ARMBaseInstrInfo.cpp revision fce711cb65716f86b4e150f42cbb597bbecf7dbe
1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMConstantPoolValue.h"
17#include "ARMHazardRecognizer.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMRegisterInfo.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/STLExtras.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48static cl::opt<bool>
49WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50           cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52/// ARM_MLxEntry - Record information about MLA / MLS instructions.
53struct ARM_MLxEntry {
54  unsigned MLxOpc;     // MLA / MLS opcode
55  unsigned MulOpc;     // Expanded multiplication opcode
56  unsigned AddSubOpc;  // Expanded add / sub opcode
57  bool NegAcc;         // True if the acc is negated before the add / sub.
58  bool HasLane;        // True if instruction has an extra "lane" operand.
59};
60
61static const ARM_MLxEntry ARM_MLxTable[] = {
62  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
63  // fp scalar ops
64  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
65  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
66  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
67  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
68  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
69  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
70  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
71  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
72
73  // fp SIMD ops
74  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
75  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
76  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
77  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
78  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
79  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
80  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
81  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
82};
83
84ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
85  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
86    Subtarget(STI) {
87  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
88    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
89      assert(false && "Duplicated entries?");
90    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
91    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
92  }
93}
94
95// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
96// currently defaults to no prepass hazard recognizer.
97ScheduleHazardRecognizer *ARMBaseInstrInfo::
98CreateTargetHazardRecognizer(const TargetMachine *TM,
99                             const ScheduleDAG *DAG) const {
100  if (usePreRAHazardRecognizer()) {
101    const InstrItineraryData *II = TM->getInstrItineraryData();
102    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
103  }
104  return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
105}
106
107ScheduleHazardRecognizer *ARMBaseInstrInfo::
108CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
109                                   const ScheduleDAG *DAG) const {
110  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
111    return (ScheduleHazardRecognizer *)
112      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
113  return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
114}
115
116MachineInstr *
117ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
118                                        MachineBasicBlock::iterator &MBBI,
119                                        LiveVariables *LV) const {
120  // FIXME: Thumb2 support.
121
122  if (!EnableARM3Addr)
123    return NULL;
124
125  MachineInstr *MI = MBBI;
126  MachineFunction &MF = *MI->getParent()->getParent();
127  uint64_t TSFlags = MI->getDesc().TSFlags;
128  bool isPre = false;
129  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
130  default: return NULL;
131  case ARMII::IndexModePre:
132    isPre = true;
133    break;
134  case ARMII::IndexModePost:
135    break;
136  }
137
138  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
139  // operation.
140  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
141  if (MemOpc == 0)
142    return NULL;
143
144  MachineInstr *UpdateMI = NULL;
145  MachineInstr *MemMI = NULL;
146  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
147  const MCInstrDesc &MCID = MI->getDesc();
148  unsigned NumOps = MCID.getNumOperands();
149  bool isLoad = !MI->mayStore();
150  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
151  const MachineOperand &Base = MI->getOperand(2);
152  const MachineOperand &Offset = MI->getOperand(NumOps-3);
153  unsigned WBReg = WB.getReg();
154  unsigned BaseReg = Base.getReg();
155  unsigned OffReg = Offset.getReg();
156  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
157  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
158  switch (AddrMode) {
159  default: llvm_unreachable("Unknown indexed op!");
160  case ARMII::AddrMode2: {
161    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
162    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
163    if (OffReg == 0) {
164      if (ARM_AM::getSOImmVal(Amt) == -1)
165        // Can't encode it in a so_imm operand. This transformation will
166        // add more than 1 instruction. Abandon!
167        return NULL;
168      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
169                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
170        .addReg(BaseReg).addImm(Amt)
171        .addImm(Pred).addReg(0).addReg(0);
172    } else if (Amt != 0) {
173      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
174      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
175      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
176                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
177        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
178        .addImm(Pred).addReg(0).addReg(0);
179    } else
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
182        .addReg(BaseReg).addReg(OffReg)
183        .addImm(Pred).addReg(0).addReg(0);
184    break;
185  }
186  case ARMII::AddrMode3 : {
187    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
188    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
189    if (OffReg == 0)
190      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
191      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
192                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193        .addReg(BaseReg).addImm(Amt)
194        .addImm(Pred).addReg(0).addReg(0);
195    else
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
198        .addReg(BaseReg).addReg(OffReg)
199        .addImm(Pred).addReg(0).addReg(0);
200    break;
201  }
202  }
203
204  std::vector<MachineInstr*> NewMIs;
205  if (isPre) {
206    if (isLoad)
207      MemMI = BuildMI(MF, MI->getDebugLoc(),
208                      get(MemOpc), MI->getOperand(0).getReg())
209        .addReg(WBReg).addImm(0).addImm(Pred);
210    else
211      MemMI = BuildMI(MF, MI->getDebugLoc(),
212                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
213        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
214    NewMIs.push_back(MemMI);
215    NewMIs.push_back(UpdateMI);
216  } else {
217    if (isLoad)
218      MemMI = BuildMI(MF, MI->getDebugLoc(),
219                      get(MemOpc), MI->getOperand(0).getReg())
220        .addReg(BaseReg).addImm(0).addImm(Pred);
221    else
222      MemMI = BuildMI(MF, MI->getDebugLoc(),
223                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
224        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
225    if (WB.isDead())
226      UpdateMI->getOperand(0).setIsDead();
227    NewMIs.push_back(UpdateMI);
228    NewMIs.push_back(MemMI);
229  }
230
231  // Transfer LiveVariables states, kill / dead info.
232  if (LV) {
233    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234      MachineOperand &MO = MI->getOperand(i);
235      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
236        unsigned Reg = MO.getReg();
237
238        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
239        if (MO.isDef()) {
240          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
241          if (MO.isDead())
242            LV->addVirtualRegisterDead(Reg, NewMI);
243        }
244        if (MO.isUse() && MO.isKill()) {
245          for (unsigned j = 0; j < 2; ++j) {
246            // Look at the two new MI's in reverse order.
247            MachineInstr *NewMI = NewMIs[j];
248            if (!NewMI->readsRegister(Reg))
249              continue;
250            LV->addVirtualRegisterKilled(Reg, NewMI);
251            if (VI.removeKill(MI))
252              VI.Kills.push_back(NewMI);
253            break;
254          }
255        }
256      }
257    }
258  }
259
260  MFI->insert(MBBI, NewMIs[1]);
261  MFI->insert(MBBI, NewMIs[0]);
262  return NewMIs[0];
263}
264
265// Branch analysis.
266bool
267ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
268                                MachineBasicBlock *&FBB,
269                                SmallVectorImpl<MachineOperand> &Cond,
270                                bool AllowModify) const {
271  // If the block has no terminators, it just falls into the block after it.
272  MachineBasicBlock::iterator I = MBB.end();
273  if (I == MBB.begin())
274    return false;
275  --I;
276  while (I->isDebugValue()) {
277    if (I == MBB.begin())
278      return false;
279    --I;
280  }
281  if (!isUnpredicatedTerminator(I))
282    return false;
283
284  // Get the last instruction in the block.
285  MachineInstr *LastInst = I;
286
287  // If there is only one terminator instruction, process it.
288  unsigned LastOpc = LastInst->getOpcode();
289  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
290    if (isUncondBranchOpcode(LastOpc)) {
291      TBB = LastInst->getOperand(0).getMBB();
292      return false;
293    }
294    if (isCondBranchOpcode(LastOpc)) {
295      // Block ends with fall-through condbranch.
296      TBB = LastInst->getOperand(0).getMBB();
297      Cond.push_back(LastInst->getOperand(1));
298      Cond.push_back(LastInst->getOperand(2));
299      return false;
300    }
301    return true;  // Can't handle indirect branch.
302  }
303
304  // Get the instruction before it if it is a terminator.
305  MachineInstr *SecondLastInst = I;
306  unsigned SecondLastOpc = SecondLastInst->getOpcode();
307
308  // If AllowModify is true and the block ends with two or more unconditional
309  // branches, delete all but the first unconditional branch.
310  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
311    while (isUncondBranchOpcode(SecondLastOpc)) {
312      LastInst->eraseFromParent();
313      LastInst = SecondLastInst;
314      LastOpc = LastInst->getOpcode();
315      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
316        // Return now the only terminator is an unconditional branch.
317        TBB = LastInst->getOperand(0).getMBB();
318        return false;
319      } else {
320        SecondLastInst = I;
321        SecondLastOpc = SecondLastInst->getOpcode();
322      }
323    }
324  }
325
326  // If there are three terminators, we don't know what sort of block this is.
327  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
328    return true;
329
330  // If the block ends with a B and a Bcc, handle it.
331  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
332    TBB =  SecondLastInst->getOperand(0).getMBB();
333    Cond.push_back(SecondLastInst->getOperand(1));
334    Cond.push_back(SecondLastInst->getOperand(2));
335    FBB = LastInst->getOperand(0).getMBB();
336    return false;
337  }
338
339  // If the block ends with two unconditional branches, handle it.  The second
340  // one is not executed, so remove it.
341  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
342    TBB = SecondLastInst->getOperand(0).getMBB();
343    I = LastInst;
344    if (AllowModify)
345      I->eraseFromParent();
346    return false;
347  }
348
349  // ...likewise if it ends with a branch table followed by an unconditional
350  // branch. The branch folder can create these, and we must get rid of them for
351  // correctness of Thumb constant islands.
352  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
353       isIndirectBranchOpcode(SecondLastOpc)) &&
354      isUncondBranchOpcode(LastOpc)) {
355    I = LastInst;
356    if (AllowModify)
357      I->eraseFromParent();
358    return true;
359  }
360
361  // Otherwise, can't handle this.
362  return true;
363}
364
365
366unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
367  MachineBasicBlock::iterator I = MBB.end();
368  if (I == MBB.begin()) return 0;
369  --I;
370  while (I->isDebugValue()) {
371    if (I == MBB.begin())
372      return 0;
373    --I;
374  }
375  if (!isUncondBranchOpcode(I->getOpcode()) &&
376      !isCondBranchOpcode(I->getOpcode()))
377    return 0;
378
379  // Remove the branch.
380  I->eraseFromParent();
381
382  I = MBB.end();
383
384  if (I == MBB.begin()) return 1;
385  --I;
386  if (!isCondBranchOpcode(I->getOpcode()))
387    return 1;
388
389  // Remove the branch.
390  I->eraseFromParent();
391  return 2;
392}
393
394unsigned
395ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
396                               MachineBasicBlock *FBB,
397                               const SmallVectorImpl<MachineOperand> &Cond,
398                               DebugLoc DL) const {
399  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
400  int BOpc   = !AFI->isThumbFunction()
401    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
402  int BccOpc = !AFI->isThumbFunction()
403    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
404  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
405
406  // Shouldn't be a fall through.
407  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
408  assert((Cond.size() == 2 || Cond.size() == 0) &&
409         "ARM branch conditions have two components!");
410
411  if (FBB == 0) {
412    if (Cond.empty()) { // Unconditional branch?
413      if (isThumb)
414        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
415      else
416        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
417    } else
418      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
419        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
420    return 1;
421  }
422
423  // Two-way conditional branch.
424  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
425    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
426  if (isThumb)
427    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
428  else
429    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
430  return 2;
431}
432
433bool ARMBaseInstrInfo::
434ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
435  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
436  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
437  return false;
438}
439
440bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
441  if (MI->isBundle()) {
442    MachineBasicBlock::const_instr_iterator I = MI;
443    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
444    while (++I != E && I->isInsideBundle()) {
445      int PIdx = I->findFirstPredOperandIdx();
446      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
447        return true;
448    }
449    return false;
450  }
451
452  int PIdx = MI->findFirstPredOperandIdx();
453  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
454}
455
456bool ARMBaseInstrInfo::
457PredicateInstruction(MachineInstr *MI,
458                     const SmallVectorImpl<MachineOperand> &Pred) const {
459  unsigned Opc = MI->getOpcode();
460  if (isUncondBranchOpcode(Opc)) {
461    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
462    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
463    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
464    return true;
465  }
466
467  int PIdx = MI->findFirstPredOperandIdx();
468  if (PIdx != -1) {
469    MachineOperand &PMO = MI->getOperand(PIdx);
470    PMO.setImm(Pred[0].getImm());
471    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
472    return true;
473  }
474  return false;
475}
476
477bool ARMBaseInstrInfo::
478SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
479                  const SmallVectorImpl<MachineOperand> &Pred2) const {
480  if (Pred1.size() > 2 || Pred2.size() > 2)
481    return false;
482
483  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
484  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
485  if (CC1 == CC2)
486    return true;
487
488  switch (CC1) {
489  default:
490    return false;
491  case ARMCC::AL:
492    return true;
493  case ARMCC::HS:
494    return CC2 == ARMCC::HI;
495  case ARMCC::LS:
496    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
497  case ARMCC::GE:
498    return CC2 == ARMCC::GT;
499  case ARMCC::LE:
500    return CC2 == ARMCC::LT;
501  }
502}
503
504bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
505                                    std::vector<MachineOperand> &Pred) const {
506  bool Found = false;
507  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
508    const MachineOperand &MO = MI->getOperand(i);
509    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
510        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
511      Pred.push_back(MO);
512      Found = true;
513    }
514  }
515
516  return Found;
517}
518
519/// isPredicable - Return true if the specified instruction can be predicated.
520/// By default, this returns true for every instruction with a
521/// PredicateOperand.
522bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
523  if (!MI->isPredicable())
524    return false;
525
526  if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
527    ARMFunctionInfo *AFI =
528      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
529    return AFI->isThumb2Function();
530  }
531  return true;
532}
533
534/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
535LLVM_ATTRIBUTE_NOINLINE
536static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
537                                unsigned JTI);
538static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
539                                unsigned JTI) {
540  assert(JTI < JT.size());
541  return JT[JTI].MBBs.size();
542}
543
544/// GetInstSize - Return the size of the specified MachineInstr.
545///
546unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
547  const MachineBasicBlock &MBB = *MI->getParent();
548  const MachineFunction *MF = MBB.getParent();
549  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
550
551  const MCInstrDesc &MCID = MI->getDesc();
552  if (MCID.getSize())
553    return MCID.getSize();
554
555  // If this machine instr is an inline asm, measure it.
556  if (MI->getOpcode() == ARM::INLINEASM)
557    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
558  if (MI->isLabel())
559    return 0;
560  unsigned Opc = MI->getOpcode();
561  switch (Opc) {
562  case TargetOpcode::IMPLICIT_DEF:
563  case TargetOpcode::KILL:
564  case TargetOpcode::PROLOG_LABEL:
565  case TargetOpcode::EH_LABEL:
566  case TargetOpcode::DBG_VALUE:
567    return 0;
568  case TargetOpcode::BUNDLE:
569    return getInstBundleLength(MI);
570  case ARM::MOVi16_ga_pcrel:
571  case ARM::MOVTi16_ga_pcrel:
572  case ARM::t2MOVi16_ga_pcrel:
573  case ARM::t2MOVTi16_ga_pcrel:
574    return 4;
575  case ARM::MOVi32imm:
576  case ARM::t2MOVi32imm:
577    return 8;
578  case ARM::CONSTPOOL_ENTRY:
579    // If this machine instr is a constant pool entry, its size is recorded as
580    // operand #2.
581    return MI->getOperand(2).getImm();
582  case ARM::Int_eh_sjlj_longjmp:
583    return 16;
584  case ARM::tInt_eh_sjlj_longjmp:
585    return 10;
586  case ARM::Int_eh_sjlj_setjmp:
587  case ARM::Int_eh_sjlj_setjmp_nofp:
588    return 20;
589  case ARM::tInt_eh_sjlj_setjmp:
590  case ARM::t2Int_eh_sjlj_setjmp:
591  case ARM::t2Int_eh_sjlj_setjmp_nofp:
592    return 12;
593  case ARM::BR_JTr:
594  case ARM::BR_JTm:
595  case ARM::BR_JTadd:
596  case ARM::tBR_JTr:
597  case ARM::t2BR_JT:
598  case ARM::t2TBB_JT:
599  case ARM::t2TBH_JT: {
600    // These are jumptable branches, i.e. a branch followed by an inlined
601    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
602    // entry is one byte; TBH two byte each.
603    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
604      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
605    unsigned NumOps = MCID.getNumOperands();
606    MachineOperand JTOP =
607      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
608    unsigned JTI = JTOP.getIndex();
609    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
610    assert(MJTI != 0);
611    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
612    assert(JTI < JT.size());
613    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
614    // 4 aligned. The assembler / linker may add 2 byte padding just before
615    // the JT entries.  The size does not include this padding; the
616    // constant islands pass does separate bookkeeping for it.
617    // FIXME: If we know the size of the function is less than (1 << 16) *2
618    // bytes, we can use 16-bit entries instead. Then there won't be an
619    // alignment issue.
620    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
621    unsigned NumEntries = getNumJTEntries(JT, JTI);
622    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
623      // Make sure the instruction that follows TBB is 2-byte aligned.
624      // FIXME: Constant island pass should insert an "ALIGN" instruction
625      // instead.
626      ++NumEntries;
627    return NumEntries * EntrySize + InstSize;
628  }
629  default:
630    // Otherwise, pseudo-instruction sizes are zero.
631    return 0;
632  }
633}
634
635unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
636  unsigned Size = 0;
637  MachineBasicBlock::const_instr_iterator I = MI;
638  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
639  while (++I != E && I->isInsideBundle()) {
640    assert(!I->isBundle() && "No nested bundle!");
641    Size += GetInstSizeInBytes(&*I);
642  }
643  return Size;
644}
645
646void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
647                                   MachineBasicBlock::iterator I, DebugLoc DL,
648                                   unsigned DestReg, unsigned SrcReg,
649                                   bool KillSrc) const {
650  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
651  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
652
653  if (GPRDest && GPRSrc) {
654    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
655                                  .addReg(SrcReg, getKillRegState(KillSrc))));
656    return;
657  }
658
659  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
660  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
661
662  unsigned Opc = 0;
663  if (SPRDest && SPRSrc)
664    Opc = ARM::VMOVS;
665  else if (GPRDest && SPRSrc)
666    Opc = ARM::VMOVRS;
667  else if (SPRDest && GPRSrc)
668    Opc = ARM::VMOVSR;
669  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
670    Opc = ARM::VMOVD;
671  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
672    Opc = ARM::VORRq;
673
674  if (Opc) {
675    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
676    MIB.addReg(SrcReg, getKillRegState(KillSrc));
677    if (Opc == ARM::VORRq)
678      MIB.addReg(SrcReg, getKillRegState(KillSrc));
679    AddDefaultPred(MIB);
680    return;
681  }
682
683  // Generate instructions for VMOVQQ and VMOVQQQQ pseudos in place.
684  if (ARM::QQPRRegClass.contains(DestReg, SrcReg) ||
685      ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
686    const TargetRegisterInfo *TRI = &getRegisterInfo();
687    assert(ARM::qsub_0 + 3 == ARM::qsub_3 && "Expected contiguous enum.");
688    unsigned EndSubReg = ARM::QQPRRegClass.contains(DestReg, SrcReg) ?
689      ARM::qsub_1 : ARM::qsub_3;
690    for (unsigned i = ARM::qsub_0, e = EndSubReg + 1; i != e; ++i) {
691      unsigned Dst = TRI->getSubReg(DestReg, i);
692      unsigned Src = TRI->getSubReg(SrcReg, i);
693      MachineInstrBuilder Mov =
694        AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VORRq))
695                       .addReg(Dst, RegState::Define)
696                       .addReg(Src, getKillRegState(KillSrc))
697                       .addReg(Src, getKillRegState(KillSrc)));
698      if (i == EndSubReg) {
699        Mov->addRegisterDefined(DestReg, TRI);
700        if (KillSrc)
701          Mov->addRegisterKilled(SrcReg, TRI);
702      }
703    }
704    return;
705  }
706  llvm_unreachable("Impossible reg-to-reg copy");
707}
708
709static const
710MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
711                             unsigned Reg, unsigned SubIdx, unsigned State,
712                             const TargetRegisterInfo *TRI) {
713  if (!SubIdx)
714    return MIB.addReg(Reg, State);
715
716  if (TargetRegisterInfo::isPhysicalRegister(Reg))
717    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
718  return MIB.addReg(Reg, State, SubIdx);
719}
720
721void ARMBaseInstrInfo::
722storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
723                    unsigned SrcReg, bool isKill, int FI,
724                    const TargetRegisterClass *RC,
725                    const TargetRegisterInfo *TRI) const {
726  DebugLoc DL;
727  if (I != MBB.end()) DL = I->getDebugLoc();
728  MachineFunction &MF = *MBB.getParent();
729  MachineFrameInfo &MFI = *MF.getFrameInfo();
730  unsigned Align = MFI.getObjectAlignment(FI);
731
732  MachineMemOperand *MMO =
733    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
734                            MachineMemOperand::MOStore,
735                            MFI.getObjectSize(FI),
736                            Align);
737
738  switch (RC->getSize()) {
739    case 4:
740      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
741        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
742                   .addReg(SrcReg, getKillRegState(isKill))
743                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
744      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
745        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
746                   .addReg(SrcReg, getKillRegState(isKill))
747                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
748      } else
749        llvm_unreachable("Unknown reg class!");
750      break;
751    case 8:
752      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
753        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
754                   .addReg(SrcReg, getKillRegState(isKill))
755                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
756      } else
757        llvm_unreachable("Unknown reg class!");
758      break;
759    case 16:
760      if (ARM::QPRRegClass.hasSubClassEq(RC)) {
761        // Use aligned spills if the stack can be realigned.
762        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
763          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
764                     .addFrameIndex(FI).addImm(16)
765                     .addReg(SrcReg, getKillRegState(isKill))
766                     .addMemOperand(MMO));
767        } else {
768          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
769                     .addReg(SrcReg, getKillRegState(isKill))
770                     .addFrameIndex(FI)
771                     .addMemOperand(MMO));
772        }
773      } else
774        llvm_unreachable("Unknown reg class!");
775      break;
776    case 32:
777      if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
778        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
779          // FIXME: It's possible to only store part of the QQ register if the
780          // spilled def has a sub-register index.
781          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
782                     .addFrameIndex(FI).addImm(16)
783                     .addReg(SrcReg, getKillRegState(isKill))
784                     .addMemOperand(MMO));
785        } else {
786          MachineInstrBuilder MIB =
787          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
788                       .addFrameIndex(FI))
789                       .addMemOperand(MMO);
790          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
791          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
792          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
793                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
794        }
795      } else
796        llvm_unreachable("Unknown reg class!");
797      break;
798    case 64:
799      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
800        MachineInstrBuilder MIB =
801          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
802                         .addFrameIndex(FI))
803                         .addMemOperand(MMO);
804        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
805        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
806        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
807        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
808        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
809        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
810        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
811              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
812      } else
813        llvm_unreachable("Unknown reg class!");
814      break;
815    default:
816      llvm_unreachable("Unknown reg class!");
817  }
818}
819
820unsigned
821ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
822                                     int &FrameIndex) const {
823  switch (MI->getOpcode()) {
824  default: break;
825  case ARM::STRrs:
826  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
827    if (MI->getOperand(1).isFI() &&
828        MI->getOperand(2).isReg() &&
829        MI->getOperand(3).isImm() &&
830        MI->getOperand(2).getReg() == 0 &&
831        MI->getOperand(3).getImm() == 0) {
832      FrameIndex = MI->getOperand(1).getIndex();
833      return MI->getOperand(0).getReg();
834    }
835    break;
836  case ARM::STRi12:
837  case ARM::t2STRi12:
838  case ARM::tSTRspi:
839  case ARM::VSTRD:
840  case ARM::VSTRS:
841    if (MI->getOperand(1).isFI() &&
842        MI->getOperand(2).isImm() &&
843        MI->getOperand(2).getImm() == 0) {
844      FrameIndex = MI->getOperand(1).getIndex();
845      return MI->getOperand(0).getReg();
846    }
847    break;
848  case ARM::VST1q64Pseudo:
849    if (MI->getOperand(0).isFI() &&
850        MI->getOperand(2).getSubReg() == 0) {
851      FrameIndex = MI->getOperand(0).getIndex();
852      return MI->getOperand(2).getReg();
853    }
854    break;
855  case ARM::VSTMQIA:
856    if (MI->getOperand(1).isFI() &&
857        MI->getOperand(0).getSubReg() == 0) {
858      FrameIndex = MI->getOperand(1).getIndex();
859      return MI->getOperand(0).getReg();
860    }
861    break;
862  }
863
864  return 0;
865}
866
867unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
868                                                    int &FrameIndex) const {
869  const MachineMemOperand *Dummy;
870  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
871}
872
873void ARMBaseInstrInfo::
874loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
875                     unsigned DestReg, int FI,
876                     const TargetRegisterClass *RC,
877                     const TargetRegisterInfo *TRI) const {
878  DebugLoc DL;
879  if (I != MBB.end()) DL = I->getDebugLoc();
880  MachineFunction &MF = *MBB.getParent();
881  MachineFrameInfo &MFI = *MF.getFrameInfo();
882  unsigned Align = MFI.getObjectAlignment(FI);
883  MachineMemOperand *MMO =
884    MF.getMachineMemOperand(
885                    MachinePointerInfo::getFixedStack(FI),
886                            MachineMemOperand::MOLoad,
887                            MFI.getObjectSize(FI),
888                            Align);
889
890  switch (RC->getSize()) {
891  case 4:
892    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
893      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
894                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
895
896    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
897      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
898                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
899    } else
900      llvm_unreachable("Unknown reg class!");
901    break;
902  case 8:
903    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
904      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
905                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
906    } else
907      llvm_unreachable("Unknown reg class!");
908    break;
909  case 16:
910    if (ARM::QPRRegClass.hasSubClassEq(RC)) {
911      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
912        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
913                     .addFrameIndex(FI).addImm(16)
914                     .addMemOperand(MMO));
915      } else {
916        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
917                       .addFrameIndex(FI)
918                       .addMemOperand(MMO));
919      }
920    } else
921      llvm_unreachable("Unknown reg class!");
922    break;
923  case 32:
924    if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
925      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
926        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
927                     .addFrameIndex(FI).addImm(16)
928                     .addMemOperand(MMO));
929      } else {
930        MachineInstrBuilder MIB =
931        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
932                       .addFrameIndex(FI))
933                       .addMemOperand(MMO);
934        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
935        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
936        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
937        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
938      }
939    } else
940      llvm_unreachable("Unknown reg class!");
941    break;
942  case 64:
943    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
944      MachineInstrBuilder MIB =
945      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
946                     .addFrameIndex(FI))
947                     .addMemOperand(MMO);
948      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
949      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
950      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
951      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
952      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
953      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
954      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
955      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
956    } else
957      llvm_unreachable("Unknown reg class!");
958    break;
959  default:
960    llvm_unreachable("Unknown regclass!");
961  }
962}
963
964unsigned
965ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
966                                      int &FrameIndex) const {
967  switch (MI->getOpcode()) {
968  default: break;
969  case ARM::LDRrs:
970  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
971    if (MI->getOperand(1).isFI() &&
972        MI->getOperand(2).isReg() &&
973        MI->getOperand(3).isImm() &&
974        MI->getOperand(2).getReg() == 0 &&
975        MI->getOperand(3).getImm() == 0) {
976      FrameIndex = MI->getOperand(1).getIndex();
977      return MI->getOperand(0).getReg();
978    }
979    break;
980  case ARM::LDRi12:
981  case ARM::t2LDRi12:
982  case ARM::tLDRspi:
983  case ARM::VLDRD:
984  case ARM::VLDRS:
985    if (MI->getOperand(1).isFI() &&
986        MI->getOperand(2).isImm() &&
987        MI->getOperand(2).getImm() == 0) {
988      FrameIndex = MI->getOperand(1).getIndex();
989      return MI->getOperand(0).getReg();
990    }
991    break;
992  case ARM::VLD1q64Pseudo:
993    if (MI->getOperand(1).isFI() &&
994        MI->getOperand(0).getSubReg() == 0) {
995      FrameIndex = MI->getOperand(1).getIndex();
996      return MI->getOperand(0).getReg();
997    }
998    break;
999  case ARM::VLDMQIA:
1000    if (MI->getOperand(1).isFI() &&
1001        MI->getOperand(0).getSubReg() == 0) {
1002      FrameIndex = MI->getOperand(1).getIndex();
1003      return MI->getOperand(0).getReg();
1004    }
1005    break;
1006  }
1007
1008  return 0;
1009}
1010
1011unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1012                                             int &FrameIndex) const {
1013  const MachineMemOperand *Dummy;
1014  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1015}
1016
1017bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1018  // This hook gets to expand COPY instructions before they become
1019  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1020  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1021  // changed into a VORR that can go down the NEON pipeline.
1022  if (!WidenVMOVS || !MI->isCopy())
1023    return false;
1024
1025  // Look for a copy between even S-registers.  That is where we keep floats
1026  // when using NEON v2f32 instructions for f32 arithmetic.
1027  unsigned DstRegS = MI->getOperand(0).getReg();
1028  unsigned SrcRegS = MI->getOperand(1).getReg();
1029  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1030    return false;
1031
1032  const TargetRegisterInfo *TRI = &getRegisterInfo();
1033  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1034                                              &ARM::DPRRegClass);
1035  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1036                                              &ARM::DPRRegClass);
1037  if (!DstRegD || !SrcRegD)
1038    return false;
1039
1040  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1041  // legal if the COPY already defines the full DstRegD, and it isn't a
1042  // sub-register insertion.
1043  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1044    return false;
1045
1046  // A dead copy shouldn't show up here, but reject it just in case.
1047  if (MI->getOperand(0).isDead())
1048    return false;
1049
1050  // All clear, widen the COPY.
1051  DEBUG(dbgs() << "widening:    " << *MI);
1052
1053  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1054  // or some other super-register.
1055  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1056  if (ImpDefIdx != -1)
1057    MI->RemoveOperand(ImpDefIdx);
1058
1059  // Change the opcode and operands.
1060  MI->setDesc(get(ARM::VMOVD));
1061  MI->getOperand(0).setReg(DstRegD);
1062  MI->getOperand(1).setReg(SrcRegD);
1063  AddDefaultPred(MachineInstrBuilder(MI));
1064
1065  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1066  // register scavenger and machine verifier, so we need to indicate that we
1067  // are reading an undefined value from SrcRegD, but a proper value from
1068  // SrcRegS.
1069  MI->getOperand(1).setIsUndef();
1070  MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1071
1072  // SrcRegD may actually contain an unrelated value in the ssub_1
1073  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1074  if (MI->getOperand(1).isKill()) {
1075    MI->getOperand(1).setIsKill(false);
1076    MI->addRegisterKilled(SrcRegS, TRI, true);
1077  }
1078
1079  DEBUG(dbgs() << "replaced by: " << *MI);
1080  return true;
1081}
1082
1083MachineInstr*
1084ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1085                                           int FrameIx, uint64_t Offset,
1086                                           const MDNode *MDPtr,
1087                                           DebugLoc DL) const {
1088  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1089    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1090  return &*MIB;
1091}
1092
1093/// Create a copy of a const pool value. Update CPI to the new index and return
1094/// the label UID.
1095static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1096  MachineConstantPool *MCP = MF.getConstantPool();
1097  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1098
1099  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1100  assert(MCPE.isMachineConstantPoolEntry() &&
1101         "Expecting a machine constantpool entry!");
1102  ARMConstantPoolValue *ACPV =
1103    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1104
1105  unsigned PCLabelId = AFI->createPICLabelUId();
1106  ARMConstantPoolValue *NewCPV = 0;
1107  // FIXME: The below assumes PIC relocation model and that the function
1108  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1109  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1110  // instructions, so that's probably OK, but is PIC always correct when
1111  // we get here?
1112  if (ACPV->isGlobalValue())
1113    NewCPV = ARMConstantPoolConstant::
1114      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1115             ARMCP::CPValue, 4);
1116  else if (ACPV->isExtSymbol())
1117    NewCPV = ARMConstantPoolSymbol::
1118      Create(MF.getFunction()->getContext(),
1119             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1120  else if (ACPV->isBlockAddress())
1121    NewCPV = ARMConstantPoolConstant::
1122      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1123             ARMCP::CPBlockAddress, 4);
1124  else if (ACPV->isLSDA())
1125    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1126                                             ARMCP::CPLSDA, 4);
1127  else if (ACPV->isMachineBasicBlock())
1128    NewCPV = ARMConstantPoolMBB::
1129      Create(MF.getFunction()->getContext(),
1130             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1131  else
1132    llvm_unreachable("Unexpected ARM constantpool value type!!");
1133  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1134  return PCLabelId;
1135}
1136
1137void ARMBaseInstrInfo::
1138reMaterialize(MachineBasicBlock &MBB,
1139              MachineBasicBlock::iterator I,
1140              unsigned DestReg, unsigned SubIdx,
1141              const MachineInstr *Orig,
1142              const TargetRegisterInfo &TRI) const {
1143  unsigned Opcode = Orig->getOpcode();
1144  switch (Opcode) {
1145  default: {
1146    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1147    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1148    MBB.insert(I, MI);
1149    break;
1150  }
1151  case ARM::tLDRpci_pic:
1152  case ARM::t2LDRpci_pic: {
1153    MachineFunction &MF = *MBB.getParent();
1154    unsigned CPI = Orig->getOperand(1).getIndex();
1155    unsigned PCLabelId = duplicateCPV(MF, CPI);
1156    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1157                                      DestReg)
1158      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1159    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1160    break;
1161  }
1162  }
1163}
1164
1165MachineInstr *
1166ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1167  MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1168  switch(Orig->getOpcode()) {
1169  case ARM::tLDRpci_pic:
1170  case ARM::t2LDRpci_pic: {
1171    unsigned CPI = Orig->getOperand(1).getIndex();
1172    unsigned PCLabelId = duplicateCPV(MF, CPI);
1173    Orig->getOperand(1).setIndex(CPI);
1174    Orig->getOperand(2).setImm(PCLabelId);
1175    break;
1176  }
1177  }
1178  return MI;
1179}
1180
1181bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1182                                        const MachineInstr *MI1,
1183                                        const MachineRegisterInfo *MRI) const {
1184  int Opcode = MI0->getOpcode();
1185  if (Opcode == ARM::t2LDRpci ||
1186      Opcode == ARM::t2LDRpci_pic ||
1187      Opcode == ARM::tLDRpci ||
1188      Opcode == ARM::tLDRpci_pic ||
1189      Opcode == ARM::MOV_ga_dyn ||
1190      Opcode == ARM::MOV_ga_pcrel ||
1191      Opcode == ARM::MOV_ga_pcrel_ldr ||
1192      Opcode == ARM::t2MOV_ga_dyn ||
1193      Opcode == ARM::t2MOV_ga_pcrel) {
1194    if (MI1->getOpcode() != Opcode)
1195      return false;
1196    if (MI0->getNumOperands() != MI1->getNumOperands())
1197      return false;
1198
1199    const MachineOperand &MO0 = MI0->getOperand(1);
1200    const MachineOperand &MO1 = MI1->getOperand(1);
1201    if (MO0.getOffset() != MO1.getOffset())
1202      return false;
1203
1204    if (Opcode == ARM::MOV_ga_dyn ||
1205        Opcode == ARM::MOV_ga_pcrel ||
1206        Opcode == ARM::MOV_ga_pcrel_ldr ||
1207        Opcode == ARM::t2MOV_ga_dyn ||
1208        Opcode == ARM::t2MOV_ga_pcrel)
1209      // Ignore the PC labels.
1210      return MO0.getGlobal() == MO1.getGlobal();
1211
1212    const MachineFunction *MF = MI0->getParent()->getParent();
1213    const MachineConstantPool *MCP = MF->getConstantPool();
1214    int CPI0 = MO0.getIndex();
1215    int CPI1 = MO1.getIndex();
1216    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1217    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1218    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1219    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1220    if (isARMCP0 && isARMCP1) {
1221      ARMConstantPoolValue *ACPV0 =
1222        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1223      ARMConstantPoolValue *ACPV1 =
1224        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1225      return ACPV0->hasSameValue(ACPV1);
1226    } else if (!isARMCP0 && !isARMCP1) {
1227      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1228    }
1229    return false;
1230  } else if (Opcode == ARM::PICLDR) {
1231    if (MI1->getOpcode() != Opcode)
1232      return false;
1233    if (MI0->getNumOperands() != MI1->getNumOperands())
1234      return false;
1235
1236    unsigned Addr0 = MI0->getOperand(1).getReg();
1237    unsigned Addr1 = MI1->getOperand(1).getReg();
1238    if (Addr0 != Addr1) {
1239      if (!MRI ||
1240          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1241          !TargetRegisterInfo::isVirtualRegister(Addr1))
1242        return false;
1243
1244      // This assumes SSA form.
1245      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1246      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1247      // Check if the loaded value, e.g. a constantpool of a global address, are
1248      // the same.
1249      if (!produceSameValue(Def0, Def1, MRI))
1250        return false;
1251    }
1252
1253    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1254      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1255      const MachineOperand &MO0 = MI0->getOperand(i);
1256      const MachineOperand &MO1 = MI1->getOperand(i);
1257      if (!MO0.isIdenticalTo(MO1))
1258        return false;
1259    }
1260    return true;
1261  }
1262
1263  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1264}
1265
1266/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1267/// determine if two loads are loading from the same base address. It should
1268/// only return true if the base pointers are the same and the only differences
1269/// between the two addresses is the offset. It also returns the offsets by
1270/// reference.
1271bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1272                                               int64_t &Offset1,
1273                                               int64_t &Offset2) const {
1274  // Don't worry about Thumb: just ARM and Thumb2.
1275  if (Subtarget.isThumb1Only()) return false;
1276
1277  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1278    return false;
1279
1280  switch (Load1->getMachineOpcode()) {
1281  default:
1282    return false;
1283  case ARM::LDRi12:
1284  case ARM::LDRBi12:
1285  case ARM::LDRD:
1286  case ARM::LDRH:
1287  case ARM::LDRSB:
1288  case ARM::LDRSH:
1289  case ARM::VLDRD:
1290  case ARM::VLDRS:
1291  case ARM::t2LDRi8:
1292  case ARM::t2LDRDi8:
1293  case ARM::t2LDRSHi8:
1294  case ARM::t2LDRi12:
1295  case ARM::t2LDRSHi12:
1296    break;
1297  }
1298
1299  switch (Load2->getMachineOpcode()) {
1300  default:
1301    return false;
1302  case ARM::LDRi12:
1303  case ARM::LDRBi12:
1304  case ARM::LDRD:
1305  case ARM::LDRH:
1306  case ARM::LDRSB:
1307  case ARM::LDRSH:
1308  case ARM::VLDRD:
1309  case ARM::VLDRS:
1310  case ARM::t2LDRi8:
1311  case ARM::t2LDRDi8:
1312  case ARM::t2LDRSHi8:
1313  case ARM::t2LDRi12:
1314  case ARM::t2LDRSHi12:
1315    break;
1316  }
1317
1318  // Check if base addresses and chain operands match.
1319  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1320      Load1->getOperand(4) != Load2->getOperand(4))
1321    return false;
1322
1323  // Index should be Reg0.
1324  if (Load1->getOperand(3) != Load2->getOperand(3))
1325    return false;
1326
1327  // Determine the offsets.
1328  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1329      isa<ConstantSDNode>(Load2->getOperand(1))) {
1330    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1331    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1332    return true;
1333  }
1334
1335  return false;
1336}
1337
1338/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1339/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1340/// be scheduled togther. On some targets if two loads are loading from
1341/// addresses in the same cache line, it's better if they are scheduled
1342/// together. This function takes two integers that represent the load offsets
1343/// from the common base address. It returns true if it decides it's desirable
1344/// to schedule the two loads together. "NumLoads" is the number of loads that
1345/// have already been scheduled after Load1.
1346bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1347                                               int64_t Offset1, int64_t Offset2,
1348                                               unsigned NumLoads) const {
1349  // Don't worry about Thumb: just ARM and Thumb2.
1350  if (Subtarget.isThumb1Only()) return false;
1351
1352  assert(Offset2 > Offset1);
1353
1354  if ((Offset2 - Offset1) / 8 > 64)
1355    return false;
1356
1357  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1358    return false;  // FIXME: overly conservative?
1359
1360  // Four loads in a row should be sufficient.
1361  if (NumLoads >= 3)
1362    return false;
1363
1364  return true;
1365}
1366
1367bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1368                                            const MachineBasicBlock *MBB,
1369                                            const MachineFunction &MF) const {
1370  // Debug info is never a scheduling boundary. It's necessary to be explicit
1371  // due to the special treatment of IT instructions below, otherwise a
1372  // dbg_value followed by an IT will result in the IT instruction being
1373  // considered a scheduling hazard, which is wrong. It should be the actual
1374  // instruction preceding the dbg_value instruction(s), just like it is
1375  // when debug info is not present.
1376  if (MI->isDebugValue())
1377    return false;
1378
1379  // Terminators and labels can't be scheduled around.
1380  if (MI->isTerminator() || MI->isLabel())
1381    return true;
1382
1383  // Treat the start of the IT block as a scheduling boundary, but schedule
1384  // t2IT along with all instructions following it.
1385  // FIXME: This is a big hammer. But the alternative is to add all potential
1386  // true and anti dependencies to IT block instructions as implicit operands
1387  // to the t2IT instruction. The added compile time and complexity does not
1388  // seem worth it.
1389  MachineBasicBlock::const_iterator I = MI;
1390  // Make sure to skip any dbg_value instructions
1391  while (++I != MBB->end() && I->isDebugValue())
1392    ;
1393  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1394    return true;
1395
1396  // Don't attempt to schedule around any instruction that defines
1397  // a stack-oriented pointer, as it's unlikely to be profitable. This
1398  // saves compile time, because it doesn't require every single
1399  // stack slot reference to depend on the instruction that does the
1400  // modification.
1401  // Calls don't actually change the stack pointer, even if they have imp-defs.
1402  // No ARM calling conventions change the stack pointer. (X86 calling
1403  // conventions sometimes do).
1404  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1405    return true;
1406
1407  return false;
1408}
1409
1410bool ARMBaseInstrInfo::
1411isProfitableToIfCvt(MachineBasicBlock &MBB,
1412                    unsigned NumCycles, unsigned ExtraPredCycles,
1413                    const BranchProbability &Probability) const {
1414  if (!NumCycles)
1415    return false;
1416
1417  // Attempt to estimate the relative costs of predication versus branching.
1418  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1419  UnpredCost /= Probability.getDenominator();
1420  UnpredCost += 1; // The branch itself
1421  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1422
1423  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1424}
1425
1426bool ARMBaseInstrInfo::
1427isProfitableToIfCvt(MachineBasicBlock &TMBB,
1428                    unsigned TCycles, unsigned TExtra,
1429                    MachineBasicBlock &FMBB,
1430                    unsigned FCycles, unsigned FExtra,
1431                    const BranchProbability &Probability) const {
1432  if (!TCycles || !FCycles)
1433    return false;
1434
1435  // Attempt to estimate the relative costs of predication versus branching.
1436  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1437  TUnpredCost /= Probability.getDenominator();
1438
1439  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1440  unsigned FUnpredCost = Comp * FCycles;
1441  FUnpredCost /= Probability.getDenominator();
1442
1443  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1444  UnpredCost += 1; // The branch itself
1445  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1446
1447  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1448}
1449
1450/// getInstrPredicate - If instruction is predicated, returns its predicate
1451/// condition, otherwise returns AL. It also returns the condition code
1452/// register by reference.
1453ARMCC::CondCodes
1454llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1455  int PIdx = MI->findFirstPredOperandIdx();
1456  if (PIdx == -1) {
1457    PredReg = 0;
1458    return ARMCC::AL;
1459  }
1460
1461  PredReg = MI->getOperand(PIdx+1).getReg();
1462  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1463}
1464
1465
1466int llvm::getMatchingCondBranchOpcode(int Opc) {
1467  if (Opc == ARM::B)
1468    return ARM::Bcc;
1469  if (Opc == ARM::tB)
1470    return ARM::tBcc;
1471  if (Opc == ARM::t2B)
1472    return ARM::t2Bcc;
1473
1474  llvm_unreachable("Unknown unconditional branch opcode!");
1475}
1476
1477
1478/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1479/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1480/// def operand.
1481///
1482/// This will go away once we can teach tblgen how to set the optional CPSR def
1483/// operand itself.
1484struct AddSubFlagsOpcodePair {
1485  unsigned PseudoOpc;
1486  unsigned MachineOpc;
1487};
1488
1489static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1490  {ARM::ADDSri, ARM::ADDri},
1491  {ARM::ADDSrr, ARM::ADDrr},
1492  {ARM::ADDSrsi, ARM::ADDrsi},
1493  {ARM::ADDSrsr, ARM::ADDrsr},
1494
1495  {ARM::SUBSri, ARM::SUBri},
1496  {ARM::SUBSrr, ARM::SUBrr},
1497  {ARM::SUBSrsi, ARM::SUBrsi},
1498  {ARM::SUBSrsr, ARM::SUBrsr},
1499
1500  {ARM::RSBSri, ARM::RSBri},
1501  {ARM::RSBSrsi, ARM::RSBrsi},
1502  {ARM::RSBSrsr, ARM::RSBrsr},
1503
1504  {ARM::t2ADDSri, ARM::t2ADDri},
1505  {ARM::t2ADDSrr, ARM::t2ADDrr},
1506  {ARM::t2ADDSrs, ARM::t2ADDrs},
1507
1508  {ARM::t2SUBSri, ARM::t2SUBri},
1509  {ARM::t2SUBSrr, ARM::t2SUBrr},
1510  {ARM::t2SUBSrs, ARM::t2SUBrs},
1511
1512  {ARM::t2RSBSri, ARM::t2RSBri},
1513  {ARM::t2RSBSrs, ARM::t2RSBrs},
1514};
1515
1516unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1517  static const int NPairs =
1518    sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
1519  for (AddSubFlagsOpcodePair *OpcPair = &AddSubFlagsOpcodeMap[0],
1520         *End = &AddSubFlagsOpcodeMap[NPairs]; OpcPair != End; ++OpcPair) {
1521    if (OldOpc == OpcPair->PseudoOpc) {
1522      return OpcPair->MachineOpc;
1523    }
1524  }
1525  return 0;
1526}
1527
1528void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1529                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1530                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1531                               ARMCC::CondCodes Pred, unsigned PredReg,
1532                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1533  bool isSub = NumBytes < 0;
1534  if (isSub) NumBytes = -NumBytes;
1535
1536  while (NumBytes) {
1537    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1538    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1539    assert(ThisVal && "Didn't extract field correctly");
1540
1541    // We will handle these bits from offset, clear them.
1542    NumBytes &= ~ThisVal;
1543
1544    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1545
1546    // Build the new ADD / SUB.
1547    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1548    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1549      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1550      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1551      .setMIFlags(MIFlags);
1552    BaseReg = DestReg;
1553  }
1554}
1555
1556bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1557                                unsigned FrameReg, int &Offset,
1558                                const ARMBaseInstrInfo &TII) {
1559  unsigned Opcode = MI.getOpcode();
1560  const MCInstrDesc &Desc = MI.getDesc();
1561  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1562  bool isSub = false;
1563
1564  // Memory operands in inline assembly always use AddrMode2.
1565  if (Opcode == ARM::INLINEASM)
1566    AddrMode = ARMII::AddrMode2;
1567
1568  if (Opcode == ARM::ADDri) {
1569    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1570    if (Offset == 0) {
1571      // Turn it into a move.
1572      MI.setDesc(TII.get(ARM::MOVr));
1573      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1574      MI.RemoveOperand(FrameRegIdx+1);
1575      Offset = 0;
1576      return true;
1577    } else if (Offset < 0) {
1578      Offset = -Offset;
1579      isSub = true;
1580      MI.setDesc(TII.get(ARM::SUBri));
1581    }
1582
1583    // Common case: small offset, fits into instruction.
1584    if (ARM_AM::getSOImmVal(Offset) != -1) {
1585      // Replace the FrameIndex with sp / fp
1586      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1587      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1588      Offset = 0;
1589      return true;
1590    }
1591
1592    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1593    // as possible.
1594    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1595    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1596
1597    // We will handle these bits from offset, clear them.
1598    Offset &= ~ThisImmVal;
1599
1600    // Get the properly encoded SOImmVal field.
1601    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1602           "Bit extraction didn't work?");
1603    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1604 } else {
1605    unsigned ImmIdx = 0;
1606    int InstrOffs = 0;
1607    unsigned NumBits = 0;
1608    unsigned Scale = 1;
1609    switch (AddrMode) {
1610    case ARMII::AddrMode_i12: {
1611      ImmIdx = FrameRegIdx + 1;
1612      InstrOffs = MI.getOperand(ImmIdx).getImm();
1613      NumBits = 12;
1614      break;
1615    }
1616    case ARMII::AddrMode2: {
1617      ImmIdx = FrameRegIdx+2;
1618      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1619      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1620        InstrOffs *= -1;
1621      NumBits = 12;
1622      break;
1623    }
1624    case ARMII::AddrMode3: {
1625      ImmIdx = FrameRegIdx+2;
1626      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1627      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1628        InstrOffs *= -1;
1629      NumBits = 8;
1630      break;
1631    }
1632    case ARMII::AddrMode4:
1633    case ARMII::AddrMode6:
1634      // Can't fold any offset even if it's zero.
1635      return false;
1636    case ARMII::AddrMode5: {
1637      ImmIdx = FrameRegIdx+1;
1638      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1639      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1640        InstrOffs *= -1;
1641      NumBits = 8;
1642      Scale = 4;
1643      break;
1644    }
1645    default:
1646      llvm_unreachable("Unsupported addressing mode!");
1647    }
1648
1649    Offset += InstrOffs * Scale;
1650    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1651    if (Offset < 0) {
1652      Offset = -Offset;
1653      isSub = true;
1654    }
1655
1656    // Attempt to fold address comp. if opcode has offset bits
1657    if (NumBits > 0) {
1658      // Common case: small offset, fits into instruction.
1659      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1660      int ImmedOffset = Offset / Scale;
1661      unsigned Mask = (1 << NumBits) - 1;
1662      if ((unsigned)Offset <= Mask * Scale) {
1663        // Replace the FrameIndex with sp
1664        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1665        // FIXME: When addrmode2 goes away, this will simplify (like the
1666        // T2 version), as the LDR.i12 versions don't need the encoding
1667        // tricks for the offset value.
1668        if (isSub) {
1669          if (AddrMode == ARMII::AddrMode_i12)
1670            ImmedOffset = -ImmedOffset;
1671          else
1672            ImmedOffset |= 1 << NumBits;
1673        }
1674        ImmOp.ChangeToImmediate(ImmedOffset);
1675        Offset = 0;
1676        return true;
1677      }
1678
1679      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1680      ImmedOffset = ImmedOffset & Mask;
1681      if (isSub) {
1682        if (AddrMode == ARMII::AddrMode_i12)
1683          ImmedOffset = -ImmedOffset;
1684        else
1685          ImmedOffset |= 1 << NumBits;
1686      }
1687      ImmOp.ChangeToImmediate(ImmedOffset);
1688      Offset &= ~(Mask*Scale);
1689    }
1690  }
1691
1692  Offset = (isSub) ? -Offset : Offset;
1693  return Offset == 0;
1694}
1695
1696bool ARMBaseInstrInfo::
1697AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
1698               int &CmpValue) const {
1699  switch (MI->getOpcode()) {
1700  default: break;
1701  case ARM::CMPri:
1702  case ARM::t2CMPri:
1703    SrcReg = MI->getOperand(0).getReg();
1704    CmpMask = ~0;
1705    CmpValue = MI->getOperand(1).getImm();
1706    return true;
1707  case ARM::TSTri:
1708  case ARM::t2TSTri:
1709    SrcReg = MI->getOperand(0).getReg();
1710    CmpMask = MI->getOperand(1).getImm();
1711    CmpValue = 0;
1712    return true;
1713  }
1714
1715  return false;
1716}
1717
1718/// isSuitableForMask - Identify a suitable 'and' instruction that
1719/// operates on the given source register and applies the same mask
1720/// as a 'tst' instruction. Provide a limited look-through for copies.
1721/// When successful, MI will hold the found instruction.
1722static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1723                              int CmpMask, bool CommonUse) {
1724  switch (MI->getOpcode()) {
1725    case ARM::ANDri:
1726    case ARM::t2ANDri:
1727      if (CmpMask != MI->getOperand(2).getImm())
1728        return false;
1729      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1730        return true;
1731      break;
1732    case ARM::COPY: {
1733      // Walk down one instruction which is potentially an 'and'.
1734      const MachineInstr &Copy = *MI;
1735      MachineBasicBlock::iterator AND(
1736        llvm::next(MachineBasicBlock::iterator(MI)));
1737      if (AND == MI->getParent()->end()) return false;
1738      MI = AND;
1739      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1740                               CmpMask, true);
1741    }
1742  }
1743
1744  return false;
1745}
1746
1747/// OptimizeCompareInstr - Convert the instruction supplying the argument to the
1748/// comparison into one that sets the zero bit in the flags register.
1749bool ARMBaseInstrInfo::
1750OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
1751                     int CmpValue, const MachineRegisterInfo *MRI) const {
1752  if (CmpValue != 0)
1753    return false;
1754
1755  MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
1756  if (llvm::next(DI) != MRI->def_end())
1757    // Only support one definition.
1758    return false;
1759
1760  MachineInstr *MI = &*DI;
1761
1762  // Masked compares sometimes use the same register as the corresponding 'and'.
1763  if (CmpMask != ~0) {
1764    if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
1765      MI = 0;
1766      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
1767           UE = MRI->use_end(); UI != UE; ++UI) {
1768        if (UI->getParent() != CmpInstr->getParent()) continue;
1769        MachineInstr *PotentialAND = &*UI;
1770        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
1771          continue;
1772        MI = PotentialAND;
1773        break;
1774      }
1775      if (!MI) return false;
1776    }
1777  }
1778
1779  // Conservatively refuse to convert an instruction which isn't in the same BB
1780  // as the comparison.
1781  if (MI->getParent() != CmpInstr->getParent())
1782    return false;
1783
1784  // Check that CPSR isn't set between the comparison instruction and the one we
1785  // want to change.
1786  MachineBasicBlock::iterator I = CmpInstr,E = MI, B = MI->getParent()->begin();
1787
1788  // Early exit if CmpInstr is at the beginning of the BB.
1789  if (I == B) return false;
1790
1791  --I;
1792  for (; I != E; --I) {
1793    const MachineInstr &Instr = *I;
1794
1795    for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
1796      const MachineOperand &MO = Instr.getOperand(IO);
1797      if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR))
1798        return false;
1799      if (!MO.isReg()) continue;
1800
1801      // This instruction modifies or uses CPSR after the one we want to
1802      // change. We can't do this transformation.
1803      if (MO.getReg() == ARM::CPSR)
1804        return false;
1805    }
1806
1807    if (I == B)
1808      // The 'and' is below the comparison instruction.
1809      return false;
1810  }
1811
1812  // Set the "zero" bit in CPSR.
1813  switch (MI->getOpcode()) {
1814  default: break;
1815  case ARM::RSBrr:
1816  case ARM::RSBri:
1817  case ARM::RSCrr:
1818  case ARM::RSCri:
1819  case ARM::ADDrr:
1820  case ARM::ADDri:
1821  case ARM::ADCrr:
1822  case ARM::ADCri:
1823  case ARM::SUBrr:
1824  case ARM::SUBri:
1825  case ARM::SBCrr:
1826  case ARM::SBCri:
1827  case ARM::t2RSBri:
1828  case ARM::t2ADDrr:
1829  case ARM::t2ADDri:
1830  case ARM::t2ADCrr:
1831  case ARM::t2ADCri:
1832  case ARM::t2SUBrr:
1833  case ARM::t2SUBri:
1834  case ARM::t2SBCrr:
1835  case ARM::t2SBCri:
1836  case ARM::ANDrr:
1837  case ARM::ANDri:
1838  case ARM::t2ANDrr:
1839  case ARM::t2ANDri:
1840  case ARM::ORRrr:
1841  case ARM::ORRri:
1842  case ARM::t2ORRrr:
1843  case ARM::t2ORRri:
1844  case ARM::EORrr:
1845  case ARM::EORri:
1846  case ARM::t2EORrr:
1847  case ARM::t2EORri: {
1848    // Scan forward for the use of CPSR, if it's a conditional code requires
1849    // checking of V bit, then this is not safe to do. If we can't find the
1850    // CPSR use (i.e. used in another block), then it's not safe to perform
1851    // the optimization.
1852    bool isSafe = false;
1853    I = CmpInstr;
1854    E = MI->getParent()->end();
1855    while (!isSafe && ++I != E) {
1856      const MachineInstr &Instr = *I;
1857      for (unsigned IO = 0, EO = Instr.getNumOperands();
1858           !isSafe && IO != EO; ++IO) {
1859        const MachineOperand &MO = Instr.getOperand(IO);
1860        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
1861          isSafe = true;
1862          break;
1863        }
1864        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
1865          continue;
1866        if (MO.isDef()) {
1867          isSafe = true;
1868          break;
1869        }
1870        // Condition code is after the operand before CPSR.
1871        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
1872        switch (CC) {
1873        default:
1874          isSafe = true;
1875          break;
1876        case ARMCC::VS:
1877        case ARMCC::VC:
1878        case ARMCC::GE:
1879        case ARMCC::LT:
1880        case ARMCC::GT:
1881        case ARMCC::LE:
1882          return false;
1883        }
1884      }
1885    }
1886
1887    if (!isSafe)
1888      return false;
1889
1890    // Toggle the optional operand to CPSR.
1891    MI->getOperand(5).setReg(ARM::CPSR);
1892    MI->getOperand(5).setIsDef(true);
1893    CmpInstr->eraseFromParent();
1894    return true;
1895  }
1896  }
1897
1898  return false;
1899}
1900
1901bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
1902                                     MachineInstr *DefMI, unsigned Reg,
1903                                     MachineRegisterInfo *MRI) const {
1904  // Fold large immediates into add, sub, or, xor.
1905  unsigned DefOpc = DefMI->getOpcode();
1906  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
1907    return false;
1908  if (!DefMI->getOperand(1).isImm())
1909    // Could be t2MOVi32imm <ga:xx>
1910    return false;
1911
1912  if (!MRI->hasOneNonDBGUse(Reg))
1913    return false;
1914
1915  unsigned UseOpc = UseMI->getOpcode();
1916  unsigned NewUseOpc = 0;
1917  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
1918  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
1919  bool Commute = false;
1920  switch (UseOpc) {
1921  default: return false;
1922  case ARM::SUBrr:
1923  case ARM::ADDrr:
1924  case ARM::ORRrr:
1925  case ARM::EORrr:
1926  case ARM::t2SUBrr:
1927  case ARM::t2ADDrr:
1928  case ARM::t2ORRrr:
1929  case ARM::t2EORrr: {
1930    Commute = UseMI->getOperand(2).getReg() != Reg;
1931    switch (UseOpc) {
1932    default: break;
1933    case ARM::SUBrr: {
1934      if (Commute)
1935        return false;
1936      ImmVal = -ImmVal;
1937      NewUseOpc = ARM::SUBri;
1938      // Fallthrough
1939    }
1940    case ARM::ADDrr:
1941    case ARM::ORRrr:
1942    case ARM::EORrr: {
1943      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
1944        return false;
1945      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
1946      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
1947      switch (UseOpc) {
1948      default: break;
1949      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
1950      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
1951      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
1952      }
1953      break;
1954    }
1955    case ARM::t2SUBrr: {
1956      if (Commute)
1957        return false;
1958      ImmVal = -ImmVal;
1959      NewUseOpc = ARM::t2SUBri;
1960      // Fallthrough
1961    }
1962    case ARM::t2ADDrr:
1963    case ARM::t2ORRrr:
1964    case ARM::t2EORrr: {
1965      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
1966        return false;
1967      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
1968      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
1969      switch (UseOpc) {
1970      default: break;
1971      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
1972      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
1973      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
1974      }
1975      break;
1976    }
1977    }
1978  }
1979  }
1980
1981  unsigned OpIdx = Commute ? 2 : 1;
1982  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
1983  bool isKill = UseMI->getOperand(OpIdx).isKill();
1984  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
1985  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
1986                                      UseMI, UseMI->getDebugLoc(),
1987                                      get(NewUseOpc), NewReg)
1988                              .addReg(Reg1, getKillRegState(isKill))
1989                              .addImm(SOImmValV1)));
1990  UseMI->setDesc(get(NewUseOpc));
1991  UseMI->getOperand(1).setReg(NewReg);
1992  UseMI->getOperand(1).setIsKill();
1993  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
1994  DefMI->eraseFromParent();
1995  return true;
1996}
1997
1998unsigned
1999ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2000                                 const MachineInstr *MI) const {
2001  if (!ItinData || ItinData->isEmpty())
2002    return 1;
2003
2004  const MCInstrDesc &Desc = MI->getDesc();
2005  unsigned Class = Desc.getSchedClass();
2006  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
2007  if (UOps)
2008    return UOps;
2009
2010  unsigned Opc = MI->getOpcode();
2011  switch (Opc) {
2012  default:
2013    llvm_unreachable("Unexpected multi-uops instruction!");
2014  case ARM::VLDMQIA:
2015  case ARM::VSTMQIA:
2016    return 2;
2017
2018  // The number of uOps for load / store multiple are determined by the number
2019  // registers.
2020  //
2021  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2022  // same cycle. The scheduling for the first load / store must be done
2023  // separately by assuming the the address is not 64-bit aligned.
2024  //
2025  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2026  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2027  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2028  case ARM::VLDMDIA:
2029  case ARM::VLDMDIA_UPD:
2030  case ARM::VLDMDDB_UPD:
2031  case ARM::VLDMSIA:
2032  case ARM::VLDMSIA_UPD:
2033  case ARM::VLDMSDB_UPD:
2034  case ARM::VSTMDIA:
2035  case ARM::VSTMDIA_UPD:
2036  case ARM::VSTMDDB_UPD:
2037  case ARM::VSTMSIA:
2038  case ARM::VSTMSIA_UPD:
2039  case ARM::VSTMSDB_UPD: {
2040    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2041    return (NumRegs / 2) + (NumRegs % 2) + 1;
2042  }
2043
2044  case ARM::LDMIA_RET:
2045  case ARM::LDMIA:
2046  case ARM::LDMDA:
2047  case ARM::LDMDB:
2048  case ARM::LDMIB:
2049  case ARM::LDMIA_UPD:
2050  case ARM::LDMDA_UPD:
2051  case ARM::LDMDB_UPD:
2052  case ARM::LDMIB_UPD:
2053  case ARM::STMIA:
2054  case ARM::STMDA:
2055  case ARM::STMDB:
2056  case ARM::STMIB:
2057  case ARM::STMIA_UPD:
2058  case ARM::STMDA_UPD:
2059  case ARM::STMDB_UPD:
2060  case ARM::STMIB_UPD:
2061  case ARM::tLDMIA:
2062  case ARM::tLDMIA_UPD:
2063  case ARM::tSTMIA_UPD:
2064  case ARM::tPOP_RET:
2065  case ARM::tPOP:
2066  case ARM::tPUSH:
2067  case ARM::t2LDMIA_RET:
2068  case ARM::t2LDMIA:
2069  case ARM::t2LDMDB:
2070  case ARM::t2LDMIA_UPD:
2071  case ARM::t2LDMDB_UPD:
2072  case ARM::t2STMIA:
2073  case ARM::t2STMDB:
2074  case ARM::t2STMIA_UPD:
2075  case ARM::t2STMDB_UPD: {
2076    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2077    if (Subtarget.isCortexA8()) {
2078      if (NumRegs < 4)
2079        return 2;
2080      // 4 registers would be issued: 2, 2.
2081      // 5 registers would be issued: 2, 2, 1.
2082      UOps = (NumRegs / 2);
2083      if (NumRegs % 2)
2084        ++UOps;
2085      return UOps;
2086    } else if (Subtarget.isCortexA9()) {
2087      UOps = (NumRegs / 2);
2088      // If there are odd number of registers or if it's not 64-bit aligned,
2089      // then it takes an extra AGU (Address Generation Unit) cycle.
2090      if ((NumRegs % 2) ||
2091          !MI->hasOneMemOperand() ||
2092          (*MI->memoperands_begin())->getAlignment() < 8)
2093        ++UOps;
2094      return UOps;
2095    } else {
2096      // Assume the worst.
2097      return NumRegs;
2098    }
2099  }
2100  }
2101}
2102
2103int
2104ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2105                                  const MCInstrDesc &DefMCID,
2106                                  unsigned DefClass,
2107                                  unsigned DefIdx, unsigned DefAlign) const {
2108  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2109  if (RegNo <= 0)
2110    // Def is the address writeback.
2111    return ItinData->getOperandCycle(DefClass, DefIdx);
2112
2113  int DefCycle;
2114  if (Subtarget.isCortexA8()) {
2115    // (regno / 2) + (regno % 2) + 1
2116    DefCycle = RegNo / 2 + 1;
2117    if (RegNo % 2)
2118      ++DefCycle;
2119  } else if (Subtarget.isCortexA9()) {
2120    DefCycle = RegNo;
2121    bool isSLoad = false;
2122
2123    switch (DefMCID.getOpcode()) {
2124    default: break;
2125    case ARM::VLDMSIA:
2126    case ARM::VLDMSIA_UPD:
2127    case ARM::VLDMSDB_UPD:
2128      isSLoad = true;
2129      break;
2130    }
2131
2132    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2133    // then it takes an extra cycle.
2134    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2135      ++DefCycle;
2136  } else {
2137    // Assume the worst.
2138    DefCycle = RegNo + 2;
2139  }
2140
2141  return DefCycle;
2142}
2143
2144int
2145ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2146                                 const MCInstrDesc &DefMCID,
2147                                 unsigned DefClass,
2148                                 unsigned DefIdx, unsigned DefAlign) const {
2149  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2150  if (RegNo <= 0)
2151    // Def is the address writeback.
2152    return ItinData->getOperandCycle(DefClass, DefIdx);
2153
2154  int DefCycle;
2155  if (Subtarget.isCortexA8()) {
2156    // 4 registers would be issued: 1, 2, 1.
2157    // 5 registers would be issued: 1, 2, 2.
2158    DefCycle = RegNo / 2;
2159    if (DefCycle < 1)
2160      DefCycle = 1;
2161    // Result latency is issue cycle + 2: E2.
2162    DefCycle += 2;
2163  } else if (Subtarget.isCortexA9()) {
2164    DefCycle = (RegNo / 2);
2165    // If there are odd number of registers or if it's not 64-bit aligned,
2166    // then it takes an extra AGU (Address Generation Unit) cycle.
2167    if ((RegNo % 2) || DefAlign < 8)
2168      ++DefCycle;
2169    // Result latency is AGU cycles + 2.
2170    DefCycle += 2;
2171  } else {
2172    // Assume the worst.
2173    DefCycle = RegNo + 2;
2174  }
2175
2176  return DefCycle;
2177}
2178
2179int
2180ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2181                                  const MCInstrDesc &UseMCID,
2182                                  unsigned UseClass,
2183                                  unsigned UseIdx, unsigned UseAlign) const {
2184  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2185  if (RegNo <= 0)
2186    return ItinData->getOperandCycle(UseClass, UseIdx);
2187
2188  int UseCycle;
2189  if (Subtarget.isCortexA8()) {
2190    // (regno / 2) + (regno % 2) + 1
2191    UseCycle = RegNo / 2 + 1;
2192    if (RegNo % 2)
2193      ++UseCycle;
2194  } else if (Subtarget.isCortexA9()) {
2195    UseCycle = RegNo;
2196    bool isSStore = false;
2197
2198    switch (UseMCID.getOpcode()) {
2199    default: break;
2200    case ARM::VSTMSIA:
2201    case ARM::VSTMSIA_UPD:
2202    case ARM::VSTMSDB_UPD:
2203      isSStore = true;
2204      break;
2205    }
2206
2207    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2208    // then it takes an extra cycle.
2209    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2210      ++UseCycle;
2211  } else {
2212    // Assume the worst.
2213    UseCycle = RegNo + 2;
2214  }
2215
2216  return UseCycle;
2217}
2218
2219int
2220ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2221                                 const MCInstrDesc &UseMCID,
2222                                 unsigned UseClass,
2223                                 unsigned UseIdx, unsigned UseAlign) const {
2224  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2225  if (RegNo <= 0)
2226    return ItinData->getOperandCycle(UseClass, UseIdx);
2227
2228  int UseCycle;
2229  if (Subtarget.isCortexA8()) {
2230    UseCycle = RegNo / 2;
2231    if (UseCycle < 2)
2232      UseCycle = 2;
2233    // Read in E3.
2234    UseCycle += 2;
2235  } else if (Subtarget.isCortexA9()) {
2236    UseCycle = (RegNo / 2);
2237    // If there are odd number of registers or if it's not 64-bit aligned,
2238    // then it takes an extra AGU (Address Generation Unit) cycle.
2239    if ((RegNo % 2) || UseAlign < 8)
2240      ++UseCycle;
2241  } else {
2242    // Assume the worst.
2243    UseCycle = 1;
2244  }
2245  return UseCycle;
2246}
2247
2248int
2249ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2250                                    const MCInstrDesc &DefMCID,
2251                                    unsigned DefIdx, unsigned DefAlign,
2252                                    const MCInstrDesc &UseMCID,
2253                                    unsigned UseIdx, unsigned UseAlign) const {
2254  unsigned DefClass = DefMCID.getSchedClass();
2255  unsigned UseClass = UseMCID.getSchedClass();
2256
2257  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2258    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2259
2260  // This may be a def / use of a variable_ops instruction, the operand
2261  // latency might be determinable dynamically. Let the target try to
2262  // figure it out.
2263  int DefCycle = -1;
2264  bool LdmBypass = false;
2265  switch (DefMCID.getOpcode()) {
2266  default:
2267    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2268    break;
2269
2270  case ARM::VLDMDIA:
2271  case ARM::VLDMDIA_UPD:
2272  case ARM::VLDMDDB_UPD:
2273  case ARM::VLDMSIA:
2274  case ARM::VLDMSIA_UPD:
2275  case ARM::VLDMSDB_UPD:
2276    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2277    break;
2278
2279  case ARM::LDMIA_RET:
2280  case ARM::LDMIA:
2281  case ARM::LDMDA:
2282  case ARM::LDMDB:
2283  case ARM::LDMIB:
2284  case ARM::LDMIA_UPD:
2285  case ARM::LDMDA_UPD:
2286  case ARM::LDMDB_UPD:
2287  case ARM::LDMIB_UPD:
2288  case ARM::tLDMIA:
2289  case ARM::tLDMIA_UPD:
2290  case ARM::tPUSH:
2291  case ARM::t2LDMIA_RET:
2292  case ARM::t2LDMIA:
2293  case ARM::t2LDMDB:
2294  case ARM::t2LDMIA_UPD:
2295  case ARM::t2LDMDB_UPD:
2296    LdmBypass = 1;
2297    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2298    break;
2299  }
2300
2301  if (DefCycle == -1)
2302    // We can't seem to determine the result latency of the def, assume it's 2.
2303    DefCycle = 2;
2304
2305  int UseCycle = -1;
2306  switch (UseMCID.getOpcode()) {
2307  default:
2308    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2309    break;
2310
2311  case ARM::VSTMDIA:
2312  case ARM::VSTMDIA_UPD:
2313  case ARM::VSTMDDB_UPD:
2314  case ARM::VSTMSIA:
2315  case ARM::VSTMSIA_UPD:
2316  case ARM::VSTMSDB_UPD:
2317    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2318    break;
2319
2320  case ARM::STMIA:
2321  case ARM::STMDA:
2322  case ARM::STMDB:
2323  case ARM::STMIB:
2324  case ARM::STMIA_UPD:
2325  case ARM::STMDA_UPD:
2326  case ARM::STMDB_UPD:
2327  case ARM::STMIB_UPD:
2328  case ARM::tSTMIA_UPD:
2329  case ARM::tPOP_RET:
2330  case ARM::tPOP:
2331  case ARM::t2STMIA:
2332  case ARM::t2STMDB:
2333  case ARM::t2STMIA_UPD:
2334  case ARM::t2STMDB_UPD:
2335    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2336    break;
2337  }
2338
2339  if (UseCycle == -1)
2340    // Assume it's read in the first stage.
2341    UseCycle = 1;
2342
2343  UseCycle = DefCycle - UseCycle + 1;
2344  if (UseCycle > 0) {
2345    if (LdmBypass) {
2346      // It's a variable_ops instruction so we can't use DefIdx here. Just use
2347      // first def operand.
2348      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2349                                          UseClass, UseIdx))
2350        --UseCycle;
2351    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2352                                               UseClass, UseIdx)) {
2353      --UseCycle;
2354    }
2355  }
2356
2357  return UseCycle;
2358}
2359
2360static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
2361                                           const MachineInstr *MI, unsigned Reg,
2362                                           unsigned &DefIdx, unsigned &Dist) {
2363  Dist = 0;
2364
2365  MachineBasicBlock::const_iterator I = MI; ++I;
2366  MachineBasicBlock::const_instr_iterator II =
2367    llvm::prior(I.getInstrIterator());
2368  assert(II->isInsideBundle() && "Empty bundle?");
2369
2370  int Idx = -1;
2371  while (II->isInsideBundle()) {
2372    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
2373    if (Idx != -1)
2374      break;
2375    --II;
2376    ++Dist;
2377  }
2378
2379  assert(Idx != -1 && "Cannot find bundled definition!");
2380  DefIdx = Idx;
2381  return II;
2382}
2383
2384static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
2385                                           const MachineInstr *MI, unsigned Reg,
2386                                           unsigned &UseIdx, unsigned &Dist) {
2387  Dist = 0;
2388
2389  MachineBasicBlock::const_instr_iterator II = MI; ++II;
2390  assert(II->isInsideBundle() && "Empty bundle?");
2391  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2392
2393  // FIXME: This doesn't properly handle multiple uses.
2394  int Idx = -1;
2395  while (II != E && II->isInsideBundle()) {
2396    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
2397    if (Idx != -1)
2398      break;
2399    if (II->getOpcode() != ARM::t2IT)
2400      ++Dist;
2401    ++II;
2402  }
2403
2404  if (Idx == -1) {
2405    Dist = 0;
2406    return 0;
2407  }
2408
2409  UseIdx = Idx;
2410  return II;
2411}
2412
2413int
2414ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2415                             const MachineInstr *DefMI, unsigned DefIdx,
2416                             const MachineInstr *UseMI, unsigned UseIdx) const {
2417  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2418      DefMI->isRegSequence() || DefMI->isImplicitDef())
2419    return 1;
2420
2421  if (!ItinData || ItinData->isEmpty())
2422    return DefMI->mayLoad() ? 3 : 1;
2423
2424  const MCInstrDesc *DefMCID = &DefMI->getDesc();
2425  const MCInstrDesc *UseMCID = &UseMI->getDesc();
2426  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2427  unsigned Reg = DefMO.getReg();
2428  if (Reg == ARM::CPSR) {
2429    if (DefMI->getOpcode() == ARM::FMSTAT) {
2430      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2431      return Subtarget.isCortexA9() ? 1 : 20;
2432    }
2433
2434    // CPSR set and branch can be paired in the same cycle.
2435    if (UseMI->isBranch())
2436      return 0;
2437
2438    // Otherwise it takes the instruction latency (generally one).
2439    int Latency = getInstrLatency(ItinData, DefMI);
2440
2441    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
2442    // its uses. Instructions which are otherwise scheduled between them may
2443    // incur a code size penalty (not able to use the CPSR setting 16-bit
2444    // instructions).
2445    if (Latency > 0 && Subtarget.isThumb2()) {
2446      const MachineFunction *MF = DefMI->getParent()->getParent();
2447      if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2448        --Latency;
2449    }
2450    return Latency;
2451  }
2452
2453  unsigned DefAlign = DefMI->hasOneMemOperand()
2454    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2455  unsigned UseAlign = UseMI->hasOneMemOperand()
2456    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2457
2458  unsigned DefAdj = 0;
2459  if (DefMI->isBundle()) {
2460    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
2461    if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2462        DefMI->isRegSequence() || DefMI->isImplicitDef())
2463      return 1;
2464    DefMCID = &DefMI->getDesc();
2465  }
2466  unsigned UseAdj = 0;
2467  if (UseMI->isBundle()) {
2468    unsigned NewUseIdx;
2469    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
2470                                                   Reg, NewUseIdx, UseAdj);
2471    if (NewUseMI) {
2472      UseMI = NewUseMI;
2473      UseIdx = NewUseIdx;
2474      UseMCID = &UseMI->getDesc();
2475    }
2476  }
2477
2478  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
2479                                  *UseMCID, UseIdx, UseAlign);
2480  int Adj = DefAdj + UseAdj;
2481  if (Adj) {
2482    Latency -= (int)(DefAdj + UseAdj);
2483    if (Latency < 1)
2484      return 1;
2485  }
2486
2487  if (Latency > 1 &&
2488      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2489    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2490    // variants are one cycle cheaper.
2491    switch (DefMCID->getOpcode()) {
2492    default: break;
2493    case ARM::LDRrs:
2494    case ARM::LDRBrs: {
2495      unsigned ShOpVal = DefMI->getOperand(3).getImm();
2496      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2497      if (ShImm == 0 ||
2498          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2499        --Latency;
2500      break;
2501    }
2502    case ARM::t2LDRs:
2503    case ARM::t2LDRBs:
2504    case ARM::t2LDRHs:
2505    case ARM::t2LDRSHs: {
2506      // Thumb2 mode: lsl only.
2507      unsigned ShAmt = DefMI->getOperand(3).getImm();
2508      if (ShAmt == 0 || ShAmt == 2)
2509        --Latency;
2510      break;
2511    }
2512    }
2513  }
2514
2515  if (DefAlign < 8 && Subtarget.isCortexA9())
2516    switch (DefMCID->getOpcode()) {
2517    default: break;
2518    case ARM::VLD1q8:
2519    case ARM::VLD1q16:
2520    case ARM::VLD1q32:
2521    case ARM::VLD1q64:
2522    case ARM::VLD1q8wb_fixed:
2523    case ARM::VLD1q16wb_fixed:
2524    case ARM::VLD1q32wb_fixed:
2525    case ARM::VLD1q64wb_fixed:
2526    case ARM::VLD1q8wb_register:
2527    case ARM::VLD1q16wb_register:
2528    case ARM::VLD1q32wb_register:
2529    case ARM::VLD1q64wb_register:
2530    case ARM::VLD2d8:
2531    case ARM::VLD2d16:
2532    case ARM::VLD2d32:
2533    case ARM::VLD2q8:
2534    case ARM::VLD2q16:
2535    case ARM::VLD2q32:
2536    case ARM::VLD2d8wb_fixed:
2537    case ARM::VLD2d16wb_fixed:
2538    case ARM::VLD2d32wb_fixed:
2539    case ARM::VLD2q8wb_fixed:
2540    case ARM::VLD2q16wb_fixed:
2541    case ARM::VLD2q32wb_fixed:
2542    case ARM::VLD2d8wb_register:
2543    case ARM::VLD2d16wb_register:
2544    case ARM::VLD2d32wb_register:
2545    case ARM::VLD2q8wb_register:
2546    case ARM::VLD2q16wb_register:
2547    case ARM::VLD2q32wb_register:
2548    case ARM::VLD3d8:
2549    case ARM::VLD3d16:
2550    case ARM::VLD3d32:
2551    case ARM::VLD1d64T:
2552    case ARM::VLD3d8_UPD:
2553    case ARM::VLD3d16_UPD:
2554    case ARM::VLD3d32_UPD:
2555    case ARM::VLD1d64Twb_fixed:
2556    case ARM::VLD1d64Twb_register:
2557    case ARM::VLD3q8_UPD:
2558    case ARM::VLD3q16_UPD:
2559    case ARM::VLD3q32_UPD:
2560    case ARM::VLD4d8:
2561    case ARM::VLD4d16:
2562    case ARM::VLD4d32:
2563    case ARM::VLD1d64Q:
2564    case ARM::VLD4d8_UPD:
2565    case ARM::VLD4d16_UPD:
2566    case ARM::VLD4d32_UPD:
2567    case ARM::VLD1d64Qwb_fixed:
2568    case ARM::VLD1d64Qwb_register:
2569    case ARM::VLD4q8_UPD:
2570    case ARM::VLD4q16_UPD:
2571    case ARM::VLD4q32_UPD:
2572    case ARM::VLD1DUPq8:
2573    case ARM::VLD1DUPq16:
2574    case ARM::VLD1DUPq32:
2575    case ARM::VLD1DUPq8wb_fixed:
2576    case ARM::VLD1DUPq16wb_fixed:
2577    case ARM::VLD1DUPq32wb_fixed:
2578    case ARM::VLD1DUPq8wb_register:
2579    case ARM::VLD1DUPq16wb_register:
2580    case ARM::VLD1DUPq32wb_register:
2581    case ARM::VLD2DUPd8:
2582    case ARM::VLD2DUPd16:
2583    case ARM::VLD2DUPd32:
2584    case ARM::VLD2DUPd8wb_fixed:
2585    case ARM::VLD2DUPd16wb_fixed:
2586    case ARM::VLD2DUPd32wb_fixed:
2587    case ARM::VLD2DUPd8wb_register:
2588    case ARM::VLD2DUPd16wb_register:
2589    case ARM::VLD2DUPd32wb_register:
2590    case ARM::VLD4DUPd8:
2591    case ARM::VLD4DUPd16:
2592    case ARM::VLD4DUPd32:
2593    case ARM::VLD4DUPd8_UPD:
2594    case ARM::VLD4DUPd16_UPD:
2595    case ARM::VLD4DUPd32_UPD:
2596    case ARM::VLD1LNd8:
2597    case ARM::VLD1LNd16:
2598    case ARM::VLD1LNd32:
2599    case ARM::VLD1LNd8_UPD:
2600    case ARM::VLD1LNd16_UPD:
2601    case ARM::VLD1LNd32_UPD:
2602    case ARM::VLD2LNd8:
2603    case ARM::VLD2LNd16:
2604    case ARM::VLD2LNd32:
2605    case ARM::VLD2LNq16:
2606    case ARM::VLD2LNq32:
2607    case ARM::VLD2LNd8_UPD:
2608    case ARM::VLD2LNd16_UPD:
2609    case ARM::VLD2LNd32_UPD:
2610    case ARM::VLD2LNq16_UPD:
2611    case ARM::VLD2LNq32_UPD:
2612    case ARM::VLD4LNd8:
2613    case ARM::VLD4LNd16:
2614    case ARM::VLD4LNd32:
2615    case ARM::VLD4LNq16:
2616    case ARM::VLD4LNq32:
2617    case ARM::VLD4LNd8_UPD:
2618    case ARM::VLD4LNd16_UPD:
2619    case ARM::VLD4LNd32_UPD:
2620    case ARM::VLD4LNq16_UPD:
2621    case ARM::VLD4LNq32_UPD:
2622      // If the address is not 64-bit aligned, the latencies of these
2623      // instructions increases by one.
2624      ++Latency;
2625      break;
2626    }
2627
2628  return Latency;
2629}
2630
2631int
2632ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2633                                    SDNode *DefNode, unsigned DefIdx,
2634                                    SDNode *UseNode, unsigned UseIdx) const {
2635  if (!DefNode->isMachineOpcode())
2636    return 1;
2637
2638  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
2639
2640  if (isZeroCost(DefMCID.Opcode))
2641    return 0;
2642
2643  if (!ItinData || ItinData->isEmpty())
2644    return DefMCID.mayLoad() ? 3 : 1;
2645
2646  if (!UseNode->isMachineOpcode()) {
2647    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
2648    if (Subtarget.isCortexA9())
2649      return Latency <= 2 ? 1 : Latency - 1;
2650    else
2651      return Latency <= 3 ? 1 : Latency - 2;
2652  }
2653
2654  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
2655  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
2656  unsigned DefAlign = !DefMN->memoperands_empty()
2657    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
2658  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
2659  unsigned UseAlign = !UseMN->memoperands_empty()
2660    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
2661  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2662                                  UseMCID, UseIdx, UseAlign);
2663
2664  if (Latency > 1 &&
2665      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2666    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2667    // variants are one cycle cheaper.
2668    switch (DefMCID.getOpcode()) {
2669    default: break;
2670    case ARM::LDRrs:
2671    case ARM::LDRBrs: {
2672      unsigned ShOpVal =
2673        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2674      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2675      if (ShImm == 0 ||
2676          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2677        --Latency;
2678      break;
2679    }
2680    case ARM::t2LDRs:
2681    case ARM::t2LDRBs:
2682    case ARM::t2LDRHs:
2683    case ARM::t2LDRSHs: {
2684      // Thumb2 mode: lsl only.
2685      unsigned ShAmt =
2686        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2687      if (ShAmt == 0 || ShAmt == 2)
2688        --Latency;
2689      break;
2690    }
2691    }
2692  }
2693
2694  if (DefAlign < 8 && Subtarget.isCortexA9())
2695    switch (DefMCID.getOpcode()) {
2696    default: break;
2697    case ARM::VLD1q8Pseudo:
2698    case ARM::VLD1q16Pseudo:
2699    case ARM::VLD1q32Pseudo:
2700    case ARM::VLD1q64Pseudo:
2701    case ARM::VLD1q8PseudoWB_register:
2702    case ARM::VLD1q16PseudoWB_register:
2703    case ARM::VLD1q32PseudoWB_register:
2704    case ARM::VLD1q64PseudoWB_register:
2705    case ARM::VLD1q8PseudoWB_fixed:
2706    case ARM::VLD1q16PseudoWB_fixed:
2707    case ARM::VLD1q32PseudoWB_fixed:
2708    case ARM::VLD1q64PseudoWB_fixed:
2709    case ARM::VLD2d8Pseudo:
2710    case ARM::VLD2d16Pseudo:
2711    case ARM::VLD2d32Pseudo:
2712    case ARM::VLD2q8Pseudo:
2713    case ARM::VLD2q16Pseudo:
2714    case ARM::VLD2q32Pseudo:
2715    case ARM::VLD2d8PseudoWB_fixed:
2716    case ARM::VLD2d16PseudoWB_fixed:
2717    case ARM::VLD2d32PseudoWB_fixed:
2718    case ARM::VLD2q8PseudoWB_fixed:
2719    case ARM::VLD2q16PseudoWB_fixed:
2720    case ARM::VLD2q32PseudoWB_fixed:
2721    case ARM::VLD2d8PseudoWB_register:
2722    case ARM::VLD2d16PseudoWB_register:
2723    case ARM::VLD2d32PseudoWB_register:
2724    case ARM::VLD2q8PseudoWB_register:
2725    case ARM::VLD2q16PseudoWB_register:
2726    case ARM::VLD2q32PseudoWB_register:
2727    case ARM::VLD3d8Pseudo:
2728    case ARM::VLD3d16Pseudo:
2729    case ARM::VLD3d32Pseudo:
2730    case ARM::VLD1d64TPseudo:
2731    case ARM::VLD3d8Pseudo_UPD:
2732    case ARM::VLD3d16Pseudo_UPD:
2733    case ARM::VLD3d32Pseudo_UPD:
2734    case ARM::VLD3q8Pseudo_UPD:
2735    case ARM::VLD3q16Pseudo_UPD:
2736    case ARM::VLD3q32Pseudo_UPD:
2737    case ARM::VLD3q8oddPseudo:
2738    case ARM::VLD3q16oddPseudo:
2739    case ARM::VLD3q32oddPseudo:
2740    case ARM::VLD3q8oddPseudo_UPD:
2741    case ARM::VLD3q16oddPseudo_UPD:
2742    case ARM::VLD3q32oddPseudo_UPD:
2743    case ARM::VLD4d8Pseudo:
2744    case ARM::VLD4d16Pseudo:
2745    case ARM::VLD4d32Pseudo:
2746    case ARM::VLD1d64QPseudo:
2747    case ARM::VLD4d8Pseudo_UPD:
2748    case ARM::VLD4d16Pseudo_UPD:
2749    case ARM::VLD4d32Pseudo_UPD:
2750    case ARM::VLD4q8Pseudo_UPD:
2751    case ARM::VLD4q16Pseudo_UPD:
2752    case ARM::VLD4q32Pseudo_UPD:
2753    case ARM::VLD4q8oddPseudo:
2754    case ARM::VLD4q16oddPseudo:
2755    case ARM::VLD4q32oddPseudo:
2756    case ARM::VLD4q8oddPseudo_UPD:
2757    case ARM::VLD4q16oddPseudo_UPD:
2758    case ARM::VLD4q32oddPseudo_UPD:
2759    case ARM::VLD1DUPq8Pseudo:
2760    case ARM::VLD1DUPq16Pseudo:
2761    case ARM::VLD1DUPq32Pseudo:
2762    case ARM::VLD1DUPq8PseudoWB_fixed:
2763    case ARM::VLD1DUPq16PseudoWB_fixed:
2764    case ARM::VLD1DUPq32PseudoWB_fixed:
2765    case ARM::VLD1DUPq8PseudoWB_register:
2766    case ARM::VLD1DUPq16PseudoWB_register:
2767    case ARM::VLD1DUPq32PseudoWB_register:
2768    case ARM::VLD2DUPd8Pseudo:
2769    case ARM::VLD2DUPd16Pseudo:
2770    case ARM::VLD2DUPd32Pseudo:
2771    case ARM::VLD2DUPd8PseudoWB_fixed:
2772    case ARM::VLD2DUPd16PseudoWB_fixed:
2773    case ARM::VLD2DUPd32PseudoWB_fixed:
2774    case ARM::VLD2DUPd8PseudoWB_register:
2775    case ARM::VLD2DUPd16PseudoWB_register:
2776    case ARM::VLD2DUPd32PseudoWB_register:
2777    case ARM::VLD4DUPd8Pseudo:
2778    case ARM::VLD4DUPd16Pseudo:
2779    case ARM::VLD4DUPd32Pseudo:
2780    case ARM::VLD4DUPd8Pseudo_UPD:
2781    case ARM::VLD4DUPd16Pseudo_UPD:
2782    case ARM::VLD4DUPd32Pseudo_UPD:
2783    case ARM::VLD1LNq8Pseudo:
2784    case ARM::VLD1LNq16Pseudo:
2785    case ARM::VLD1LNq32Pseudo:
2786    case ARM::VLD1LNq8Pseudo_UPD:
2787    case ARM::VLD1LNq16Pseudo_UPD:
2788    case ARM::VLD1LNq32Pseudo_UPD:
2789    case ARM::VLD2LNd8Pseudo:
2790    case ARM::VLD2LNd16Pseudo:
2791    case ARM::VLD2LNd32Pseudo:
2792    case ARM::VLD2LNq16Pseudo:
2793    case ARM::VLD2LNq32Pseudo:
2794    case ARM::VLD2LNd8Pseudo_UPD:
2795    case ARM::VLD2LNd16Pseudo_UPD:
2796    case ARM::VLD2LNd32Pseudo_UPD:
2797    case ARM::VLD2LNq16Pseudo_UPD:
2798    case ARM::VLD2LNq32Pseudo_UPD:
2799    case ARM::VLD4LNd8Pseudo:
2800    case ARM::VLD4LNd16Pseudo:
2801    case ARM::VLD4LNd32Pseudo:
2802    case ARM::VLD4LNq16Pseudo:
2803    case ARM::VLD4LNq32Pseudo:
2804    case ARM::VLD4LNd8Pseudo_UPD:
2805    case ARM::VLD4LNd16Pseudo_UPD:
2806    case ARM::VLD4LNd32Pseudo_UPD:
2807    case ARM::VLD4LNq16Pseudo_UPD:
2808    case ARM::VLD4LNq32Pseudo_UPD:
2809      // If the address is not 64-bit aligned, the latencies of these
2810      // instructions increases by one.
2811      ++Latency;
2812      break;
2813    }
2814
2815  return Latency;
2816}
2817
2818unsigned
2819ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
2820                                   const MachineInstr *DefMI, unsigned DefIdx,
2821                                   const MachineInstr *DepMI) const {
2822  unsigned Reg = DefMI->getOperand(DefIdx).getReg();
2823  if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
2824    return 1;
2825
2826  // If the second MI is predicated, then there is an implicit use dependency.
2827  return getOperandLatency(ItinData, DefMI, DefIdx, DepMI,
2828                           DepMI->getNumOperands());
2829}
2830
2831int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2832                                      const MachineInstr *MI,
2833                                      unsigned *PredCost) const {
2834  if (MI->isCopyLike() || MI->isInsertSubreg() ||
2835      MI->isRegSequence() || MI->isImplicitDef())
2836    return 1;
2837
2838  if (!ItinData || ItinData->isEmpty())
2839    return 1;
2840
2841  if (MI->isBundle()) {
2842    int Latency = 0;
2843    MachineBasicBlock::const_instr_iterator I = MI;
2844    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2845    while (++I != E && I->isInsideBundle()) {
2846      if (I->getOpcode() != ARM::t2IT)
2847        Latency += getInstrLatency(ItinData, I, PredCost);
2848    }
2849    return Latency;
2850  }
2851
2852  const MCInstrDesc &MCID = MI->getDesc();
2853  unsigned Class = MCID.getSchedClass();
2854  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
2855  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)))
2856    // When predicated, CPSR is an additional source operand for CPSR updating
2857    // instructions, this apparently increases their latencies.
2858    *PredCost = 1;
2859  if (UOps)
2860    return ItinData->getStageLatency(Class);
2861  return getNumMicroOps(ItinData, MI);
2862}
2863
2864int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2865                                      SDNode *Node) const {
2866  if (!Node->isMachineOpcode())
2867    return 1;
2868
2869  if (!ItinData || ItinData->isEmpty())
2870    return 1;
2871
2872  unsigned Opcode = Node->getMachineOpcode();
2873  switch (Opcode) {
2874  default:
2875    return ItinData->getStageLatency(get(Opcode).getSchedClass());
2876  case ARM::VLDMQIA:
2877  case ARM::VSTMQIA:
2878    return 2;
2879  }
2880}
2881
2882bool ARMBaseInstrInfo::
2883hasHighOperandLatency(const InstrItineraryData *ItinData,
2884                      const MachineRegisterInfo *MRI,
2885                      const MachineInstr *DefMI, unsigned DefIdx,
2886                      const MachineInstr *UseMI, unsigned UseIdx) const {
2887  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2888  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
2889  if (Subtarget.isCortexA8() &&
2890      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
2891    // CortexA8 VFP instructions are not pipelined.
2892    return true;
2893
2894  // Hoist VFP / NEON instructions with 4 or higher latency.
2895  int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
2896  if (Latency <= 3)
2897    return false;
2898  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
2899         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
2900}
2901
2902bool ARMBaseInstrInfo::
2903hasLowDefLatency(const InstrItineraryData *ItinData,
2904                 const MachineInstr *DefMI, unsigned DefIdx) const {
2905  if (!ItinData || ItinData->isEmpty())
2906    return false;
2907
2908  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2909  if (DDomain == ARMII::DomainGeneral) {
2910    unsigned DefClass = DefMI->getDesc().getSchedClass();
2911    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2912    return (DefCycle != -1 && DefCycle <= 2);
2913  }
2914  return false;
2915}
2916
2917bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
2918                                         StringRef &ErrInfo) const {
2919  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
2920    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
2921    return false;
2922  }
2923  return true;
2924}
2925
2926bool
2927ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
2928                                     unsigned &AddSubOpc,
2929                                     bool &NegAcc, bool &HasLane) const {
2930  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
2931  if (I == MLxEntryMap.end())
2932    return false;
2933
2934  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
2935  MulOpc = Entry.MulOpc;
2936  AddSubOpc = Entry.AddSubOpc;
2937  NegAcc = Entry.NegAcc;
2938  HasLane = Entry.HasLane;
2939  return true;
2940}
2941
2942//===----------------------------------------------------------------------===//
2943// Execution domains.
2944//===----------------------------------------------------------------------===//
2945//
2946// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
2947// and some can go down both.  The vmov instructions go down the VFP pipeline,
2948// but they can be changed to vorr equivalents that are executed by the NEON
2949// pipeline.
2950//
2951// We use the following execution domain numbering:
2952//
2953enum ARMExeDomain {
2954  ExeGeneric = 0,
2955  ExeVFP = 1,
2956  ExeNEON = 2
2957};
2958//
2959// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
2960//
2961std::pair<uint16_t, uint16_t>
2962ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
2963  // VMOVD is a VFP instruction, but can be changed to NEON if it isn't
2964  // predicated.
2965  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
2966    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
2967
2968  // No other instructions can be swizzled, so just determine their domain.
2969  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
2970
2971  if (Domain & ARMII::DomainNEON)
2972    return std::make_pair(ExeNEON, 0);
2973
2974  // Certain instructions can go either way on Cortex-A8.
2975  // Treat them as NEON instructions.
2976  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
2977    return std::make_pair(ExeNEON, 0);
2978
2979  if (Domain & ARMII::DomainVFP)
2980    return std::make_pair(ExeVFP, 0);
2981
2982  return std::make_pair(ExeGeneric, 0);
2983}
2984
2985void
2986ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
2987  // We only know how to change VMOVD into VORR.
2988  assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD");
2989  if (Domain != ExeNEON)
2990    return;
2991
2992  // Zap the predicate operands.
2993  assert(!isPredicated(MI) && "Cannot predicate a VORRd");
2994  MI->RemoveOperand(3);
2995  MI->RemoveOperand(2);
2996
2997  // Change to a VORRd which requires two identical use operands.
2998  MI->setDesc(get(ARM::VORRd));
2999
3000  // Add the extra source operand and new predicates.
3001  // This will go before any implicit ops.
3002  AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
3003}
3004
3005bool ARMBaseInstrInfo::hasNOP() const {
3006  return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
3007}
3008