ARMBaseInstrInfo.cpp revision 8c3b87cf19df5631125254784d57446b80e12397
1//===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMConstantPoolValue.h"
17#include "ARMHazardRecognizer.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMRegisterInfo.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/STLExtras.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48static cl::opt<bool>
49WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50           cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52/// ARM_MLxEntry - Record information about MLA / MLS instructions.
53struct ARM_MLxEntry {
54  unsigned MLxOpc;     // MLA / MLS opcode
55  unsigned MulOpc;     // Expanded multiplication opcode
56  unsigned AddSubOpc;  // Expanded add / sub opcode
57  bool NegAcc;         // True if the acc is negated before the add / sub.
58  bool HasLane;        // True if instruction has an extra "lane" operand.
59};
60
61static const ARM_MLxEntry ARM_MLxTable[] = {
62  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
63  // fp scalar ops
64  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
65  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
66  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
67  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
68  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
69  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
70  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
71  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
72
73  // fp SIMD ops
74  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
75  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
76  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
77  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
78  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
79  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
80  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
81  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
82};
83
84ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
85  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
86    Subtarget(STI) {
87  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
88    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
89      assert(false && "Duplicated entries?");
90    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
91    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
92  }
93}
94
95// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
96// currently defaults to no prepass hazard recognizer.
97ScheduleHazardRecognizer *ARMBaseInstrInfo::
98CreateTargetHazardRecognizer(const TargetMachine *TM,
99                             const ScheduleDAG *DAG) const {
100  if (usePreRAHazardRecognizer()) {
101    const InstrItineraryData *II = TM->getInstrItineraryData();
102    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
103  }
104  return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
105}
106
107ScheduleHazardRecognizer *ARMBaseInstrInfo::
108CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
109                                   const ScheduleDAG *DAG) const {
110  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
111    return (ScheduleHazardRecognizer *)
112      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
113  return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
114}
115
116MachineInstr *
117ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
118                                        MachineBasicBlock::iterator &MBBI,
119                                        LiveVariables *LV) const {
120  // FIXME: Thumb2 support.
121
122  if (!EnableARM3Addr)
123    return NULL;
124
125  MachineInstr *MI = MBBI;
126  MachineFunction &MF = *MI->getParent()->getParent();
127  uint64_t TSFlags = MI->getDesc().TSFlags;
128  bool isPre = false;
129  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
130  default: return NULL;
131  case ARMII::IndexModePre:
132    isPre = true;
133    break;
134  case ARMII::IndexModePost:
135    break;
136  }
137
138  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
139  // operation.
140  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
141  if (MemOpc == 0)
142    return NULL;
143
144  MachineInstr *UpdateMI = NULL;
145  MachineInstr *MemMI = NULL;
146  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
147  const MCInstrDesc &MCID = MI->getDesc();
148  unsigned NumOps = MCID.getNumOperands();
149  bool isLoad = !MI->mayStore();
150  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
151  const MachineOperand &Base = MI->getOperand(2);
152  const MachineOperand &Offset = MI->getOperand(NumOps-3);
153  unsigned WBReg = WB.getReg();
154  unsigned BaseReg = Base.getReg();
155  unsigned OffReg = Offset.getReg();
156  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
157  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
158  switch (AddrMode) {
159  default: llvm_unreachable("Unknown indexed op!");
160  case ARMII::AddrMode2: {
161    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
162    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
163    if (OffReg == 0) {
164      if (ARM_AM::getSOImmVal(Amt) == -1)
165        // Can't encode it in a so_imm operand. This transformation will
166        // add more than 1 instruction. Abandon!
167        return NULL;
168      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
169                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
170        .addReg(BaseReg).addImm(Amt)
171        .addImm(Pred).addReg(0).addReg(0);
172    } else if (Amt != 0) {
173      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
174      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
175      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
176                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
177        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
178        .addImm(Pred).addReg(0).addReg(0);
179    } else
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
182        .addReg(BaseReg).addReg(OffReg)
183        .addImm(Pred).addReg(0).addReg(0);
184    break;
185  }
186  case ARMII::AddrMode3 : {
187    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
188    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
189    if (OffReg == 0)
190      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
191      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
192                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193        .addReg(BaseReg).addImm(Amt)
194        .addImm(Pred).addReg(0).addReg(0);
195    else
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
198        .addReg(BaseReg).addReg(OffReg)
199        .addImm(Pred).addReg(0).addReg(0);
200    break;
201  }
202  }
203
204  std::vector<MachineInstr*> NewMIs;
205  if (isPre) {
206    if (isLoad)
207      MemMI = BuildMI(MF, MI->getDebugLoc(),
208                      get(MemOpc), MI->getOperand(0).getReg())
209        .addReg(WBReg).addImm(0).addImm(Pred);
210    else
211      MemMI = BuildMI(MF, MI->getDebugLoc(),
212                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
213        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
214    NewMIs.push_back(MemMI);
215    NewMIs.push_back(UpdateMI);
216  } else {
217    if (isLoad)
218      MemMI = BuildMI(MF, MI->getDebugLoc(),
219                      get(MemOpc), MI->getOperand(0).getReg())
220        .addReg(BaseReg).addImm(0).addImm(Pred);
221    else
222      MemMI = BuildMI(MF, MI->getDebugLoc(),
223                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
224        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
225    if (WB.isDead())
226      UpdateMI->getOperand(0).setIsDead();
227    NewMIs.push_back(UpdateMI);
228    NewMIs.push_back(MemMI);
229  }
230
231  // Transfer LiveVariables states, kill / dead info.
232  if (LV) {
233    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234      MachineOperand &MO = MI->getOperand(i);
235      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
236        unsigned Reg = MO.getReg();
237
238        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
239        if (MO.isDef()) {
240          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
241          if (MO.isDead())
242            LV->addVirtualRegisterDead(Reg, NewMI);
243        }
244        if (MO.isUse() && MO.isKill()) {
245          for (unsigned j = 0; j < 2; ++j) {
246            // Look at the two new MI's in reverse order.
247            MachineInstr *NewMI = NewMIs[j];
248            if (!NewMI->readsRegister(Reg))
249              continue;
250            LV->addVirtualRegisterKilled(Reg, NewMI);
251            if (VI.removeKill(MI))
252              VI.Kills.push_back(NewMI);
253            break;
254          }
255        }
256      }
257    }
258  }
259
260  MFI->insert(MBBI, NewMIs[1]);
261  MFI->insert(MBBI, NewMIs[0]);
262  return NewMIs[0];
263}
264
265// Branch analysis.
266bool
267ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
268                                MachineBasicBlock *&FBB,
269                                SmallVectorImpl<MachineOperand> &Cond,
270                                bool AllowModify) const {
271  // If the block has no terminators, it just falls into the block after it.
272  MachineBasicBlock::iterator I = MBB.end();
273  if (I == MBB.begin())
274    return false;
275  --I;
276  while (I->isDebugValue()) {
277    if (I == MBB.begin())
278      return false;
279    --I;
280  }
281  if (!isUnpredicatedTerminator(I))
282    return false;
283
284  // Get the last instruction in the block.
285  MachineInstr *LastInst = I;
286
287  // If there is only one terminator instruction, process it.
288  unsigned LastOpc = LastInst->getOpcode();
289  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
290    if (isUncondBranchOpcode(LastOpc)) {
291      TBB = LastInst->getOperand(0).getMBB();
292      return false;
293    }
294    if (isCondBranchOpcode(LastOpc)) {
295      // Block ends with fall-through condbranch.
296      TBB = LastInst->getOperand(0).getMBB();
297      Cond.push_back(LastInst->getOperand(1));
298      Cond.push_back(LastInst->getOperand(2));
299      return false;
300    }
301    return true;  // Can't handle indirect branch.
302  }
303
304  // Get the instruction before it if it is a terminator.
305  MachineInstr *SecondLastInst = I;
306  unsigned SecondLastOpc = SecondLastInst->getOpcode();
307
308  // If AllowModify is true and the block ends with two or more unconditional
309  // branches, delete all but the first unconditional branch.
310  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
311    while (isUncondBranchOpcode(SecondLastOpc)) {
312      LastInst->eraseFromParent();
313      LastInst = SecondLastInst;
314      LastOpc = LastInst->getOpcode();
315      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
316        // Return now the only terminator is an unconditional branch.
317        TBB = LastInst->getOperand(0).getMBB();
318        return false;
319      } else {
320        SecondLastInst = I;
321        SecondLastOpc = SecondLastInst->getOpcode();
322      }
323    }
324  }
325
326  // If there are three terminators, we don't know what sort of block this is.
327  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
328    return true;
329
330  // If the block ends with a B and a Bcc, handle it.
331  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
332    TBB =  SecondLastInst->getOperand(0).getMBB();
333    Cond.push_back(SecondLastInst->getOperand(1));
334    Cond.push_back(SecondLastInst->getOperand(2));
335    FBB = LastInst->getOperand(0).getMBB();
336    return false;
337  }
338
339  // If the block ends with two unconditional branches, handle it.  The second
340  // one is not executed, so remove it.
341  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
342    TBB = SecondLastInst->getOperand(0).getMBB();
343    I = LastInst;
344    if (AllowModify)
345      I->eraseFromParent();
346    return false;
347  }
348
349  // ...likewise if it ends with a branch table followed by an unconditional
350  // branch. The branch folder can create these, and we must get rid of them for
351  // correctness of Thumb constant islands.
352  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
353       isIndirectBranchOpcode(SecondLastOpc)) &&
354      isUncondBranchOpcode(LastOpc)) {
355    I = LastInst;
356    if (AllowModify)
357      I->eraseFromParent();
358    return true;
359  }
360
361  // Otherwise, can't handle this.
362  return true;
363}
364
365
366unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
367  MachineBasicBlock::iterator I = MBB.end();
368  if (I == MBB.begin()) return 0;
369  --I;
370  while (I->isDebugValue()) {
371    if (I == MBB.begin())
372      return 0;
373    --I;
374  }
375  if (!isUncondBranchOpcode(I->getOpcode()) &&
376      !isCondBranchOpcode(I->getOpcode()))
377    return 0;
378
379  // Remove the branch.
380  I->eraseFromParent();
381
382  I = MBB.end();
383
384  if (I == MBB.begin()) return 1;
385  --I;
386  if (!isCondBranchOpcode(I->getOpcode()))
387    return 1;
388
389  // Remove the branch.
390  I->eraseFromParent();
391  return 2;
392}
393
394unsigned
395ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
396                               MachineBasicBlock *FBB,
397                               const SmallVectorImpl<MachineOperand> &Cond,
398                               DebugLoc DL) const {
399  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
400  int BOpc   = !AFI->isThumbFunction()
401    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
402  int BccOpc = !AFI->isThumbFunction()
403    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
404  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
405
406  // Shouldn't be a fall through.
407  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
408  assert((Cond.size() == 2 || Cond.size() == 0) &&
409         "ARM branch conditions have two components!");
410
411  if (FBB == 0) {
412    if (Cond.empty()) { // Unconditional branch?
413      if (isThumb)
414        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
415      else
416        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
417    } else
418      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
419        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
420    return 1;
421  }
422
423  // Two-way conditional branch.
424  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
425    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
426  if (isThumb)
427    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
428  else
429    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
430  return 2;
431}
432
433bool ARMBaseInstrInfo::
434ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
435  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
436  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
437  return false;
438}
439
440bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
441  if (MI->isBundle()) {
442    MachineBasicBlock::const_instr_iterator I = MI;
443    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
444    while (++I != E && I->isInsideBundle()) {
445      int PIdx = I->findFirstPredOperandIdx();
446      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
447        return true;
448    }
449    return false;
450  }
451
452  int PIdx = MI->findFirstPredOperandIdx();
453  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
454}
455
456bool ARMBaseInstrInfo::
457PredicateInstruction(MachineInstr *MI,
458                     const SmallVectorImpl<MachineOperand> &Pred) const {
459  unsigned Opc = MI->getOpcode();
460  if (isUncondBranchOpcode(Opc)) {
461    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
462    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
463    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
464    return true;
465  }
466
467  int PIdx = MI->findFirstPredOperandIdx();
468  if (PIdx != -1) {
469    MachineOperand &PMO = MI->getOperand(PIdx);
470    PMO.setImm(Pred[0].getImm());
471    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
472    return true;
473  }
474  return false;
475}
476
477bool ARMBaseInstrInfo::
478SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
479                  const SmallVectorImpl<MachineOperand> &Pred2) const {
480  if (Pred1.size() > 2 || Pred2.size() > 2)
481    return false;
482
483  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
484  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
485  if (CC1 == CC2)
486    return true;
487
488  switch (CC1) {
489  default:
490    return false;
491  case ARMCC::AL:
492    return true;
493  case ARMCC::HS:
494    return CC2 == ARMCC::HI;
495  case ARMCC::LS:
496    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
497  case ARMCC::GE:
498    return CC2 == ARMCC::GT;
499  case ARMCC::LE:
500    return CC2 == ARMCC::LT;
501  }
502}
503
504bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
505                                    std::vector<MachineOperand> &Pred) const {
506  // FIXME: This confuses implicit_def with optional CPSR def.
507  const MCInstrDesc &MCID = MI->getDesc();
508  if (!MCID.getImplicitDefs() && !MI->hasOptionalDef())
509    return false;
510
511  bool Found = false;
512  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
513    const MachineOperand &MO = MI->getOperand(i);
514    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
515      Pred.push_back(MO);
516      Found = true;
517    }
518  }
519
520  return Found;
521}
522
523/// isPredicable - Return true if the specified instruction can be predicated.
524/// By default, this returns true for every instruction with a
525/// PredicateOperand.
526bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
527  if (!MI->isPredicable())
528    return false;
529
530  if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
531    ARMFunctionInfo *AFI =
532      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
533    return AFI->isThumb2Function();
534  }
535  return true;
536}
537
538/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
539LLVM_ATTRIBUTE_NOINLINE
540static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
541                                unsigned JTI);
542static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
543                                unsigned JTI) {
544  assert(JTI < JT.size());
545  return JT[JTI].MBBs.size();
546}
547
548/// GetInstSize - Return the size of the specified MachineInstr.
549///
550unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
551  const MachineBasicBlock &MBB = *MI->getParent();
552  const MachineFunction *MF = MBB.getParent();
553  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
554
555  const MCInstrDesc &MCID = MI->getDesc();
556  if (MCID.getSize())
557    return MCID.getSize();
558
559  // If this machine instr is an inline asm, measure it.
560  if (MI->getOpcode() == ARM::INLINEASM)
561    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
562  if (MI->isLabel())
563    return 0;
564  unsigned Opc = MI->getOpcode();
565  switch (Opc) {
566  case TargetOpcode::IMPLICIT_DEF:
567  case TargetOpcode::KILL:
568  case TargetOpcode::PROLOG_LABEL:
569  case TargetOpcode::EH_LABEL:
570  case TargetOpcode::DBG_VALUE:
571    return 0;
572  case TargetOpcode::BUNDLE:
573    return getInstBundleLength(MI);
574  case ARM::MOVi16_ga_pcrel:
575  case ARM::MOVTi16_ga_pcrel:
576  case ARM::t2MOVi16_ga_pcrel:
577  case ARM::t2MOVTi16_ga_pcrel:
578    return 4;
579  case ARM::MOVi32imm:
580  case ARM::t2MOVi32imm:
581    return 8;
582  case ARM::CONSTPOOL_ENTRY:
583    // If this machine instr is a constant pool entry, its size is recorded as
584    // operand #2.
585    return MI->getOperand(2).getImm();
586  case ARM::Int_eh_sjlj_longjmp:
587    return 16;
588  case ARM::tInt_eh_sjlj_longjmp:
589    return 10;
590  case ARM::Int_eh_sjlj_setjmp:
591  case ARM::Int_eh_sjlj_setjmp_nofp:
592    return 20;
593  case ARM::tInt_eh_sjlj_setjmp:
594  case ARM::t2Int_eh_sjlj_setjmp:
595  case ARM::t2Int_eh_sjlj_setjmp_nofp:
596    return 12;
597  case ARM::BR_JTr:
598  case ARM::BR_JTm:
599  case ARM::BR_JTadd:
600  case ARM::tBR_JTr:
601  case ARM::t2BR_JT:
602  case ARM::t2TBB_JT:
603  case ARM::t2TBH_JT: {
604    // These are jumptable branches, i.e. a branch followed by an inlined
605    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
606    // entry is one byte; TBH two byte each.
607    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
608      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
609    unsigned NumOps = MCID.getNumOperands();
610    MachineOperand JTOP =
611      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
612    unsigned JTI = JTOP.getIndex();
613    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
614    assert(MJTI != 0);
615    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
616    assert(JTI < JT.size());
617    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
618    // 4 aligned. The assembler / linker may add 2 byte padding just before
619    // the JT entries.  The size does not include this padding; the
620    // constant islands pass does separate bookkeeping for it.
621    // FIXME: If we know the size of the function is less than (1 << 16) *2
622    // bytes, we can use 16-bit entries instead. Then there won't be an
623    // alignment issue.
624    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
625    unsigned NumEntries = getNumJTEntries(JT, JTI);
626    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
627      // Make sure the instruction that follows TBB is 2-byte aligned.
628      // FIXME: Constant island pass should insert an "ALIGN" instruction
629      // instead.
630      ++NumEntries;
631    return NumEntries * EntrySize + InstSize;
632  }
633  default:
634    // Otherwise, pseudo-instruction sizes are zero.
635    return 0;
636  }
637}
638
639unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
640  unsigned Size = 0;
641  MachineBasicBlock::const_instr_iterator I = MI;
642  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
643  while (++I != E && I->isInsideBundle()) {
644    assert(!I->isBundle() && "No nested bundle!");
645    Size += GetInstSizeInBytes(&*I);
646  }
647  return Size;
648}
649
650void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
651                                   MachineBasicBlock::iterator I, DebugLoc DL,
652                                   unsigned DestReg, unsigned SrcReg,
653                                   bool KillSrc) const {
654  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
655  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
656
657  if (GPRDest && GPRSrc) {
658    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
659                                  .addReg(SrcReg, getKillRegState(KillSrc))));
660    return;
661  }
662
663  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
664  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
665
666  unsigned Opc = 0;
667  if (SPRDest && SPRSrc)
668    Opc = ARM::VMOVS;
669  else if (GPRDest && SPRSrc)
670    Opc = ARM::VMOVRS;
671  else if (SPRDest && GPRSrc)
672    Opc = ARM::VMOVSR;
673  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
674    Opc = ARM::VMOVD;
675  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
676    Opc = ARM::VORRq;
677
678  if (Opc) {
679    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
680    MIB.addReg(SrcReg, getKillRegState(KillSrc));
681    if (Opc == ARM::VORRq)
682      MIB.addReg(SrcReg, getKillRegState(KillSrc));
683    AddDefaultPred(MIB);
684    return;
685  }
686
687  // Generate instructions for VMOVQQ and VMOVQQQQ pseudos in place.
688  if (ARM::QQPRRegClass.contains(DestReg, SrcReg) ||
689      ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
690    const TargetRegisterInfo *TRI = &getRegisterInfo();
691    assert(ARM::qsub_0 + 3 == ARM::qsub_3 && "Expected contiguous enum.");
692    unsigned EndSubReg = ARM::QQPRRegClass.contains(DestReg, SrcReg) ?
693      ARM::qsub_1 : ARM::qsub_3;
694    for (unsigned i = ARM::qsub_0, e = EndSubReg + 1; i != e; ++i) {
695      unsigned Dst = TRI->getSubReg(DestReg, i);
696      unsigned Src = TRI->getSubReg(SrcReg, i);
697      MachineInstrBuilder Mov =
698        AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VORRq))
699                       .addReg(Dst, RegState::Define)
700                       .addReg(Src, getKillRegState(KillSrc))
701                       .addReg(Src, getKillRegState(KillSrc)));
702      if (i == EndSubReg) {
703        Mov->addRegisterDefined(DestReg, TRI);
704        if (KillSrc)
705          Mov->addRegisterKilled(SrcReg, TRI);
706      }
707    }
708    return;
709  }
710  llvm_unreachable("Impossible reg-to-reg copy");
711}
712
713static const
714MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
715                             unsigned Reg, unsigned SubIdx, unsigned State,
716                             const TargetRegisterInfo *TRI) {
717  if (!SubIdx)
718    return MIB.addReg(Reg, State);
719
720  if (TargetRegisterInfo::isPhysicalRegister(Reg))
721    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
722  return MIB.addReg(Reg, State, SubIdx);
723}
724
725void ARMBaseInstrInfo::
726storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
727                    unsigned SrcReg, bool isKill, int FI,
728                    const TargetRegisterClass *RC,
729                    const TargetRegisterInfo *TRI) const {
730  DebugLoc DL;
731  if (I != MBB.end()) DL = I->getDebugLoc();
732  MachineFunction &MF = *MBB.getParent();
733  MachineFrameInfo &MFI = *MF.getFrameInfo();
734  unsigned Align = MFI.getObjectAlignment(FI);
735
736  MachineMemOperand *MMO =
737    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
738                            MachineMemOperand::MOStore,
739                            MFI.getObjectSize(FI),
740                            Align);
741
742  switch (RC->getSize()) {
743    case 4:
744      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
745        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
746                   .addReg(SrcReg, getKillRegState(isKill))
747                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
748      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
749        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
750                   .addReg(SrcReg, getKillRegState(isKill))
751                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
752      } else
753        llvm_unreachable("Unknown reg class!");
754      break;
755    case 8:
756      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
757        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
758                   .addReg(SrcReg, getKillRegState(isKill))
759                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
760      } else
761        llvm_unreachable("Unknown reg class!");
762      break;
763    case 16:
764      if (ARM::QPRRegClass.hasSubClassEq(RC)) {
765        // Use aligned spills if the stack can be realigned.
766        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
767          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
768                     .addFrameIndex(FI).addImm(16)
769                     .addReg(SrcReg, getKillRegState(isKill))
770                     .addMemOperand(MMO));
771        } else {
772          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
773                     .addReg(SrcReg, getKillRegState(isKill))
774                     .addFrameIndex(FI)
775                     .addMemOperand(MMO));
776        }
777      } else
778        llvm_unreachable("Unknown reg class!");
779      break;
780    case 32:
781      if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
782        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
783          // FIXME: It's possible to only store part of the QQ register if the
784          // spilled def has a sub-register index.
785          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
786                     .addFrameIndex(FI).addImm(16)
787                     .addReg(SrcReg, getKillRegState(isKill))
788                     .addMemOperand(MMO));
789        } else {
790          MachineInstrBuilder MIB =
791          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
792                       .addFrameIndex(FI))
793                       .addMemOperand(MMO);
794          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
795          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
796          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
797                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
798        }
799      } else
800        llvm_unreachable("Unknown reg class!");
801      break;
802    case 64:
803      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
804        MachineInstrBuilder MIB =
805          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
806                         .addFrameIndex(FI))
807                         .addMemOperand(MMO);
808        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
809        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
810        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
811        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
812        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
813        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
814        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
815              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
816      } else
817        llvm_unreachable("Unknown reg class!");
818      break;
819    default:
820      llvm_unreachable("Unknown reg class!");
821  }
822}
823
824unsigned
825ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
826                                     int &FrameIndex) const {
827  switch (MI->getOpcode()) {
828  default: break;
829  case ARM::STRrs:
830  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
831    if (MI->getOperand(1).isFI() &&
832        MI->getOperand(2).isReg() &&
833        MI->getOperand(3).isImm() &&
834        MI->getOperand(2).getReg() == 0 &&
835        MI->getOperand(3).getImm() == 0) {
836      FrameIndex = MI->getOperand(1).getIndex();
837      return MI->getOperand(0).getReg();
838    }
839    break;
840  case ARM::STRi12:
841  case ARM::t2STRi12:
842  case ARM::tSTRspi:
843  case ARM::VSTRD:
844  case ARM::VSTRS:
845    if (MI->getOperand(1).isFI() &&
846        MI->getOperand(2).isImm() &&
847        MI->getOperand(2).getImm() == 0) {
848      FrameIndex = MI->getOperand(1).getIndex();
849      return MI->getOperand(0).getReg();
850    }
851    break;
852  case ARM::VST1q64Pseudo:
853    if (MI->getOperand(0).isFI() &&
854        MI->getOperand(2).getSubReg() == 0) {
855      FrameIndex = MI->getOperand(0).getIndex();
856      return MI->getOperand(2).getReg();
857    }
858    break;
859  case ARM::VSTMQIA:
860    if (MI->getOperand(1).isFI() &&
861        MI->getOperand(0).getSubReg() == 0) {
862      FrameIndex = MI->getOperand(1).getIndex();
863      return MI->getOperand(0).getReg();
864    }
865    break;
866  }
867
868  return 0;
869}
870
871unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
872                                                    int &FrameIndex) const {
873  const MachineMemOperand *Dummy;
874  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
875}
876
877void ARMBaseInstrInfo::
878loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
879                     unsigned DestReg, int FI,
880                     const TargetRegisterClass *RC,
881                     const TargetRegisterInfo *TRI) const {
882  DebugLoc DL;
883  if (I != MBB.end()) DL = I->getDebugLoc();
884  MachineFunction &MF = *MBB.getParent();
885  MachineFrameInfo &MFI = *MF.getFrameInfo();
886  unsigned Align = MFI.getObjectAlignment(FI);
887  MachineMemOperand *MMO =
888    MF.getMachineMemOperand(
889                    MachinePointerInfo::getFixedStack(FI),
890                            MachineMemOperand::MOLoad,
891                            MFI.getObjectSize(FI),
892                            Align);
893
894  switch (RC->getSize()) {
895  case 4:
896    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
897      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
898                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
899
900    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
901      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
902                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
903    } else
904      llvm_unreachable("Unknown reg class!");
905    break;
906  case 8:
907    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
908      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
909                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
910    } else
911      llvm_unreachable("Unknown reg class!");
912    break;
913  case 16:
914    if (ARM::QPRRegClass.hasSubClassEq(RC)) {
915      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
916        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
917                     .addFrameIndex(FI).addImm(16)
918                     .addMemOperand(MMO));
919      } else {
920        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
921                       .addFrameIndex(FI)
922                       .addMemOperand(MMO));
923      }
924    } else
925      llvm_unreachable("Unknown reg class!");
926    break;
927  case 32:
928    if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
929      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
930        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
931                     .addFrameIndex(FI).addImm(16)
932                     .addMemOperand(MMO));
933      } else {
934        MachineInstrBuilder MIB =
935        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
936                       .addFrameIndex(FI))
937                       .addMemOperand(MMO);
938        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
939        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
940        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
941        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
942        MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
943      }
944    } else
945      llvm_unreachable("Unknown reg class!");
946    break;
947  case 64:
948    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
949      MachineInstrBuilder MIB =
950      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
951                     .addFrameIndex(FI))
952                     .addMemOperand(MMO);
953      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
954      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
955      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
956      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
957      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
958      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
959      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
960      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
961      MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
962    } else
963      llvm_unreachable("Unknown reg class!");
964    break;
965  default:
966    llvm_unreachable("Unknown regclass!");
967  }
968}
969
970unsigned
971ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
972                                      int &FrameIndex) const {
973  switch (MI->getOpcode()) {
974  default: break;
975  case ARM::LDRrs:
976  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
977    if (MI->getOperand(1).isFI() &&
978        MI->getOperand(2).isReg() &&
979        MI->getOperand(3).isImm() &&
980        MI->getOperand(2).getReg() == 0 &&
981        MI->getOperand(3).getImm() == 0) {
982      FrameIndex = MI->getOperand(1).getIndex();
983      return MI->getOperand(0).getReg();
984    }
985    break;
986  case ARM::LDRi12:
987  case ARM::t2LDRi12:
988  case ARM::tLDRspi:
989  case ARM::VLDRD:
990  case ARM::VLDRS:
991    if (MI->getOperand(1).isFI() &&
992        MI->getOperand(2).isImm() &&
993        MI->getOperand(2).getImm() == 0) {
994      FrameIndex = MI->getOperand(1).getIndex();
995      return MI->getOperand(0).getReg();
996    }
997    break;
998  case ARM::VLD1q64Pseudo:
999    if (MI->getOperand(1).isFI() &&
1000        MI->getOperand(0).getSubReg() == 0) {
1001      FrameIndex = MI->getOperand(1).getIndex();
1002      return MI->getOperand(0).getReg();
1003    }
1004    break;
1005  case ARM::VLDMQIA:
1006    if (MI->getOperand(1).isFI() &&
1007        MI->getOperand(0).getSubReg() == 0) {
1008      FrameIndex = MI->getOperand(1).getIndex();
1009      return MI->getOperand(0).getReg();
1010    }
1011    break;
1012  }
1013
1014  return 0;
1015}
1016
1017unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1018                                             int &FrameIndex) const {
1019  const MachineMemOperand *Dummy;
1020  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1021}
1022
1023bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1024  // This hook gets to expand COPY instructions before they become
1025  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1026  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1027  // changed into a VORR that can go down the NEON pipeline.
1028  if (!WidenVMOVS || !MI->isCopy())
1029    return false;
1030
1031  // Look for a copy between even S-registers.  That is where we keep floats
1032  // when using NEON v2f32 instructions for f32 arithmetic.
1033  unsigned DstRegS = MI->getOperand(0).getReg();
1034  unsigned SrcRegS = MI->getOperand(1).getReg();
1035  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1036    return false;
1037
1038  const TargetRegisterInfo *TRI = &getRegisterInfo();
1039  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1040                                              &ARM::DPRRegClass);
1041  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1042                                              &ARM::DPRRegClass);
1043  if (!DstRegD || !SrcRegD)
1044    return false;
1045
1046  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1047  // legal if the COPY already defines the full DstRegD, and it isn't a
1048  // sub-register insertion.
1049  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1050    return false;
1051
1052  // A dead copy shouldn't show up here, but reject it just in case.
1053  if (MI->getOperand(0).isDead())
1054    return false;
1055
1056  // All clear, widen the COPY.
1057  DEBUG(dbgs() << "widening:    " << *MI);
1058
1059  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1060  // or some other super-register.
1061  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1062  if (ImpDefIdx != -1)
1063    MI->RemoveOperand(ImpDefIdx);
1064
1065  // Change the opcode and operands.
1066  MI->setDesc(get(ARM::VMOVD));
1067  MI->getOperand(0).setReg(DstRegD);
1068  MI->getOperand(1).setReg(SrcRegD);
1069  AddDefaultPred(MachineInstrBuilder(MI));
1070
1071  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1072  // register scavenger and machine verifier, so we need to indicate that we
1073  // are reading an undefined value from SrcRegD, but a proper value from
1074  // SrcRegS.
1075  MI->getOperand(1).setIsUndef();
1076  MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1077
1078  // SrcRegD may actually contain an unrelated value in the ssub_1
1079  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1080  if (MI->getOperand(1).isKill()) {
1081    MI->getOperand(1).setIsKill(false);
1082    MI->addRegisterKilled(SrcRegS, TRI, true);
1083  }
1084
1085  DEBUG(dbgs() << "replaced by: " << *MI);
1086  return true;
1087}
1088
1089MachineInstr*
1090ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1091                                           int FrameIx, uint64_t Offset,
1092                                           const MDNode *MDPtr,
1093                                           DebugLoc DL) const {
1094  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1095    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1096  return &*MIB;
1097}
1098
1099/// Create a copy of a const pool value. Update CPI to the new index and return
1100/// the label UID.
1101static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1102  MachineConstantPool *MCP = MF.getConstantPool();
1103  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1104
1105  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1106  assert(MCPE.isMachineConstantPoolEntry() &&
1107         "Expecting a machine constantpool entry!");
1108  ARMConstantPoolValue *ACPV =
1109    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1110
1111  unsigned PCLabelId = AFI->createPICLabelUId();
1112  ARMConstantPoolValue *NewCPV = 0;
1113  // FIXME: The below assumes PIC relocation model and that the function
1114  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1115  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1116  // instructions, so that's probably OK, but is PIC always correct when
1117  // we get here?
1118  if (ACPV->isGlobalValue())
1119    NewCPV = ARMConstantPoolConstant::
1120      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1121             ARMCP::CPValue, 4);
1122  else if (ACPV->isExtSymbol())
1123    NewCPV = ARMConstantPoolSymbol::
1124      Create(MF.getFunction()->getContext(),
1125             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1126  else if (ACPV->isBlockAddress())
1127    NewCPV = ARMConstantPoolConstant::
1128      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1129             ARMCP::CPBlockAddress, 4);
1130  else if (ACPV->isLSDA())
1131    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1132                                             ARMCP::CPLSDA, 4);
1133  else if (ACPV->isMachineBasicBlock())
1134    NewCPV = ARMConstantPoolMBB::
1135      Create(MF.getFunction()->getContext(),
1136             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1137  else
1138    llvm_unreachable("Unexpected ARM constantpool value type!!");
1139  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1140  return PCLabelId;
1141}
1142
1143void ARMBaseInstrInfo::
1144reMaterialize(MachineBasicBlock &MBB,
1145              MachineBasicBlock::iterator I,
1146              unsigned DestReg, unsigned SubIdx,
1147              const MachineInstr *Orig,
1148              const TargetRegisterInfo &TRI) const {
1149  unsigned Opcode = Orig->getOpcode();
1150  switch (Opcode) {
1151  default: {
1152    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1153    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1154    MBB.insert(I, MI);
1155    break;
1156  }
1157  case ARM::tLDRpci_pic:
1158  case ARM::t2LDRpci_pic: {
1159    MachineFunction &MF = *MBB.getParent();
1160    unsigned CPI = Orig->getOperand(1).getIndex();
1161    unsigned PCLabelId = duplicateCPV(MF, CPI);
1162    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1163                                      DestReg)
1164      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1165    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1166    break;
1167  }
1168  }
1169}
1170
1171MachineInstr *
1172ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1173  MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1174  switch(Orig->getOpcode()) {
1175  case ARM::tLDRpci_pic:
1176  case ARM::t2LDRpci_pic: {
1177    unsigned CPI = Orig->getOperand(1).getIndex();
1178    unsigned PCLabelId = duplicateCPV(MF, CPI);
1179    Orig->getOperand(1).setIndex(CPI);
1180    Orig->getOperand(2).setImm(PCLabelId);
1181    break;
1182  }
1183  }
1184  return MI;
1185}
1186
1187bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1188                                        const MachineInstr *MI1,
1189                                        const MachineRegisterInfo *MRI) const {
1190  int Opcode = MI0->getOpcode();
1191  if (Opcode == ARM::t2LDRpci ||
1192      Opcode == ARM::t2LDRpci_pic ||
1193      Opcode == ARM::tLDRpci ||
1194      Opcode == ARM::tLDRpci_pic ||
1195      Opcode == ARM::MOV_ga_dyn ||
1196      Opcode == ARM::MOV_ga_pcrel ||
1197      Opcode == ARM::MOV_ga_pcrel_ldr ||
1198      Opcode == ARM::t2MOV_ga_dyn ||
1199      Opcode == ARM::t2MOV_ga_pcrel) {
1200    if (MI1->getOpcode() != Opcode)
1201      return false;
1202    if (MI0->getNumOperands() != MI1->getNumOperands())
1203      return false;
1204
1205    const MachineOperand &MO0 = MI0->getOperand(1);
1206    const MachineOperand &MO1 = MI1->getOperand(1);
1207    if (MO0.getOffset() != MO1.getOffset())
1208      return false;
1209
1210    if (Opcode == ARM::MOV_ga_dyn ||
1211        Opcode == ARM::MOV_ga_pcrel ||
1212        Opcode == ARM::MOV_ga_pcrel_ldr ||
1213        Opcode == ARM::t2MOV_ga_dyn ||
1214        Opcode == ARM::t2MOV_ga_pcrel)
1215      // Ignore the PC labels.
1216      return MO0.getGlobal() == MO1.getGlobal();
1217
1218    const MachineFunction *MF = MI0->getParent()->getParent();
1219    const MachineConstantPool *MCP = MF->getConstantPool();
1220    int CPI0 = MO0.getIndex();
1221    int CPI1 = MO1.getIndex();
1222    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1223    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1224    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1225    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1226    if (isARMCP0 && isARMCP1) {
1227      ARMConstantPoolValue *ACPV0 =
1228        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1229      ARMConstantPoolValue *ACPV1 =
1230        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1231      return ACPV0->hasSameValue(ACPV1);
1232    } else if (!isARMCP0 && !isARMCP1) {
1233      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1234    }
1235    return false;
1236  } else if (Opcode == ARM::PICLDR) {
1237    if (MI1->getOpcode() != Opcode)
1238      return false;
1239    if (MI0->getNumOperands() != MI1->getNumOperands())
1240      return false;
1241
1242    unsigned Addr0 = MI0->getOperand(1).getReg();
1243    unsigned Addr1 = MI1->getOperand(1).getReg();
1244    if (Addr0 != Addr1) {
1245      if (!MRI ||
1246          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1247          !TargetRegisterInfo::isVirtualRegister(Addr1))
1248        return false;
1249
1250      // This assumes SSA form.
1251      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1252      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1253      // Check if the loaded value, e.g. a constantpool of a global address, are
1254      // the same.
1255      if (!produceSameValue(Def0, Def1, MRI))
1256        return false;
1257    }
1258
1259    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1260      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1261      const MachineOperand &MO0 = MI0->getOperand(i);
1262      const MachineOperand &MO1 = MI1->getOperand(i);
1263      if (!MO0.isIdenticalTo(MO1))
1264        return false;
1265    }
1266    return true;
1267  }
1268
1269  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1270}
1271
1272/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1273/// determine if two loads are loading from the same base address. It should
1274/// only return true if the base pointers are the same and the only differences
1275/// between the two addresses is the offset. It also returns the offsets by
1276/// reference.
1277bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1278                                               int64_t &Offset1,
1279                                               int64_t &Offset2) const {
1280  // Don't worry about Thumb: just ARM and Thumb2.
1281  if (Subtarget.isThumb1Only()) return false;
1282
1283  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1284    return false;
1285
1286  switch (Load1->getMachineOpcode()) {
1287  default:
1288    return false;
1289  case ARM::LDRi12:
1290  case ARM::LDRBi12:
1291  case ARM::LDRD:
1292  case ARM::LDRH:
1293  case ARM::LDRSB:
1294  case ARM::LDRSH:
1295  case ARM::VLDRD:
1296  case ARM::VLDRS:
1297  case ARM::t2LDRi8:
1298  case ARM::t2LDRDi8:
1299  case ARM::t2LDRSHi8:
1300  case ARM::t2LDRi12:
1301  case ARM::t2LDRSHi12:
1302    break;
1303  }
1304
1305  switch (Load2->getMachineOpcode()) {
1306  default:
1307    return false;
1308  case ARM::LDRi12:
1309  case ARM::LDRBi12:
1310  case ARM::LDRD:
1311  case ARM::LDRH:
1312  case ARM::LDRSB:
1313  case ARM::LDRSH:
1314  case ARM::VLDRD:
1315  case ARM::VLDRS:
1316  case ARM::t2LDRi8:
1317  case ARM::t2LDRDi8:
1318  case ARM::t2LDRSHi8:
1319  case ARM::t2LDRi12:
1320  case ARM::t2LDRSHi12:
1321    break;
1322  }
1323
1324  // Check if base addresses and chain operands match.
1325  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1326      Load1->getOperand(4) != Load2->getOperand(4))
1327    return false;
1328
1329  // Index should be Reg0.
1330  if (Load1->getOperand(3) != Load2->getOperand(3))
1331    return false;
1332
1333  // Determine the offsets.
1334  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1335      isa<ConstantSDNode>(Load2->getOperand(1))) {
1336    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1337    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1338    return true;
1339  }
1340
1341  return false;
1342}
1343
1344/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1345/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1346/// be scheduled togther. On some targets if two loads are loading from
1347/// addresses in the same cache line, it's better if they are scheduled
1348/// together. This function takes two integers that represent the load offsets
1349/// from the common base address. It returns true if it decides it's desirable
1350/// to schedule the two loads together. "NumLoads" is the number of loads that
1351/// have already been scheduled after Load1.
1352bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1353                                               int64_t Offset1, int64_t Offset2,
1354                                               unsigned NumLoads) const {
1355  // Don't worry about Thumb: just ARM and Thumb2.
1356  if (Subtarget.isThumb1Only()) return false;
1357
1358  assert(Offset2 > Offset1);
1359
1360  if ((Offset2 - Offset1) / 8 > 64)
1361    return false;
1362
1363  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1364    return false;  // FIXME: overly conservative?
1365
1366  // Four loads in a row should be sufficient.
1367  if (NumLoads >= 3)
1368    return false;
1369
1370  return true;
1371}
1372
1373bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1374                                            const MachineBasicBlock *MBB,
1375                                            const MachineFunction &MF) const {
1376  // Debug info is never a scheduling boundary. It's necessary to be explicit
1377  // due to the special treatment of IT instructions below, otherwise a
1378  // dbg_value followed by an IT will result in the IT instruction being
1379  // considered a scheduling hazard, which is wrong. It should be the actual
1380  // instruction preceding the dbg_value instruction(s), just like it is
1381  // when debug info is not present.
1382  if (MI->isDebugValue())
1383    return false;
1384
1385  // Terminators and labels can't be scheduled around.
1386  if (MI->isTerminator() || MI->isLabel())
1387    return true;
1388
1389  // Treat the start of the IT block as a scheduling boundary, but schedule
1390  // t2IT along with all instructions following it.
1391  // FIXME: This is a big hammer. But the alternative is to add all potential
1392  // true and anti dependencies to IT block instructions as implicit operands
1393  // to the t2IT instruction. The added compile time and complexity does not
1394  // seem worth it.
1395  MachineBasicBlock::const_iterator I = MI;
1396  // Make sure to skip any dbg_value instructions
1397  while (++I != MBB->end() && I->isDebugValue())
1398    ;
1399  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1400    return true;
1401
1402  // Don't attempt to schedule around any instruction that defines
1403  // a stack-oriented pointer, as it's unlikely to be profitable. This
1404  // saves compile time, because it doesn't require every single
1405  // stack slot reference to depend on the instruction that does the
1406  // modification.
1407  if (MI->definesRegister(ARM::SP))
1408    return true;
1409
1410  return false;
1411}
1412
1413bool ARMBaseInstrInfo::
1414isProfitableToIfCvt(MachineBasicBlock &MBB,
1415                    unsigned NumCycles, unsigned ExtraPredCycles,
1416                    const BranchProbability &Probability) const {
1417  if (!NumCycles)
1418    return false;
1419
1420  // Attempt to estimate the relative costs of predication versus branching.
1421  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1422  UnpredCost /= Probability.getDenominator();
1423  UnpredCost += 1; // The branch itself
1424  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1425
1426  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1427}
1428
1429bool ARMBaseInstrInfo::
1430isProfitableToIfCvt(MachineBasicBlock &TMBB,
1431                    unsigned TCycles, unsigned TExtra,
1432                    MachineBasicBlock &FMBB,
1433                    unsigned FCycles, unsigned FExtra,
1434                    const BranchProbability &Probability) const {
1435  if (!TCycles || !FCycles)
1436    return false;
1437
1438  // Attempt to estimate the relative costs of predication versus branching.
1439  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1440  TUnpredCost /= Probability.getDenominator();
1441
1442  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1443  unsigned FUnpredCost = Comp * FCycles;
1444  FUnpredCost /= Probability.getDenominator();
1445
1446  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1447  UnpredCost += 1; // The branch itself
1448  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1449
1450  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1451}
1452
1453/// getInstrPredicate - If instruction is predicated, returns its predicate
1454/// condition, otherwise returns AL. It also returns the condition code
1455/// register by reference.
1456ARMCC::CondCodes
1457llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1458  int PIdx = MI->findFirstPredOperandIdx();
1459  if (PIdx == -1) {
1460    PredReg = 0;
1461    return ARMCC::AL;
1462  }
1463
1464  PredReg = MI->getOperand(PIdx+1).getReg();
1465  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1466}
1467
1468
1469int llvm::getMatchingCondBranchOpcode(int Opc) {
1470  if (Opc == ARM::B)
1471    return ARM::Bcc;
1472  if (Opc == ARM::tB)
1473    return ARM::tBcc;
1474  if (Opc == ARM::t2B)
1475    return ARM::t2Bcc;
1476
1477  llvm_unreachable("Unknown unconditional branch opcode!");
1478}
1479
1480
1481/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1482/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1483/// def operand.
1484///
1485/// This will go away once we can teach tblgen how to set the optional CPSR def
1486/// operand itself.
1487struct AddSubFlagsOpcodePair {
1488  unsigned PseudoOpc;
1489  unsigned MachineOpc;
1490};
1491
1492static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1493  {ARM::ADDSri, ARM::ADDri},
1494  {ARM::ADDSrr, ARM::ADDrr},
1495  {ARM::ADDSrsi, ARM::ADDrsi},
1496  {ARM::ADDSrsr, ARM::ADDrsr},
1497
1498  {ARM::SUBSri, ARM::SUBri},
1499  {ARM::SUBSrr, ARM::SUBrr},
1500  {ARM::SUBSrsi, ARM::SUBrsi},
1501  {ARM::SUBSrsr, ARM::SUBrsr},
1502
1503  {ARM::RSBSri, ARM::RSBri},
1504  {ARM::RSBSrsi, ARM::RSBrsi},
1505  {ARM::RSBSrsr, ARM::RSBrsr},
1506
1507  {ARM::t2ADDSri, ARM::t2ADDri},
1508  {ARM::t2ADDSrr, ARM::t2ADDrr},
1509  {ARM::t2ADDSrs, ARM::t2ADDrs},
1510
1511  {ARM::t2SUBSri, ARM::t2SUBri},
1512  {ARM::t2SUBSrr, ARM::t2SUBrr},
1513  {ARM::t2SUBSrs, ARM::t2SUBrs},
1514
1515  {ARM::t2RSBSri, ARM::t2RSBri},
1516  {ARM::t2RSBSrs, ARM::t2RSBrs},
1517};
1518
1519unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1520  static const int NPairs =
1521    sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
1522  for (AddSubFlagsOpcodePair *OpcPair = &AddSubFlagsOpcodeMap[0],
1523         *End = &AddSubFlagsOpcodeMap[NPairs]; OpcPair != End; ++OpcPair) {
1524    if (OldOpc == OpcPair->PseudoOpc) {
1525      return OpcPair->MachineOpc;
1526    }
1527  }
1528  return 0;
1529}
1530
1531void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1532                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1533                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1534                               ARMCC::CondCodes Pred, unsigned PredReg,
1535                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1536  bool isSub = NumBytes < 0;
1537  if (isSub) NumBytes = -NumBytes;
1538
1539  while (NumBytes) {
1540    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1541    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1542    assert(ThisVal && "Didn't extract field correctly");
1543
1544    // We will handle these bits from offset, clear them.
1545    NumBytes &= ~ThisVal;
1546
1547    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1548
1549    // Build the new ADD / SUB.
1550    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1551    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1552      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1553      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1554      .setMIFlags(MIFlags);
1555    BaseReg = DestReg;
1556  }
1557}
1558
1559bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1560                                unsigned FrameReg, int &Offset,
1561                                const ARMBaseInstrInfo &TII) {
1562  unsigned Opcode = MI.getOpcode();
1563  const MCInstrDesc &Desc = MI.getDesc();
1564  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1565  bool isSub = false;
1566
1567  // Memory operands in inline assembly always use AddrMode2.
1568  if (Opcode == ARM::INLINEASM)
1569    AddrMode = ARMII::AddrMode2;
1570
1571  if (Opcode == ARM::ADDri) {
1572    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1573    if (Offset == 0) {
1574      // Turn it into a move.
1575      MI.setDesc(TII.get(ARM::MOVr));
1576      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1577      MI.RemoveOperand(FrameRegIdx+1);
1578      Offset = 0;
1579      return true;
1580    } else if (Offset < 0) {
1581      Offset = -Offset;
1582      isSub = true;
1583      MI.setDesc(TII.get(ARM::SUBri));
1584    }
1585
1586    // Common case: small offset, fits into instruction.
1587    if (ARM_AM::getSOImmVal(Offset) != -1) {
1588      // Replace the FrameIndex with sp / fp
1589      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1590      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1591      Offset = 0;
1592      return true;
1593    }
1594
1595    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1596    // as possible.
1597    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1598    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1599
1600    // We will handle these bits from offset, clear them.
1601    Offset &= ~ThisImmVal;
1602
1603    // Get the properly encoded SOImmVal field.
1604    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1605           "Bit extraction didn't work?");
1606    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1607 } else {
1608    unsigned ImmIdx = 0;
1609    int InstrOffs = 0;
1610    unsigned NumBits = 0;
1611    unsigned Scale = 1;
1612    switch (AddrMode) {
1613    case ARMII::AddrMode_i12: {
1614      ImmIdx = FrameRegIdx + 1;
1615      InstrOffs = MI.getOperand(ImmIdx).getImm();
1616      NumBits = 12;
1617      break;
1618    }
1619    case ARMII::AddrMode2: {
1620      ImmIdx = FrameRegIdx+2;
1621      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1622      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1623        InstrOffs *= -1;
1624      NumBits = 12;
1625      break;
1626    }
1627    case ARMII::AddrMode3: {
1628      ImmIdx = FrameRegIdx+2;
1629      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1630      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1631        InstrOffs *= -1;
1632      NumBits = 8;
1633      break;
1634    }
1635    case ARMII::AddrMode4:
1636    case ARMII::AddrMode6:
1637      // Can't fold any offset even if it's zero.
1638      return false;
1639    case ARMII::AddrMode5: {
1640      ImmIdx = FrameRegIdx+1;
1641      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1642      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1643        InstrOffs *= -1;
1644      NumBits = 8;
1645      Scale = 4;
1646      break;
1647    }
1648    default:
1649      llvm_unreachable("Unsupported addressing mode!");
1650    }
1651
1652    Offset += InstrOffs * Scale;
1653    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1654    if (Offset < 0) {
1655      Offset = -Offset;
1656      isSub = true;
1657    }
1658
1659    // Attempt to fold address comp. if opcode has offset bits
1660    if (NumBits > 0) {
1661      // Common case: small offset, fits into instruction.
1662      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1663      int ImmedOffset = Offset / Scale;
1664      unsigned Mask = (1 << NumBits) - 1;
1665      if ((unsigned)Offset <= Mask * Scale) {
1666        // Replace the FrameIndex with sp
1667        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1668        // FIXME: When addrmode2 goes away, this will simplify (like the
1669        // T2 version), as the LDR.i12 versions don't need the encoding
1670        // tricks for the offset value.
1671        if (isSub) {
1672          if (AddrMode == ARMII::AddrMode_i12)
1673            ImmedOffset = -ImmedOffset;
1674          else
1675            ImmedOffset |= 1 << NumBits;
1676        }
1677        ImmOp.ChangeToImmediate(ImmedOffset);
1678        Offset = 0;
1679        return true;
1680      }
1681
1682      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1683      ImmedOffset = ImmedOffset & Mask;
1684      if (isSub) {
1685        if (AddrMode == ARMII::AddrMode_i12)
1686          ImmedOffset = -ImmedOffset;
1687        else
1688          ImmedOffset |= 1 << NumBits;
1689      }
1690      ImmOp.ChangeToImmediate(ImmedOffset);
1691      Offset &= ~(Mask*Scale);
1692    }
1693  }
1694
1695  Offset = (isSub) ? -Offset : Offset;
1696  return Offset == 0;
1697}
1698
1699bool ARMBaseInstrInfo::
1700AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
1701               int &CmpValue) const {
1702  switch (MI->getOpcode()) {
1703  default: break;
1704  case ARM::CMPri:
1705  case ARM::t2CMPri:
1706    SrcReg = MI->getOperand(0).getReg();
1707    CmpMask = ~0;
1708    CmpValue = MI->getOperand(1).getImm();
1709    return true;
1710  case ARM::TSTri:
1711  case ARM::t2TSTri:
1712    SrcReg = MI->getOperand(0).getReg();
1713    CmpMask = MI->getOperand(1).getImm();
1714    CmpValue = 0;
1715    return true;
1716  }
1717
1718  return false;
1719}
1720
1721/// isSuitableForMask - Identify a suitable 'and' instruction that
1722/// operates on the given source register and applies the same mask
1723/// as a 'tst' instruction. Provide a limited look-through for copies.
1724/// When successful, MI will hold the found instruction.
1725static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1726                              int CmpMask, bool CommonUse) {
1727  switch (MI->getOpcode()) {
1728    case ARM::ANDri:
1729    case ARM::t2ANDri:
1730      if (CmpMask != MI->getOperand(2).getImm())
1731        return false;
1732      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1733        return true;
1734      break;
1735    case ARM::COPY: {
1736      // Walk down one instruction which is potentially an 'and'.
1737      const MachineInstr &Copy = *MI;
1738      MachineBasicBlock::iterator AND(
1739        llvm::next(MachineBasicBlock::iterator(MI)));
1740      if (AND == MI->getParent()->end()) return false;
1741      MI = AND;
1742      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1743                               CmpMask, true);
1744    }
1745  }
1746
1747  return false;
1748}
1749
1750/// OptimizeCompareInstr - Convert the instruction supplying the argument to the
1751/// comparison into one that sets the zero bit in the flags register.
1752bool ARMBaseInstrInfo::
1753OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
1754                     int CmpValue, const MachineRegisterInfo *MRI) const {
1755  if (CmpValue != 0)
1756    return false;
1757
1758  MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
1759  if (llvm::next(DI) != MRI->def_end())
1760    // Only support one definition.
1761    return false;
1762
1763  MachineInstr *MI = &*DI;
1764
1765  // Masked compares sometimes use the same register as the corresponding 'and'.
1766  if (CmpMask != ~0) {
1767    if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
1768      MI = 0;
1769      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
1770           UE = MRI->use_end(); UI != UE; ++UI) {
1771        if (UI->getParent() != CmpInstr->getParent()) continue;
1772        MachineInstr *PotentialAND = &*UI;
1773        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
1774          continue;
1775        MI = PotentialAND;
1776        break;
1777      }
1778      if (!MI) return false;
1779    }
1780  }
1781
1782  // Conservatively refuse to convert an instruction which isn't in the same BB
1783  // as the comparison.
1784  if (MI->getParent() != CmpInstr->getParent())
1785    return false;
1786
1787  // Check that CPSR isn't set between the comparison instruction and the one we
1788  // want to change.
1789  MachineBasicBlock::iterator I = CmpInstr,E = MI, B = MI->getParent()->begin();
1790
1791  // Early exit if CmpInstr is at the beginning of the BB.
1792  if (I == B) return false;
1793
1794  --I;
1795  for (; I != E; --I) {
1796    const MachineInstr &Instr = *I;
1797
1798    for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
1799      const MachineOperand &MO = Instr.getOperand(IO);
1800      if (!MO.isReg()) continue;
1801
1802      // This instruction modifies or uses CPSR after the one we want to
1803      // change. We can't do this transformation.
1804      if (MO.getReg() == ARM::CPSR)
1805        return false;
1806    }
1807
1808    if (I == B)
1809      // The 'and' is below the comparison instruction.
1810      return false;
1811  }
1812
1813  // Set the "zero" bit in CPSR.
1814  switch (MI->getOpcode()) {
1815  default: break;
1816  case ARM::RSBrr:
1817  case ARM::RSBri:
1818  case ARM::RSCrr:
1819  case ARM::RSCri:
1820  case ARM::ADDrr:
1821  case ARM::ADDri:
1822  case ARM::ADCrr:
1823  case ARM::ADCri:
1824  case ARM::SUBrr:
1825  case ARM::SUBri:
1826  case ARM::SBCrr:
1827  case ARM::SBCri:
1828  case ARM::t2RSBri:
1829  case ARM::t2ADDrr:
1830  case ARM::t2ADDri:
1831  case ARM::t2ADCrr:
1832  case ARM::t2ADCri:
1833  case ARM::t2SUBrr:
1834  case ARM::t2SUBri:
1835  case ARM::t2SBCrr:
1836  case ARM::t2SBCri:
1837  case ARM::ANDrr:
1838  case ARM::ANDri:
1839  case ARM::t2ANDrr:
1840  case ARM::t2ANDri:
1841  case ARM::ORRrr:
1842  case ARM::ORRri:
1843  case ARM::t2ORRrr:
1844  case ARM::t2ORRri:
1845  case ARM::EORrr:
1846  case ARM::EORri:
1847  case ARM::t2EORrr:
1848  case ARM::t2EORri: {
1849    // Scan forward for the use of CPSR, if it's a conditional code requires
1850    // checking of V bit, then this is not safe to do. If we can't find the
1851    // CPSR use (i.e. used in another block), then it's not safe to perform
1852    // the optimization.
1853    bool isSafe = false;
1854    I = CmpInstr;
1855    E = MI->getParent()->end();
1856    while (!isSafe && ++I != E) {
1857      const MachineInstr &Instr = *I;
1858      for (unsigned IO = 0, EO = Instr.getNumOperands();
1859           !isSafe && IO != EO; ++IO) {
1860        const MachineOperand &MO = Instr.getOperand(IO);
1861        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
1862          continue;
1863        if (MO.isDef()) {
1864          isSafe = true;
1865          break;
1866        }
1867        // Condition code is after the operand before CPSR.
1868        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
1869        switch (CC) {
1870        default:
1871          isSafe = true;
1872          break;
1873        case ARMCC::VS:
1874        case ARMCC::VC:
1875        case ARMCC::GE:
1876        case ARMCC::LT:
1877        case ARMCC::GT:
1878        case ARMCC::LE:
1879          return false;
1880        }
1881      }
1882    }
1883
1884    if (!isSafe)
1885      return false;
1886
1887    // Toggle the optional operand to CPSR.
1888    MI->getOperand(5).setReg(ARM::CPSR);
1889    MI->getOperand(5).setIsDef(true);
1890    CmpInstr->eraseFromParent();
1891    return true;
1892  }
1893  }
1894
1895  return false;
1896}
1897
1898bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
1899                                     MachineInstr *DefMI, unsigned Reg,
1900                                     MachineRegisterInfo *MRI) const {
1901  // Fold large immediates into add, sub, or, xor.
1902  unsigned DefOpc = DefMI->getOpcode();
1903  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
1904    return false;
1905  if (!DefMI->getOperand(1).isImm())
1906    // Could be t2MOVi32imm <ga:xx>
1907    return false;
1908
1909  if (!MRI->hasOneNonDBGUse(Reg))
1910    return false;
1911
1912  unsigned UseOpc = UseMI->getOpcode();
1913  unsigned NewUseOpc = 0;
1914  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
1915  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
1916  bool Commute = false;
1917  switch (UseOpc) {
1918  default: return false;
1919  case ARM::SUBrr:
1920  case ARM::ADDrr:
1921  case ARM::ORRrr:
1922  case ARM::EORrr:
1923  case ARM::t2SUBrr:
1924  case ARM::t2ADDrr:
1925  case ARM::t2ORRrr:
1926  case ARM::t2EORrr: {
1927    Commute = UseMI->getOperand(2).getReg() != Reg;
1928    switch (UseOpc) {
1929    default: break;
1930    case ARM::SUBrr: {
1931      if (Commute)
1932        return false;
1933      ImmVal = -ImmVal;
1934      NewUseOpc = ARM::SUBri;
1935      // Fallthrough
1936    }
1937    case ARM::ADDrr:
1938    case ARM::ORRrr:
1939    case ARM::EORrr: {
1940      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
1941        return false;
1942      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
1943      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
1944      switch (UseOpc) {
1945      default: break;
1946      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
1947      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
1948      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
1949      }
1950      break;
1951    }
1952    case ARM::t2SUBrr: {
1953      if (Commute)
1954        return false;
1955      ImmVal = -ImmVal;
1956      NewUseOpc = ARM::t2SUBri;
1957      // Fallthrough
1958    }
1959    case ARM::t2ADDrr:
1960    case ARM::t2ORRrr:
1961    case ARM::t2EORrr: {
1962      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
1963        return false;
1964      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
1965      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
1966      switch (UseOpc) {
1967      default: break;
1968      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
1969      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
1970      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
1971      }
1972      break;
1973    }
1974    }
1975  }
1976  }
1977
1978  unsigned OpIdx = Commute ? 2 : 1;
1979  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
1980  bool isKill = UseMI->getOperand(OpIdx).isKill();
1981  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
1982  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
1983                                      UseMI, UseMI->getDebugLoc(),
1984                                      get(NewUseOpc), NewReg)
1985                              .addReg(Reg1, getKillRegState(isKill))
1986                              .addImm(SOImmValV1)));
1987  UseMI->setDesc(get(NewUseOpc));
1988  UseMI->getOperand(1).setReg(NewReg);
1989  UseMI->getOperand(1).setIsKill();
1990  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
1991  DefMI->eraseFromParent();
1992  return true;
1993}
1994
1995unsigned
1996ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1997                                 const MachineInstr *MI) const {
1998  if (!ItinData || ItinData->isEmpty())
1999    return 1;
2000
2001  const MCInstrDesc &Desc = MI->getDesc();
2002  unsigned Class = Desc.getSchedClass();
2003  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
2004  if (UOps)
2005    return UOps;
2006
2007  unsigned Opc = MI->getOpcode();
2008  switch (Opc) {
2009  default:
2010    llvm_unreachable("Unexpected multi-uops instruction!");
2011  case ARM::VLDMQIA:
2012  case ARM::VSTMQIA:
2013    return 2;
2014
2015  // The number of uOps for load / store multiple are determined by the number
2016  // registers.
2017  //
2018  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2019  // same cycle. The scheduling for the first load / store must be done
2020  // separately by assuming the the address is not 64-bit aligned.
2021  //
2022  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2023  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2024  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2025  case ARM::VLDMDIA:
2026  case ARM::VLDMDIA_UPD:
2027  case ARM::VLDMDDB_UPD:
2028  case ARM::VLDMSIA:
2029  case ARM::VLDMSIA_UPD:
2030  case ARM::VLDMSDB_UPD:
2031  case ARM::VSTMDIA:
2032  case ARM::VSTMDIA_UPD:
2033  case ARM::VSTMDDB_UPD:
2034  case ARM::VSTMSIA:
2035  case ARM::VSTMSIA_UPD:
2036  case ARM::VSTMSDB_UPD: {
2037    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2038    return (NumRegs / 2) + (NumRegs % 2) + 1;
2039  }
2040
2041  case ARM::LDMIA_RET:
2042  case ARM::LDMIA:
2043  case ARM::LDMDA:
2044  case ARM::LDMDB:
2045  case ARM::LDMIB:
2046  case ARM::LDMIA_UPD:
2047  case ARM::LDMDA_UPD:
2048  case ARM::LDMDB_UPD:
2049  case ARM::LDMIB_UPD:
2050  case ARM::STMIA:
2051  case ARM::STMDA:
2052  case ARM::STMDB:
2053  case ARM::STMIB:
2054  case ARM::STMIA_UPD:
2055  case ARM::STMDA_UPD:
2056  case ARM::STMDB_UPD:
2057  case ARM::STMIB_UPD:
2058  case ARM::tLDMIA:
2059  case ARM::tLDMIA_UPD:
2060  case ARM::tSTMIA_UPD:
2061  case ARM::tPOP_RET:
2062  case ARM::tPOP:
2063  case ARM::tPUSH:
2064  case ARM::t2LDMIA_RET:
2065  case ARM::t2LDMIA:
2066  case ARM::t2LDMDB:
2067  case ARM::t2LDMIA_UPD:
2068  case ARM::t2LDMDB_UPD:
2069  case ARM::t2STMIA:
2070  case ARM::t2STMDB:
2071  case ARM::t2STMIA_UPD:
2072  case ARM::t2STMDB_UPD: {
2073    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2074    if (Subtarget.isCortexA8()) {
2075      if (NumRegs < 4)
2076        return 2;
2077      // 4 registers would be issued: 2, 2.
2078      // 5 registers would be issued: 2, 2, 1.
2079      UOps = (NumRegs / 2);
2080      if (NumRegs % 2)
2081        ++UOps;
2082      return UOps;
2083    } else if (Subtarget.isCortexA9()) {
2084      UOps = (NumRegs / 2);
2085      // If there are odd number of registers or if it's not 64-bit aligned,
2086      // then it takes an extra AGU (Address Generation Unit) cycle.
2087      if ((NumRegs % 2) ||
2088          !MI->hasOneMemOperand() ||
2089          (*MI->memoperands_begin())->getAlignment() < 8)
2090        ++UOps;
2091      return UOps;
2092    } else {
2093      // Assume the worst.
2094      return NumRegs;
2095    }
2096  }
2097  }
2098}
2099
2100int
2101ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2102                                  const MCInstrDesc &DefMCID,
2103                                  unsigned DefClass,
2104                                  unsigned DefIdx, unsigned DefAlign) const {
2105  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2106  if (RegNo <= 0)
2107    // Def is the address writeback.
2108    return ItinData->getOperandCycle(DefClass, DefIdx);
2109
2110  int DefCycle;
2111  if (Subtarget.isCortexA8()) {
2112    // (regno / 2) + (regno % 2) + 1
2113    DefCycle = RegNo / 2 + 1;
2114    if (RegNo % 2)
2115      ++DefCycle;
2116  } else if (Subtarget.isCortexA9()) {
2117    DefCycle = RegNo;
2118    bool isSLoad = false;
2119
2120    switch (DefMCID.getOpcode()) {
2121    default: break;
2122    case ARM::VLDMSIA:
2123    case ARM::VLDMSIA_UPD:
2124    case ARM::VLDMSDB_UPD:
2125      isSLoad = true;
2126      break;
2127    }
2128
2129    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2130    // then it takes an extra cycle.
2131    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2132      ++DefCycle;
2133  } else {
2134    // Assume the worst.
2135    DefCycle = RegNo + 2;
2136  }
2137
2138  return DefCycle;
2139}
2140
2141int
2142ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2143                                 const MCInstrDesc &DefMCID,
2144                                 unsigned DefClass,
2145                                 unsigned DefIdx, unsigned DefAlign) const {
2146  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2147  if (RegNo <= 0)
2148    // Def is the address writeback.
2149    return ItinData->getOperandCycle(DefClass, DefIdx);
2150
2151  int DefCycle;
2152  if (Subtarget.isCortexA8()) {
2153    // 4 registers would be issued: 1, 2, 1.
2154    // 5 registers would be issued: 1, 2, 2.
2155    DefCycle = RegNo / 2;
2156    if (DefCycle < 1)
2157      DefCycle = 1;
2158    // Result latency is issue cycle + 2: E2.
2159    DefCycle += 2;
2160  } else if (Subtarget.isCortexA9()) {
2161    DefCycle = (RegNo / 2);
2162    // If there are odd number of registers or if it's not 64-bit aligned,
2163    // then it takes an extra AGU (Address Generation Unit) cycle.
2164    if ((RegNo % 2) || DefAlign < 8)
2165      ++DefCycle;
2166    // Result latency is AGU cycles + 2.
2167    DefCycle += 2;
2168  } else {
2169    // Assume the worst.
2170    DefCycle = RegNo + 2;
2171  }
2172
2173  return DefCycle;
2174}
2175
2176int
2177ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2178                                  const MCInstrDesc &UseMCID,
2179                                  unsigned UseClass,
2180                                  unsigned UseIdx, unsigned UseAlign) const {
2181  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2182  if (RegNo <= 0)
2183    return ItinData->getOperandCycle(UseClass, UseIdx);
2184
2185  int UseCycle;
2186  if (Subtarget.isCortexA8()) {
2187    // (regno / 2) + (regno % 2) + 1
2188    UseCycle = RegNo / 2 + 1;
2189    if (RegNo % 2)
2190      ++UseCycle;
2191  } else if (Subtarget.isCortexA9()) {
2192    UseCycle = RegNo;
2193    bool isSStore = false;
2194
2195    switch (UseMCID.getOpcode()) {
2196    default: break;
2197    case ARM::VSTMSIA:
2198    case ARM::VSTMSIA_UPD:
2199    case ARM::VSTMSDB_UPD:
2200      isSStore = true;
2201      break;
2202    }
2203
2204    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2205    // then it takes an extra cycle.
2206    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2207      ++UseCycle;
2208  } else {
2209    // Assume the worst.
2210    UseCycle = RegNo + 2;
2211  }
2212
2213  return UseCycle;
2214}
2215
2216int
2217ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2218                                 const MCInstrDesc &UseMCID,
2219                                 unsigned UseClass,
2220                                 unsigned UseIdx, unsigned UseAlign) const {
2221  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2222  if (RegNo <= 0)
2223    return ItinData->getOperandCycle(UseClass, UseIdx);
2224
2225  int UseCycle;
2226  if (Subtarget.isCortexA8()) {
2227    UseCycle = RegNo / 2;
2228    if (UseCycle < 2)
2229      UseCycle = 2;
2230    // Read in E3.
2231    UseCycle += 2;
2232  } else if (Subtarget.isCortexA9()) {
2233    UseCycle = (RegNo / 2);
2234    // If there are odd number of registers or if it's not 64-bit aligned,
2235    // then it takes an extra AGU (Address Generation Unit) cycle.
2236    if ((RegNo % 2) || UseAlign < 8)
2237      ++UseCycle;
2238  } else {
2239    // Assume the worst.
2240    UseCycle = 1;
2241  }
2242  return UseCycle;
2243}
2244
2245int
2246ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2247                                    const MCInstrDesc &DefMCID,
2248                                    unsigned DefIdx, unsigned DefAlign,
2249                                    const MCInstrDesc &UseMCID,
2250                                    unsigned UseIdx, unsigned UseAlign) const {
2251  unsigned DefClass = DefMCID.getSchedClass();
2252  unsigned UseClass = UseMCID.getSchedClass();
2253
2254  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2255    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2256
2257  // This may be a def / use of a variable_ops instruction, the operand
2258  // latency might be determinable dynamically. Let the target try to
2259  // figure it out.
2260  int DefCycle = -1;
2261  bool LdmBypass = false;
2262  switch (DefMCID.getOpcode()) {
2263  default:
2264    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2265    break;
2266
2267  case ARM::VLDMDIA:
2268  case ARM::VLDMDIA_UPD:
2269  case ARM::VLDMDDB_UPD:
2270  case ARM::VLDMSIA:
2271  case ARM::VLDMSIA_UPD:
2272  case ARM::VLDMSDB_UPD:
2273    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2274    break;
2275
2276  case ARM::LDMIA_RET:
2277  case ARM::LDMIA:
2278  case ARM::LDMDA:
2279  case ARM::LDMDB:
2280  case ARM::LDMIB:
2281  case ARM::LDMIA_UPD:
2282  case ARM::LDMDA_UPD:
2283  case ARM::LDMDB_UPD:
2284  case ARM::LDMIB_UPD:
2285  case ARM::tLDMIA:
2286  case ARM::tLDMIA_UPD:
2287  case ARM::tPUSH:
2288  case ARM::t2LDMIA_RET:
2289  case ARM::t2LDMIA:
2290  case ARM::t2LDMDB:
2291  case ARM::t2LDMIA_UPD:
2292  case ARM::t2LDMDB_UPD:
2293    LdmBypass = 1;
2294    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2295    break;
2296  }
2297
2298  if (DefCycle == -1)
2299    // We can't seem to determine the result latency of the def, assume it's 2.
2300    DefCycle = 2;
2301
2302  int UseCycle = -1;
2303  switch (UseMCID.getOpcode()) {
2304  default:
2305    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2306    break;
2307
2308  case ARM::VSTMDIA:
2309  case ARM::VSTMDIA_UPD:
2310  case ARM::VSTMDDB_UPD:
2311  case ARM::VSTMSIA:
2312  case ARM::VSTMSIA_UPD:
2313  case ARM::VSTMSDB_UPD:
2314    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2315    break;
2316
2317  case ARM::STMIA:
2318  case ARM::STMDA:
2319  case ARM::STMDB:
2320  case ARM::STMIB:
2321  case ARM::STMIA_UPD:
2322  case ARM::STMDA_UPD:
2323  case ARM::STMDB_UPD:
2324  case ARM::STMIB_UPD:
2325  case ARM::tSTMIA_UPD:
2326  case ARM::tPOP_RET:
2327  case ARM::tPOP:
2328  case ARM::t2STMIA:
2329  case ARM::t2STMDB:
2330  case ARM::t2STMIA_UPD:
2331  case ARM::t2STMDB_UPD:
2332    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2333    break;
2334  }
2335
2336  if (UseCycle == -1)
2337    // Assume it's read in the first stage.
2338    UseCycle = 1;
2339
2340  UseCycle = DefCycle - UseCycle + 1;
2341  if (UseCycle > 0) {
2342    if (LdmBypass) {
2343      // It's a variable_ops instruction so we can't use DefIdx here. Just use
2344      // first def operand.
2345      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2346                                          UseClass, UseIdx))
2347        --UseCycle;
2348    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2349                                               UseClass, UseIdx)) {
2350      --UseCycle;
2351    }
2352  }
2353
2354  return UseCycle;
2355}
2356
2357static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
2358                                           const MachineInstr *MI, unsigned Reg,
2359                                           unsigned &DefIdx, unsigned &Dist) {
2360  Dist = 0;
2361
2362  MachineBasicBlock::const_iterator I = MI; ++I;
2363  MachineBasicBlock::const_instr_iterator II =
2364    llvm::prior(I.getInstrIterator());
2365  assert(II->isInsideBundle() && "Empty bundle?");
2366
2367  int Idx = -1;
2368  while (II->isInsideBundle()) {
2369    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
2370    if (Idx != -1)
2371      break;
2372    --II;
2373    ++Dist;
2374  }
2375
2376  assert(Idx != -1 && "Cannot find bundled definition!");
2377  DefIdx = Idx;
2378  return II;
2379}
2380
2381static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
2382                                           const MachineInstr *MI, unsigned Reg,
2383                                           unsigned &UseIdx, unsigned &Dist) {
2384  Dist = 0;
2385
2386  MachineBasicBlock::const_instr_iterator II = MI; ++II;
2387  assert(II->isInsideBundle() && "Empty bundle?");
2388  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2389
2390  // FIXME: This doesn't properly handle multiple uses.
2391  int Idx = -1;
2392  while (II != E && II->isInsideBundle()) {
2393    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
2394    if (Idx != -1)
2395      break;
2396    if (II->getOpcode() != ARM::t2IT)
2397      ++Dist;
2398    ++II;
2399  }
2400
2401  if (Idx == -1) {
2402    Dist = 0;
2403    return 0;
2404  }
2405
2406  UseIdx = Idx;
2407  return II;
2408}
2409
2410int
2411ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2412                             const MachineInstr *DefMI, unsigned DefIdx,
2413                             const MachineInstr *UseMI, unsigned UseIdx) const {
2414  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2415      DefMI->isRegSequence() || DefMI->isImplicitDef())
2416    return 1;
2417
2418  if (!ItinData || ItinData->isEmpty())
2419    return DefMI->mayLoad() ? 3 : 1;
2420
2421  const MCInstrDesc *DefMCID = &DefMI->getDesc();
2422  const MCInstrDesc *UseMCID = &UseMI->getDesc();
2423  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2424  unsigned Reg = DefMO.getReg();
2425  if (Reg == ARM::CPSR) {
2426    if (DefMI->getOpcode() == ARM::FMSTAT) {
2427      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2428      return Subtarget.isCortexA9() ? 1 : 20;
2429    }
2430
2431    // CPSR set and branch can be paired in the same cycle.
2432    if (UseMI->isBranch())
2433      return 0;
2434
2435    // Otherwise it takes the instruction latency (generally one).
2436    int Latency = getInstrLatency(ItinData, DefMI);
2437
2438    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
2439    // its uses. Instructions which are otherwise scheduled between them may
2440    // incur a code size penalty (not able to use the CPSR setting 16-bit
2441    // instructions).
2442    if (Latency > 0 && Subtarget.isThumb2()) {
2443      const MachineFunction *MF = DefMI->getParent()->getParent();
2444      if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2445        --Latency;
2446    }
2447    return Latency;
2448  }
2449
2450  unsigned DefAlign = DefMI->hasOneMemOperand()
2451    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2452  unsigned UseAlign = UseMI->hasOneMemOperand()
2453    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2454
2455  unsigned DefAdj = 0;
2456  if (DefMI->isBundle()) {
2457    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
2458    if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2459        DefMI->isRegSequence() || DefMI->isImplicitDef())
2460      return 1;
2461    DefMCID = &DefMI->getDesc();
2462  }
2463  unsigned UseAdj = 0;
2464  if (UseMI->isBundle()) {
2465    unsigned NewUseIdx;
2466    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
2467                                                   Reg, NewUseIdx, UseAdj);
2468    if (NewUseMI) {
2469      UseMI = NewUseMI;
2470      UseIdx = NewUseIdx;
2471      UseMCID = &UseMI->getDesc();
2472    }
2473  }
2474
2475  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
2476                                  *UseMCID, UseIdx, UseAlign);
2477  int Adj = DefAdj + UseAdj;
2478  if (Adj) {
2479    Latency -= (int)(DefAdj + UseAdj);
2480    if (Latency < 1)
2481      return 1;
2482  }
2483
2484  if (Latency > 1 &&
2485      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2486    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2487    // variants are one cycle cheaper.
2488    switch (DefMCID->getOpcode()) {
2489    default: break;
2490    case ARM::LDRrs:
2491    case ARM::LDRBrs: {
2492      unsigned ShOpVal = DefMI->getOperand(3).getImm();
2493      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2494      if (ShImm == 0 ||
2495          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2496        --Latency;
2497      break;
2498    }
2499    case ARM::t2LDRs:
2500    case ARM::t2LDRBs:
2501    case ARM::t2LDRHs:
2502    case ARM::t2LDRSHs: {
2503      // Thumb2 mode: lsl only.
2504      unsigned ShAmt = DefMI->getOperand(3).getImm();
2505      if (ShAmt == 0 || ShAmt == 2)
2506        --Latency;
2507      break;
2508    }
2509    }
2510  }
2511
2512  if (DefAlign < 8 && Subtarget.isCortexA9())
2513    switch (DefMCID->getOpcode()) {
2514    default: break;
2515    case ARM::VLD1q8:
2516    case ARM::VLD1q16:
2517    case ARM::VLD1q32:
2518    case ARM::VLD1q64:
2519    case ARM::VLD1q8wb_fixed:
2520    case ARM::VLD1q16wb_fixed:
2521    case ARM::VLD1q32wb_fixed:
2522    case ARM::VLD1q64wb_fixed:
2523    case ARM::VLD1q8wb_register:
2524    case ARM::VLD1q16wb_register:
2525    case ARM::VLD1q32wb_register:
2526    case ARM::VLD1q64wb_register:
2527    case ARM::VLD2d8:
2528    case ARM::VLD2d16:
2529    case ARM::VLD2d32:
2530    case ARM::VLD2q8:
2531    case ARM::VLD2q16:
2532    case ARM::VLD2q32:
2533    case ARM::VLD2d8wb_fixed:
2534    case ARM::VLD2d16wb_fixed:
2535    case ARM::VLD2d32wb_fixed:
2536    case ARM::VLD2q8wb_fixed:
2537    case ARM::VLD2q16wb_fixed:
2538    case ARM::VLD2q32wb_fixed:
2539    case ARM::VLD2d8wb_register:
2540    case ARM::VLD2d16wb_register:
2541    case ARM::VLD2d32wb_register:
2542    case ARM::VLD2q8wb_register:
2543    case ARM::VLD2q16wb_register:
2544    case ARM::VLD2q32wb_register:
2545    case ARM::VLD3d8:
2546    case ARM::VLD3d16:
2547    case ARM::VLD3d32:
2548    case ARM::VLD1d64T:
2549    case ARM::VLD3d8_UPD:
2550    case ARM::VLD3d16_UPD:
2551    case ARM::VLD3d32_UPD:
2552    case ARM::VLD1d64Twb_fixed:
2553    case ARM::VLD1d64Twb_register:
2554    case ARM::VLD3q8_UPD:
2555    case ARM::VLD3q16_UPD:
2556    case ARM::VLD3q32_UPD:
2557    case ARM::VLD4d8:
2558    case ARM::VLD4d16:
2559    case ARM::VLD4d32:
2560    case ARM::VLD1d64Q:
2561    case ARM::VLD4d8_UPD:
2562    case ARM::VLD4d16_UPD:
2563    case ARM::VLD4d32_UPD:
2564    case ARM::VLD1d64Qwb_fixed:
2565    case ARM::VLD1d64Qwb_register:
2566    case ARM::VLD4q8_UPD:
2567    case ARM::VLD4q16_UPD:
2568    case ARM::VLD4q32_UPD:
2569    case ARM::VLD1DUPq8:
2570    case ARM::VLD1DUPq16:
2571    case ARM::VLD1DUPq32:
2572    case ARM::VLD1DUPq8wb_fixed:
2573    case ARM::VLD1DUPq16wb_fixed:
2574    case ARM::VLD1DUPq32wb_fixed:
2575    case ARM::VLD1DUPq8wb_register:
2576    case ARM::VLD1DUPq16wb_register:
2577    case ARM::VLD1DUPq32wb_register:
2578    case ARM::VLD2DUPd8:
2579    case ARM::VLD2DUPd16:
2580    case ARM::VLD2DUPd32:
2581    case ARM::VLD2DUPd8wb_fixed:
2582    case ARM::VLD2DUPd16wb_fixed:
2583    case ARM::VLD2DUPd32wb_fixed:
2584    case ARM::VLD2DUPd8wb_register:
2585    case ARM::VLD2DUPd16wb_register:
2586    case ARM::VLD2DUPd32wb_register:
2587    case ARM::VLD4DUPd8:
2588    case ARM::VLD4DUPd16:
2589    case ARM::VLD4DUPd32:
2590    case ARM::VLD4DUPd8_UPD:
2591    case ARM::VLD4DUPd16_UPD:
2592    case ARM::VLD4DUPd32_UPD:
2593    case ARM::VLD1LNd8:
2594    case ARM::VLD1LNd16:
2595    case ARM::VLD1LNd32:
2596    case ARM::VLD1LNd8_UPD:
2597    case ARM::VLD1LNd16_UPD:
2598    case ARM::VLD1LNd32_UPD:
2599    case ARM::VLD2LNd8:
2600    case ARM::VLD2LNd16:
2601    case ARM::VLD2LNd32:
2602    case ARM::VLD2LNq16:
2603    case ARM::VLD2LNq32:
2604    case ARM::VLD2LNd8_UPD:
2605    case ARM::VLD2LNd16_UPD:
2606    case ARM::VLD2LNd32_UPD:
2607    case ARM::VLD2LNq16_UPD:
2608    case ARM::VLD2LNq32_UPD:
2609    case ARM::VLD4LNd8:
2610    case ARM::VLD4LNd16:
2611    case ARM::VLD4LNd32:
2612    case ARM::VLD4LNq16:
2613    case ARM::VLD4LNq32:
2614    case ARM::VLD4LNd8_UPD:
2615    case ARM::VLD4LNd16_UPD:
2616    case ARM::VLD4LNd32_UPD:
2617    case ARM::VLD4LNq16_UPD:
2618    case ARM::VLD4LNq32_UPD:
2619      // If the address is not 64-bit aligned, the latencies of these
2620      // instructions increases by one.
2621      ++Latency;
2622      break;
2623    }
2624
2625  return Latency;
2626}
2627
2628int
2629ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2630                                    SDNode *DefNode, unsigned DefIdx,
2631                                    SDNode *UseNode, unsigned UseIdx) const {
2632  if (!DefNode->isMachineOpcode())
2633    return 1;
2634
2635  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
2636
2637  if (isZeroCost(DefMCID.Opcode))
2638    return 0;
2639
2640  if (!ItinData || ItinData->isEmpty())
2641    return DefMCID.mayLoad() ? 3 : 1;
2642
2643  if (!UseNode->isMachineOpcode()) {
2644    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
2645    if (Subtarget.isCortexA9())
2646      return Latency <= 2 ? 1 : Latency - 1;
2647    else
2648      return Latency <= 3 ? 1 : Latency - 2;
2649  }
2650
2651  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
2652  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
2653  unsigned DefAlign = !DefMN->memoperands_empty()
2654    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
2655  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
2656  unsigned UseAlign = !UseMN->memoperands_empty()
2657    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
2658  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2659                                  UseMCID, UseIdx, UseAlign);
2660
2661  if (Latency > 1 &&
2662      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2663    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2664    // variants are one cycle cheaper.
2665    switch (DefMCID.getOpcode()) {
2666    default: break;
2667    case ARM::LDRrs:
2668    case ARM::LDRBrs: {
2669      unsigned ShOpVal =
2670        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2671      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2672      if (ShImm == 0 ||
2673          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2674        --Latency;
2675      break;
2676    }
2677    case ARM::t2LDRs:
2678    case ARM::t2LDRBs:
2679    case ARM::t2LDRHs:
2680    case ARM::t2LDRSHs: {
2681      // Thumb2 mode: lsl only.
2682      unsigned ShAmt =
2683        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2684      if (ShAmt == 0 || ShAmt == 2)
2685        --Latency;
2686      break;
2687    }
2688    }
2689  }
2690
2691  if (DefAlign < 8 && Subtarget.isCortexA9())
2692    switch (DefMCID.getOpcode()) {
2693    default: break;
2694    case ARM::VLD1q8Pseudo:
2695    case ARM::VLD1q16Pseudo:
2696    case ARM::VLD1q32Pseudo:
2697    case ARM::VLD1q64Pseudo:
2698    case ARM::VLD1q8PseudoWB_register:
2699    case ARM::VLD1q16PseudoWB_register:
2700    case ARM::VLD1q32PseudoWB_register:
2701    case ARM::VLD1q64PseudoWB_register:
2702    case ARM::VLD1q8PseudoWB_fixed:
2703    case ARM::VLD1q16PseudoWB_fixed:
2704    case ARM::VLD1q32PseudoWB_fixed:
2705    case ARM::VLD1q64PseudoWB_fixed:
2706    case ARM::VLD2d8Pseudo:
2707    case ARM::VLD2d16Pseudo:
2708    case ARM::VLD2d32Pseudo:
2709    case ARM::VLD2q8Pseudo:
2710    case ARM::VLD2q16Pseudo:
2711    case ARM::VLD2q32Pseudo:
2712    case ARM::VLD2d8PseudoWB_fixed:
2713    case ARM::VLD2d16PseudoWB_fixed:
2714    case ARM::VLD2d32PseudoWB_fixed:
2715    case ARM::VLD2q8PseudoWB_fixed:
2716    case ARM::VLD2q16PseudoWB_fixed:
2717    case ARM::VLD2q32PseudoWB_fixed:
2718    case ARM::VLD2d8PseudoWB_register:
2719    case ARM::VLD2d16PseudoWB_register:
2720    case ARM::VLD2d32PseudoWB_register:
2721    case ARM::VLD2q8PseudoWB_register:
2722    case ARM::VLD2q16PseudoWB_register:
2723    case ARM::VLD2q32PseudoWB_register:
2724    case ARM::VLD3d8Pseudo:
2725    case ARM::VLD3d16Pseudo:
2726    case ARM::VLD3d32Pseudo:
2727    case ARM::VLD1d64TPseudo:
2728    case ARM::VLD3d8Pseudo_UPD:
2729    case ARM::VLD3d16Pseudo_UPD:
2730    case ARM::VLD3d32Pseudo_UPD:
2731    case ARM::VLD3q8Pseudo_UPD:
2732    case ARM::VLD3q16Pseudo_UPD:
2733    case ARM::VLD3q32Pseudo_UPD:
2734    case ARM::VLD3q8oddPseudo:
2735    case ARM::VLD3q16oddPseudo:
2736    case ARM::VLD3q32oddPseudo:
2737    case ARM::VLD3q8oddPseudo_UPD:
2738    case ARM::VLD3q16oddPseudo_UPD:
2739    case ARM::VLD3q32oddPseudo_UPD:
2740    case ARM::VLD4d8Pseudo:
2741    case ARM::VLD4d16Pseudo:
2742    case ARM::VLD4d32Pseudo:
2743    case ARM::VLD1d64QPseudo:
2744    case ARM::VLD4d8Pseudo_UPD:
2745    case ARM::VLD4d16Pseudo_UPD:
2746    case ARM::VLD4d32Pseudo_UPD:
2747    case ARM::VLD4q8Pseudo_UPD:
2748    case ARM::VLD4q16Pseudo_UPD:
2749    case ARM::VLD4q32Pseudo_UPD:
2750    case ARM::VLD4q8oddPseudo:
2751    case ARM::VLD4q16oddPseudo:
2752    case ARM::VLD4q32oddPseudo:
2753    case ARM::VLD4q8oddPseudo_UPD:
2754    case ARM::VLD4q16oddPseudo_UPD:
2755    case ARM::VLD4q32oddPseudo_UPD:
2756    case ARM::VLD1DUPq8Pseudo:
2757    case ARM::VLD1DUPq16Pseudo:
2758    case ARM::VLD1DUPq32Pseudo:
2759    case ARM::VLD1DUPq8PseudoWB_fixed:
2760    case ARM::VLD1DUPq16PseudoWB_fixed:
2761    case ARM::VLD1DUPq32PseudoWB_fixed:
2762    case ARM::VLD1DUPq8PseudoWB_register:
2763    case ARM::VLD1DUPq16PseudoWB_register:
2764    case ARM::VLD1DUPq32PseudoWB_register:
2765    case ARM::VLD2DUPd8Pseudo:
2766    case ARM::VLD2DUPd16Pseudo:
2767    case ARM::VLD2DUPd32Pseudo:
2768    case ARM::VLD2DUPd8PseudoWB_fixed:
2769    case ARM::VLD2DUPd16PseudoWB_fixed:
2770    case ARM::VLD2DUPd32PseudoWB_fixed:
2771    case ARM::VLD2DUPd8PseudoWB_register:
2772    case ARM::VLD2DUPd16PseudoWB_register:
2773    case ARM::VLD2DUPd32PseudoWB_register:
2774    case ARM::VLD4DUPd8Pseudo:
2775    case ARM::VLD4DUPd16Pseudo:
2776    case ARM::VLD4DUPd32Pseudo:
2777    case ARM::VLD4DUPd8Pseudo_UPD:
2778    case ARM::VLD4DUPd16Pseudo_UPD:
2779    case ARM::VLD4DUPd32Pseudo_UPD:
2780    case ARM::VLD1LNq8Pseudo:
2781    case ARM::VLD1LNq16Pseudo:
2782    case ARM::VLD1LNq32Pseudo:
2783    case ARM::VLD1LNq8Pseudo_UPD:
2784    case ARM::VLD1LNq16Pseudo_UPD:
2785    case ARM::VLD1LNq32Pseudo_UPD:
2786    case ARM::VLD2LNd8Pseudo:
2787    case ARM::VLD2LNd16Pseudo:
2788    case ARM::VLD2LNd32Pseudo:
2789    case ARM::VLD2LNq16Pseudo:
2790    case ARM::VLD2LNq32Pseudo:
2791    case ARM::VLD2LNd8Pseudo_UPD:
2792    case ARM::VLD2LNd16Pseudo_UPD:
2793    case ARM::VLD2LNd32Pseudo_UPD:
2794    case ARM::VLD2LNq16Pseudo_UPD:
2795    case ARM::VLD2LNq32Pseudo_UPD:
2796    case ARM::VLD4LNd8Pseudo:
2797    case ARM::VLD4LNd16Pseudo:
2798    case ARM::VLD4LNd32Pseudo:
2799    case ARM::VLD4LNq16Pseudo:
2800    case ARM::VLD4LNq32Pseudo:
2801    case ARM::VLD4LNd8Pseudo_UPD:
2802    case ARM::VLD4LNd16Pseudo_UPD:
2803    case ARM::VLD4LNd32Pseudo_UPD:
2804    case ARM::VLD4LNq16Pseudo_UPD:
2805    case ARM::VLD4LNq32Pseudo_UPD:
2806      // If the address is not 64-bit aligned, the latencies of these
2807      // instructions increases by one.
2808      ++Latency;
2809      break;
2810    }
2811
2812  return Latency;
2813}
2814
2815unsigned
2816ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
2817                                   const MachineInstr *DefMI, unsigned DefIdx,
2818                                   const MachineInstr *DepMI) const {
2819  unsigned Reg = DefMI->getOperand(DefIdx).getReg();
2820  if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
2821    return 1;
2822
2823  // If the second MI is predicated, then there is an implicit use dependency.
2824  return getOperandLatency(ItinData, DefMI, DefIdx, DepMI,
2825                           DepMI->getNumOperands());
2826}
2827
2828int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2829                                      const MachineInstr *MI,
2830                                      unsigned *PredCost) const {
2831  if (MI->isCopyLike() || MI->isInsertSubreg() ||
2832      MI->isRegSequence() || MI->isImplicitDef())
2833    return 1;
2834
2835  if (!ItinData || ItinData->isEmpty())
2836    return 1;
2837
2838  if (MI->isBundle()) {
2839    int Latency = 0;
2840    MachineBasicBlock::const_instr_iterator I = MI;
2841    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2842    while (++I != E && I->isInsideBundle()) {
2843      if (I->getOpcode() != ARM::t2IT)
2844        Latency += getInstrLatency(ItinData, I, PredCost);
2845    }
2846    return Latency;
2847  }
2848
2849  const MCInstrDesc &MCID = MI->getDesc();
2850  unsigned Class = MCID.getSchedClass();
2851  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
2852  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)))
2853    // When predicated, CPSR is an additional source operand for CPSR updating
2854    // instructions, this apparently increases their latencies.
2855    *PredCost = 1;
2856  if (UOps)
2857    return ItinData->getStageLatency(Class);
2858  return getNumMicroOps(ItinData, MI);
2859}
2860
2861int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2862                                      SDNode *Node) const {
2863  if (!Node->isMachineOpcode())
2864    return 1;
2865
2866  if (!ItinData || ItinData->isEmpty())
2867    return 1;
2868
2869  unsigned Opcode = Node->getMachineOpcode();
2870  switch (Opcode) {
2871  default:
2872    return ItinData->getStageLatency(get(Opcode).getSchedClass());
2873  case ARM::VLDMQIA:
2874  case ARM::VSTMQIA:
2875    return 2;
2876  }
2877}
2878
2879bool ARMBaseInstrInfo::
2880hasHighOperandLatency(const InstrItineraryData *ItinData,
2881                      const MachineRegisterInfo *MRI,
2882                      const MachineInstr *DefMI, unsigned DefIdx,
2883                      const MachineInstr *UseMI, unsigned UseIdx) const {
2884  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2885  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
2886  if (Subtarget.isCortexA8() &&
2887      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
2888    // CortexA8 VFP instructions are not pipelined.
2889    return true;
2890
2891  // Hoist VFP / NEON instructions with 4 or higher latency.
2892  int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
2893  if (Latency <= 3)
2894    return false;
2895  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
2896         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
2897}
2898
2899bool ARMBaseInstrInfo::
2900hasLowDefLatency(const InstrItineraryData *ItinData,
2901                 const MachineInstr *DefMI, unsigned DefIdx) const {
2902  if (!ItinData || ItinData->isEmpty())
2903    return false;
2904
2905  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2906  if (DDomain == ARMII::DomainGeneral) {
2907    unsigned DefClass = DefMI->getDesc().getSchedClass();
2908    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2909    return (DefCycle != -1 && DefCycle <= 2);
2910  }
2911  return false;
2912}
2913
2914bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
2915                                         StringRef &ErrInfo) const {
2916  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
2917    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
2918    return false;
2919  }
2920  return true;
2921}
2922
2923bool
2924ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
2925                                     unsigned &AddSubOpc,
2926                                     bool &NegAcc, bool &HasLane) const {
2927  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
2928  if (I == MLxEntryMap.end())
2929    return false;
2930
2931  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
2932  MulOpc = Entry.MulOpc;
2933  AddSubOpc = Entry.AddSubOpc;
2934  NegAcc = Entry.NegAcc;
2935  HasLane = Entry.HasLane;
2936  return true;
2937}
2938
2939//===----------------------------------------------------------------------===//
2940// Execution domains.
2941//===----------------------------------------------------------------------===//
2942//
2943// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
2944// and some can go down both.  The vmov instructions go down the VFP pipeline,
2945// but they can be changed to vorr equivalents that are executed by the NEON
2946// pipeline.
2947//
2948// We use the following execution domain numbering:
2949//
2950enum ARMExeDomain {
2951  ExeGeneric = 0,
2952  ExeVFP = 1,
2953  ExeNEON = 2
2954};
2955//
2956// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
2957//
2958std::pair<uint16_t, uint16_t>
2959ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
2960  // VMOVD is a VFP instruction, but can be changed to NEON if it isn't
2961  // predicated.
2962  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
2963    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
2964
2965  // No other instructions can be swizzled, so just determine their domain.
2966  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
2967
2968  if (Domain & ARMII::DomainNEON)
2969    return std::make_pair(ExeNEON, 0);
2970
2971  // Certain instructions can go either way on Cortex-A8.
2972  // Treat them as NEON instructions.
2973  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
2974    return std::make_pair(ExeNEON, 0);
2975
2976  if (Domain & ARMII::DomainVFP)
2977    return std::make_pair(ExeVFP, 0);
2978
2979  return std::make_pair(ExeGeneric, 0);
2980}
2981
2982void
2983ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
2984  // We only know how to change VMOVD into VORR.
2985  assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD");
2986  if (Domain != ExeNEON)
2987    return;
2988
2989  // Zap the predicate operands.
2990  assert(!isPredicated(MI) && "Cannot predicate a VORRd");
2991  MI->RemoveOperand(3);
2992  MI->RemoveOperand(2);
2993
2994  // Change to a VORRd which requires two identical use operands.
2995  MI->setDesc(get(ARM::VORRd));
2996
2997  // Add the extra source operand and new predicates.
2998  // This will go before any implicit ops.
2999  AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
3000}
3001