Don't worry about Thumb: just ARM and Thumb2.
1420  if (Subtarget.isThumb1Only()) return false;
1421
1422  assert(Offset2 > Offset1);
1423
1424  if ((Offset2 - Offset1) / 8 > 64)
1425    return false;
1426
1427  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1428    return false;  // FIXME: overly conservative?
1429
1430  // Four loads in a row should be sufficient.
1431  if (NumLoads >= 3)
1432    return false;
1433
1434  return true;
1435}
1436
1437bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1438                                            const MachineBasicBlock *MBB,
1439                                            const MachineFunction &MF) const {
1440  // Debug info is never a scheduling boundary. It's necessary to be explicit
1441  // due to the special treatment of IT instructions below, otherwise a
1442  // dbg_value followed by an IT will result in the IT instruction being
1443  // considered a scheduling hazard, which is wrong. It should be the actual
1444  // instruction preceding the dbg_value instruction(s), just like it is
1445  // when debug info is not present.
1446  if (MI->isDebugValue())
1447    return false;
1448
1449  // Terminators and labels can't be scheduled around.
1450  if (MI->isTerminator() || MI->isLabel())
1451    return true;
1452
1453  // Treat the start of the IT block as a scheduling boundary, but schedule
1454  // t2IT along with all instructions following it.
1455  // FIXME: This is a big hammer. But the alternative is to add all potential
1456  // true and anti dependencies to IT block instructions as implicit operands
1457  // to the t2IT instruction. The added compile time and complexity does not
1458  // seem worth it.
1459  MachineBasicBlock::const_iterator I = MI;
1460  // Make sure to skip any dbg_value instructions
1461  while (++I != MBB->end() && I->isDebugValue())
1462    ;
1463  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1464    return true;
1465
1466  // Don't attempt to schedule around any instruction that defines
1467  // a stack-oriented pointer, as it's unlikely to be profitable. This
1468  // saves compile time, because it doesn't require every single
1469  // stack slot reference to depend on the instruction that does the
1470  // modification.
1471  // Calls don't actually change the stack pointer, even if they have imp-defs.
1472  // No ARM calling conventions change the stack pointer. (X86 calling
1473  // conventions sometimes do).
1474  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1475    return true;
1476
1477  return false;
1478}
1479
1480bool ARMBaseInstrInfo::
1481isProfitableToIfCvt(MachineBasicBlock &MBB,
1482                    unsigned NumCycles, unsigned ExtraPredCycles,
1483                    const BranchProbability &Probability) const {
1484  if (!NumCycles)
1485    return false;
1486
1487  // Attempt to estimate the relative costs of predication versus branching.
1488  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1489  UnpredCost /= Probability.getDenominator();
1490  UnpredCost += 1; // The branch itself
1491  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1492
1493  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1494}
1495
1496bool ARMBaseInstrInfo::
1497isProfitableToIfCvt(MachineBasicBlock &TMBB,
1498                    unsigned TCycles, unsigned TExtra,
1499                    MachineBasicBlock &FMBB,
1500                    unsigned FCycles, unsigned FExtra,
1501                    const BranchProbability &Probability) const {
1502  if (!TCycles || !FCycles)
1503    return false;
1504
1505  // Attempt to estimate the relative costs of predication versus branching.
1506  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1507  TUnpredCost /= Probability.getDenominator();
1508
1509  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1510  unsigned FUnpredCost = Comp * FCycles;
1511  FUnpredCost /= Probability.getDenominator();
1512
1513  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1514  UnpredCost += 1; // The branch itself
1515  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1516
1517  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1518}
1519
1520/// getInstrPredicate - If instruction is predicated, returns its predicate
1521/// condition, otherwise returns AL. It also returns the condition code
1522/// register by reference.
1523ARMCC::CondCodes
1524llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1525  int PIdx = MI->findFirstPredOperandIdx();
1526  if (PIdx == -1) {
1527    PredReg = 0;
1528    return ARMCC::AL;
1529  }
1530
1531  PredReg = MI->getOperand(PIdx+1).getReg();
1532  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1533}
1534
1535
1536int llvm::getMatchingCondBranchOpcode(int Opc) {
1537  if (Opc == ARM::B)
1538    return ARM::Bcc;
1539  if (Opc == ARM::tB)
1540    return ARM::tBcc;
1541  if (Opc == ARM::t2B)
1542    return ARM::t2Bcc;
1543
1544  llvm_unreachable("Unknown unconditional branch opcode!");
1545}
1546
1547/// commuteInstruction - Handle commutable instructions.
1548MachineInstr *
1549ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1550  switch (MI->getOpcode()) {
1551  case ARM::MOVCCr:
1552  case ARM::t2MOVCCr: {
1553    // MOVCC can be commuted by inverting the condition.
1554    unsigned PredReg = 0;
1555    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1556    // MOVCC AL can't be inverted. Shouldn't happen.
1557    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1558      return NULL;
1559    MI = TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1560    if (!MI)
1561      return NULL;
1562    // After swapping the MOVCC operands, also invert the condition.
1563    MI->getOperand(MI->findFirstPredOperandIdx())
1564      .setImm(ARMCC::getOppositeCondition(CC));
1565    return MI;
1566  }
1567  }
1568  return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1569}
1570
1571/// Identify instructions that can be folded into a MOVCC instruction, and
1572/// return the corresponding opcode for the predicated pseudo-instruction.
1573static unsigned canFoldIntoMOVCC(unsigned Reg, MachineInstr *&MI,
1574                                 const MachineRegisterInfo &MRI) {
1575  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1576    return 0;
1577  if (!MRI.hasOneNonDBGUse(Reg))
1578    return 0;
1579  MI = MRI.getVRegDef(Reg);
1580  if (!MI)
1581    return 0;
1582  // Check if MI has any non-dead defs or physreg uses. This also detects
1583  // predicated instructions which will be reading CPSR.
1584  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1585    const MachineOperand &MO = MI->getOperand(i);
1586    if (!MO.isReg())
1587      continue;
1588    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1589      return 0;
1590    if (MO.isDef() && !MO.isDead())
1591      return 0;
1592  }
1593  switch (MI->getOpcode()) {
1594  default: return 0;
1595  case ARM::ANDri:   return ARM::ANDCCri;
1596  case ARM::ANDrr:   return ARM::ANDCCrr;
1597  case ARM::ANDrsi:  return ARM::ANDCCrsi;
1598  case ARM::ANDrsr:  return ARM::ANDCCrsr;
1599  case ARM::t2ANDri: return ARM::t2ANDCCri;
1600  case ARM::t2ANDrr: return ARM::t2ANDCCrr;
1601  case ARM::t2ANDrs: return ARM::t2ANDCCrs;
1602  case ARM::EORri:   return ARM::EORCCri;
1603  case ARM::EORrr:   return ARM::EORCCrr;
1604  case ARM::EORrsi:  return ARM::EORCCrsi;
1605  case ARM::EORrsr:  return ARM::EORCCrsr;
1606  case ARM::t2EORri: return ARM::t2EORCCri;
1607  case ARM::t2EORrr: return ARM::t2EORCCrr;
1608  case ARM::t2EORrs: return ARM::t2EORCCrs;
1609  case ARM::ORRri:   return ARM::ORRCCri;
1610  case ARM::ORRrr:   return ARM::ORRCCrr;
1611  case ARM::ORRrsi:  return ARM::ORRCCrsi;
1612  case ARM::ORRrsr:  return ARM::ORRCCrsr;
1613  case ARM::t2ORRri: return ARM::t2ORRCCri;
1614  case ARM::t2ORRrr: return ARM::t2ORRCCrr;
1615  case ARM::t2ORRrs: return ARM::t2ORRCCrs;
1616
1617  // ARM ADD/SUB
1618  case ARM::ADDri:   return ARM::ADDCCri;
1619  case ARM::ADDrr:   return ARM::ADDCCrr;
1620  case ARM::ADDrsi:  return ARM::ADDCCrsi;
1621  case ARM::ADDrsr:  return ARM::ADDCCrsr;
1622  case ARM::SUBri:   return ARM::SUBCCri;
1623  case ARM::SUBrr:   return ARM::SUBCCrr;
1624  case ARM::SUBrsi:  return ARM::SUBCCrsi;
1625  case ARM::SUBrsr:  return ARM::SUBCCrsr;
1626
1627  // Thumb2 ADD/SUB
1628  case ARM::t2ADDri:   return ARM::t2ADDCCri;
1629  case ARM::t2ADDri12: return ARM::t2ADDCCri12;
1630  case ARM::t2ADDrr:   return ARM::t2ADDCCrr;
1631  case ARM::t2ADDrs:   return ARM::t2ADDCCrs;
1632  case ARM::t2SUBri:   return ARM::t2SUBCCri;
1633  case ARM::t2SUBri12: return ARM::t2SUBCCri12;
1634  case ARM::t2SUBrr:   return ARM::t2SUBCCrr;
1635  case ARM::t2SUBrs:   return ARM::t2SUBCCrs;
1636  }
1637}
1638
1639bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1640                                     SmallVectorImpl<MachineOperand> &Cond,
1641                                     unsigned &TrueOp, unsigned &FalseOp,
1642                                     bool &Optimizable) const {
1643  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1644         "Unknown select instruction");
1645  // MOVCC operands:
1646  // 0: Def.
1647  // 1: True use.
1648  // 2: False use.
1649  // 3: Condition code.
1650  // 4: CPSR use.
1651  TrueOp = 1;
1652  FalseOp = 2;
1653  Cond.push_back(MI->getOperand(3));
1654  Cond.push_back(MI->getOperand(4));
1655  // We can always fold a def.
1656  Optimizable = true;
1657  return false;
1658}
1659
1660MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1661                                               bool PreferFalse) const {
1662  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1663         "Unknown select instruction");
1664  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1665  MachineInstr *DefMI = 0;
1666  unsigned Opc = canFoldIntoMOVCC(MI->getOperand(2).getReg(), DefMI, MRI);
1667  bool Invert = !Opc;
1668  if (!Opc)
1669    Opc = canFoldIntoMOVCC(MI->getOperand(1).getReg(), DefMI, MRI);
1670  if (!Opc)
1671    return 0;
1672
1673  // Create a new predicated version of DefMI.
1674  // Rfalse is the first use.
1675  MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1676                                      get(Opc), MI->getOperand(0).getReg())
1677    .addOperand(MI->getOperand(Invert ? 2 : 1));
1678
1679  // Copy all the DefMI operands, excluding its (null) predicate.
1680  const MCInstrDesc &DefDesc = DefMI->getDesc();
1681  for (unsigned i = 1, e = DefDesc.getNumOperands();
1682       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1683    NewMI.addOperand(DefMI->getOperand(i));
1684
1685  unsigned CondCode = MI->getOperand(3).getImm();
1686  if (Invert)
1687    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1688  else
1689    NewMI.addImm(CondCode);
1690  NewMI.addOperand(MI->getOperand(4));
1691
1692  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1693  if (NewMI->hasOptionalDef())
1694    AddDefaultCC(NewMI);
1695
1696  // The caller will erase MI, but not DefMI.
1697  DefMI->eraseFromParent();
1698  return NewMI;
1699}
1700
1701/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1702/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1703/// def operand.
1704///
1705/// This will go away once we can teach tblgen how to set the optional CPSR def
1706/// operand itself.
1707struct AddSubFlagsOpcodePair {
1708  uint16_t PseudoOpc;
1709  uint16_t MachineOpc;
1710};
1711
1712static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1713  {ARM::ADDSri, ARM::ADDri},
1714  {ARM::ADDSrr, ARM::ADDrr},
1715  {ARM::ADDSrsi, ARM::ADDrsi},
1716  {ARM::ADDSrsr, ARM::ADDrsr},
1717
1718  {ARM::SUBSri, ARM::SUBri},
1719  {ARM::SUBSrr, ARM::SUBrr},
1720  {ARM::SUBSrsi, ARM::SUBrsi},
1721  {ARM::SUBSrsr, ARM::SUBrsr},
1722
1723  {ARM::RSBSri, ARM::RSBri},
1724  {ARM::RSBSrsi, ARM::RSBrsi},
1725  {ARM::RSBSrsr, ARM::RSBrsr},
1726
1727  {ARM::t2ADDSri, ARM::t2ADDri},
1728  {ARM::t2ADDSrr, ARM::t2ADDrr},
1729  {ARM::t2ADDSrs, ARM::t2ADDrs},
1730
1731  {ARM::t2SUBSri, ARM::t2SUBri},
1732  {ARM::t2SUBSrr, ARM::t2SUBrr},
1733  {ARM::t2SUBSrs, ARM::t2SUBrs},
1734
1735  {ARM::t2RSBSri, ARM::t2RSBri},
1736  {ARM::t2RSBSrs, ARM::t2RSBrs},
1737};
1738
1739unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1740  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1741    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1742      return AddSubFlagsOpcodeMap[i].MachineOpc;
1743  return 0;
1744}
1745
1746void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1747                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1748                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1749                               ARMCC::CondCodes Pred, unsigned PredReg,
1750                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1751  bool isSub = NumBytes < 0;
1752  if (isSub) NumBytes = -NumBytes;
1753
1754  while (NumBytes) {
1755    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1756    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1757    assert(ThisVal && "Didn't extract field correctly");
1758
1759    // We will handle these bits from offset, clear them.
1760    NumBytes &= ~ThisVal;
1761
1762    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1763
1764    // Build the new ADD / SUB.
1765    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1766    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1767      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1768      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1769      .setMIFlags(MIFlags);
1770    BaseReg = DestReg;
1771  }
1772}
1773
1774bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1775                                unsigned FrameReg, int &Offset,
1776                                const ARMBaseInstrInfo &TII) {
1777  unsigned Opcode = MI.getOpcode();
1778  const MCInstrDesc &Desc = MI.getDesc();
1779  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1780  bool isSub = false;
1781
1782  // Memory operands in inline assembly always use AddrMode2.
1783  if (Opcode == ARM::INLINEASM)
1784    AddrMode = ARMII::AddrMode2;
1785
1786  if (Opcode == ARM::ADDri) {
1787    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1788    if (Offset == 0) {
1789      // Turn it into a move.
1790      MI.setDesc(TII.get(ARM::MOVr));
1791      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1792      MI.RemoveOperand(FrameRegIdx+1);
1793      Offset = 0;
1794      return true;
1795    } else if (Offset < 0) {
1796      Offset = -Offset;
1797      isSub = true;
1798      MI.setDesc(TII.get(ARM::SUBri));
1799    }
1800
1801    // Common case: small offset, fits into instruction.
1802    if (ARM_AM::getSOImmVal(Offset) != -1) {
1803      // Replace the FrameIndex with sp / fp
1804      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1805      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1806      Offset = 0;
1807      return true;
1808    }
1809
1810    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1811    // as possible.
1812    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1813    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1814
1815    // We will handle these bits from offset, clear them.
1816    Offset &= ~ThisImmVal;
1817
1818    // Get the properly encoded SOImmVal field.
1819    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1820           "Bit extraction didn't work?");
1821    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1822 } else {
1823    unsigned ImmIdx = 0;
1824    int InstrOffs = 0;
1825    unsigned NumBits = 0;
1826    unsigned Scale = 1;
1827    switch (AddrMode) {
1828    case ARMII::AddrMode_i12: {
1829      ImmIdx = FrameRegIdx + 1;
1830      InstrOffs = MI.getOperand(ImmIdx).getImm();
1831      NumBits = 12;
1832      break;
1833    }
1834    case ARMII::AddrMode2: {
1835      ImmIdx = FrameRegIdx+2;
1836      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1837      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1838        InstrOffs *= -1;
1839      NumBits = 12;
1840      break;
1841    }
1842    case ARMII::AddrMode3: {
1843      ImmIdx = FrameRegIdx+2;
1844      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1845      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1846        InstrOffs *= -1;
1847      NumBits = 8;
1848      break;
1849    }
1850    case ARMII::AddrMode4:
1851    case ARMII::AddrMode6:
1852      // Can't fold any offset even if it's zero.
1853      return false;
1854    case ARMII::AddrMode5: {
1855      ImmIdx = FrameRegIdx+1;
1856      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1857      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1858        InstrOffs *= -1;
1859      NumBits = 8;
1860      Scale = 4;
1861      break;
1862    }
1863    default:
1864      llvm_unreachable("Unsupported addressing mode!");
1865    }
1866
1867    Offset += InstrOffs * Scale;
1868    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1869    if (Offset < 0) {
1870      Offset = -Offset;
1871      isSub = true;
1872    }
1873
1874    // Attempt to fold address comp. if opcode has offset bits
1875    if (NumBits > 0) {
1876      // Common case: small offset, fits into instruction.
1877      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1878      int ImmedOffset = Offset / Scale;
1879      unsigned Mask = (1 << NumBits) - 1;
1880      if ((unsigned)Offset <= Mask * Scale) {
1881        // Replace the FrameIndex with sp
1882        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1883        // FIXME: When addrmode2 goes away, this will simplify (like the
1884        // T2 version), as the LDR.i12 versions don't need the encoding
1885        // tricks for the offset value.
1886        if (isSub) {
1887          if (AddrMode == ARMII::AddrMode_i12)
1888            ImmedOffset = -ImmedOffset;
1889          else
1890            ImmedOffset |= 1 << NumBits;
1891        }
1892        ImmOp.ChangeToImmediate(ImmedOffset);
1893        Offset = 0;
1894        return true;
1895      }
1896
1897      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1898      ImmedOffset = ImmedOffset & Mask;
1899      if (isSub) {
1900        if (AddrMode == ARMII::AddrMode_i12)
1901          ImmedOffset = -ImmedOffset;
1902        else
1903          ImmedOffset |= 1 << NumBits;
1904      }
1905      ImmOp.ChangeToImmediate(ImmedOffset);
1906      Offset &= ~(Mask*Scale);
1907    }
1908  }
1909
1910  Offset = (isSub) ? -Offset : Offset;
1911  return Offset == 0;
1912}
1913
1914/// analyzeCompare - For a comparison instruction, return the source registers
1915/// in SrcReg and SrcReg2 if having two register operands, and the value it
1916/// compares against in CmpValue. Return true if the comparison instruction
1917/// can be analyzed.
1918bool ARMBaseInstrInfo::
1919analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
1920               int &CmpMask, int &CmpValue) const {
1921  switch (MI->getOpcode()) {
1922  default: break;
1923  case ARM::CMPri:
1924  case ARM::t2CMPri:
1925    SrcReg = MI->getOperand(0).getReg();
1926    SrcReg2 = 0;
1927    CmpMask = ~0;
1928    CmpValue = MI->getOperand(1).getImm();
1929    return true;
1930  case ARM::CMPrr:
1931  case ARM::t2CMPrr:
1932    SrcReg = MI->getOperand(0).getReg();
1933    SrcReg2 = MI->getOperand(1).getReg();
1934    CmpMask = ~0;
1935    CmpValue = 0;
1936    return true;
1937  case ARM::TSTri:
1938  case ARM::t2TSTri:
1939    SrcReg = MI->getOperand(0).getReg();
1940    SrcReg2 = 0;
1941    CmpMask = MI->getOperand(1).getImm();
1942    CmpValue = 0;
1943    return true;
1944  }
1945
1946  return false;
1947}
1948
1949/// isSuitableForMask - Identify a suitable 'and' instruction that
1950/// operates on the given source register and applies the same mask
1951/// as a 'tst' instruction. Provide a limited look-through for copies.
1952/// When successful, MI will hold the found instruction.
1953static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1954                              int CmpMask, bool CommonUse) {
1955  switch (MI->getOpcode()) {
1956    case ARM::ANDri:
1957    case ARM::t2ANDri:
1958      if (CmpMask != MI->getOperand(2).getImm())
1959        return false;
1960      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1961        return true;
1962      break;
1963    case ARM::COPY: {
1964      // Walk down one instruction which is potentially an 'and'.
1965      const MachineInstr &Copy = *MI;
1966      MachineBasicBlock::iterator AND(
1967        llvm::next(MachineBasicBlock::iterator(MI)));
1968      if (AND == MI->getParent()->end()) return false;
1969      MI = AND;
1970      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1971                               CmpMask, true);
1972    }
1973  }
1974
1975  return false;
1976}
1977
1978/// getSwappedCondition - assume the flags are set by MI(a,b), return
1979/// the condition code if we modify the instructions such that flags are
1980/// set by MI(b,a).
1981inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
1982  switch (CC) {
1983  default: return ARMCC::AL;
1984  case ARMCC::EQ: return ARMCC::EQ;
1985  case ARMCC::NE: return ARMCC::NE;
1986  case ARMCC::HS: return ARMCC::LS;
1987  case ARMCC::LO: return ARMCC::HI;
1988  case ARMCC::HI: return ARMCC::LO;
1989  case ARMCC::LS: return ARMCC::HS;
1990  case ARMCC::GE: return ARMCC::LE;
1991  case ARMCC::LT: return ARMCC::GT;
1992  case ARMCC::GT: return ARMCC::LT;
1993  case ARMCC::LE: return ARMCC::GE;
1994  }
1995}
1996
1997/// isRedundantFlagInstr - check whether the first instruction, whose only
1998/// purpose is to update flags, can be made redundant.
1999/// CMPrr can be made redundant by SUBrr if the operands are the same.
2000/// CMPri can be made redundant by SUBri if the operands are the same.
2001/// This function can be extended later on.
2002inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2003                                        unsigned SrcReg2, int ImmValue,
2004                                        MachineInstr *OI) {
2005  if ((CmpI->getOpcode() == ARM::CMPrr ||
2006       CmpI->getOpcode() == ARM::t2CMPrr) &&
2007      (OI->getOpcode() == ARM::SUBrr ||
2008       OI->getOpcode() == ARM::t2SUBrr) &&
2009      ((OI->getOperand(1).getReg() == SrcReg &&
2010        OI->getOperand(2).getReg() == SrcReg2) ||
2011       (OI->getOperand(1).getReg() == SrcReg2 &&
2012        OI->getOperand(2).getReg() == SrcReg)))
2013    return true;
2014
2015  if ((CmpI->getOpcode() == ARM::CMPri ||
2016       CmpI->getOpcode() == ARM::t2CMPri) &&
2017      (OI->getOpcode() == ARM::SUBri ||
2018       OI->getOpcode() == ARM::t2SUBri) &&
2019      OI->getOperand(1).getReg() == SrcReg &&
2020      OI->getOperand(2).getImm() == ImmValue)
2021    return true;
2022  return false;
2023}
2024
2025/// optimizeCompareInstr - Convert the instruction supplying the argument to the
2026/// comparison into one that sets the zero bit in the flags register;
2027/// Remove a redundant Compare instruction if an earlier instruction can set the
2028/// flags in the same way as Compare.
2029/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2030/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2031/// condition code of instructions which use the flags.
2032bool ARMBaseInstrInfo::
2033optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2034                     int CmpMask, int CmpValue,
2035                     const MachineRegisterInfo *MRI) const {
2036  // Get the unique definition of SrcReg.
2037  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2038  if (!MI) return false;
2039
2040  // Masked compares sometimes use the same register as the corresponding 'and'.
2041  if (CmpMask != ~0) {
2042    if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
2043      MI = 0;
2044      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
2045           UE = MRI->use_end(); UI != UE; ++UI) {
2046        if (UI->getParent() != CmpInstr->getParent()) continue;
2047        MachineInstr *PotentialAND = &*UI;
2048        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
2049          continue;
2050        MI = PotentialAND;
2051        break;
2052      }
2053      if (!MI) return false;
2054    }
2055  }
2056
2057  // Get ready to iterate backward from CmpInstr.
2058  MachineBasicBlock::iterator I = CmpInstr, E = MI,
2059                              B = CmpInstr->getParent()->begin();
2060
2061  // Early exit if CmpInstr is at the beginning of the BB.
2062  if (I == B) return false;
2063
2064  // There are two possible candidates which can be changed to set CPSR:
2065  // One is MI, the other is a SUB instruction.
2066  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2067  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2068  MachineInstr *Sub = NULL;
2069  if (SrcReg2 != 0)
2070    // MI is not a candidate for CMPrr.
2071    MI = NULL;
2072  else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2073    // Conservatively refuse to convert an instruction which isn't in the same
2074    // BB as the comparison.
2075    // For CMPri, we need to check Sub, thus we can't return here.
2076    if (CmpInstr->getOpcode() == ARM::CMPri ||
2077       CmpInstr->getOpcode() == ARM::t2CMPri)
2078      MI = NULL;
2079    else
2080      return false;
2081  }
2082
2083  // Check that CPSR isn't set between the comparison instruction and the one we
2084  // want to change. At the same time, search for Sub.
2085  const TargetRegisterInfo *TRI = &getRegisterInfo();
2086  --I;
2087  for (; I != E; --I) {
2088    const MachineInstr &Instr = *I;
2089
2090    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2091        Instr.readsRegister(ARM::CPSR, TRI))
2092      // This instruction modifies or uses CPSR after the one we want to
2093      // change. We can't do this transformation.
2094      return false;
2095
2096    // Check whether CmpInstr can be made redundant by the current instruction.
2097    if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2098      Sub = &*I;
2099      break;
2100    }
2101
2102    if (I == B)
2103      // The 'and' is below the comparison instruction.
2104      return false;
2105  }
2106
2107  // Return false if no candidates exist.
2108  if (!MI && !Sub)
2109    return false;
2110
2111  // The single candidate is called MI.
2112  if (!MI) MI = Sub;
2113
2114  switch (MI->getOpcode()) {
2115  default: break;
2116  case ARM::RSBrr:
2117  case ARM::RSBri:
2118  case ARM::RSCrr:
2119  case ARM::RSCri:
2120  case ARM::ADDrr:
2121  case ARM::ADDri:
2122  case ARM::ADCrr:
2123  case ARM::ADCri:
2124  case ARM::SUBrr:
2125  case ARM::SUBri:
2126  case ARM::SBCrr:
2127  case ARM::SBCri:
2128  case ARM::t2RSBri:
2129  case ARM::t2ADDrr:
2130  case ARM::t2ADDri:
2131  case ARM::t2ADCrr:
2132  case ARM::t2ADCri:
2133  case ARM::t2SUBrr:
2134  case ARM::t2SUBri:
2135  case ARM::t2SBCrr:
2136  case ARM::t2SBCri:
2137  case ARM::ANDrr:
2138  case ARM::ANDri:
2139  case ARM::t2ANDrr:
2140  case ARM::t2ANDri:
2141  case ARM::ORRrr:
2142  case ARM::ORRri:
2143  case ARM::t2ORRrr:
2144  case ARM::t2ORRri:
2145  case ARM::EORrr:
2146  case ARM::EORri:
2147  case ARM::t2EORrr:
2148  case ARM::t2EORri: {
2149    // Scan forward for the use of CPSR
2150    // When checking against MI: if it's a conditional code requires
2151    // checking of V bit, then this is not safe to do.
2152    // It is safe to remove CmpInstr if CPSR is redefined or killed.
2153    // If we are done with the basic block, we need to check whether CPSR is
2154    // live-out.
2155    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2156        OperandsToUpdate;
2157    bool isSafe = false;
2158    I = CmpInstr;
2159    E = CmpInstr->getParent()->end();
2160    while (!isSafe && ++I != E) {
2161      const MachineInstr &Instr = *I;
2162      for (unsigned IO = 0, EO = Instr.getNumOperands();
2163           !isSafe && IO != EO; ++IO) {
2164        const MachineOperand &MO = Instr.getOperand(IO);
2165        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2166          isSafe = true;
2167          break;
2168        }
2169        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2170          continue;
2171        if (MO.isDef()) {
2172          isSafe = true;
2173          break;
2174        }
2175        // Condition code is after the operand before CPSR.
2176        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
2177        if (Sub) {
2178          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2179          if (NewCC == ARMCC::AL)
2180            return false;
2181          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2182          // on CMP needs to be updated to be based on SUB.
2183          // Push the condition code operands to OperandsToUpdate.
2184          // If it is safe to remove CmpInstr, the condition code of these
2185          // operands will be modified.
2186          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2187              Sub->getOperand(2).getReg() == SrcReg)
2188            OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
2189                                                      NewCC));
2190        }
2191        else
2192          switch (CC) {
2193          default:
2194            // CPSR can be used multiple times, we should continue.
2195            break;
2196          case ARMCC::VS:
2197          case ARMCC::VC:
2198          case ARMCC::GE:
2199          case ARMCC::LT:
2200          case ARMCC::GT:
2201          case ARMCC::LE:
2202            return false;
2203          }
2204      }
2205    }
2206
2207    // If CPSR is not killed nor re-defined, we should check whether it is
2208    // live-out. If it is live-out, do not optimize.
2209    if (!isSafe) {
2210      MachineBasicBlock *MBB = CmpInstr->getParent();
2211      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2212               SE = MBB->succ_end(); SI != SE; ++SI)
2213        if ((*SI)->isLiveIn(ARM::CPSR))
2214          return false;
2215    }
2216
2217    // Toggle the optional operand to CPSR.
2218    MI->getOperand(5).setReg(ARM::CPSR);
2219    MI->getOperand(5).setIsDef(true);
2220    CmpInstr->eraseFromParent();
2221
2222    // Modify the condition code of operands in OperandsToUpdate.
2223    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2224    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2225    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2226      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2227    return true;
2228  }
2229  }
2230
2231  return false;
2232}
2233
2234bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2235                                     MachineInstr *DefMI, unsigned Reg,
2236                                     MachineRegisterInfo *MRI) const {
2237  // Fold large immediates into add, sub, or, xor.
2238  unsigned DefOpc = DefMI->getOpcode();
2239  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2240    return false;
2241  if (!DefMI->getOperand(1).isImm())
2242    // Could be t2MOVi32imm <ga:xx>
2243    return false;
2244
2245  if (!MRI->hasOneNonDBGUse(Reg))
2246    return false;
2247
2248  const MCInstrDesc &DefMCID = DefMI->getDesc();
2249  if (DefMCID.hasOptionalDef()) {
2250    unsigned NumOps = DefMCID.getNumOperands();
2251    const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2252    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2253      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2254      // to delete DefMI.
2255      return false;
2256  }
2257
2258  const MCInstrDesc &UseMCID = UseMI->getDesc();
2259  if (UseMCID.hasOptionalDef()) {
2260    unsigned NumOps = UseMCID.getNumOperands();
2261    if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2262      // If the instruction sets the flag, do not attempt this optimization
2263      // since it may change the semantics of the code.
2264      return false;
2265  }
2266
2267  unsigned UseOpc = UseMI->getOpcode();
2268  unsigned NewUseOpc = 0;
2269  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2270  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2271  bool Commute = false;
2272  switch (UseOpc) {
2273  default: return false;
2274  case ARM::SUBrr:
2275  case ARM::ADDrr:
2276  case ARM::ORRrr:
2277  case ARM::EORrr:
2278  case ARM::t2SUBrr:
2279  case ARM::t2ADDrr:
2280  case ARM::t2ORRrr:
2281  case ARM::t2EORrr: {
2282    Commute = UseMI->getOperand(2).getReg() != Reg;
2283    switch (UseOpc) {
2284    default: break;
2285    case ARM::SUBrr: {
2286      if (Commute)
2287        return false;
2288      ImmVal = -ImmVal;
2289      NewUseOpc = ARM::SUBri;
2290      // Fallthrough
2291    }
2292    case ARM::ADDrr:
2293    case ARM::ORRrr:
2294    case ARM::EORrr: {
2295      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2296        return false;
2297      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2298      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2299      switch (UseOpc) {
2300      default: break;
2301      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2302      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2303      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2304      }
2305      break;
2306    }
2307    case ARM::t2SUBrr: {
2308      if (Commute)
2309        return false;
2310      ImmVal = -ImmVal;
2311      NewUseOpc = ARM::t2SUBri;
2312      // Fallthrough
2313    }
2314    case ARM::t2ADDrr:
2315    case ARM::t2ORRrr:
2316    case ARM::t2EORrr: {
2317      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2318        return false;
2319      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2320      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2321      switch (UseOpc) {
2322      default: break;
2323      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2324      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2325      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2326      }
2327      break;
2328    }
2329    }
2330  }
2331  }
2332
2333  unsigned OpIdx = Commute ? 2 : 1;
2334  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2335  bool isKill = UseMI->getOperand(OpIdx).isKill();
2336  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2337  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2338                                      UseMI, UseMI->getDebugLoc(),
2339                                      get(NewUseOpc), NewReg)
2340                              .addReg(Reg1, getKillRegState(isKill))
2341                              .addImm(SOImmValV1)));
2342  UseMI->setDesc(get(NewUseOpc));
2343  UseMI->getOperand(1).setReg(NewReg);
2344  UseMI->getOperand(1).setIsKill();
2345  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2346  DefMI->eraseFromParent();
2347  return true;
2348}
2349
2350unsigned
2351ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2352                                 const MachineInstr *MI) const {
2353  if (!ItinData || ItinData->isEmpty())
2354    return 1;
2355
2356  const MCInstrDesc &Desc = MI->getDesc();
2357  unsigned Class = Desc.getSchedClass();
2358  int ItinUOps = ItinData->getNumMicroOps(Class);
2359  if (ItinUOps >= 0)
2360    return ItinUOps;
2361
2362  unsigned Opc = MI->getOpcode();
2363  switch (Opc) {
2364  default:
2365    llvm_unreachable("Unexpected multi-uops instruction!");
2366  case ARM::VLDMQIA:
2367  case ARM::VSTMQIA:
2368    return 2;
2369
2370  // The number of uOps for load / store multiple are determined by the number
2371  // registers.
2372  //
2373  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2374  // same cycle. The scheduling for the first load / store must be done
2375  // separately by assuming the address is not 64-bit aligned.
2376  //
2377  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2378  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2379  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2380  case ARM::VLDMDIA:
2381  case ARM::VLDMDIA_UPD:
2382  case ARM::VLDMDDB_UPD:
2383  case ARM::VLDMSIA:
2384  case ARM::VLDMSIA_UPD:
2385  case ARM::VLDMSDB_UPD:
2386  case ARM::VSTMDIA:
2387  case ARM::VSTMDIA_UPD:
2388  case ARM::VSTMDDB_UPD:
2389  case ARM::VSTMSIA:
2390  case ARM::VSTMSIA_UPD:
2391  case ARM::VSTMSDB_UPD: {
2392    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2393    return (NumRegs / 2) + (NumRegs % 2) + 1;
2394  }
2395
2396  case ARM::LDMIA_RET:
2397  case ARM::LDMIA:
2398  case ARM::LDMDA:
2399  case ARM::LDMDB:
2400  case ARM::LDMIB:
2401  case ARM::LDMIA_UPD:
2402  case ARM::LDMDA_UPD:
2403  case ARM::LDMDB_UPD:
2404  case ARM::LDMIB_UPD:
2405  case ARM::STMIA:
2406  case ARM::STMDA:
2407  case ARM::STMDB:
2408  case ARM::STMIB:
2409  case ARM::STMIA_UPD:
2410  case ARM::STMDA_UPD:
2411  case ARM::STMDB_UPD:
2412  case ARM::STMIB_UPD:
2413  case ARM::tLDMIA:
2414  case ARM::tLDMIA_UPD:
2415  case ARM::tSTMIA_UPD:
2416  case ARM::tPOP_RET:
2417  case ARM::tPOP:
2418  case ARM::tPUSH:
2419  case ARM::t2LDMIA_RET:
2420  case ARM::t2LDMIA:
2421  case ARM::t2LDMDB:
2422  case ARM::t2LDMIA_UPD:
2423  case ARM::t2LDMDB_UPD:
2424  case ARM::t2STMIA:
2425  case ARM::t2STMDB:
2426  case ARM::t2STMIA_UPD:
2427  case ARM::t2STMDB_UPD: {
2428    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2429    if (Subtarget.isCortexA8()) {
2430      if (NumRegs < 4)
2431        return 2;
2432      // 4 registers would be issued: 2, 2.
2433      // 5 registers would be issued: 2, 2, 1.
2434      int A8UOps = (NumRegs / 2);
2435      if (NumRegs % 2)
2436        ++A8UOps;
2437      return A8UOps;
2438    } else if (Subtarget.isCortexA9()) {
2439      int A9UOps = (NumRegs / 2);
2440      // If there are odd number of registers or if it's not 64-bit aligned,
2441      // then it takes an extra AGU (Address Generation Unit) cycle.
2442      if ((NumRegs % 2) ||
2443          !MI->hasOneMemOperand() ||
2444          (*MI->memoperands_begin())->getAlignment() < 8)
2445        ++A9UOps;
2446      return A9UOps;
2447    } else {
2448      // Assume the worst.
2449      return NumRegs;
2450    }
2451  }
2452  }
2453}
2454
2455int
2456ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2457                                  const MCInstrDesc &DefMCID,
2458                                  unsigned DefClass,
2459                                  unsigned DefIdx, unsigned DefAlign) const {
2460  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2461  if (RegNo <= 0)
2462    // Def is the address writeback.
2463    return ItinData->getOperandCycle(DefClass, DefIdx);
2464
2465  int DefCycle;
2466  if (Subtarget.isCortexA8()) {
2467    // (regno / 2) + (regno % 2) + 1
2468    DefCycle = RegNo / 2 + 1;
2469    if (RegNo % 2)
2470      ++DefCycle;
2471  } else if (Subtarget.isCortexA9()) {
2472    DefCycle = RegNo;
2473    bool isSLoad = false;
2474
2475    switch (DefMCID.getOpcode()) {
2476    default: break;
2477    case ARM::VLDMSIA:
2478    case ARM::VLDMSIA_UPD:
2479    case ARM::VLDMSDB_UPD:
2480      isSLoad = true;
2481      break;
2482    }
2483
2484    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2485    // then it takes an extra cycle.
2486    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2487      ++DefCycle;
2488  } else {
2489    // Assume the worst.
2490    DefCycle = RegNo + 2;
2491  }
2492
2493  return DefCycle;
2494}
2495
2496int
2497ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2498                                 const MCInstrDesc &DefMCID,
2499                                 unsigned DefClass,
2500                                 unsigned DefIdx, unsigned DefAlign) const {
2501  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2502  if (RegNo <= 0)
2503    // Def is the address writeback.
2504    return ItinData->getOperandCycle(DefClass, DefIdx);
2505
2506  int DefCycle;
2507  if (Subtarget.isCortexA8()) {
2508    // 4 registers would be issued: 1, 2, 1.
2509    // 5 registers would be issued: 1, 2, 2.
2510    DefCycle = RegNo / 2;
2511    if (DefCycle < 1)
2512      DefCycle = 1;
2513    // Result latency is issue cycle + 2: E2.
2514    DefCycle += 2;
2515  } else if (Subtarget.isCortexA9()) {
2516    DefCycle = (RegNo / 2);
2517    // If there are odd number of registers or if it's not 64-bit aligned,
2518    // then it takes an extra AGU (Address Generation Unit) cycle.
2519    if ((RegNo % 2) || DefAlign < 8)
2520      ++DefCycle;
2521    // Result latency is AGU cycles + 2.
2522    DefCycle += 2;
2523  } else {
2524    // Assume the worst.
2525    DefCycle = RegNo + 2;
2526  }
2527
2528  return DefCycle;
2529}
2530
2531int
2532ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2533                                  const MCInstrDesc &UseMCID,
2534                                  unsigned UseClass,
2535                                  unsigned UseIdx, unsigned UseAlign) const {
2536  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2537  if (RegNo <= 0)
2538    return ItinData->getOperandCycle(UseClass, UseIdx);
2539
2540  int UseCycle;
2541  if (Subtarget.isCortexA8()) {
2542    // (regno / 2) + (regno % 2) + 1
2543    UseCycle = RegNo / 2 + 1;
2544    if (RegNo % 2)
2545      ++UseCycle;
2546  } else if (Subtarget.isCortexA9()) {
2547    UseCycle = RegNo;
2548    bool isSStore = false;
2549
2550    switch (UseMCID.getOpcode()) {
2551    default: break;
2552    case ARM::VSTMSIA:
2553    case ARM::VSTMSIA_UPD:
2554    case ARM::VSTMSDB_UPD:
2555      isSStore = true;
2556      break;
2557    }
2558
2559    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2560    // then it takes an extra cycle.
2561    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2562      ++UseCycle;
2563  } else {
2564    // Assume the worst.
2565    UseCycle = RegNo + 2;
2566  }
2567
2568  return UseCycle;
2569}
2570
2571int
2572ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2573                                 const MCInstrDesc &UseMCID,
2574                                 unsigned UseClass,
2575                                 unsigned UseIdx, unsigned UseAlign) const {
2576  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2577  if (RegNo <= 0)
2578    return ItinData->getOperandCycle(UseClass, UseIdx);
2579
2580  int UseCycle;
2581  if (Subtarget.isCortexA8()) {
2582    UseCycle = RegNo / 2;
2583    if (UseCycle < 2)
2584      UseCycle = 2;
2585    // Read in E3.
2586    UseCycle += 2;
2587  } else if (Subtarget.isCortexA9()) {
2588    UseCycle = (RegNo / 2);
2589    // If there are odd number of registers or if it's not 64-bit aligned,
2590    // then it takes an extra AGU (Address Generation Unit) cycle.
2591    if ((RegNo % 2) || UseAlign < 8)
2592      ++UseCycle;
2593  } else {
2594    // Assume the worst.
2595    UseCycle = 1;
2596  }
2597  return UseCycle;
2598}
2599
2600int
2601ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2602                                    const MCInstrDesc &DefMCID,
2603                                    unsigned DefIdx, unsigned DefAlign,
2604                                    const MCInstrDesc &UseMCID,
2605                                    unsigned UseIdx, unsigned UseAlign) const {
2606  unsigned DefClass = DefMCID.getSchedClass();
2607  unsigned UseClass = UseMCID.getSchedClass();
2608
2609  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2610    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2611
2612  // This may be a def / use of a variable_ops instruction, the operand
2613  // latency might be determinable dynamically. Let the target try to
2614  // figure it out.
2615  int DefCycle = -1;
2616  bool LdmBypass = false;
2617  switch (DefMCID.getOpcode()) {
2618  default:
2619    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2620    break;
2621
2622  case ARM::VLDMDIA:
2623  case ARM::VLDMDIA_UPD:
2624  case ARM::VLDMDDB_UPD:
2625  case ARM::VLDMSIA:
2626  case ARM::VLDMSIA_UPD:
2627  case ARM::VLDMSDB_UPD:
2628    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2629    break;
2630
2631  case ARM::LDMIA_RET:
2632  case ARM::LDMIA:
2633  case ARM::LDMDA:
2634  case ARM::LDMDB:
2635  case ARM::LDMIB:
2636  case ARM::LDMIA_UPD:
2637  case ARM::LDMDA_UPD:
2638  case ARM::LDMDB_UPD:
2639  case ARM::LDMIB_UPD:
2640  case ARM::tLDMIA:
2641  case ARM::tLDMIA_UPD:
2642  case ARM::tPUSH:
2643  case ARM::t2LDMIA_RET:
2644  case ARM::t2LDMIA:
2645  case ARM::t2LDMDB:
2646  case ARM::t2LDMIA_UPD:
2647  case ARM::t2LDMDB_UPD:
2648    LdmBypass = 1;
2649    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2650    break;
2651  }
2652
2653  if (DefCycle == -1)
2654    // We can't seem to determine the result latency of the def, assume it's 2.
2655    DefCycle = 2;
2656
2657  int UseCycle = -1;
2658  switch (UseMCID.getOpcode()) {
2659  default:
2660    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2661    break;
2662
2663  case ARM::VSTMDIA:
2664  case ARM::VSTMDIA_UPD:
2665  case ARM::VSTMDDB_UPD:
2666  case ARM::VSTMSIA:
2667  case ARM::VSTMSIA_UPD:
2668  case ARM::VSTMSDB_UPD:
2669    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2670    break;
2671
2672  case ARM::STMIA:
2673  case ARM::STMDA:
2674  case ARM::STMDB:
2675  case ARM::STMIB:
2676  case ARM::STMIA_UPD:
2677  case ARM::STMDA_UPD:
2678  case ARM::STMDB_UPD:
2679  case ARM::STMIB_UPD:
2680  case ARM::tSTMIA_UPD:
2681  case ARM::tPOP_RET:
2682  case ARM::tPOP:
2683  case ARM::t2STMIA:
2684  case ARM::t2STMDB:
2685  case ARM::t2STMIA_UPD:
2686  case ARM::t2STMDB_UPD:
2687    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2688    break;
2689  }
2690
2691  if (UseCycle == -1)
2692    // Assume it's read in the first stage.
2693    UseCycle = 1;
2694
2695  UseCycle = DefCycle - UseCycle + 1;
2696  if (UseCycle > 0) {
2697    if (LdmBypass) {
2698      // It's a variable_ops instruction so we can't use DefIdx here. Just use
2699      // first def operand.
2700      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2701                                          UseClass, UseIdx))
2702        --UseCycle;
2703    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2704                                               UseClass, UseIdx)) {
2705      --UseCycle;
2706    }
2707  }
2708
2709  return UseCycle;
2710}
2711
2712static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
2713                                           const MachineInstr *MI, unsigned Reg,
2714                                           unsigned &DefIdx, unsigned &Dist) {
2715  Dist = 0;
2716
2717  MachineBasicBlock::const_iterator I = MI; ++I;
2718  MachineBasicBlock::const_instr_iterator II =
2719    llvm::prior(I.getInstrIterator());
2720  assert(II->isInsideBundle() && "Empty bundle?");
2721
2722  int Idx = -1;
2723  while (II->isInsideBundle()) {
2724    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
2725    if (Idx != -1)
2726      break;
2727    --II;
2728    ++Dist;
2729  }
2730
2731  assert(Idx != -1 && "Cannot find bundled definition!");
2732  DefIdx = Idx;
2733  return II;
2734}
2735
2736static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
2737                                           const MachineInstr *MI, unsigned Reg,
2738                                           unsigned &UseIdx, unsigned &Dist) {
2739  Dist = 0;
2740
2741  MachineBasicBlock::const_instr_iterator II = MI; ++II;
2742  assert(II->isInsideBundle() && "Empty bundle?");
2743  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2744
2745  // FIXME: This doesn't properly handle multiple uses.
2746  int Idx = -1;
2747  while (II != E && II->isInsideBundle()) {
2748    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
2749    if (Idx != -1)
2750      break;
2751    if (II->getOpcode() != ARM::t2IT)
2752      ++Dist;
2753    ++II;
2754  }
2755
2756  if (Idx == -1) {
2757    Dist = 0;
2758    return 0;
2759  }
2760
2761  UseIdx = Idx;
2762  return II;
2763}
2764
2765/// Return the number of cycles to add to (or subtract from) the static
2766/// itinerary based on the def opcode and alignment. The caller will ensure that
2767/// adjusted latency is at least one cycle.
2768static int adjustDefLatency(const ARMSubtarget &Subtarget,
2769                            const MachineInstr *DefMI,
2770                            const MCInstrDesc *DefMCID, unsigned DefAlign) {
2771  int Adjust = 0;
2772  if (Subtarget.isCortexA8() || Subtarget.isCortexA9()) {
2773    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2774    // variants are one cycle cheaper.
2775    switch (DefMCID->getOpcode()) {
2776    default: break;
2777    case ARM::LDRrs:
2778    case ARM::LDRBrs: {
2779      unsigned ShOpVal = DefMI->getOperand(3).getImm();
2780      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2781      if (ShImm == 0 ||
2782          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2783        --Adjust;
2784      break;
2785    }
2786    case ARM::t2LDRs:
2787    case ARM::t2LDRBs:
2788    case ARM::t2LDRHs:
2789    case ARM::t2LDRSHs: {
2790      // Thumb2 mode: lsl only.
2791      unsigned ShAmt = DefMI->getOperand(3).getImm();
2792      if (ShAmt == 0 || ShAmt == 2)
2793        --Adjust;
2794      break;
2795    }
2796    }
2797  }
2798
2799  if (DefAlign < 8 && Subtarget.isCortexA9()) {
2800    switch (DefMCID->getOpcode()) {
2801    default: break;
2802    case ARM::VLD1q8:
2803    case ARM::VLD1q16:
2804    case ARM::VLD1q32:
2805    case ARM::VLD1q64:
2806    case ARM::VLD1q8wb_fixed:
2807    case ARM::VLD1q16wb_fixed:
2808    case ARM::VLD1q32wb_fixed:
2809    case ARM::VLD1q64wb_fixed:
2810    case ARM::VLD1q8wb_register:
2811    case ARM::VLD1q16wb_register:
2812    case ARM::VLD1q32wb_register:
2813    case ARM::VLD1q64wb_register:
2814    case ARM::VLD2d8:
2815    case ARM::VLD2d16:
2816    case ARM::VLD2d32:
2817    case ARM::VLD2q8:
2818    case ARM::VLD2q16:
2819    case ARM::VLD2q32:
2820    case ARM::VLD2d8wb_fixed:
2821    case ARM::VLD2d16wb_fixed:
2822    case ARM::VLD2d32wb_fixed:
2823    case ARM::VLD2q8wb_fixed:
2824    case ARM::VLD2q16wb_fixed:
2825    case ARM::VLD2q32wb_fixed:
2826    case ARM::VLD2d8wb_register:
2827    case ARM::VLD2d16wb_register:
2828    case ARM::VLD2d32wb_register:
2829    case ARM::VLD2q8wb_register:
2830    case ARM::VLD2q16wb_register:
2831    case ARM::VLD2q32wb_register:
2832    case ARM::VLD3d8:
2833    case ARM::VLD3d16:
2834    case ARM::VLD3d32:
2835    case ARM::VLD1d64T:
2836    case ARM::VLD3d8_UPD:
2837    case ARM::VLD3d16_UPD:
2838    case ARM::VLD3d32_UPD:
2839    case ARM::VLD1d64Twb_fixed:
2840    case ARM::VLD1d64Twb_register:
2841    case ARM::VLD3q8_UPD:
2842    case ARM::VLD3q16_UPD:
2843    case ARM::VLD3q32_UPD:
2844    case ARM::VLD4d8:
2845    case ARM::VLD4d16:
2846    case ARM::VLD4d32:
2847    case ARM::VLD1d64Q:
2848    case ARM::VLD4d8_UPD:
2849    case ARM::VLD4d16_UPD:
2850    case ARM::VLD4d32_UPD:
2851    case ARM::VLD1d64Qwb_fixed:
2852    case ARM::VLD1d64Qwb_register:
2853    case ARM::VLD4q8_UPD:
2854    case ARM::VLD4q16_UPD:
2855    case ARM::VLD4q32_UPD:
2856    case ARM::VLD1DUPq8:
2857    case ARM::VLD1DUPq16:
2858    case ARM::VLD1DUPq32:
2859    case ARM::VLD1DUPq8wb_fixed:
2860    case ARM::VLD1DUPq16wb_fixed:
2861    case ARM::VLD1DUPq32wb_fixed:
2862    case ARM::VLD1DUPq8wb_register:
2863    case ARM::VLD1DUPq16wb_register:
2864    case ARM::VLD1DUPq32wb_register:
2865    case ARM::VLD2DUPd8:
2866    case ARM::VLD2DUPd16:
2867    case ARM::VLD2DUPd32:
2868    case ARM::VLD2DUPd8wb_fixed:
2869    case ARM::VLD2DUPd16wb_fixed:
2870    case ARM::VLD2DUPd32wb_fixed:
2871    case ARM::VLD2DUPd8wb_register:
2872    case ARM::VLD2DUPd16wb_register:
2873    case ARM::VLD2DUPd32wb_register:
2874    case ARM::VLD4DUPd8:
2875    case ARM::VLD4DUPd16:
2876    case ARM::VLD4DUPd32:
2877    case ARM::VLD4DUPd8_UPD:
2878    case ARM::VLD4DUPd16_UPD:
2879    case ARM::VLD4DUPd32_UPD:
2880    case ARM::VLD1LNd8:
2881    case ARM::VLD1LNd16:
2882    case ARM::VLD1LNd32:
2883    case ARM::VLD1LNd8_UPD:
2884    case ARM::VLD1LNd16_UPD:
2885    case ARM::VLD1LNd32_UPD:
2886    case ARM::VLD2LNd8:
2887    case ARM::VLD2LNd16:
2888    case ARM::VLD2LNd32:
2889    case ARM::VLD2LNq16:
2890    case ARM::VLD2LNq32:
2891    case ARM::VLD2LNd8_UPD:
2892    case ARM::VLD2LNd16_UPD:
2893    case ARM::VLD2LNd32_UPD:
2894    case ARM::VLD2LNq16_UPD:
2895    case ARM::VLD2LNq32_UPD:
2896    case ARM::VLD4LNd8:
2897    case ARM::VLD4LNd16:
2898    case ARM::VLD4LNd32:
2899    case ARM::VLD4LNq16:
2900    case ARM::VLD4LNq32:
2901    case ARM::VLD4LNd8_UPD:
2902    case ARM::VLD4LNd16_UPD:
2903    case ARM::VLD4LNd32_UPD:
2904    case ARM::VLD4LNq16_UPD:
2905    case ARM::VLD4LNq32_UPD:
2906      // If the address is not 64-bit aligned, the latencies of these
2907      // instructions increases by one.
2908      ++Adjust;
2909      break;
2910    }
2911  }
2912  return Adjust;
2913}
2914
2915
2916
2917int
2918ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2919                                    const MachineInstr *DefMI, unsigned DefIdx,
2920                                    const MachineInstr *UseMI,
2921                                    unsigned UseIdx) const {
2922  // No operand latency. The caller may fall back to getInstrLatency.
2923  if (!ItinData || ItinData->isEmpty())
2924    return -1;
2925
2926  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2927  unsigned Reg = DefMO.getReg();
2928  const MCInstrDesc *DefMCID = &DefMI->getDesc();
2929  const MCInstrDesc *UseMCID = &UseMI->getDesc();
2930
2931  unsigned DefAdj = 0;
2932  if (DefMI->isBundle()) {
2933    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
2934    DefMCID = &DefMI->getDesc();
2935  }
2936  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2937      DefMI->isRegSequence() || DefMI->isImplicitDef()) {
2938    return 1;
2939  }
2940
2941  unsigned UseAdj = 0;
2942  if (UseMI->isBundle()) {
2943    unsigned NewUseIdx;
2944    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
2945                                                   Reg, NewUseIdx, UseAdj);
2946    if (!NewUseMI)
2947      return -1;
2948
2949    UseMI = NewUseMI;
2950    UseIdx = NewUseIdx;
2951    UseMCID = &UseMI->getDesc();
2952  }
2953
2954  if (Reg == ARM::CPSR) {
2955    if (DefMI->getOpcode() == ARM::FMSTAT) {
2956      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2957      return Subtarget.isCortexA9() ? 1 : 20;
2958    }
2959
2960    // CPSR set and branch can be paired in the same cycle.
2961    if (UseMI->isBranch())
2962      return 0;
2963
2964    // Otherwise it takes the instruction latency (generally one).
2965    unsigned Latency = getInstrLatency(ItinData, DefMI);
2966
2967    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
2968    // its uses. Instructions which are otherwise scheduled between them may
2969    // incur a code size penalty (not able to use the CPSR setting 16-bit
2970    // instructions).
2971    if (Latency > 0 && Subtarget.isThumb2()) {
2972      const MachineFunction *MF = DefMI->getParent()->getParent();
2973      if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2974        --Latency;
2975    }
2976    return Latency;
2977  }
2978
2979  if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
2980    return -1;
2981
2982  unsigned DefAlign = DefMI->hasOneMemOperand()
2983    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2984  unsigned UseAlign = UseMI->hasOneMemOperand()
2985    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2986
2987  // Get the itinerary's latency if possible, and handle variable_ops.
2988  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
2989                                  *UseMCID, UseIdx, UseAlign);
2990  // Unable to find operand latency. The caller may resort to getInstrLatency.
2991  if (Latency < 0)
2992    return Latency;
2993
2994  // Adjust for IT block position.
2995  int Adj = DefAdj + UseAdj;
2996
2997  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
2998  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
2999  if (Adj >= 0 || (int)Latency > -Adj) {
3000    return Latency + Adj;
3001  }
3002  // Return the itinerary latency, which may be zero but not less than zero.
3003  return Latency;
3004}
3005
3006int
3007ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3008                                    SDNode *DefNode, unsigned DefIdx,
3009                                    SDNode *UseNode, unsigned UseIdx) const {
3010  if (!DefNode->isMachineOpcode())
3011    return 1;
3012
3013  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3014
3015  if (isZeroCost(DefMCID.Opcode))
3016    return 0;
3017
3018  if (!ItinData || ItinData->isEmpty())
3019    return DefMCID.mayLoad() ? 3 : 1;
3020
3021  if (!UseNode->isMachineOpcode()) {
3022    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3023    if (Subtarget.isCortexA9())
3024      return Latency <= 2 ? 1 : Latency - 1;
3025    else
3026      return Latency <= 3 ? 1 : Latency - 2;
3027  }
3028
3029  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3030  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3031  unsigned DefAlign = !DefMN->memoperands_empty()
3032    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3033  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3034  unsigned UseAlign = !UseMN->memoperands_empty()
3035    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3036  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3037                                  UseMCID, UseIdx, UseAlign);
3038
3039  if (Latency > 1 &&
3040      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
3041    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3042    // variants are one cycle cheaper.
3043    switch (DefMCID.getOpcode()) {
3044    default: break;
3045    case ARM::LDRrs:
3046    case ARM::LDRBrs: {
3047      unsigned ShOpVal =
3048        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3049      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3050      if (ShImm == 0 ||
3051          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3052        --Latency;
3053      break;
3054    }
3055    case ARM::t2LDRs:
3056    case ARM::t2LDRBs:
3057    case ARM::t2LDRHs:
3058    case ARM::t2LDRSHs: {
3059      // Thumb2 mode: lsl only.
3060      unsigned ShAmt =
3061        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3062      if (ShAmt == 0 || ShAmt == 2)
3063        --Latency;
3064      break;
3065    }
3066    }
3067  }
3068
3069  if (DefAlign < 8 && Subtarget.isCortexA9())
3070    switch (DefMCID.getOpcode()) {
3071    default: break;
3072    case ARM::VLD1q8:
3073    case ARM::VLD1q16:
3074    case ARM::VLD1q32:
3075    case ARM::VLD1q64:
3076    case ARM::VLD1q8wb_register:
3077    case ARM::VLD1q16wb_register:
3078    case ARM::VLD1q32wb_register:
3079    case ARM::VLD1q64wb_register:
3080    case ARM::VLD1q8wb_fixed:
3081    case ARM::VLD1q16wb_fixed:
3082    case ARM::VLD1q32wb_fixed:
3083    case ARM::VLD1q64wb_fixed:
3084    case ARM::VLD2d8:
3085    case ARM::VLD2d16:
3086    case ARM::VLD2d32:
3087    case ARM::VLD2q8Pseudo:
3088    case ARM::VLD2q16Pseudo:
3089    case ARM::VLD2q32Pseudo:
3090    case ARM::VLD2d8wb_fixed:
3091    case ARM::VLD2d16wb_fixed:
3092    case ARM::VLD2d32wb_fixed:
3093    case ARM::VLD2q8PseudoWB_fixed:
3094    case ARM::VLD2q16PseudoWB_fixed:
3095    case ARM::VLD2q32PseudoWB_fixed:
3096    case ARM::VLD2d8wb_register:
3097    case ARM::VLD2d16wb_register:
3098    case ARM::VLD2d32wb_register:
3099    case ARM::VLD2q8PseudoWB_register:
3100    case ARM::VLD2q16PseudoWB_register:
3101    case ARM::VLD2q32PseudoWB_register:
3102    case ARM::VLD3d8Pseudo:
3103    case ARM::VLD3d16Pseudo:
3104    case ARM::VLD3d32Pseudo:
3105    case ARM::VLD1d64TPseudo:
3106    case ARM::VLD3d8Pseudo_UPD:
3107    case ARM::VLD3d16Pseudo_UPD:
3108    case ARM::VLD3d32Pseudo_UPD:
3109    case ARM::VLD3q8Pseudo_UPD:
3110    case ARM::VLD3q16Pseudo_UPD:
3111    case ARM::VLD3q32Pseudo_UPD:
3112    case ARM::VLD3q8oddPseudo:
3113    case ARM::VLD3q16oddPseudo:
3114    case ARM::VLD3q32oddPseudo:
3115    case ARM::VLD3q8oddPseudo_UPD:
3116    case ARM::VLD3q16oddPseudo_UPD:
3117    case ARM::VLD3q32oddPseudo_UPD:
3118    case ARM::VLD4d8Pseudo:
3119    case ARM::VLD4d16Pseudo:
3120    case ARM::VLD4d32Pseudo:
3121    case ARM::VLD1d64QPseudo:
3122    case ARM::VLD4d8Pseudo_UPD:
3123    case ARM::VLD4d16Pseudo_UPD:
3124    case ARM::VLD4d32Pseudo_UPD:
3125    case ARM::VLD4q8Pseudo_UPD:
3126    case ARM::VLD4q16Pseudo_UPD:
3127    case ARM::VLD4q32Pseudo_UPD:
3128    case ARM::VLD4q8oddPseudo:
3129    case ARM::VLD4q16oddPseudo:
3130    case ARM::VLD4q32oddPseudo:
3131    case ARM::VLD4q8oddPseudo_UPD:
3132    case ARM::VLD4q16oddPseudo_UPD:
3133    case ARM::VLD4q32oddPseudo_UPD:
3134    case ARM::VLD1DUPq8:
3135    case ARM::VLD1DUPq16:
3136    case ARM::VLD1DUPq32:
3137    case ARM::VLD1DUPq8wb_fixed:
3138    case ARM::VLD1DUPq16wb_fixed:
3139    case ARM::VLD1DUPq32wb_fixed:
3140    case ARM::VLD1DUPq8wb_register:
3141    case ARM::VLD1DUPq16wb_register:
3142    case ARM::VLD1DUPq32wb_register:
3143    case ARM::VLD2DUPd8:
3144    case ARM::VLD2DUPd16:
3145    case ARM::VLD2DUPd32:
3146    case ARM::VLD2DUPd8wb_fixed:
3147    case ARM::VLD2DUPd16wb_fixed:
3148    case ARM::VLD2DUPd32wb_fixed:
3149    case ARM::VLD2DUPd8wb_register:
3150    case ARM::VLD2DUPd16wb_register:
3151    case ARM::VLD2DUPd32wb_register:
3152    case ARM::VLD4DUPd8Pseudo:
3153    case ARM::VLD4DUPd16Pseudo:
3154    case ARM::VLD4DUPd32Pseudo:
3155    case ARM::VLD4DUPd8Pseudo_UPD:
3156    case ARM::VLD4DUPd16Pseudo_UPD:
3157    case ARM::VLD4DUPd32Pseudo_UPD:
3158    case ARM::VLD1LNq8Pseudo:
3159    case ARM::VLD1LNq16Pseudo:
3160    case ARM::VLD1LNq32Pseudo:
3161    case ARM::VLD1LNq8Pseudo_UPD:
3162    case ARM::VLD1LNq16Pseudo_UPD:
3163    case ARM::VLD1LNq32Pseudo_UPD:
3164    case ARM::VLD2LNd8Pseudo:
3165    case ARM::VLD2LNd16Pseudo:
3166    case ARM::VLD2LNd32Pseudo:
3167    case ARM::VLD2LNq16Pseudo:
3168    case ARM::VLD2LNq32Pseudo:
3169    case ARM::VLD2LNd8Pseudo_UPD:
3170    case ARM::VLD2LNd16Pseudo_UPD:
3171    case ARM::VLD2LNd32Pseudo_UPD:
3172    case ARM::VLD2LNq16Pseudo_UPD:
3173    case ARM::VLD2LNq32Pseudo_UPD:
3174    case ARM::VLD4LNd8Pseudo:
3175    case ARM::VLD4LNd16Pseudo:
3176    case ARM::VLD4LNd32Pseudo:
3177    case ARM::VLD4LNq16Pseudo:
3178    case ARM::VLD4LNq32Pseudo:
3179    case ARM::VLD4LNd8Pseudo_UPD:
3180    case ARM::VLD4LNd16Pseudo_UPD:
3181    case ARM::VLD4LNd32Pseudo_UPD:
3182    case ARM::VLD4LNq16Pseudo_UPD:
3183    case ARM::VLD4LNq32Pseudo_UPD:
3184      // If the address is not 64-bit aligned, the latencies of these
3185      // instructions increases by one.
3186      ++Latency;
3187      break;
3188    }
3189
3190  return Latency;
3191}
3192
3193unsigned
3194ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
3195                                   const MachineInstr *DefMI, unsigned DefIdx,
3196                                   const MachineInstr *DepMI) const {
3197  unsigned Reg = DefMI->getOperand(DefIdx).getReg();
3198  if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
3199    return 1;
3200
3201  // If the second MI is predicated, then there is an implicit use dependency.
3202  return getInstrLatency(ItinData, DefMI);
3203}
3204
3205unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3206                                           const MachineInstr *MI,
3207                                           unsigned *PredCost) const {
3208  if (MI->isCopyLike() || MI->isInsertSubreg() ||
3209      MI->isRegSequence() || MI->isImplicitDef())
3210    return 1;
3211
3212  // An instruction scheduler typically runs on unbundled instructions, however
3213  // other passes may query the latency of a bundled instruction.
3214  if (MI->isBundle()) {
3215    unsigned Latency = 0;
3216    MachineBasicBlock::const_instr_iterator I = MI;
3217    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3218    while (++I != E && I->isInsideBundle()) {
3219      if (I->getOpcode() != ARM::t2IT)
3220        Latency += getInstrLatency(ItinData, I, PredCost);
3221    }
3222    return Latency;
3223  }
3224
3225  const MCInstrDesc &MCID = MI->getDesc();
3226  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3227    // When predicated, CPSR is an additional source operand for CPSR updating
3228    // instructions, this apparently increases their latencies.
3229    *PredCost = 1;
3230  }
3231  // Be sure to call getStageLatency for an empty itinerary in case it has a
3232  // valid MinLatency property.
3233  if (!ItinData)
3234    return MI->mayLoad() ? 3 : 1;
3235
3236  unsigned Class = MCID.getSchedClass();
3237
3238  // For instructions with variable uops, use uops as latency.
3239  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3240    return getNumMicroOps(ItinData, MI);
3241
3242  // For the common case, fall back on the itinerary's latency.
3243  unsigned Latency = ItinData->getStageLatency(Class);
3244
3245  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3246  unsigned DefAlign = MI->hasOneMemOperand()
3247    ? (*MI->memoperands_begin())->getAlignment() : 0;
3248  int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3249  if (Adj >= 0 || (int)Latency > -Adj) {
3250    return Latency + Adj;
3251  }
3252  return Latency;
3253}
3254
3255int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3256                                      SDNode *Node) const {
3257  if (!Node->isMachineOpcode())
3258    return 1;
3259
3260  if (!ItinData || ItinData->isEmpty())
3261    return 1;
3262
3263  unsigned Opcode = Node->getMachineOpcode();
3264  switch (Opcode) {
3265  default:
3266    return ItinData->getStageLatency(get(Opcode).getSchedClass());
3267  case ARM::VLDMQIA:
3268  case ARM::VSTMQIA:
3269    return 2;
3270  }
3271}
3272
3273bool ARMBaseInstrInfo::
3274hasHighOperandLatency(const InstrItineraryData *ItinData,
3275                      const MachineRegisterInfo *MRI,
3276                      const MachineInstr *DefMI, unsigned DefIdx,
3277                      const MachineInstr *UseMI, unsigned UseIdx) const {
3278  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3279  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3280  if (Subtarget.isCortexA8() &&
3281      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
3282    // CortexA8 VFP instructions are not pipelined.
3283    return true;
3284
3285  // Hoist VFP / NEON instructions with 4 or higher latency.
3286  int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx,
3287                                      /*FindMin=*/false);
3288  if (Latency < 0)
3289    Latency = getInstrLatency(ItinData, DefMI);
3290  if (Latency <= 3)
3291    return false;
3292  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
3293         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
3294}
3295
3296bool ARMBaseInstrInfo::
3297hasLowDefLatency(const InstrItineraryData *ItinData,
3298                 const MachineInstr *DefMI, unsigned DefIdx) const {
3299  if (!ItinData || ItinData->isEmpty())
3300    return false;
3301
3302  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3303  if (DDomain == ARMII::DomainGeneral) {
3304    unsigned DefClass = DefMI->getDesc().getSchedClass();
3305    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3306    return (DefCycle != -1 && DefCycle <= 2);
3307  }
3308  return false;
3309}
3310
3311bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
3312                                         StringRef &ErrInfo) const {
3313  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
3314    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
3315    return false;
3316  }
3317  return true;
3318}
3319
3320bool
3321ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
3322                                     unsigned &AddSubOpc,
3323                                     bool &NegAcc, bool &HasLane) const {
3324  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
3325  if (I == MLxEntryMap.end())
3326    return false;
3327
3328  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
3329  MulOpc = Entry.MulOpc;
3330  AddSubOpc = Entry.AddSubOpc;
3331  NegAcc = Entry.NegAcc;
3332  HasLane = Entry.HasLane;
3333  return true;
3334}
3335
3336//===----------------------------------------------------------------------===//
3337// Execution domains.
3338//===----------------------------------------------------------------------===//
3339//
3340// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
3341// and some can go down both.  The vmov instructions go down the VFP pipeline,
3342// but they can be changed to vorr equivalents that are executed by the NEON
3343// pipeline.
3344//
3345// We use the following execution domain numbering:
3346//
3347enum ARMExeDomain {
3348  ExeGeneric = 0,
3349  ExeVFP = 1,
3350  ExeNEON = 2
3351};
3352//
3353// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
3354//
3355std::pair<uint16_t, uint16_t>
3356ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3357  // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
3358  // if they are not predicated.
3359  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
3360    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3361
3362  // Cortex-A9 is particularly picky about mixing the two and wants these
3363  // converted.
3364  if (Subtarget.isCortexA9() && !isPredicated(MI) &&
3365      (MI->getOpcode() == ARM::VMOVRS ||
3366       MI->getOpcode() == ARM::VMOVSR))
3367    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3368
3369  // No other instructions can be swizzled, so just determine their domain.
3370  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
3371
3372  if (Domain & ARMII::DomainNEON)
3373    return std::make_pair(ExeNEON, 0);
3374
3375  // Certain instructions can go either way on Cortex-A8.
3376  // Treat them as NEON instructions.
3377  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
3378    return std::make_pair(ExeNEON, 0);
3379
3380  if (Domain & ARMII::DomainVFP)
3381    return std::make_pair(ExeVFP, 0);
3382
3383  return std::make_pair(ExeGeneric, 0);
3384}
3385
3386void
3387ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3388  unsigned DstReg, SrcReg, DReg;
3389  unsigned Lane;
3390  MachineInstrBuilder MIB(MI);
3391  const TargetRegisterInfo *TRI = &getRegisterInfo();
3392  bool isKill;
3393  switch (MI->getOpcode()) {
3394    default:
3395      llvm_unreachable("cannot handle opcode!");
3396      break;
3397    case ARM::VMOVD:
3398      if (Domain != ExeNEON)
3399        break;
3400
3401      // Zap the predicate operands.
3402      assert(!isPredicated(MI) && "Cannot predicate a VORRd");
3403      MI->RemoveOperand(3);
3404      MI->RemoveOperand(2);
3405
3406      // Change to a VORRd which requires two identical use operands.
3407      MI->setDesc(get(ARM::VORRd));
3408
3409      // Add the extra source operand and new predicates.
3410      // This will go before any implicit ops.
3411      AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
3412      break;
3413    case ARM::VMOVRS:
3414      if (Domain != ExeNEON)
3415        break;
3416      assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
3417
3418      DstReg = MI->getOperand(0).getReg();
3419      SrcReg = MI->getOperand(1).getReg();
3420
3421      DReg = TRI->getMatchingSuperReg(SrcReg, ARM::ssub_0, &ARM::DPRRegClass);
3422      Lane = 0;
3423      if (DReg == ARM::NoRegister) {
3424        DReg = TRI->getMatchingSuperReg(SrcReg, ARM::ssub_1, &ARM::DPRRegClass);
3425        Lane = 1;
3426        assert(DReg && "S-register with no D super-register?");
3427      }
3428
3429      MI->RemoveOperand(3);
3430      MI->RemoveOperand(2);
3431      MI->RemoveOperand(1);
3432
3433      MI->setDesc(get(ARM::VGETLNi32));
3434      MIB.addReg(DReg);
3435      MIB.addImm(Lane);
3436
3437      MIB->getOperand(1).setIsUndef();
3438      MIB.addReg(SrcReg, RegState::Implicit);
3439
3440      AddDefaultPred(MIB);
3441      break;
3442    case ARM::VMOVSR:
3443      if (Domain != ExeNEON)
3444        break;
3445      assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
3446
3447      DstReg = MI->getOperand(0).getReg();
3448      SrcReg = MI->getOperand(1).getReg();
3449      DReg = TRI->getMatchingSuperReg(DstReg, ARM::ssub_0, &ARM::DPRRegClass);
3450      Lane = 0;
3451      if (DReg == ARM::NoRegister) {
3452        DReg = TRI->getMatchingSuperReg(DstReg, ARM::ssub_1, &ARM::DPRRegClass);
3453        Lane = 1;
3454        assert(DReg && "S-register with no D super-register?");
3455      }
3456      isKill = MI->getOperand(0).isKill();
3457
3458      MI->RemoveOperand(3);
3459      MI->RemoveOperand(2);
3460      MI->RemoveOperand(1);
3461      MI->RemoveOperand(0);
3462
3463      MI->setDesc(get(ARM::VSETLNi32));
3464      MIB.addReg(DReg);
3465      MIB.addReg(DReg);
3466      MIB.addReg(SrcReg);
3467      MIB.addImm(Lane);
3468
3469      MIB->getOperand(1).setIsUndef();
3470
3471      if (isKill)
3472        MIB->addRegisterKilled(DstReg, TRI, true);
3473      MIB->addRegisterDefined(DstReg, TRI);
3474
3475      AddDefaultPred(MIB);
3476      break;
3477  }
3478
3479}
3480
3481bool ARMBaseInstrInfo::hasNOP() const {
3482  return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
3483}
3484