1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/LiveVariables.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/StackMaps.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/MC/MCExpr.h"
33#include "llvm/MC/MCInst.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetOptions.h"
39#include <limits>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "x86-instr-info"
44
45#define GET_INSTRINFO_CTOR_DTOR
46#include "X86GenInstrInfo.inc"
47
48static cl::opt<bool>
49NoFusing("disable-spill-fusing",
50         cl::desc("Disable fusing of spill code into instructions"));
51static cl::opt<bool>
52PrintFailedFusing("print-failed-fuse-candidates",
53                  cl::desc("Print instructions that the allocator wants to"
54                           " fuse, but the X86 backend currently can't"),
55                  cl::Hidden);
56static cl::opt<bool>
57ReMatPICStubLoad("remat-pic-stub-load",
58                 cl::desc("Re-materialize load from stub in PIC mode"),
59                 cl::init(false), cl::Hidden);
60
61enum {
62  // Select which memory operand is being unfolded.
63  // (stored in bits 0 - 3)
64  TB_INDEX_0    = 0,
65  TB_INDEX_1    = 1,
66  TB_INDEX_2    = 2,
67  TB_INDEX_3    = 3,
68  TB_INDEX_4    = 4,
69  TB_INDEX_MASK = 0xf,
70
71  // Do not insert the reverse map (MemOp -> RegOp) into the table.
72  // This may be needed because there is a many -> one mapping.
73  TB_NO_REVERSE   = 1 << 4,
74
75  // Do not insert the forward map (RegOp -> MemOp) into the table.
76  // This is needed for Native Client, which prohibits branch
77  // instructions from using a memory operand.
78  TB_NO_FORWARD   = 1 << 5,
79
80  TB_FOLDED_LOAD  = 1 << 6,
81  TB_FOLDED_STORE = 1 << 7,
82
83  // Minimum alignment required for load/store.
84  // Used for RegOp->MemOp conversion.
85  // (stored in bits 8 - 15)
86  TB_ALIGN_SHIFT = 8,
87  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
88  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
89  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
90  TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
91  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
92};
93
94struct X86MemoryFoldTableEntry {
95  uint16_t RegOp;
96  uint16_t MemOp;
97  uint16_t Flags;
98};
99
100// Pin the vtable to this file.
101void X86InstrInfo::anchor() {}
102
103X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
104    : X86GenInstrInfo(
105          (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
106          (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
107      Subtarget(STI), RI(STI.getTargetTriple()) {
108
109  static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
110    { X86::ADC32ri,     X86::ADC32mi,    0 },
111    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
112    { X86::ADC32rr,     X86::ADC32mr,    0 },
113    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
114    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
115    { X86::ADC64rr,     X86::ADC64mr,    0 },
116    { X86::ADD16ri,     X86::ADD16mi,    0 },
117    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
118    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
119    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
120    { X86::ADD16rr,     X86::ADD16mr,    0 },
121    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
122    { X86::ADD32ri,     X86::ADD32mi,    0 },
123    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
124    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
125    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
126    { X86::ADD32rr,     X86::ADD32mr,    0 },
127    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
128    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
129    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
130    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
131    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
132    { X86::ADD64rr,     X86::ADD64mr,    0 },
133    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
134    { X86::ADD8ri,      X86::ADD8mi,     0 },
135    { X86::ADD8rr,      X86::ADD8mr,     0 },
136    { X86::AND16ri,     X86::AND16mi,    0 },
137    { X86::AND16ri8,    X86::AND16mi8,   0 },
138    { X86::AND16rr,     X86::AND16mr,    0 },
139    { X86::AND32ri,     X86::AND32mi,    0 },
140    { X86::AND32ri8,    X86::AND32mi8,   0 },
141    { X86::AND32rr,     X86::AND32mr,    0 },
142    { X86::AND64ri32,   X86::AND64mi32,  0 },
143    { X86::AND64ri8,    X86::AND64mi8,   0 },
144    { X86::AND64rr,     X86::AND64mr,    0 },
145    { X86::AND8ri,      X86::AND8mi,     0 },
146    { X86::AND8rr,      X86::AND8mr,     0 },
147    { X86::DEC16r,      X86::DEC16m,     0 },
148    { X86::DEC32r,      X86::DEC32m,     0 },
149    { X86::DEC64r,      X86::DEC64m,     0 },
150    { X86::DEC8r,       X86::DEC8m,      0 },
151    { X86::INC16r,      X86::INC16m,     0 },
152    { X86::INC32r,      X86::INC32m,     0 },
153    { X86::INC64r,      X86::INC64m,     0 },
154    { X86::INC8r,       X86::INC8m,      0 },
155    { X86::NEG16r,      X86::NEG16m,     0 },
156    { X86::NEG32r,      X86::NEG32m,     0 },
157    { X86::NEG64r,      X86::NEG64m,     0 },
158    { X86::NEG8r,       X86::NEG8m,      0 },
159    { X86::NOT16r,      X86::NOT16m,     0 },
160    { X86::NOT32r,      X86::NOT32m,     0 },
161    { X86::NOT64r,      X86::NOT64m,     0 },
162    { X86::NOT8r,       X86::NOT8m,      0 },
163    { X86::OR16ri,      X86::OR16mi,     0 },
164    { X86::OR16ri8,     X86::OR16mi8,    0 },
165    { X86::OR16rr,      X86::OR16mr,     0 },
166    { X86::OR32ri,      X86::OR32mi,     0 },
167    { X86::OR32ri8,     X86::OR32mi8,    0 },
168    { X86::OR32rr,      X86::OR32mr,     0 },
169    { X86::OR64ri32,    X86::OR64mi32,   0 },
170    { X86::OR64ri8,     X86::OR64mi8,    0 },
171    { X86::OR64rr,      X86::OR64mr,     0 },
172    { X86::OR8ri,       X86::OR8mi,      0 },
173    { X86::OR8rr,       X86::OR8mr,      0 },
174    { X86::ROL16r1,     X86::ROL16m1,    0 },
175    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
176    { X86::ROL16ri,     X86::ROL16mi,    0 },
177    { X86::ROL32r1,     X86::ROL32m1,    0 },
178    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
179    { X86::ROL32ri,     X86::ROL32mi,    0 },
180    { X86::ROL64r1,     X86::ROL64m1,    0 },
181    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
182    { X86::ROL64ri,     X86::ROL64mi,    0 },
183    { X86::ROL8r1,      X86::ROL8m1,     0 },
184    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
185    { X86::ROL8ri,      X86::ROL8mi,     0 },
186    { X86::ROR16r1,     X86::ROR16m1,    0 },
187    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
188    { X86::ROR16ri,     X86::ROR16mi,    0 },
189    { X86::ROR32r1,     X86::ROR32m1,    0 },
190    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
191    { X86::ROR32ri,     X86::ROR32mi,    0 },
192    { X86::ROR64r1,     X86::ROR64m1,    0 },
193    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
194    { X86::ROR64ri,     X86::ROR64mi,    0 },
195    { X86::ROR8r1,      X86::ROR8m1,     0 },
196    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
197    { X86::ROR8ri,      X86::ROR8mi,     0 },
198    { X86::SAR16r1,     X86::SAR16m1,    0 },
199    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
200    { X86::SAR16ri,     X86::SAR16mi,    0 },
201    { X86::SAR32r1,     X86::SAR32m1,    0 },
202    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
203    { X86::SAR32ri,     X86::SAR32mi,    0 },
204    { X86::SAR64r1,     X86::SAR64m1,    0 },
205    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
206    { X86::SAR64ri,     X86::SAR64mi,    0 },
207    { X86::SAR8r1,      X86::SAR8m1,     0 },
208    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
209    { X86::SAR8ri,      X86::SAR8mi,     0 },
210    { X86::SBB32ri,     X86::SBB32mi,    0 },
211    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
212    { X86::SBB32rr,     X86::SBB32mr,    0 },
213    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
214    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
215    { X86::SBB64rr,     X86::SBB64mr,    0 },
216    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
217    { X86::SHL16ri,     X86::SHL16mi,    0 },
218    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
219    { X86::SHL32ri,     X86::SHL32mi,    0 },
220    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
221    { X86::SHL64ri,     X86::SHL64mi,    0 },
222    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
223    { X86::SHL8ri,      X86::SHL8mi,     0 },
224    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
225    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
226    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
227    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
228    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
229    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
230    { X86::SHR16r1,     X86::SHR16m1,    0 },
231    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
232    { X86::SHR16ri,     X86::SHR16mi,    0 },
233    { X86::SHR32r1,     X86::SHR32m1,    0 },
234    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
235    { X86::SHR32ri,     X86::SHR32mi,    0 },
236    { X86::SHR64r1,     X86::SHR64m1,    0 },
237    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
238    { X86::SHR64ri,     X86::SHR64mi,    0 },
239    { X86::SHR8r1,      X86::SHR8m1,     0 },
240    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
241    { X86::SHR8ri,      X86::SHR8mi,     0 },
242    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
243    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
244    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
245    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
246    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
247    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
248    { X86::SUB16ri,     X86::SUB16mi,    0 },
249    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
250    { X86::SUB16rr,     X86::SUB16mr,    0 },
251    { X86::SUB32ri,     X86::SUB32mi,    0 },
252    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
253    { X86::SUB32rr,     X86::SUB32mr,    0 },
254    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
255    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
256    { X86::SUB64rr,     X86::SUB64mr,    0 },
257    { X86::SUB8ri,      X86::SUB8mi,     0 },
258    { X86::SUB8rr,      X86::SUB8mr,     0 },
259    { X86::XOR16ri,     X86::XOR16mi,    0 },
260    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
261    { X86::XOR16rr,     X86::XOR16mr,    0 },
262    { X86::XOR32ri,     X86::XOR32mi,    0 },
263    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
264    { X86::XOR32rr,     X86::XOR32mr,    0 },
265    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
266    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
267    { X86::XOR64rr,     X86::XOR64mr,    0 },
268    { X86::XOR8ri,      X86::XOR8mi,     0 },
269    { X86::XOR8rr,      X86::XOR8mr,     0 }
270  };
271
272  for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
273    unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
274    unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
275    unsigned Flags = MemoryFoldTable2Addr[i].Flags;
276    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
277                  RegOp, MemOp,
278                  // Index 0, folded load and store, no alignment requirement.
279                  Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
280  }
281
282  static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
283    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
284    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
285    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
286    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
287    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
288    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
289    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
290    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
291    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
292    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
293    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
294    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
295    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
296    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
297    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
298    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
299    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
300    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
301    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
302    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
303    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
304    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
305    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
306    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
307    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
308    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
309    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
310    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
311    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
312    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
313    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
314    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
315    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
316    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
317    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
318    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
319    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
320    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
321    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
322    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
323    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
324    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
325    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
326    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
327    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
328    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
329    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
330    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
331    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
332    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
333    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
334    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
335    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
336    { X86::PEXTRDrr,    X86::PEXTRDmr,      TB_FOLDED_STORE },
337    { X86::PEXTRQrr,    X86::PEXTRQmr,      TB_FOLDED_STORE },
338    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
339    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
340    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
341    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
342    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
343    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
344    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
345    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
346    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
347    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
348    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
349    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
350    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
351    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
352    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
353    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
354    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
355    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
356    { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
357    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
358    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
359    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
360    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
361
362    // AVX 128-bit versions of foldable instructions
363    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
364    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
365    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
366    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
367    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
368    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
369    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
370    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
371    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
372    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
373    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
374    { X86::VPEXTRDrr,   X86::VPEXTRDmr,     TB_FOLDED_STORE },
375    { X86::VPEXTRQrr,   X86::VPEXTRQmr,     TB_FOLDED_STORE },
376
377    // AVX 256-bit foldable instructions
378    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
379    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
380    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
381    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
382    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
383    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
384
385    // AVX-512 foldable instructions
386    { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
387    { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
388    { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
389    { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
390    { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
391    { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE },
392    { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE },
393    { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE },
394    { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE },
395    { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE },
396    { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE },
397
398    // AVX-512 foldable instructions (256-bit versions)
399    { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
400    { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
401    { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
402    { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
403    { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE },
404    { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE },
405    { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE },
406    { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE },
407    { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE },
408    { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE },
409
410    // AVX-512 foldable instructions (128-bit versions)
411    { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
412    { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
413    { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
414    { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
415    { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE },
416    { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE },
417    { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE },
418    { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE },
419    { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE },
420    { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE },
421
422    // F16C foldable instructions
423    { X86::VCVTPS2PHrr,        X86::VCVTPS2PHmr,      TB_FOLDED_STORE },
424    { X86::VCVTPS2PHYrr,       X86::VCVTPS2PHYmr,     TB_FOLDED_STORE }
425  };
426
427  for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
428    unsigned RegOp      = MemoryFoldTable0[i].RegOp;
429    unsigned MemOp      = MemoryFoldTable0[i].MemOp;
430    unsigned Flags      = MemoryFoldTable0[i].Flags;
431    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
432                  RegOp, MemOp, TB_INDEX_0 | Flags);
433  }
434
435  static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
436    { X86::CMP16rr,         X86::CMP16rm,             0 },
437    { X86::CMP32rr,         X86::CMP32rm,             0 },
438    { X86::CMP64rr,         X86::CMP64rm,             0 },
439    { X86::CMP8rr,          X86::CMP8rm,              0 },
440    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
441    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
442    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
443    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
444    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
445    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
446    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
447    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
448    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
449    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
450    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
451    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
452    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
453    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
454    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
455    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
456    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
457    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
458    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
459    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
460    { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
461    { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
462    { X86::CVTDQ2PDrr,      X86::CVTDQ2PDrm,          TB_ALIGN_16 },
463    { X86::CVTDQ2PSrr,      X86::CVTDQ2PSrm,          TB_ALIGN_16 },
464    { X86::CVTPD2DQrr,      X86::CVTPD2DQrm,          TB_ALIGN_16 },
465    { X86::CVTPD2PSrr,      X86::CVTPD2PSrm,          TB_ALIGN_16 },
466    { X86::CVTPS2DQrr,      X86::CVTPS2DQrm,          TB_ALIGN_16 },
467    { X86::CVTPS2PDrr,      X86::CVTPS2PDrm,          TB_ALIGN_16 },
468    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
469    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
470    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
471    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
472    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
473    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
474    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
475    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
476    { X86::MOV16rr,         X86::MOV16rm,             0 },
477    { X86::MOV32rr,         X86::MOV32rm,             0 },
478    { X86::MOV64rr,         X86::MOV64rm,             0 },
479    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
480    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
481    { X86::MOV8rr,          X86::MOV8rm,              0 },
482    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
483    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
484    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
485    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
486    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
487    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
488    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
489    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
490    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
491    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
492    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
493    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
494    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
495    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
496    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
497    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
498    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
499    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
500    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
501    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
502    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
503    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
504    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
505    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
506    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
507    { X86::PCMPESTRIrr,     X86::PCMPESTRIrm,         TB_ALIGN_16 },
508    { X86::PCMPESTRM128rr,  X86::PCMPESTRM128rm,      TB_ALIGN_16 },
509    { X86::PCMPISTRIrr,     X86::PCMPISTRIrm,         TB_ALIGN_16 },
510    { X86::PCMPISTRM128rr,  X86::PCMPISTRM128rm,      TB_ALIGN_16 },
511    { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128,     TB_ALIGN_16 },
512    { X86::PMOVSXBDrr,      X86::PMOVSXBDrm,          TB_ALIGN_16 },
513    { X86::PMOVSXBQrr,      X86::PMOVSXBQrm,          TB_ALIGN_16 },
514    { X86::PMOVSXBWrr,      X86::PMOVSXBWrm,          TB_ALIGN_16 },
515    { X86::PMOVSXDQrr,      X86::PMOVSXDQrm,          TB_ALIGN_16 },
516    { X86::PMOVSXWDrr,      X86::PMOVSXWDrm,          TB_ALIGN_16 },
517    { X86::PMOVSXWQrr,      X86::PMOVSXWQrm,          TB_ALIGN_16 },
518    { X86::PMOVZXBDrr,      X86::PMOVZXBDrm,          TB_ALIGN_16 },
519    { X86::PMOVZXBQrr,      X86::PMOVZXBQrm,          TB_ALIGN_16 },
520    { X86::PMOVZXBWrr,      X86::PMOVZXBWrm,          TB_ALIGN_16 },
521    { X86::PMOVZXDQrr,      X86::PMOVZXDQrm,          TB_ALIGN_16 },
522    { X86::PMOVZXWDrr,      X86::PMOVZXWDrm,          TB_ALIGN_16 },
523    { X86::PMOVZXWQrr,      X86::PMOVZXWQrm,          TB_ALIGN_16 },
524    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
525    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
526    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
527    { X86::PTESTrr,         X86::PTESTrm,             TB_ALIGN_16 },
528    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
529    { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
530    { X86::ROUNDPDr,        X86::ROUNDPDm,            TB_ALIGN_16 },
531    { X86::ROUNDPSr,        X86::ROUNDPSm,            TB_ALIGN_16 },
532    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
533    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
534    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
535    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
536    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
537    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
538    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
539    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
540    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
541    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
542    { X86::TEST16rr,        X86::TEST16rm,            0 },
543    { X86::TEST32rr,        X86::TEST32rm,            0 },
544    { X86::TEST64rr,        X86::TEST64rm,            0 },
545    { X86::TEST8rr,         X86::TEST8rm,             0 },
546    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
547    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
548    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
549
550    // MMX version of foldable instructions
551    { X86::MMX_CVTPD2PIirr,   X86::MMX_CVTPD2PIirm,   0 },
552    { X86::MMX_CVTPI2PDirr,   X86::MMX_CVTPI2PDirm,   0 },
553    { X86::MMX_CVTPS2PIirr,   X86::MMX_CVTPS2PIirm,   0 },
554    { X86::MMX_CVTTPD2PIirr,  X86::MMX_CVTTPD2PIirm,  0 },
555    { X86::MMX_CVTTPS2PIirr,  X86::MMX_CVTTPS2PIirm,  0 },
556    { X86::MMX_MOVD64to64rr,  X86::MMX_MOVQ64rm,      0 },
557    { X86::MMX_PABSBrr64,     X86::MMX_PABSBrm64,     0 },
558    { X86::MMX_PABSDrr64,     X86::MMX_PABSDrm64,     0 },
559    { X86::MMX_PABSWrr64,     X86::MMX_PABSWrm64,     0 },
560    { X86::MMX_PSHUFWri,      X86::MMX_PSHUFWmi,      0 },
561
562    // 3DNow! version of foldable instructions
563    { X86::PF2IDrr,         X86::PF2IDrm,             0 },
564    { X86::PF2IWrr,         X86::PF2IWrm,             0 },
565    { X86::PFRCPrr,         X86::PFRCPrm,             0 },
566    { X86::PFRSQRTrr,       X86::PFRSQRTrm,           0 },
567    { X86::PI2FDrr,         X86::PI2FDrm,             0 },
568    { X86::PI2FWrr,         X86::PI2FWrm,             0 },
569    { X86::PSWAPDrr,        X86::PSWAPDrm,            0 },
570
571    // AVX 128-bit versions of foldable instructions
572    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
573    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
574    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
575    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
576    { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
577    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
578    { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
579    { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
580    { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
581    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
582    { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
583    { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
584    { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
585    { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
586    { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
587    { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
588    { X86::VCVTDQ2PDrr,     X86::VCVTDQ2PDrm,         0 },
589    { X86::VCVTDQ2PSrr,     X86::VCVTDQ2PSrm,         0 },
590    { X86::VCVTPD2DQrr,     X86::VCVTPD2DQXrm,        0 },
591    { X86::VCVTPD2PSrr,     X86::VCVTPD2PSXrm,        0 },
592    { X86::VCVTPS2DQrr,     X86::VCVTPS2DQrm,         0 },
593    { X86::VCVTPS2PDrr,     X86::VCVTPS2PDrm,         0 },
594    { X86::VCVTTPD2DQrr,    X86::VCVTTPD2DQXrm,       0 },
595    { X86::VCVTTPS2DQrr,    X86::VCVTTPS2DQrm,        0 },
596    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
597    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
598    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
599    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
600    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
601    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
602    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
603    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
604    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         0 },
605    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         0 },
606    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
607    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
608    { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
609    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
610    { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
611    { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
612    { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
613    { X86::VPCMPESTRIrr,    X86::VPCMPESTRIrm,        0 },
614    { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm,     0 },
615    { X86::VPCMPISTRIrr,    X86::VPCMPISTRIrm,        0 },
616    { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm,     0 },
617    { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128,   0 },
618    { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
619    { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
620    { X86::VPMOVSXBDrr,     X86::VPMOVSXBDrm,         0 },
621    { X86::VPMOVSXBQrr,     X86::VPMOVSXBQrm,         0 },
622    { X86::VPMOVSXBWrr,     X86::VPMOVSXBWrm,         0 },
623    { X86::VPMOVSXDQrr,     X86::VPMOVSXDQrm,         0 },
624    { X86::VPMOVSXWDrr,     X86::VPMOVSXWDrm,         0 },
625    { X86::VPMOVSXWQrr,     X86::VPMOVSXWQrm,         0 },
626    { X86::VPMOVZXBDrr,     X86::VPMOVZXBDrm,         0 },
627    { X86::VPMOVZXBQrr,     X86::VPMOVZXBQrm,         0 },
628    { X86::VPMOVZXBWrr,     X86::VPMOVZXBWrm,         0 },
629    { X86::VPMOVZXDQrr,     X86::VPMOVZXDQrm,         0 },
630    { X86::VPMOVZXWDrr,     X86::VPMOVZXWDrm,         0 },
631    { X86::VPMOVZXWQrr,     X86::VPMOVZXWQrm,         0 },
632    { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
633    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
634    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
635    { X86::VPTESTrr,        X86::VPTESTrm,            0 },
636    { X86::VRCPPSr,         X86::VRCPPSm,             0 },
637    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
638    { X86::VROUNDPDr,       X86::VROUNDPDm,           0 },
639    { X86::VROUNDPSr,       X86::VROUNDPSm,           0 },
640    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
641    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
642    { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
643    { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
644    { X86::VTESTPDrr,       X86::VTESTPDrm,           0 },
645    { X86::VTESTPSrr,       X86::VTESTPSrm,           0 },
646    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
647    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
648
649    // AVX 256-bit foldable instructions
650    { X86::VCVTDQ2PDYrr,    X86::VCVTDQ2PDYrm,        0 },
651    { X86::VCVTDQ2PSYrr,    X86::VCVTDQ2PSYrm,        0 },
652    { X86::VCVTPD2DQYrr,    X86::VCVTPD2DQYrm,        0 },
653    { X86::VCVTPD2PSYrr,    X86::VCVTPD2PSYrm,        0 },
654    { X86::VCVTPS2DQYrr,    X86::VCVTPS2DQYrm,        0 },
655    { X86::VCVTPS2PDYrr,    X86::VCVTPS2PDYrm,        0 },
656    { X86::VCVTTPD2DQYrr,   X86::VCVTTPD2DQYrm,       0 },
657    { X86::VCVTTPS2DQYrr,   X86::VCVTTPS2DQYrm,       0 },
658    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
659    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
660    { X86::VMOVDDUPYrr,     X86::VMOVDDUPYrm,         0 },
661    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
662    { X86::VMOVSLDUPYrr,    X86::VMOVSLDUPYrm,        0 },
663    { X86::VMOVSHDUPYrr,    X86::VMOVSHDUPYrm,        0 },
664    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
665    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
666    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
667    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
668    { X86::VPTESTYrr,       X86::VPTESTYrm,           0 },
669    { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
670    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
671    { X86::VROUNDYPDr,      X86::VROUNDYPDm,          0 },
672    { X86::VROUNDYPSr,      X86::VROUNDYPSm,          0 },
673    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
674    { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      0 },
675    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
676    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
677    { X86::VTESTPDYrr,      X86::VTESTPDYrm,          0 },
678    { X86::VTESTPSYrr,      X86::VTESTPSYrm,          0 },
679
680    // AVX2 foldable instructions
681
682    // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
683    // VBROADCASTS{SD}rm memory instructions were available from AVX1.
684    // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
685    // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
686    // so they don't need an equivalent limitation.
687    { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
688    { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
689    { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
690    { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
691    { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
692    { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
693    { X86::VPBROADCASTBrr,  X86::VPBROADCASTBrm,      0 },
694    { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm,     0 },
695    { X86::VPBROADCASTDrr,  X86::VPBROADCASTDrm,      0 },
696    { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm,     0 },
697    { X86::VPBROADCASTQrr,  X86::VPBROADCASTQrm,      0 },
698    { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm,     0 },
699    { X86::VPBROADCASTWrr,  X86::VPBROADCASTWrm,      0 },
700    { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm,     0 },
701    { X86::VPERMPDYri,      X86::VPERMPDYmi,          0 },
702    { X86::VPERMQYri,       X86::VPERMQYmi,           0 },
703    { X86::VPMOVSXBDYrr,    X86::VPMOVSXBDYrm,        0 },
704    { X86::VPMOVSXBQYrr,    X86::VPMOVSXBQYrm,        0 },
705    { X86::VPMOVSXBWYrr,    X86::VPMOVSXBWYrm,        0 },
706    { X86::VPMOVSXDQYrr,    X86::VPMOVSXDQYrm,        0 },
707    { X86::VPMOVSXWDYrr,    X86::VPMOVSXWDYrm,        0 },
708    { X86::VPMOVSXWQYrr,    X86::VPMOVSXWQYrm,        0 },
709    { X86::VPMOVZXBDYrr,    X86::VPMOVZXBDYrm,        0 },
710    { X86::VPMOVZXBQYrr,    X86::VPMOVZXBQYrm,        0 },
711    { X86::VPMOVZXBWYrr,    X86::VPMOVZXBWYrm,        0 },
712    { X86::VPMOVZXDQYrr,    X86::VPMOVZXDQYrm,        0 },
713    { X86::VPMOVZXWDYrr,    X86::VPMOVZXWDYrm,        0 },
714    { X86::VPMOVZXWQYrr,    X86::VPMOVZXWQYrm,        0 },
715    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
716    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
717    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
718
719    // XOP foldable instructions
720    { X86::VFRCZPDrr,          X86::VFRCZPDrm,        0 },
721    { X86::VFRCZPDrrY,         X86::VFRCZPDrmY,       0 },
722    { X86::VFRCZPSrr,          X86::VFRCZPSrm,        0 },
723    { X86::VFRCZPSrrY,         X86::VFRCZPSrmY,       0 },
724    { X86::VFRCZSDrr,          X86::VFRCZSDrm,        0 },
725    { X86::VFRCZSSrr,          X86::VFRCZSSrm,        0 },
726    { X86::VPHADDBDrr,         X86::VPHADDBDrm,       0 },
727    { X86::VPHADDBQrr,         X86::VPHADDBQrm,       0 },
728    { X86::VPHADDBWrr,         X86::VPHADDBWrm,       0 },
729    { X86::VPHADDDQrr,         X86::VPHADDDQrm,       0 },
730    { X86::VPHADDWDrr,         X86::VPHADDWDrm,       0 },
731    { X86::VPHADDWQrr,         X86::VPHADDWQrm,       0 },
732    { X86::VPHADDUBDrr,        X86::VPHADDUBDrm,      0 },
733    { X86::VPHADDUBQrr,        X86::VPHADDUBQrm,      0 },
734    { X86::VPHADDUBWrr,        X86::VPHADDUBWrm,      0 },
735    { X86::VPHADDUDQrr,        X86::VPHADDUDQrm,      0 },
736    { X86::VPHADDUWDrr,        X86::VPHADDUWDrm,      0 },
737    { X86::VPHADDUWQrr,        X86::VPHADDUWQrm,      0 },
738    { X86::VPHSUBBWrr,         X86::VPHSUBBWrm,       0 },
739    { X86::VPHSUBDQrr,         X86::VPHSUBDQrm,       0 },
740    { X86::VPHSUBWDrr,         X86::VPHSUBWDrm,       0 },
741    { X86::VPROTBri,           X86::VPROTBmi,         0 },
742    { X86::VPROTBrr,           X86::VPROTBmr,         0 },
743    { X86::VPROTDri,           X86::VPROTDmi,         0 },
744    { X86::VPROTDrr,           X86::VPROTDmr,         0 },
745    { X86::VPROTQri,           X86::VPROTQmi,         0 },
746    { X86::VPROTQrr,           X86::VPROTQmr,         0 },
747    { X86::VPROTWri,           X86::VPROTWmi,         0 },
748    { X86::VPROTWrr,           X86::VPROTWmr,         0 },
749    { X86::VPSHABrr,           X86::VPSHABmr,         0 },
750    { X86::VPSHADrr,           X86::VPSHADmr,         0 },
751    { X86::VPSHAQrr,           X86::VPSHAQmr,         0 },
752    { X86::VPSHAWrr,           X86::VPSHAWmr,         0 },
753    { X86::VPSHLBrr,           X86::VPSHLBmr,         0 },
754    { X86::VPSHLDrr,           X86::VPSHLDmr,         0 },
755    { X86::VPSHLQrr,           X86::VPSHLQmr,         0 },
756    { X86::VPSHLWrr,           X86::VPSHLWmr,         0 },
757
758    // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
759    { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
760    { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
761    { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
762    { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
763    { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
764    { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
765    { X86::BLCI32rr,        X86::BLCI32rm,            0 },
766    { X86::BLCI64rr,        X86::BLCI64rm,            0 },
767    { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
768    { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
769    { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
770    { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
771    { X86::BLCS32rr,        X86::BLCS32rm,            0 },
772    { X86::BLCS64rr,        X86::BLCS64rm,            0 },
773    { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
774    { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
775    { X86::BLSI32rr,        X86::BLSI32rm,            0 },
776    { X86::BLSI64rr,        X86::BLSI64rm,            0 },
777    { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
778    { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
779    { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
780    { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
781    { X86::BLSR32rr,        X86::BLSR32rm,            0 },
782    { X86::BLSR64rr,        X86::BLSR64rm,            0 },
783    { X86::BZHI32rr,        X86::BZHI32rm,            0 },
784    { X86::BZHI64rr,        X86::BZHI64rm,            0 },
785    { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
786    { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
787    { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
788    { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
789    { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
790    { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
791    { X86::RORX32ri,        X86::RORX32mi,            0 },
792    { X86::RORX64ri,        X86::RORX64mi,            0 },
793    { X86::SARX32rr,        X86::SARX32rm,            0 },
794    { X86::SARX64rr,        X86::SARX64rm,            0 },
795    { X86::SHRX32rr,        X86::SHRX32rm,            0 },
796    { X86::SHRX64rr,        X86::SHRX64rm,            0 },
797    { X86::SHLX32rr,        X86::SHLX32rm,            0 },
798    { X86::SHLX64rr,        X86::SHLX64rm,            0 },
799    { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
800    { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
801    { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
802    { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
803    { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
804    { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
805    { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
806
807    // AVX-512 foldable instructions
808    { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
809    { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
810    { X86::VMOVAPDZrr,      X86::VMOVAPDZrm,          TB_ALIGN_64 },
811    { X86::VMOVAPSZrr,      X86::VMOVAPSZrm,          TB_ALIGN_64 },
812    { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zrm,        TB_ALIGN_64 },
813    { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zrm,        TB_ALIGN_64 },
814    { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zrm,         0 },
815    { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zrm,        0 },
816    { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zrm,        0 },
817    { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zrm,        0 },
818    { X86::VMOVUPDZrr,      X86::VMOVUPDZrm,          0 },
819    { X86::VMOVUPSZrr,      X86::VMOVUPSZrm,          0 },
820    { X86::VPABSDZrr,       X86::VPABSDZrm,           0 },
821    { X86::VPABSQZrr,       X86::VPABSQZrm,           0 },
822    { X86::VBROADCASTSSZr,  X86::VBROADCASTSSZm,      TB_NO_REVERSE },
823    { X86::VBROADCASTSDZr,  X86::VBROADCASTSDZm,      TB_NO_REVERSE },
824
825    // AVX-512 foldable instructions (256-bit versions)
826    { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256rm,          TB_ALIGN_32 },
827    { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256rm,          TB_ALIGN_32 },
828    { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256rm,        TB_ALIGN_32 },
829    { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256rm,        TB_ALIGN_32 },
830    { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256rm,         0 },
831    { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256rm,        0 },
832    { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256rm,        0 },
833    { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256rm,        0 },
834    { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256rm,          0 },
835    { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256rm,          0 },
836    { X86::VBROADCASTSSZ256r,  X86::VBROADCASTSSZ256m,      TB_NO_REVERSE },
837    { X86::VBROADCASTSDZ256r,  X86::VBROADCASTSDZ256m,      TB_NO_REVERSE },
838
839    // AVX-512 foldable instructions (256-bit versions)
840    { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128rm,          TB_ALIGN_16 },
841    { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128rm,          TB_ALIGN_16 },
842    { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128rm,        TB_ALIGN_16 },
843    { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128rm,        TB_ALIGN_16 },
844    { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128rm,         0 },
845    { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128rm,        0 },
846    { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128rm,        0 },
847    { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128rm,        0 },
848    { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128rm,          0 },
849    { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128rm,          0 },
850    { X86::VBROADCASTSSZ128r,  X86::VBROADCASTSSZ128m,      TB_NO_REVERSE },
851
852    // F16C foldable instructions
853    { X86::VCVTPH2PSrr,        X86::VCVTPH2PSrm,            0 },
854    { X86::VCVTPH2PSYrr,       X86::VCVTPH2PSYrm,           0 },
855
856    // AES foldable instructions
857    { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
858    { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
859    { X86::VAESIMCrr,             X86::VAESIMCrm,             0 },
860    { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
861  };
862
863  for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
864    unsigned RegOp = MemoryFoldTable1[i].RegOp;
865    unsigned MemOp = MemoryFoldTable1[i].MemOp;
866    unsigned Flags = MemoryFoldTable1[i].Flags;
867    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
868                  RegOp, MemOp,
869                  // Index 1, folded load
870                  Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
871  }
872
873  static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
874    { X86::ADC32rr,         X86::ADC32rm,       0 },
875    { X86::ADC64rr,         X86::ADC64rm,       0 },
876    { X86::ADD16rr,         X86::ADD16rm,       0 },
877    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
878    { X86::ADD32rr,         X86::ADD32rm,       0 },
879    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
880    { X86::ADD64rr,         X86::ADD64rm,       0 },
881    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
882    { X86::ADD8rr,          X86::ADD8rm,        0 },
883    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
884    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
885    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
886    { X86::ADDSDrr_Int,     X86::ADDSDrm_Int,   0 },
887    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
888    { X86::ADDSSrr_Int,     X86::ADDSSrm_Int,   0 },
889    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
890    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
891    { X86::AND16rr,         X86::AND16rm,       0 },
892    { X86::AND32rr,         X86::AND32rm,       0 },
893    { X86::AND64rr,         X86::AND64rm,       0 },
894    { X86::AND8rr,          X86::AND8rm,        0 },
895    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
896    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
897    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
898    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
899    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
900    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
901    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
902    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
903    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
904    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
905    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
906    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
907    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
908    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
909    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
910    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
911    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
912    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
913    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
914    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
915    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
916    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
917    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
918    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
919    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
920    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
921    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
922    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
923    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
924    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
925    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
926    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
927    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
928    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
929    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
930    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
931    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
932    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
933    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
934    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
935    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
936    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
937    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
938    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
939    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
940    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
941    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
942    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
943    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
944    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
945    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
946    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
947    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
948    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
949    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
950    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
951    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
952    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
953    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
954    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
955    { X86::CRC32r32r32,     X86::CRC32r32m32,   0 },
956    { X86::CRC32r64r64,     X86::CRC32r64m64,   0 },
957    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
958    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
959    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
960    { X86::DIVSDrr_Int,     X86::DIVSDrm_Int,   0 },
961    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
962    { X86::DIVSSrr_Int,     X86::DIVSSrm_Int,   0 },
963    { X86::DPPDrri,         X86::DPPDrmi,       TB_ALIGN_16 },
964    { X86::DPPSrri,         X86::DPPSrmi,       TB_ALIGN_16 },
965
966    // FIXME: We should not be folding Fs* scalar loads into vector
967    // instructions because the vector instructions require vector-sized
968    // loads. Lowering should create vector-sized instructions (the Fv*
969    // variants below) to allow load folding.
970    { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
971    { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
972    { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
973    { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
974    { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
975    { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
976    { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
977    { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
978
979    { X86::FvANDNPDrr,      X86::FvANDNPDrm,    TB_ALIGN_16 },
980    { X86::FvANDNPSrr,      X86::FvANDNPSrm,    TB_ALIGN_16 },
981    { X86::FvANDPDrr,       X86::FvANDPDrm,     TB_ALIGN_16 },
982    { X86::FvANDPSrr,       X86::FvANDPSrm,     TB_ALIGN_16 },
983    { X86::FvORPDrr,        X86::FvORPDrm,      TB_ALIGN_16 },
984    { X86::FvORPSrr,        X86::FvORPSrm,      TB_ALIGN_16 },
985    { X86::FvXORPDrr,       X86::FvXORPDrm,     TB_ALIGN_16 },
986    { X86::FvXORPSrr,       X86::FvXORPSrm,     TB_ALIGN_16 },
987    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
988    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
989    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
990    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
991    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
992    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
993    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
994    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
995    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
996    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
997    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
998    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
999    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
1000    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
1001    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
1002    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
1003    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
1004    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
1005    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
1006    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
1007    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
1008    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
1009    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
1010    { X86::MINSDrr,         X86::MINSDrm,       0 },
1011    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
1012    { X86::MINSSrr,         X86::MINSSrm,       0 },
1013    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
1014    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
1015    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
1016    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
1017    { X86::MULSDrr,         X86::MULSDrm,       0 },
1018    { X86::MULSDrr_Int,     X86::MULSDrm_Int,   0 },
1019    { X86::MULSSrr,         X86::MULSSrm,       0 },
1020    { X86::MULSSrr_Int,     X86::MULSSrm_Int,   0 },
1021    { X86::OR16rr,          X86::OR16rm,        0 },
1022    { X86::OR32rr,          X86::OR32rm,        0 },
1023    { X86::OR64rr,          X86::OR64rm,        0 },
1024    { X86::OR8rr,           X86::OR8rm,         0 },
1025    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
1026    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
1027    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
1028    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
1029    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
1030    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
1031    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
1032    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
1033    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
1034    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
1035    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
1036    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
1037    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
1038    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
1039    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
1040    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
1041    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
1042    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
1043    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
1044    { X86::PBLENDVBrr0,     X86::PBLENDVBrm0,   TB_ALIGN_16 },
1045    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
1046    { X86::PCLMULQDQrr,     X86::PCLMULQDQrm,   TB_ALIGN_16 },
1047    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
1048    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
1049    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
1050    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
1051    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
1052    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
1053    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
1054    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
1055    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
1056    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
1057    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
1058    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
1059    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
1060    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
1061    { X86::PINSRBrr,        X86::PINSRBrm,      0 },
1062    { X86::PINSRDrr,        X86::PINSRDrm,      0 },
1063    { X86::PINSRQrr,        X86::PINSRQrm,      0 },
1064    { X86::PINSRWrri,       X86::PINSRWrmi,     0 },
1065    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
1066    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
1067    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
1068    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
1069    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
1070    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
1071    { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
1072    { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
1073    { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
1074    { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
1075    { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
1076    { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
1077    { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
1078    { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
1079    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
1080    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
1081    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
1082    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
1083    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
1084    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
1085    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
1086    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
1087    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
1088    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
1089    { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
1090    { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
1091    { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
1092    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
1093    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
1094    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
1095    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
1096    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
1097    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
1098    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
1099    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
1100    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
1101    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
1102    { X86::PSUBQrr,         X86::PSUBQrm,       TB_ALIGN_16 },
1103    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
1104    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
1105    { X86::PSUBUSBrr,       X86::PSUBUSBrm,     TB_ALIGN_16 },
1106    { X86::PSUBUSWrr,       X86::PSUBUSWrm,     TB_ALIGN_16 },
1107    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
1108    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
1109    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
1110    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
1111    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
1112    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
1113    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
1114    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
1115    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
1116    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
1117    { X86::SBB32rr,         X86::SBB32rm,       0 },
1118    { X86::SBB64rr,         X86::SBB64rm,       0 },
1119    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
1120    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
1121    { X86::SUB16rr,         X86::SUB16rm,       0 },
1122    { X86::SUB32rr,         X86::SUB32rm,       0 },
1123    { X86::SUB64rr,         X86::SUB64rm,       0 },
1124    { X86::SUB8rr,          X86::SUB8rm,        0 },
1125    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
1126    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
1127    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
1128    { X86::SUBSDrr_Int,     X86::SUBSDrm_Int,   0 },
1129    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
1130    { X86::SUBSSrr_Int,     X86::SUBSSrm_Int,   0 },
1131    // FIXME: TEST*rr -> swapped operand of TEST*mr.
1132    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
1133    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
1134    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
1135    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
1136    { X86::XOR16rr,         X86::XOR16rm,       0 },
1137    { X86::XOR32rr,         X86::XOR32rm,       0 },
1138    { X86::XOR64rr,         X86::XOR64rm,       0 },
1139    { X86::XOR8rr,          X86::XOR8rm,        0 },
1140    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
1141    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
1142
1143    // MMX version of foldable instructions
1144    { X86::MMX_CVTPI2PSirr,   X86::MMX_CVTPI2PSirm,   0 },
1145    { X86::MMX_PACKSSDWirr,   X86::MMX_PACKSSDWirm,   0 },
1146    { X86::MMX_PACKSSWBirr,   X86::MMX_PACKSSWBirm,   0 },
1147    { X86::MMX_PACKUSWBirr,   X86::MMX_PACKUSWBirm,   0 },
1148    { X86::MMX_PADDBirr,      X86::MMX_PADDBirm,      0 },
1149    { X86::MMX_PADDDirr,      X86::MMX_PADDDirm,      0 },
1150    { X86::MMX_PADDQirr,      X86::MMX_PADDQirm,      0 },
1151    { X86::MMX_PADDSBirr,     X86::MMX_PADDSBirm,     0 },
1152    { X86::MMX_PADDSWirr,     X86::MMX_PADDSWirm,     0 },
1153    { X86::MMX_PADDUSBirr,    X86::MMX_PADDUSBirm,    0 },
1154    { X86::MMX_PADDUSWirr,    X86::MMX_PADDUSWirm,    0 },
1155    { X86::MMX_PADDWirr,      X86::MMX_PADDWirm,      0 },
1156    { X86::MMX_PALIGNR64irr,  X86::MMX_PALIGNR64irm,  0 },
1157    { X86::MMX_PANDNirr,      X86::MMX_PANDNirm,      0 },
1158    { X86::MMX_PANDirr,       X86::MMX_PANDirm,       0 },
1159    { X86::MMX_PAVGBirr,      X86::MMX_PAVGBirm,      0 },
1160    { X86::MMX_PAVGWirr,      X86::MMX_PAVGWirm,      0 },
1161    { X86::MMX_PCMPEQBirr,    X86::MMX_PCMPEQBirm,    0 },
1162    { X86::MMX_PCMPEQDirr,    X86::MMX_PCMPEQDirm,    0 },
1163    { X86::MMX_PCMPEQWirr,    X86::MMX_PCMPEQWirm,    0 },
1164    { X86::MMX_PCMPGTBirr,    X86::MMX_PCMPGTBirm,    0 },
1165    { X86::MMX_PCMPGTDirr,    X86::MMX_PCMPGTDirm,    0 },
1166    { X86::MMX_PCMPGTWirr,    X86::MMX_PCMPGTWirm,    0 },
1167    { X86::MMX_PHADDSWrr64,   X86::MMX_PHADDSWrm64,   0 },
1168    { X86::MMX_PHADDWrr64,    X86::MMX_PHADDWrm64,    0 },
1169    { X86::MMX_PHADDrr64,     X86::MMX_PHADDrm64,     0 },
1170    { X86::MMX_PHSUBDrr64,    X86::MMX_PHSUBDrm64,    0 },
1171    { X86::MMX_PHSUBSWrr64,   X86::MMX_PHSUBSWrm64,   0 },
1172    { X86::MMX_PHSUBWrr64,    X86::MMX_PHSUBWrm64,    0 },
1173    { X86::MMX_PINSRWirri,    X86::MMX_PINSRWirmi,    0 },
1174    { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
1175    { X86::MMX_PMADDWDirr,    X86::MMX_PMADDWDirm,    0 },
1176    { X86::MMX_PMAXSWirr,     X86::MMX_PMAXSWirm,     0 },
1177    { X86::MMX_PMAXUBirr,     X86::MMX_PMAXUBirm,     0 },
1178    { X86::MMX_PMINSWirr,     X86::MMX_PMINSWirm,     0 },
1179    { X86::MMX_PMINUBirr,     X86::MMX_PMINUBirm,     0 },
1180    { X86::MMX_PMULHRSWrr64,  X86::MMX_PMULHRSWrm64,  0 },
1181    { X86::MMX_PMULHUWirr,    X86::MMX_PMULHUWirm,    0 },
1182    { X86::MMX_PMULHWirr,     X86::MMX_PMULHWirm,     0 },
1183    { X86::MMX_PMULLWirr,     X86::MMX_PMULLWirm,     0 },
1184    { X86::MMX_PMULUDQirr,    X86::MMX_PMULUDQirm,    0 },
1185    { X86::MMX_PORirr,        X86::MMX_PORirm,        0 },
1186    { X86::MMX_PSADBWirr,     X86::MMX_PSADBWirm,     0 },
1187    { X86::MMX_PSHUFBrr64,    X86::MMX_PSHUFBrm64,    0 },
1188    { X86::MMX_PSIGNBrr64,    X86::MMX_PSIGNBrm64,    0 },
1189    { X86::MMX_PSIGNDrr64,    X86::MMX_PSIGNDrm64,    0 },
1190    { X86::MMX_PSIGNWrr64,    X86::MMX_PSIGNWrm64,    0 },
1191    { X86::MMX_PSLLDrr,       X86::MMX_PSLLDrm,       0 },
1192    { X86::MMX_PSLLQrr,       X86::MMX_PSLLQrm,       0 },
1193    { X86::MMX_PSLLWrr,       X86::MMX_PSLLWrm,       0 },
1194    { X86::MMX_PSRADrr,       X86::MMX_PSRADrm,       0 },
1195    { X86::MMX_PSRAWrr,       X86::MMX_PSRAWrm,       0 },
1196    { X86::MMX_PSRLDrr,       X86::MMX_PSRLDrm,       0 },
1197    { X86::MMX_PSRLQrr,       X86::MMX_PSRLQrm,       0 },
1198    { X86::MMX_PSRLWrr,       X86::MMX_PSRLWrm,       0 },
1199    { X86::MMX_PSUBBirr,      X86::MMX_PSUBBirm,      0 },
1200    { X86::MMX_PSUBDirr,      X86::MMX_PSUBDirm,      0 },
1201    { X86::MMX_PSUBQirr,      X86::MMX_PSUBQirm,      0 },
1202    { X86::MMX_PSUBSBirr,     X86::MMX_PSUBSBirm,     0 },
1203    { X86::MMX_PSUBSWirr,     X86::MMX_PSUBSWirm,     0 },
1204    { X86::MMX_PSUBUSBirr,    X86::MMX_PSUBUSBirm,    0 },
1205    { X86::MMX_PSUBUSWirr,    X86::MMX_PSUBUSWirm,    0 },
1206    { X86::MMX_PSUBWirr,      X86::MMX_PSUBWirm,      0 },
1207    { X86::MMX_PUNPCKHBWirr,  X86::MMX_PUNPCKHBWirm,  0 },
1208    { X86::MMX_PUNPCKHDQirr,  X86::MMX_PUNPCKHDQirm,  0 },
1209    { X86::MMX_PUNPCKHWDirr,  X86::MMX_PUNPCKHWDirm,  0 },
1210    { X86::MMX_PUNPCKLBWirr,  X86::MMX_PUNPCKLBWirm,  0 },
1211    { X86::MMX_PUNPCKLDQirr,  X86::MMX_PUNPCKLDQirm,  0 },
1212    { X86::MMX_PUNPCKLWDirr,  X86::MMX_PUNPCKLWDirm,  0 },
1213    { X86::MMX_PXORirr,       X86::MMX_PXORirm,       0 },
1214
1215    // 3DNow! version of foldable instructions
1216    { X86::PAVGUSBrr,         X86::PAVGUSBrm,         0 },
1217    { X86::PFACCrr,           X86::PFACCrm,           0 },
1218    { X86::PFADDrr,           X86::PFADDrm,           0 },
1219    { X86::PFCMPEQrr,         X86::PFCMPEQrm,         0 },
1220    { X86::PFCMPGErr,         X86::PFCMPGErm,         0 },
1221    { X86::PFCMPGTrr,         X86::PFCMPGTrm,         0 },
1222    { X86::PFMAXrr,           X86::PFMAXrm,           0 },
1223    { X86::PFMINrr,           X86::PFMINrm,           0 },
1224    { X86::PFMULrr,           X86::PFMULrm,           0 },
1225    { X86::PFNACCrr,          X86::PFNACCrm,          0 },
1226    { X86::PFPNACCrr,         X86::PFPNACCrm,         0 },
1227    { X86::PFRCPIT1rr,        X86::PFRCPIT1rm,        0 },
1228    { X86::PFRCPIT2rr,        X86::PFRCPIT2rm,        0 },
1229    { X86::PFRSQIT1rr,        X86::PFRSQIT1rm,        0 },
1230    { X86::PFSUBrr,           X86::PFSUBrm,           0 },
1231    { X86::PFSUBRrr,          X86::PFSUBRrm,          0 },
1232    { X86::PMULHRWrr,         X86::PMULHRWrm,         0 },
1233
1234    // AVX 128-bit versions of foldable instructions
1235    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
1236    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
1237    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
1238    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
1239    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
1240    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
1241    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
1242    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
1243    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
1244    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
1245    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
1246    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
1247    { X86::VRCPSSr,           X86::VRCPSSm,            0 },
1248    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
1249    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
1250    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
1251    { X86::VADDPDrr,          X86::VADDPDrm,           0 },
1252    { X86::VADDPSrr,          X86::VADDPSrm,           0 },
1253    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
1254    { X86::VADDSDrr_Int,      X86::VADDSDrm_Int,       0 },
1255    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
1256    { X86::VADDSSrr_Int,      X86::VADDSSrm_Int,       0 },
1257    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
1258    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
1259    { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
1260    { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
1261    { X86::VANDPDrr,          X86::VANDPDrm,           0 },
1262    { X86::VANDPSrr,          X86::VANDPSrm,           0 },
1263    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
1264    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
1265    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
1266    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
1267    { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
1268    { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
1269    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
1270    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
1271    { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
1272    { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
1273    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
1274    { X86::VDIVSDrr_Int,      X86::VDIVSDrm_Int,       0 },
1275    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
1276    { X86::VDIVSSrr_Int,      X86::VDIVSSrm_Int,       0 },
1277    { X86::VDPPDrri,          X86::VDPPDrmi,           0 },
1278    { X86::VDPPSrri,          X86::VDPPSrmi,           0 },
1279    // Do not fold VFs* loads because there are no scalar load variants for
1280    // these instructions. When folded, the load is required to be 128-bits, so
1281    // the load size would not match.
1282    { X86::VFvANDNPDrr,       X86::VFvANDNPDrm,        0 },
1283    { X86::VFvANDNPSrr,       X86::VFvANDNPSrm,        0 },
1284    { X86::VFvANDPDrr,        X86::VFvANDPDrm,         0 },
1285    { X86::VFvANDPSrr,        X86::VFvANDPSrm,         0 },
1286    { X86::VFvORPDrr,         X86::VFvORPDrm,          0 },
1287    { X86::VFvORPSrr,         X86::VFvORPSrm,          0 },
1288    { X86::VFvXORPDrr,        X86::VFvXORPDrm,         0 },
1289    { X86::VFvXORPSrr,        X86::VFvXORPSrm,         0 },
1290    { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
1291    { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
1292    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
1293    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
1294    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
1295    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
1296    { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
1297    { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
1298    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
1299    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
1300    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
1301    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
1302    { X86::VMINPDrr,          X86::VMINPDrm,           0 },
1303    { X86::VMINPSrr,          X86::VMINPSrm,           0 },
1304    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
1305    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
1306    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
1307    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
1308    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
1309    { X86::VMULPDrr,          X86::VMULPDrm,           0 },
1310    { X86::VMULPSrr,          X86::VMULPSrm,           0 },
1311    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
1312    { X86::VMULSDrr_Int,      X86::VMULSDrm_Int,       0 },
1313    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
1314    { X86::VMULSSrr_Int,      X86::VMULSSrm_Int,       0 },
1315    { X86::VORPDrr,           X86::VORPDrm,            0 },
1316    { X86::VORPSrr,           X86::VORPSrm,            0 },
1317    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
1318    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
1319    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
1320    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
1321    { X86::VPADDBrr,          X86::VPADDBrm,           0 },
1322    { X86::VPADDDrr,          X86::VPADDDrm,           0 },
1323    { X86::VPADDQrr,          X86::VPADDQrm,           0 },
1324    { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
1325    { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
1326    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
1327    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
1328    { X86::VPADDWrr,          X86::VPADDWrm,           0 },
1329    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
1330    { X86::VPANDNrr,          X86::VPANDNrm,           0 },
1331    { X86::VPANDrr,           X86::VPANDrm,            0 },
1332    { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
1333    { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
1334    { X86::VPBLENDVBrr,       X86::VPBLENDVBrm,        0 },
1335    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
1336    { X86::VPCLMULQDQrr,      X86::VPCLMULQDQrm,       0 },
1337    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
1338    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
1339    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
1340    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
1341    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
1342    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
1343    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
1344    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
1345    { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
1346    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
1347    { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
1348    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
1349    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
1350    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
1351    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
1352    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
1353    { X86::VPINSRBrr,         X86::VPINSRBrm,          0 },
1354    { X86::VPINSRDrr,         X86::VPINSRDrm,          0 },
1355    { X86::VPINSRQrr,         X86::VPINSRQrm,          0 },
1356    { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
1357    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
1358    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
1359    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
1360    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
1361    { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
1362    { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
1363    { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
1364    { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
1365    { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
1366    { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
1367    { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
1368    { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
1369    { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
1370    { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
1371    { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
1372    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
1373    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
1374    { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
1375    { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
1376    { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
1377    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
1378    { X86::VPORrr,            X86::VPORrm,             0 },
1379    { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
1380    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
1381    { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
1382    { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
1383    { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
1384    { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
1385    { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
1386    { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
1387    { X86::VPSRADrr,          X86::VPSRADrm,           0 },
1388    { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
1389    { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
1390    { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
1391    { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
1392    { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
1393    { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
1394    { X86::VPSUBQrr,          X86::VPSUBQrm,           0 },
1395    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
1396    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
1397    { X86::VPSUBUSBrr,        X86::VPSUBUSBrm,         0 },
1398    { X86::VPSUBUSWrr,        X86::VPSUBUSWrm,         0 },
1399    { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
1400    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
1401    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
1402    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
1403    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
1404    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
1405    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
1406    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
1407    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
1408    { X86::VPXORrr,           X86::VPXORrm,            0 },
1409    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
1410    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
1411    { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
1412    { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
1413    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
1414    { X86::VSUBSDrr_Int,      X86::VSUBSDrm_Int,       0 },
1415    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
1416    { X86::VSUBSSrr_Int,      X86::VSUBSSrm_Int,       0 },
1417    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
1418    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
1419    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
1420    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
1421    { X86::VXORPDrr,          X86::VXORPDrm,           0 },
1422    { X86::VXORPSrr,          X86::VXORPSrm,           0 },
1423
1424    // AVX 256-bit foldable instructions
1425    { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
1426    { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
1427    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
1428    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
1429    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
1430    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
1431    { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
1432    { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
1433    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
1434    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
1435    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
1436    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
1437    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
1438    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
1439    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
1440    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
1441    { X86::VDPPSYrri,         X86::VDPPSYrmi,          0 },
1442    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
1443    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
1444    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
1445    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
1446    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
1447    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
1448    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
1449    { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
1450    { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
1451    { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
1452    { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
1453    { X86::VORPDYrr,          X86::VORPDYrm,           0 },
1454    { X86::VORPSYrr,          X86::VORPSYrm,           0 },
1455    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
1456    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
1457    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
1458    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
1459    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
1460    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
1461    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
1462    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
1463    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
1464    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
1465    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
1466    { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
1467    { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
1468
1469    // AVX2 foldable instructions
1470    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
1471    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
1472    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
1473    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
1474    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
1475    { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
1476    { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
1477    { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
1478    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
1479    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
1480    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
1481    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
1482    { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
1483    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
1484    { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
1485    { X86::VPANDYrr,          X86::VPANDYrm,           0 },
1486    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
1487    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
1488    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
1489    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
1490    { X86::VPBLENDVBYrr,      X86::VPBLENDVBYrm,       0 },
1491    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
1492    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
1493    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
1494    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
1495    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
1496    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
1497    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
1498    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
1499    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
1500    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
1501    { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
1502    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
1503    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
1504    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
1505    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
1506    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
1507    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
1508    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
1509    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
1510    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
1511    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
1512    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
1513    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
1514    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
1515    { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
1516    { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
1517    { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
1518    { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
1519    { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
1520    { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
1521    { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
1522    { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
1523    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
1524    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
1525    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
1526    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
1527    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
1528    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
1529    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
1530    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
1531    { X86::VPORYrr,           X86::VPORYrm,            0 },
1532    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
1533    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
1534    { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
1535    { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
1536    { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
1537    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
1538    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
1539    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
1540    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
1541    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
1542    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
1543    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
1544    { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
1545    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
1546    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
1547    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
1548    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
1549    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
1550    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
1551    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
1552    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
1553    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
1554    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
1555    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
1556    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
1557    { X86::VPSUBQYrr,         X86::VPSUBQYrm,          0 },
1558    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
1559    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
1560    { X86::VPSUBUSBYrr,       X86::VPSUBUSBYrm,        0 },
1561    { X86::VPSUBUSWYrr,       X86::VPSUBUSWYrm,        0 },
1562    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
1563    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
1564    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
1565    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
1566    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
1567    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
1568    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
1569    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
1570    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
1571    { X86::VPXORYrr,          X86::VPXORYrm,           0 },
1572
1573    // FMA4 foldable patterns
1574    { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0 },
1575    { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0 },
1576    { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        0 },
1577    { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        0 },
1578    { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       0 },
1579    { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       0 },
1580    { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0 },
1581    { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0 },
1582    { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       0 },
1583    { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       0 },
1584    { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      0 },
1585    { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      0 },
1586    { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0 },
1587    { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0 },
1588    { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        0 },
1589    { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        0 },
1590    { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       0 },
1591    { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       0 },
1592    { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0 },
1593    { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0 },
1594    { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       0 },
1595    { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       0 },
1596    { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      0 },
1597    { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      0 },
1598    { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     0 },
1599    { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     0 },
1600    { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    0 },
1601    { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    0 },
1602    { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     0 },
1603    { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     0 },
1604    { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    0 },
1605    { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    0 },
1606
1607    // XOP foldable instructions
1608    { X86::VPCMOVrr,          X86::VPCMOVmr,            0 },
1609    { X86::VPCMOVrrY,         X86::VPCMOVmrY,           0 },
1610    { X86::VPCOMBri,          X86::VPCOMBmi,            0 },
1611    { X86::VPCOMDri,          X86::VPCOMDmi,            0 },
1612    { X86::VPCOMQri,          X86::VPCOMQmi,            0 },
1613    { X86::VPCOMWri,          X86::VPCOMWmi,            0 },
1614    { X86::VPCOMUBri,         X86::VPCOMUBmi,           0 },
1615    { X86::VPCOMUDri,         X86::VPCOMUDmi,           0 },
1616    { X86::VPCOMUQri,         X86::VPCOMUQmi,           0 },
1617    { X86::VPCOMUWri,         X86::VPCOMUWmi,           0 },
1618    { X86::VPERMIL2PDrr,      X86::VPERMIL2PDmr,        0 },
1619    { X86::VPERMIL2PDrrY,     X86::VPERMIL2PDmrY,       0 },
1620    { X86::VPERMIL2PSrr,      X86::VPERMIL2PSmr,        0 },
1621    { X86::VPERMIL2PSrrY,     X86::VPERMIL2PSmrY,       0 },
1622    { X86::VPMACSDDrr,        X86::VPMACSDDrm,          0 },
1623    { X86::VPMACSDQHrr,       X86::VPMACSDQHrm,         0 },
1624    { X86::VPMACSDQLrr,       X86::VPMACSDQLrm,         0 },
1625    { X86::VPMACSSDDrr,       X86::VPMACSSDDrm,         0 },
1626    { X86::VPMACSSDQHrr,      X86::VPMACSSDQHrm,        0 },
1627    { X86::VPMACSSDQLrr,      X86::VPMACSSDQLrm,        0 },
1628    { X86::VPMACSSWDrr,       X86::VPMACSSWDrm,         0 },
1629    { X86::VPMACSSWWrr,       X86::VPMACSSWWrm,         0 },
1630    { X86::VPMACSWDrr,        X86::VPMACSWDrm,          0 },
1631    { X86::VPMACSWWrr,        X86::VPMACSWWrm,          0 },
1632    { X86::VPMADCSSWDrr,      X86::VPMADCSSWDrm,        0 },
1633    { X86::VPMADCSWDrr,       X86::VPMADCSWDrm,         0 },
1634    { X86::VPPERMrr,          X86::VPPERMmr,            0 },
1635    { X86::VPROTBrr,          X86::VPROTBrm,            0 },
1636    { X86::VPROTDrr,          X86::VPROTDrm,            0 },
1637    { X86::VPROTQrr,          X86::VPROTQrm,            0 },
1638    { X86::VPROTWrr,          X86::VPROTWrm,            0 },
1639    { X86::VPSHABrr,          X86::VPSHABrm,            0 },
1640    { X86::VPSHADrr,          X86::VPSHADrm,            0 },
1641    { X86::VPSHAQrr,          X86::VPSHAQrm,            0 },
1642    { X86::VPSHAWrr,          X86::VPSHAWrm,            0 },
1643    { X86::VPSHLBrr,          X86::VPSHLBrm,            0 },
1644    { X86::VPSHLDrr,          X86::VPSHLDrm,            0 },
1645    { X86::VPSHLQrr,          X86::VPSHLQrm,            0 },
1646    { X86::VPSHLWrr,          X86::VPSHLWrm,            0 },
1647
1648    // BMI/BMI2 foldable instructions
1649    { X86::ANDN32rr,          X86::ANDN32rm,            0 },
1650    { X86::ANDN64rr,          X86::ANDN64rm,            0 },
1651    { X86::MULX32rr,          X86::MULX32rm,            0 },
1652    { X86::MULX64rr,          X86::MULX64rm,            0 },
1653    { X86::PDEP32rr,          X86::PDEP32rm,            0 },
1654    { X86::PDEP64rr,          X86::PDEP64rm,            0 },
1655    { X86::PEXT32rr,          X86::PEXT32rm,            0 },
1656    { X86::PEXT64rr,          X86::PEXT64rm,            0 },
1657
1658    // AVX-512 foldable instructions
1659    { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
1660    { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
1661    { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
1662    { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
1663    { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
1664    { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
1665    { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
1666    { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
1667    { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
1668    { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
1669    { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
1670    { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
1671    { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
1672    { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
1673    { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
1674    { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
1675    { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
1676    { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
1677    { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
1678    { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
1679    { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
1680    { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
1681    { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
1682    { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
1683    { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
1684    { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
1685    { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
1686    { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
1687    { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
1688    { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
1689    { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
1690    { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
1691    { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
1692    { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
1693    { X86::VALIGNQrri,        X86::VALIGNQrmi,          0 },
1694    { X86::VALIGNDrri,        X86::VALIGNDrmi,          0 },
1695    { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
1696    { X86::VBROADCASTSSZrkz,  X86::VBROADCASTSSZmkz,    TB_NO_REVERSE },
1697    { X86::VBROADCASTSDZrkz,  X86::VBROADCASTSDZmkz,    TB_NO_REVERSE },
1698
1699    // AVX-512{F,VL} foldable instructions
1700    { X86::VBROADCASTSSZ256rkz,  X86::VBROADCASTSSZ256mkz,      TB_NO_REVERSE },
1701    { X86::VBROADCASTSDZ256rkz,  X86::VBROADCASTSDZ256mkz,      TB_NO_REVERSE },
1702    { X86::VBROADCASTSSZ128rkz,  X86::VBROADCASTSSZ128mkz,      TB_NO_REVERSE },
1703
1704    // AVX-512{F,VL} foldable instructions
1705    { X86::VADDPDZ128rr,      X86::VADDPDZ128rm,        0 },
1706    { X86::VADDPDZ256rr,      X86::VADDPDZ256rm,        0 },
1707    { X86::VADDPSZ128rr,      X86::VADDPSZ128rm,        0 },
1708    { X86::VADDPSZ256rr,      X86::VADDPSZ256rm,        0 },
1709
1710    // AES foldable instructions
1711    { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
1712    { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
1713    { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
1714    { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
1715    { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       0 },
1716    { X86::VAESDECrr,         X86::VAESDECrm,           0 },
1717    { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       0 },
1718    { X86::VAESENCrr,         X86::VAESENCrm,           0 },
1719
1720    // SHA foldable instructions
1721    { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
1722    { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
1723    { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
1724    { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
1725    { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
1726    { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
1727    { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 }
1728  };
1729
1730  for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
1731    unsigned RegOp = MemoryFoldTable2[i].RegOp;
1732    unsigned MemOp = MemoryFoldTable2[i].MemOp;
1733    unsigned Flags = MemoryFoldTable2[i].Flags;
1734    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1735                  RegOp, MemOp,
1736                  // Index 2, folded load
1737                  Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1738  }
1739
1740  static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
1741    // FMA foldable instructions
1742    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
1743    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
1744    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
1745    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
1746    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
1747    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
1748
1749    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
1750    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
1751    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
1752    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
1753    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
1754    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
1755    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
1756    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
1757    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
1758    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
1759    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
1760    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
1761
1762    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
1763    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
1764    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
1765    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
1766    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
1767    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
1768
1769    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
1770    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
1771    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
1772    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
1773    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
1774    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
1775    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
1776    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
1777    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
1778    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
1779    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
1780    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
1781
1782    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
1783    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
1784    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
1785    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
1786    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
1787    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
1788
1789    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
1790    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
1791    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
1792    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
1793    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
1794    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
1795    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
1796    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
1797    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
1798    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
1799    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
1800    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
1801
1802    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
1803    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
1804    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
1805    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
1806    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
1807    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
1808
1809    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
1810    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
1811    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
1812    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
1813    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
1814    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
1815    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
1816    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
1817    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
1818    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
1819    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
1820    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
1821
1822    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
1823    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
1824    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
1825    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
1826    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
1827    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
1828    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
1829    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
1830    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
1831    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
1832    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
1833    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
1834
1835    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
1836    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
1837    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
1838    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
1839    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
1840    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
1841    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
1842    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
1843    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
1844    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
1845    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
1846    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
1847
1848    // FMA4 foldable patterns
1849    { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
1850    { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
1851    { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
1852    { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
1853    { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
1854    { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
1855    { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
1856    { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
1857    { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
1858    { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
1859    { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
1860    { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
1861    { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
1862    { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
1863    { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
1864    { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
1865    { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
1866    { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
1867    { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
1868    { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
1869    { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
1870    { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
1871    { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
1872    { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
1873    { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
1874    { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
1875    { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
1876    { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
1877    { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
1878    { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
1879    { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
1880    { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
1881
1882    // XOP foldable instructions
1883    { X86::VPCMOVrr,              X86::VPCMOVrm,              0 },
1884    { X86::VPCMOVrrY,             X86::VPCMOVrmY,             0 },
1885    { X86::VPERMIL2PDrr,          X86::VPERMIL2PDrm,          0 },
1886    { X86::VPERMIL2PDrrY,         X86::VPERMIL2PDrmY,         0 },
1887    { X86::VPERMIL2PSrr,          X86::VPERMIL2PSrm,          0 },
1888    { X86::VPERMIL2PSrrY,         X86::VPERMIL2PSrmY,         0 },
1889    { X86::VPPERMrr,              X86::VPPERMrm,              0 },
1890
1891    // AVX-512 VPERMI instructions with 3 source operands.
1892    { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
1893    { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
1894    { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
1895    { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
1896    { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
1897    { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
1898    { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
1899    { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 },
1900    { X86::VBROADCASTSSZrk,       X86::VBROADCASTSSZmk,       TB_NO_REVERSE },
1901    { X86::VBROADCASTSDZrk,       X86::VBROADCASTSDZmk,       TB_NO_REVERSE },
1902    { X86::VBROADCASTSSZ256rk,    X86::VBROADCASTSSZ256mk,    TB_NO_REVERSE },
1903    { X86::VBROADCASTSDZ256rk,    X86::VBROADCASTSDZ256mk,    TB_NO_REVERSE },
1904    { X86::VBROADCASTSSZ128rk,    X86::VBROADCASTSSZ128mk,    TB_NO_REVERSE },
1905     // AVX-512 arithmetic instructions
1906    { X86::VADDPSZrrkz,           X86::VADDPSZrmkz,           0 },
1907    { X86::VADDPDZrrkz,           X86::VADDPDZrmkz,           0 },
1908    { X86::VSUBPSZrrkz,           X86::VSUBPSZrmkz,           0 },
1909    { X86::VSUBPDZrrkz,           X86::VSUBPDZrmkz,           0 },
1910    { X86::VMULPSZrrkz,           X86::VMULPSZrmkz,           0 },
1911    { X86::VMULPDZrrkz,           X86::VMULPDZrmkz,           0 },
1912    { X86::VDIVPSZrrkz,           X86::VDIVPSZrmkz,           0 },
1913    { X86::VDIVPDZrrkz,           X86::VDIVPDZrmkz,           0 },
1914    { X86::VMINPSZrrkz,           X86::VMINPSZrmkz,           0 },
1915    { X86::VMINPDZrrkz,           X86::VMINPDZrmkz,           0 },
1916    { X86::VMAXPSZrrkz,           X86::VMAXPSZrmkz,           0 },
1917    { X86::VMAXPDZrrkz,           X86::VMAXPDZrmkz,           0 },
1918    // AVX-512{F,VL} arithmetic instructions 256-bit
1919    { X86::VADDPSZ256rrkz,        X86::VADDPSZ256rmkz,        0 },
1920    { X86::VADDPDZ256rrkz,        X86::VADDPDZ256rmkz,        0 },
1921    { X86::VSUBPSZ256rrkz,        X86::VSUBPSZ256rmkz,        0 },
1922    { X86::VSUBPDZ256rrkz,        X86::VSUBPDZ256rmkz,        0 },
1923    { X86::VMULPSZ256rrkz,        X86::VMULPSZ256rmkz,        0 },
1924    { X86::VMULPDZ256rrkz,        X86::VMULPDZ256rmkz,        0 },
1925    { X86::VDIVPSZ256rrkz,        X86::VDIVPSZ256rmkz,        0 },
1926    { X86::VDIVPDZ256rrkz,        X86::VDIVPDZ256rmkz,        0 },
1927    { X86::VMINPSZ256rrkz,        X86::VMINPSZ256rmkz,        0 },
1928    { X86::VMINPDZ256rrkz,        X86::VMINPDZ256rmkz,        0 },
1929    { X86::VMAXPSZ256rrkz,        X86::VMAXPSZ256rmkz,        0 },
1930    { X86::VMAXPDZ256rrkz,        X86::VMAXPDZ256rmkz,        0 },
1931    // AVX-512{F,VL} arithmetic instructions 128-bit
1932    { X86::VADDPSZ128rrkz,        X86::VADDPSZ128rmkz,        0 },
1933    { X86::VADDPDZ128rrkz,        X86::VADDPDZ128rmkz,        0 },
1934    { X86::VSUBPSZ128rrkz,        X86::VSUBPSZ128rmkz,        0 },
1935    { X86::VSUBPDZ128rrkz,        X86::VSUBPDZ128rmkz,        0 },
1936    { X86::VMULPSZ128rrkz,        X86::VMULPSZ128rmkz,        0 },
1937    { X86::VMULPDZ128rrkz,        X86::VMULPDZ128rmkz,        0 },
1938    { X86::VDIVPSZ128rrkz,        X86::VDIVPSZ128rmkz,        0 },
1939    { X86::VDIVPDZ128rrkz,        X86::VDIVPDZ128rmkz,        0 },
1940    { X86::VMINPSZ128rrkz,        X86::VMINPSZ128rmkz,        0 },
1941    { X86::VMINPDZ128rrkz,        X86::VMINPDZ128rmkz,        0 },
1942    { X86::VMAXPSZ128rrkz,        X86::VMAXPSZ128rmkz,        0 },
1943    { X86::VMAXPDZ128rrkz,        X86::VMAXPDZ128rmkz,        0 }
1944  };
1945
1946  for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
1947    unsigned RegOp = MemoryFoldTable3[i].RegOp;
1948    unsigned MemOp = MemoryFoldTable3[i].MemOp;
1949    unsigned Flags = MemoryFoldTable3[i].Flags;
1950    AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1951                  RegOp, MemOp,
1952                  // Index 3, folded load
1953                  Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1954  }
1955
1956  static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
1957     // AVX-512 foldable instructions
1958    { X86::VADDPSZrrk,         X86::VADDPSZrmk,           0 },
1959    { X86::VADDPDZrrk,         X86::VADDPDZrmk,           0 },
1960    { X86::VSUBPSZrrk,         X86::VSUBPSZrmk,           0 },
1961    { X86::VSUBPDZrrk,         X86::VSUBPDZrmk,           0 },
1962    { X86::VMULPSZrrk,         X86::VMULPSZrmk,           0 },
1963    { X86::VMULPDZrrk,         X86::VMULPDZrmk,           0 },
1964    { X86::VDIVPSZrrk,         X86::VDIVPSZrmk,           0 },
1965    { X86::VDIVPDZrrk,         X86::VDIVPDZrmk,           0 },
1966    { X86::VMINPSZrrk,         X86::VMINPSZrmk,           0 },
1967    { X86::VMINPDZrrk,         X86::VMINPDZrmk,           0 },
1968    { X86::VMAXPSZrrk,         X86::VMAXPSZrmk,           0 },
1969    { X86::VMAXPDZrrk,         X86::VMAXPDZrmk,           0 },
1970    // AVX-512{F,VL} foldable instructions 256-bit
1971    { X86::VADDPSZ256rrk,      X86::VADDPSZ256rmk,        0 },
1972    { X86::VADDPDZ256rrk,      X86::VADDPDZ256rmk,        0 },
1973    { X86::VSUBPSZ256rrk,      X86::VSUBPSZ256rmk,        0 },
1974    { X86::VSUBPDZ256rrk,      X86::VSUBPDZ256rmk,        0 },
1975    { X86::VMULPSZ256rrk,      X86::VMULPSZ256rmk,        0 },
1976    { X86::VMULPDZ256rrk,      X86::VMULPDZ256rmk,        0 },
1977    { X86::VDIVPSZ256rrk,      X86::VDIVPSZ256rmk,        0 },
1978    { X86::VDIVPDZ256rrk,      X86::VDIVPDZ256rmk,        0 },
1979    { X86::VMINPSZ256rrk,      X86::VMINPSZ256rmk,        0 },
1980    { X86::VMINPDZ256rrk,      X86::VMINPDZ256rmk,        0 },
1981    { X86::VMAXPSZ256rrk,      X86::VMAXPSZ256rmk,        0 },
1982    { X86::VMAXPDZ256rrk,      X86::VMAXPDZ256rmk,        0 },
1983    // AVX-512{F,VL} foldable instructions 128-bit
1984    { X86::VADDPSZ128rrk,      X86::VADDPSZ128rmk,        0 },
1985    { X86::VADDPDZ128rrk,      X86::VADDPDZ128rmk,        0 },
1986    { X86::VSUBPSZ128rrk,      X86::VSUBPSZ128rmk,        0 },
1987    { X86::VSUBPDZ128rrk,      X86::VSUBPDZ128rmk,        0 },
1988    { X86::VMULPSZ128rrk,      X86::VMULPSZ128rmk,        0 },
1989    { X86::VMULPDZ128rrk,      X86::VMULPDZ128rmk,        0 },
1990    { X86::VDIVPSZ128rrk,      X86::VDIVPSZ128rmk,        0 },
1991    { X86::VDIVPDZ128rrk,      X86::VDIVPDZ128rmk,        0 },
1992    { X86::VMINPSZ128rrk,      X86::VMINPSZ128rmk,        0 },
1993    { X86::VMINPDZ128rrk,      X86::VMINPDZ128rmk,        0 },
1994    { X86::VMAXPSZ128rrk,      X86::VMAXPSZ128rmk,        0 },
1995    { X86::VMAXPDZ128rrk,      X86::VMAXPDZ128rmk,        0 }
1996  };
1997
1998  for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
1999    unsigned RegOp = MemoryFoldTable4[i].RegOp;
2000    unsigned MemOp = MemoryFoldTable4[i].MemOp;
2001    unsigned Flags = MemoryFoldTable4[i].Flags;
2002    AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
2003                  RegOp, MemOp,
2004                  // Index 4, folded load
2005                  Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
2006  }
2007}
2008
2009void
2010X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
2011                            MemOp2RegOpTableType &M2RTable,
2012                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
2013    if ((Flags & TB_NO_FORWARD) == 0) {
2014      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
2015      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
2016    }
2017    if ((Flags & TB_NO_REVERSE) == 0) {
2018      assert(!M2RTable.count(MemOp) &&
2019           "Duplicated entries in unfolding maps?");
2020      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
2021    }
2022}
2023
2024bool
2025X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
2026                                    unsigned &SrcReg, unsigned &DstReg,
2027                                    unsigned &SubIdx) const {
2028  switch (MI.getOpcode()) {
2029  default: break;
2030  case X86::MOVSX16rr8:
2031  case X86::MOVZX16rr8:
2032  case X86::MOVSX32rr8:
2033  case X86::MOVZX32rr8:
2034  case X86::MOVSX64rr8:
2035    if (!Subtarget.is64Bit())
2036      // It's not always legal to reference the low 8-bit of the larger
2037      // register in 32-bit mode.
2038      return false;
2039  case X86::MOVSX32rr16:
2040  case X86::MOVZX32rr16:
2041  case X86::MOVSX64rr16:
2042  case X86::MOVSX64rr32: {
2043    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
2044      // Be conservative.
2045      return false;
2046    SrcReg = MI.getOperand(1).getReg();
2047    DstReg = MI.getOperand(0).getReg();
2048    switch (MI.getOpcode()) {
2049    default: llvm_unreachable("Unreachable!");
2050    case X86::MOVSX16rr8:
2051    case X86::MOVZX16rr8:
2052    case X86::MOVSX32rr8:
2053    case X86::MOVZX32rr8:
2054    case X86::MOVSX64rr8:
2055      SubIdx = X86::sub_8bit;
2056      break;
2057    case X86::MOVSX32rr16:
2058    case X86::MOVZX32rr16:
2059    case X86::MOVSX64rr16:
2060      SubIdx = X86::sub_16bit;
2061      break;
2062    case X86::MOVSX64rr32:
2063      SubIdx = X86::sub_32bit;
2064      break;
2065    }
2066    return true;
2067  }
2068  }
2069  return false;
2070}
2071
2072int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
2073  const MachineFunction *MF = MI->getParent()->getParent();
2074  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2075
2076  if (MI->getOpcode() == getCallFrameSetupOpcode() ||
2077      MI->getOpcode() == getCallFrameDestroyOpcode()) {
2078    unsigned StackAlign = TFI->getStackAlignment();
2079    int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
2080                 StackAlign;
2081
2082    SPAdj -= MI->getOperand(1).getImm();
2083
2084    if (MI->getOpcode() == getCallFrameSetupOpcode())
2085      return SPAdj;
2086    else
2087      return -SPAdj;
2088  }
2089
2090  // To know whether a call adjusts the stack, we need information
2091  // that is bound to the following ADJCALLSTACKUP pseudo.
2092  // Look for the next ADJCALLSTACKUP that follows the call.
2093  if (MI->isCall()) {
2094    const MachineBasicBlock* MBB = MI->getParent();
2095    auto I = ++MachineBasicBlock::const_iterator(MI);
2096    for (auto E = MBB->end(); I != E; ++I) {
2097      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
2098          I->isCall())
2099        break;
2100    }
2101
2102    // If we could not find a frame destroy opcode, then it has already
2103    // been simplified, so we don't care.
2104    if (I->getOpcode() != getCallFrameDestroyOpcode())
2105      return 0;
2106
2107    return -(I->getOperand(1).getImm());
2108  }
2109
2110  // Currently handle only PUSHes we can reasonably expect to see
2111  // in call sequences
2112  switch (MI->getOpcode()) {
2113  default:
2114    return 0;
2115  case X86::PUSH32i8:
2116  case X86::PUSH32r:
2117  case X86::PUSH32rmm:
2118  case X86::PUSH32rmr:
2119  case X86::PUSHi32:
2120    return 4;
2121  }
2122}
2123
2124/// Return true and the FrameIndex if the specified
2125/// operand and follow operands form a reference to the stack frame.
2126bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
2127                                  int &FrameIndex) const {
2128  if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
2129      MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
2130      MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
2131      MI->getOperand(Op+X86::AddrDisp).isImm() &&
2132      MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
2133      MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
2134      MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
2135    FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
2136    return true;
2137  }
2138  return false;
2139}
2140
2141static bool isFrameLoadOpcode(int Opcode) {
2142  switch (Opcode) {
2143  default:
2144    return false;
2145  case X86::MOV8rm:
2146  case X86::MOV16rm:
2147  case X86::MOV32rm:
2148  case X86::MOV64rm:
2149  case X86::LD_Fp64m:
2150  case X86::MOVSSrm:
2151  case X86::MOVSDrm:
2152  case X86::MOVAPSrm:
2153  case X86::MOVAPDrm:
2154  case X86::MOVDQArm:
2155  case X86::VMOVSSrm:
2156  case X86::VMOVSDrm:
2157  case X86::VMOVAPSrm:
2158  case X86::VMOVAPDrm:
2159  case X86::VMOVDQArm:
2160  case X86::VMOVUPSYrm:
2161  case X86::VMOVAPSYrm:
2162  case X86::VMOVUPDYrm:
2163  case X86::VMOVAPDYrm:
2164  case X86::VMOVDQUYrm:
2165  case X86::VMOVDQAYrm:
2166  case X86::MMX_MOVD64rm:
2167  case X86::MMX_MOVQ64rm:
2168  case X86::VMOVAPSZrm:
2169  case X86::VMOVUPSZrm:
2170    return true;
2171  }
2172}
2173
2174static bool isFrameStoreOpcode(int Opcode) {
2175  switch (Opcode) {
2176  default: break;
2177  case X86::MOV8mr:
2178  case X86::MOV16mr:
2179  case X86::MOV32mr:
2180  case X86::MOV64mr:
2181  case X86::ST_FpP64m:
2182  case X86::MOVSSmr:
2183  case X86::MOVSDmr:
2184  case X86::MOVAPSmr:
2185  case X86::MOVAPDmr:
2186  case X86::MOVDQAmr:
2187  case X86::VMOVSSmr:
2188  case X86::VMOVSDmr:
2189  case X86::VMOVAPSmr:
2190  case X86::VMOVAPDmr:
2191  case X86::VMOVDQAmr:
2192  case X86::VMOVUPSYmr:
2193  case X86::VMOVAPSYmr:
2194  case X86::VMOVUPDYmr:
2195  case X86::VMOVAPDYmr:
2196  case X86::VMOVDQUYmr:
2197  case X86::VMOVDQAYmr:
2198  case X86::VMOVUPSZmr:
2199  case X86::VMOVAPSZmr:
2200  case X86::MMX_MOVD64mr:
2201  case X86::MMX_MOVQ64mr:
2202  case X86::MMX_MOVNTQmr:
2203    return true;
2204  }
2205  return false;
2206}
2207
2208unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
2209                                           int &FrameIndex) const {
2210  if (isFrameLoadOpcode(MI->getOpcode()))
2211    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
2212      return MI->getOperand(0).getReg();
2213  return 0;
2214}
2215
2216unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
2217                                                 int &FrameIndex) const {
2218  if (isFrameLoadOpcode(MI->getOpcode())) {
2219    unsigned Reg;
2220    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
2221      return Reg;
2222    // Check for post-frame index elimination operations
2223    const MachineMemOperand *Dummy;
2224    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
2225  }
2226  return 0;
2227}
2228
2229unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
2230                                          int &FrameIndex) const {
2231  if (isFrameStoreOpcode(MI->getOpcode()))
2232    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
2233        isFrameOperand(MI, 0, FrameIndex))
2234      return MI->getOperand(X86::AddrNumOperands).getReg();
2235  return 0;
2236}
2237
2238unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
2239                                                int &FrameIndex) const {
2240  if (isFrameStoreOpcode(MI->getOpcode())) {
2241    unsigned Reg;
2242    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
2243      return Reg;
2244    // Check for post-frame index elimination operations
2245    const MachineMemOperand *Dummy;
2246    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
2247  }
2248  return 0;
2249}
2250
2251/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
2252static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
2253  // Don't waste compile time scanning use-def chains of physregs.
2254  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
2255    return false;
2256  bool isPICBase = false;
2257  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
2258         E = MRI.def_instr_end(); I != E; ++I) {
2259    MachineInstr *DefMI = &*I;
2260    if (DefMI->getOpcode() != X86::MOVPC32r)
2261      return false;
2262    assert(!isPICBase && "More than one PIC base?");
2263    isPICBase = true;
2264  }
2265  return isPICBase;
2266}
2267
2268bool
2269X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
2270                                                AliasAnalysis *AA) const {
2271  switch (MI->getOpcode()) {
2272  default: break;
2273  case X86::MOV8rm:
2274  case X86::MOV16rm:
2275  case X86::MOV32rm:
2276  case X86::MOV64rm:
2277  case X86::LD_Fp64m:
2278  case X86::MOVSSrm:
2279  case X86::MOVSDrm:
2280  case X86::MOVAPSrm:
2281  case X86::MOVUPSrm:
2282  case X86::MOVAPDrm:
2283  case X86::MOVDQArm:
2284  case X86::MOVDQUrm:
2285  case X86::VMOVSSrm:
2286  case X86::VMOVSDrm:
2287  case X86::VMOVAPSrm:
2288  case X86::VMOVUPSrm:
2289  case X86::VMOVAPDrm:
2290  case X86::VMOVDQArm:
2291  case X86::VMOVDQUrm:
2292  case X86::VMOVAPSYrm:
2293  case X86::VMOVUPSYrm:
2294  case X86::VMOVAPDYrm:
2295  case X86::VMOVDQAYrm:
2296  case X86::VMOVDQUYrm:
2297  case X86::MMX_MOVD64rm:
2298  case X86::MMX_MOVQ64rm:
2299  case X86::FsVMOVAPSrm:
2300  case X86::FsVMOVAPDrm:
2301  case X86::FsMOVAPSrm:
2302  case X86::FsMOVAPDrm: {
2303    // Loads from constant pools are trivially rematerializable.
2304    if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
2305        MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2306        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2307        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2308        MI->isInvariantLoad(AA)) {
2309      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2310      if (BaseReg == 0 || BaseReg == X86::RIP)
2311        return true;
2312      // Allow re-materialization of PIC load.
2313      if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
2314        return false;
2315      const MachineFunction &MF = *MI->getParent()->getParent();
2316      const MachineRegisterInfo &MRI = MF.getRegInfo();
2317      return regIsPICBase(BaseReg, MRI);
2318    }
2319    return false;
2320  }
2321
2322  case X86::LEA32r:
2323  case X86::LEA64r: {
2324    if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2325        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2326        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2327        !MI->getOperand(1+X86::AddrDisp).isReg()) {
2328      // lea fi#, lea GV, etc. are all rematerializable.
2329      if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
2330        return true;
2331      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2332      if (BaseReg == 0)
2333        return true;
2334      // Allow re-materialization of lea PICBase + x.
2335      const MachineFunction &MF = *MI->getParent()->getParent();
2336      const MachineRegisterInfo &MRI = MF.getRegInfo();
2337      return regIsPICBase(BaseReg, MRI);
2338    }
2339    return false;
2340  }
2341  }
2342
2343  // All other instructions marked M_REMATERIALIZABLE are always trivially
2344  // rematerializable.
2345  return true;
2346}
2347
2348bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
2349                                         MachineBasicBlock::iterator I) const {
2350  MachineBasicBlock::iterator E = MBB.end();
2351
2352  // For compile time consideration, if we are not able to determine the
2353  // safety after visiting 4 instructions in each direction, we will assume
2354  // it's not safe.
2355  MachineBasicBlock::iterator Iter = I;
2356  for (unsigned i = 0; Iter != E && i < 4; ++i) {
2357    bool SeenDef = false;
2358    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2359      MachineOperand &MO = Iter->getOperand(j);
2360      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2361        SeenDef = true;
2362      if (!MO.isReg())
2363        continue;
2364      if (MO.getReg() == X86::EFLAGS) {
2365        if (MO.isUse())
2366          return false;
2367        SeenDef = true;
2368      }
2369    }
2370
2371    if (SeenDef)
2372      // This instruction defines EFLAGS, no need to look any further.
2373      return true;
2374    ++Iter;
2375    // Skip over DBG_VALUE.
2376    while (Iter != E && Iter->isDebugValue())
2377      ++Iter;
2378  }
2379
2380  // It is safe to clobber EFLAGS at the end of a block of no successor has it
2381  // live in.
2382  if (Iter == E) {
2383    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
2384           SE = MBB.succ_end(); SI != SE; ++SI)
2385      if ((*SI)->isLiveIn(X86::EFLAGS))
2386        return false;
2387    return true;
2388  }
2389
2390  MachineBasicBlock::iterator B = MBB.begin();
2391  Iter = I;
2392  for (unsigned i = 0; i < 4; ++i) {
2393    // If we make it to the beginning of the block, it's safe to clobber
2394    // EFLAGS iff EFLAGS is not live-in.
2395    if (Iter == B)
2396      return !MBB.isLiveIn(X86::EFLAGS);
2397
2398    --Iter;
2399    // Skip over DBG_VALUE.
2400    while (Iter != B && Iter->isDebugValue())
2401      --Iter;
2402
2403    bool SawKill = false;
2404    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2405      MachineOperand &MO = Iter->getOperand(j);
2406      // A register mask may clobber EFLAGS, but we should still look for a
2407      // live EFLAGS def.
2408      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2409        SawKill = true;
2410      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
2411        if (MO.isDef()) return MO.isDead();
2412        if (MO.isKill()) SawKill = true;
2413      }
2414    }
2415
2416    if (SawKill)
2417      // This instruction kills EFLAGS and doesn't redefine it, so
2418      // there's no need to look further.
2419      return true;
2420  }
2421
2422  // Conservative answer.
2423  return false;
2424}
2425
2426void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
2427                                 MachineBasicBlock::iterator I,
2428                                 unsigned DestReg, unsigned SubIdx,
2429                                 const MachineInstr *Orig,
2430                                 const TargetRegisterInfo &TRI) const {
2431  // MOV32r0 is implemented with a xor which clobbers condition code.
2432  // Re-materialize it as movri instructions to avoid side effects.
2433  unsigned Opc = Orig->getOpcode();
2434  if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
2435    DebugLoc DL = Orig->getDebugLoc();
2436    BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
2437      .addImm(0);
2438  } else {
2439    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
2440    MBB.insert(I, MI);
2441  }
2442
2443  MachineInstr *NewMI = std::prev(I);
2444  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
2445}
2446
2447/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
2448static bool hasLiveCondCodeDef(MachineInstr *MI) {
2449  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2450    MachineOperand &MO = MI->getOperand(i);
2451    if (MO.isReg() && MO.isDef() &&
2452        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
2453      return true;
2454    }
2455  }
2456  return false;
2457}
2458
2459/// Check whether the shift count for a machine operand is non-zero.
2460inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
2461                                              unsigned ShiftAmtOperandIdx) {
2462  // The shift count is six bits with the REX.W prefix and five bits without.
2463  unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
2464  unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
2465  return Imm & ShiftCountMask;
2466}
2467
2468/// Check whether the given shift count is appropriate
2469/// can be represented by a LEA instruction.
2470inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
2471  // Left shift instructions can be transformed into load-effective-address
2472  // instructions if we can encode them appropriately.
2473  // A LEA instruction utilizes a SIB byte to encode it's scale factor.
2474  // The SIB.scale field is two bits wide which means that we can encode any
2475  // shift amount less than 4.
2476  return ShAmt < 4 && ShAmt > 0;
2477}
2478
2479bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
2480                                  unsigned Opc, bool AllowSP,
2481                                  unsigned &NewSrc, bool &isKill, bool &isUndef,
2482                                  MachineOperand &ImplicitOp) const {
2483  MachineFunction &MF = *MI->getParent()->getParent();
2484  const TargetRegisterClass *RC;
2485  if (AllowSP) {
2486    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
2487  } else {
2488    RC = Opc != X86::LEA32r ?
2489      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
2490  }
2491  unsigned SrcReg = Src.getReg();
2492
2493  // For both LEA64 and LEA32 the register already has essentially the right
2494  // type (32-bit or 64-bit) we may just need to forbid SP.
2495  if (Opc != X86::LEA64_32r) {
2496    NewSrc = SrcReg;
2497    isKill = Src.isKill();
2498    isUndef = Src.isUndef();
2499
2500    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
2501        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
2502      return false;
2503
2504    return true;
2505  }
2506
2507  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
2508  // another we need to add 64-bit registers to the final MI.
2509  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
2510    ImplicitOp = Src;
2511    ImplicitOp.setImplicit();
2512
2513    NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
2514    MachineBasicBlock::LivenessQueryResult LQR =
2515      MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
2516
2517    switch (LQR) {
2518    case MachineBasicBlock::LQR_Unknown:
2519      // We can't give sane liveness flags to the instruction, abandon LEA
2520      // formation.
2521      return false;
2522    case MachineBasicBlock::LQR_Live:
2523      isKill = MI->killsRegister(SrcReg);
2524      isUndef = false;
2525      break;
2526    default:
2527      // The physreg itself is dead, so we have to use it as an <undef>.
2528      isKill = false;
2529      isUndef = true;
2530      break;
2531    }
2532  } else {
2533    // Virtual register of the wrong class, we have to create a temporary 64-bit
2534    // vreg to feed into the LEA.
2535    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
2536    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
2537            get(TargetOpcode::COPY))
2538      .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
2539        .addOperand(Src);
2540
2541    // Which is obviously going to be dead after we're done with it.
2542    isKill = true;
2543    isUndef = false;
2544  }
2545
2546  // We've set all the parameters without issue.
2547  return true;
2548}
2549
2550/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
2551/// LEA to form 3-address code by promoting to a 32-bit superregister and then
2552/// truncating back down to a 16-bit subregister.
2553MachineInstr *
2554X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
2555                                           MachineFunction::iterator &MFI,
2556                                           MachineBasicBlock::iterator &MBBI,
2557                                           LiveVariables *LV) const {
2558  MachineInstr *MI = MBBI;
2559  unsigned Dest = MI->getOperand(0).getReg();
2560  unsigned Src = MI->getOperand(1).getReg();
2561  bool isDead = MI->getOperand(0).isDead();
2562  bool isKill = MI->getOperand(1).isKill();
2563
2564  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
2565  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
2566  unsigned Opc, leaInReg;
2567  if (Subtarget.is64Bit()) {
2568    Opc = X86::LEA64_32r;
2569    leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2570  } else {
2571    Opc = X86::LEA32r;
2572    leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2573  }
2574
2575  // Build and insert into an implicit UNDEF value. This is OK because
2576  // well be shifting and then extracting the lower 16-bits.
2577  // This has the potential to cause partial register stall. e.g.
2578  //   movw    (%rbp,%rcx,2), %dx
2579  //   leal    -65(%rdx), %esi
2580  // But testing has shown this *does* help performance in 64-bit mode (at
2581  // least on modern x86 machines).
2582  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
2583  MachineInstr *InsMI =
2584    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2585    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
2586    .addReg(Src, getKillRegState(isKill));
2587
2588  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
2589                                    get(Opc), leaOutReg);
2590  switch (MIOpc) {
2591  default: llvm_unreachable("Unreachable!");
2592  case X86::SHL16ri: {
2593    unsigned ShAmt = MI->getOperand(2).getImm();
2594    MIB.addReg(0).addImm(1 << ShAmt)
2595       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
2596    break;
2597  }
2598  case X86::INC16r:
2599    addRegOffset(MIB, leaInReg, true, 1);
2600    break;
2601  case X86::DEC16r:
2602    addRegOffset(MIB, leaInReg, true, -1);
2603    break;
2604  case X86::ADD16ri:
2605  case X86::ADD16ri8:
2606  case X86::ADD16ri_DB:
2607  case X86::ADD16ri8_DB:
2608    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
2609    break;
2610  case X86::ADD16rr:
2611  case X86::ADD16rr_DB: {
2612    unsigned Src2 = MI->getOperand(2).getReg();
2613    bool isKill2 = MI->getOperand(2).isKill();
2614    unsigned leaInReg2 = 0;
2615    MachineInstr *InsMI2 = nullptr;
2616    if (Src == Src2) {
2617      // ADD16rr %reg1028<kill>, %reg1028
2618      // just a single insert_subreg.
2619      addRegReg(MIB, leaInReg, true, leaInReg, false);
2620    } else {
2621      if (Subtarget.is64Bit())
2622        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2623      else
2624        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2625      // Build and insert into an implicit UNDEF value. This is OK because
2626      // well be shifting and then extracting the lower 16-bits.
2627      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2628      InsMI2 =
2629        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2630        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2631        .addReg(Src2, getKillRegState(isKill2));
2632      addRegReg(MIB, leaInReg, true, leaInReg2, true);
2633    }
2634    if (LV && isKill2 && InsMI2)
2635      LV->replaceKillInstruction(Src2, MI, InsMI2);
2636    break;
2637  }
2638  }
2639
2640  MachineInstr *NewMI = MIB;
2641  MachineInstr *ExtMI =
2642    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2643    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2644    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2645
2646  if (LV) {
2647    // Update live variables
2648    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2649    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2650    if (isKill)
2651      LV->replaceKillInstruction(Src, MI, InsMI);
2652    if (isDead)
2653      LV->replaceKillInstruction(Dest, MI, ExtMI);
2654  }
2655
2656  return ExtMI;
2657}
2658
2659/// This method must be implemented by targets that
2660/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
2661/// may be able to convert a two-address instruction into a true
2662/// three-address instruction on demand.  This allows the X86 target (for
2663/// example) to convert ADD and SHL instructions into LEA instructions if they
2664/// would require register copies due to two-addressness.
2665///
2666/// This method returns a null pointer if the transformation cannot be
2667/// performed, otherwise it returns the new instruction.
2668///
2669MachineInstr *
2670X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2671                                    MachineBasicBlock::iterator &MBBI,
2672                                    LiveVariables *LV) const {
2673  MachineInstr *MI = MBBI;
2674
2675  // The following opcodes also sets the condition code register(s). Only
2676  // convert them to equivalent lea if the condition code register def's
2677  // are dead!
2678  if (hasLiveCondCodeDef(MI))
2679    return nullptr;
2680
2681  MachineFunction &MF = *MI->getParent()->getParent();
2682  // All instructions input are two-addr instructions.  Get the known operands.
2683  const MachineOperand &Dest = MI->getOperand(0);
2684  const MachineOperand &Src = MI->getOperand(1);
2685
2686  MachineInstr *NewMI = nullptr;
2687  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
2688  // we have better subtarget support, enable the 16-bit LEA generation here.
2689  // 16-bit LEA is also slow on Core2.
2690  bool DisableLEA16 = true;
2691  bool is64Bit = Subtarget.is64Bit();
2692
2693  unsigned MIOpc = MI->getOpcode();
2694  switch (MIOpc) {
2695  default: return nullptr;
2696  case X86::SHL64ri: {
2697    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2698    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2699    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2700
2701    // LEA can't handle RSP.
2702    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2703        !MF.getRegInfo().constrainRegClass(Src.getReg(),
2704                                           &X86::GR64_NOSPRegClass))
2705      return nullptr;
2706
2707    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2708      .addOperand(Dest)
2709      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2710    break;
2711  }
2712  case X86::SHL32ri: {
2713    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2714    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2715    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2716
2717    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2718
2719    // LEA can't handle ESP.
2720    bool isKill, isUndef;
2721    unsigned SrcReg;
2722    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2723    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2724                        SrcReg, isKill, isUndef, ImplicitOp))
2725      return nullptr;
2726
2727    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2728      .addOperand(Dest)
2729      .addReg(0).addImm(1 << ShAmt)
2730      .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2731      .addImm(0).addReg(0);
2732    if (ImplicitOp.getReg() != 0)
2733      MIB.addOperand(ImplicitOp);
2734    NewMI = MIB;
2735
2736    break;
2737  }
2738  case X86::SHL16ri: {
2739    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2740    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2741    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2742
2743    if (DisableLEA16)
2744      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
2745    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2746      .addOperand(Dest)
2747      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2748    break;
2749  }
2750  case X86::INC64r:
2751  case X86::INC32r: {
2752    assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2753    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2754      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2755    bool isKill, isUndef;
2756    unsigned SrcReg;
2757    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2758    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2759                        SrcReg, isKill, isUndef, ImplicitOp))
2760      return nullptr;
2761
2762    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2763        .addOperand(Dest)
2764        .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2765    if (ImplicitOp.getReg() != 0)
2766      MIB.addOperand(ImplicitOp);
2767
2768    NewMI = addOffset(MIB, 1);
2769    break;
2770  }
2771  case X86::INC16r:
2772    if (DisableLEA16)
2773      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2774                     : nullptr;
2775    assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2776    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2777                      .addOperand(Dest).addOperand(Src), 1);
2778    break;
2779  case X86::DEC64r:
2780  case X86::DEC32r: {
2781    assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2782    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2783      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2784
2785    bool isKill, isUndef;
2786    unsigned SrcReg;
2787    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2788    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2789                        SrcReg, isKill, isUndef, ImplicitOp))
2790      return nullptr;
2791
2792    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2793        .addOperand(Dest)
2794        .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2795    if (ImplicitOp.getReg() != 0)
2796      MIB.addOperand(ImplicitOp);
2797
2798    NewMI = addOffset(MIB, -1);
2799
2800    break;
2801  }
2802  case X86::DEC16r:
2803    if (DisableLEA16)
2804      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2805                     : nullptr;
2806    assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2807    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2808                      .addOperand(Dest).addOperand(Src), -1);
2809    break;
2810  case X86::ADD64rr:
2811  case X86::ADD64rr_DB:
2812  case X86::ADD32rr:
2813  case X86::ADD32rr_DB: {
2814    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2815    unsigned Opc;
2816    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2817      Opc = X86::LEA64r;
2818    else
2819      Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2820
2821    bool isKill, isUndef;
2822    unsigned SrcReg;
2823    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2824    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2825                        SrcReg, isKill, isUndef, ImplicitOp))
2826      return nullptr;
2827
2828    const MachineOperand &Src2 = MI->getOperand(2);
2829    bool isKill2, isUndef2;
2830    unsigned SrcReg2;
2831    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2832    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2833                        SrcReg2, isKill2, isUndef2, ImplicitOp2))
2834      return nullptr;
2835
2836    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2837      .addOperand(Dest);
2838    if (ImplicitOp.getReg() != 0)
2839      MIB.addOperand(ImplicitOp);
2840    if (ImplicitOp2.getReg() != 0)
2841      MIB.addOperand(ImplicitOp2);
2842
2843    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2844
2845    // Preserve undefness of the operands.
2846    NewMI->getOperand(1).setIsUndef(isUndef);
2847    NewMI->getOperand(3).setIsUndef(isUndef2);
2848
2849    if (LV && Src2.isKill())
2850      LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2851    break;
2852  }
2853  case X86::ADD16rr:
2854  case X86::ADD16rr_DB: {
2855    if (DisableLEA16)
2856      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2857                     : nullptr;
2858    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2859    unsigned Src2 = MI->getOperand(2).getReg();
2860    bool isKill2 = MI->getOperand(2).isKill();
2861    NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2862                      .addOperand(Dest),
2863                      Src.getReg(), Src.isKill(), Src2, isKill2);
2864
2865    // Preserve undefness of the operands.
2866    bool isUndef = MI->getOperand(1).isUndef();
2867    bool isUndef2 = MI->getOperand(2).isUndef();
2868    NewMI->getOperand(1).setIsUndef(isUndef);
2869    NewMI->getOperand(3).setIsUndef(isUndef2);
2870
2871    if (LV && isKill2)
2872      LV->replaceKillInstruction(Src2, MI, NewMI);
2873    break;
2874  }
2875  case X86::ADD64ri32:
2876  case X86::ADD64ri8:
2877  case X86::ADD64ri32_DB:
2878  case X86::ADD64ri8_DB:
2879    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2880    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2881                      .addOperand(Dest).addOperand(Src),
2882                      MI->getOperand(2).getImm());
2883    break;
2884  case X86::ADD32ri:
2885  case X86::ADD32ri8:
2886  case X86::ADD32ri_DB:
2887  case X86::ADD32ri8_DB: {
2888    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2889    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2890
2891    bool isKill, isUndef;
2892    unsigned SrcReg;
2893    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2894    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2895                        SrcReg, isKill, isUndef, ImplicitOp))
2896      return nullptr;
2897
2898    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2899        .addOperand(Dest)
2900        .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2901    if (ImplicitOp.getReg() != 0)
2902      MIB.addOperand(ImplicitOp);
2903
2904    NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2905    break;
2906  }
2907  case X86::ADD16ri:
2908  case X86::ADD16ri8:
2909  case X86::ADD16ri_DB:
2910  case X86::ADD16ri8_DB:
2911    if (DisableLEA16)
2912      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2913                     : nullptr;
2914    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2915    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2916                      .addOperand(Dest).addOperand(Src),
2917                      MI->getOperand(2).getImm());
2918    break;
2919  }
2920
2921  if (!NewMI) return nullptr;
2922
2923  if (LV) {  // Update live variables
2924    if (Src.isKill())
2925      LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2926    if (Dest.isDead())
2927      LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2928  }
2929
2930  MFI->insert(MBBI, NewMI);          // Insert the new inst
2931  return NewMI;
2932}
2933
2934/// We have a few instructions that must be hacked on to commute them.
2935///
2936MachineInstr *
2937X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2938  switch (MI->getOpcode()) {
2939  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2940  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2941  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2942  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2943  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2944  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2945    unsigned Opc;
2946    unsigned Size;
2947    switch (MI->getOpcode()) {
2948    default: llvm_unreachable("Unreachable!");
2949    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2950    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2951    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2952    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2953    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2954    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2955    }
2956    unsigned Amt = MI->getOperand(3).getImm();
2957    if (NewMI) {
2958      MachineFunction &MF = *MI->getParent()->getParent();
2959      MI = MF.CloneMachineInstr(MI);
2960      NewMI = false;
2961    }
2962    MI->setDesc(get(Opc));
2963    MI->getOperand(3).setImm(Size-Amt);
2964    return TargetInstrInfo::commuteInstruction(MI, NewMI);
2965  }
2966  case X86::BLENDPDrri:
2967  case X86::BLENDPSrri:
2968  case X86::PBLENDWrri:
2969  case X86::VBLENDPDrri:
2970  case X86::VBLENDPSrri:
2971  case X86::VBLENDPDYrri:
2972  case X86::VBLENDPSYrri:
2973  case X86::VPBLENDDrri:
2974  case X86::VPBLENDWrri:
2975  case X86::VPBLENDDYrri:
2976  case X86::VPBLENDWYrri:{
2977    unsigned Mask;
2978    switch (MI->getOpcode()) {
2979    default: llvm_unreachable("Unreachable!");
2980    case X86::BLENDPDrri:    Mask = 0x03; break;
2981    case X86::BLENDPSrri:    Mask = 0x0F; break;
2982    case X86::PBLENDWrri:    Mask = 0xFF; break;
2983    case X86::VBLENDPDrri:   Mask = 0x03; break;
2984    case X86::VBLENDPSrri:   Mask = 0x0F; break;
2985    case X86::VBLENDPDYrri:  Mask = 0x0F; break;
2986    case X86::VBLENDPSYrri:  Mask = 0xFF; break;
2987    case X86::VPBLENDDrri:   Mask = 0x0F; break;
2988    case X86::VPBLENDWrri:   Mask = 0xFF; break;
2989    case X86::VPBLENDDYrri:  Mask = 0xFF; break;
2990    case X86::VPBLENDWYrri:  Mask = 0xFF; break;
2991    }
2992    // Only the least significant bits of Imm are used.
2993    unsigned Imm = MI->getOperand(3).getImm() & Mask;
2994    if (NewMI) {
2995      MachineFunction &MF = *MI->getParent()->getParent();
2996      MI = MF.CloneMachineInstr(MI);
2997      NewMI = false;
2998    }
2999    MI->getOperand(3).setImm(Mask ^ Imm);
3000    return TargetInstrInfo::commuteInstruction(MI, NewMI);
3001  }
3002  case X86::PCLMULQDQrr:
3003  case X86::VPCLMULQDQrr:{
3004    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
3005    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
3006    unsigned Imm = MI->getOperand(3).getImm();
3007    unsigned Src1Hi = Imm & 0x01;
3008    unsigned Src2Hi = Imm & 0x10;
3009    if (NewMI) {
3010      MachineFunction &MF = *MI->getParent()->getParent();
3011      MI = MF.CloneMachineInstr(MI);
3012      NewMI = false;
3013    }
3014    MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
3015    return TargetInstrInfo::commuteInstruction(MI, NewMI);
3016  }
3017  case X86::CMPPDrri:
3018  case X86::CMPPSrri:
3019  case X86::VCMPPDrri:
3020  case X86::VCMPPSrri:
3021  case X86::VCMPPDYrri:
3022  case X86::VCMPPSYrri: {
3023    // Float comparison can be safely commuted for
3024    // Ordered/Unordered/Equal/NotEqual tests
3025    unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3026    switch (Imm) {
3027    case 0x00: // EQUAL
3028    case 0x03: // UNORDERED
3029    case 0x04: // NOT EQUAL
3030    case 0x07: // ORDERED
3031      if (NewMI) {
3032        MachineFunction &MF = *MI->getParent()->getParent();
3033        MI = MF.CloneMachineInstr(MI);
3034        NewMI = false;
3035      }
3036      return TargetInstrInfo::commuteInstruction(MI, NewMI);
3037    default:
3038      return nullptr;
3039    }
3040  }
3041  case X86::VPCOMBri: case X86::VPCOMUBri:
3042  case X86::VPCOMDri: case X86::VPCOMUDri:
3043  case X86::VPCOMQri: case X86::VPCOMUQri:
3044  case X86::VPCOMWri: case X86::VPCOMUWri: {
3045    // Flip comparison mode immediate (if necessary).
3046    unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3047    switch (Imm) {
3048    case 0x00: Imm = 0x02; break; // LT -> GT
3049    case 0x01: Imm = 0x03; break; // LE -> GE
3050    case 0x02: Imm = 0x00; break; // GT -> LT
3051    case 0x03: Imm = 0x01; break; // GE -> LE
3052    case 0x04: // EQ
3053    case 0x05: // NE
3054    case 0x06: // FALSE
3055    case 0x07: // TRUE
3056    default:
3057      break;
3058    }
3059    if (NewMI) {
3060      MachineFunction &MF = *MI->getParent()->getParent();
3061      MI = MF.CloneMachineInstr(MI);
3062      NewMI = false;
3063    }
3064    MI->getOperand(3).setImm(Imm);
3065    return TargetInstrInfo::commuteInstruction(MI, NewMI);
3066  }
3067  case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
3068  case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
3069  case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
3070  case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
3071  case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
3072  case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
3073  case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
3074  case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
3075  case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
3076  case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
3077  case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
3078  case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
3079  case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
3080  case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
3081  case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
3082  case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
3083    unsigned Opc;
3084    switch (MI->getOpcode()) {
3085    default: llvm_unreachable("Unreachable!");
3086    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
3087    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
3088    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
3089    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
3090    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
3091    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
3092    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
3093    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
3094    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
3095    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
3096    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
3097    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
3098    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
3099    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
3100    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
3101    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
3102    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
3103    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
3104    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
3105    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
3106    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
3107    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
3108    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
3109    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
3110    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
3111    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
3112    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
3113    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
3114    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
3115    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
3116    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
3117    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
3118    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
3119    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
3120    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
3121    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
3122    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
3123    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
3124    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
3125    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
3126    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
3127    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
3128    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
3129    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
3130    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
3131    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
3132    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
3133    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
3134    }
3135    if (NewMI) {
3136      MachineFunction &MF = *MI->getParent()->getParent();
3137      MI = MF.CloneMachineInstr(MI);
3138      NewMI = false;
3139    }
3140    MI->setDesc(get(Opc));
3141    // Fallthrough intended.
3142  }
3143  default:
3144    return TargetInstrInfo::commuteInstruction(MI, NewMI);
3145  }
3146}
3147
3148bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
3149                                         unsigned &SrcOpIdx2) const {
3150  switch (MI->getOpcode()) {
3151    case X86::CMPPDrri:
3152    case X86::CMPPSrri:
3153    case X86::VCMPPDrri:
3154    case X86::VCMPPSrri:
3155    case X86::VCMPPDYrri:
3156    case X86::VCMPPSYrri: {
3157      // Float comparison can be safely commuted for
3158      // Ordered/Unordered/Equal/NotEqual tests
3159      unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3160      switch (Imm) {
3161      case 0x00: // EQUAL
3162      case 0x03: // UNORDERED
3163      case 0x04: // NOT EQUAL
3164      case 0x07: // ORDERED
3165        SrcOpIdx1 = 1;
3166        SrcOpIdx2 = 2;
3167        return true;
3168      }
3169      return false;
3170    }
3171    case X86::VFMADDPDr231r:
3172    case X86::VFMADDPSr231r:
3173    case X86::VFMADDSDr231r:
3174    case X86::VFMADDSSr231r:
3175    case X86::VFMSUBPDr231r:
3176    case X86::VFMSUBPSr231r:
3177    case X86::VFMSUBSDr231r:
3178    case X86::VFMSUBSSr231r:
3179    case X86::VFNMADDPDr231r:
3180    case X86::VFNMADDPSr231r:
3181    case X86::VFNMADDSDr231r:
3182    case X86::VFNMADDSSr231r:
3183    case X86::VFNMSUBPDr231r:
3184    case X86::VFNMSUBPSr231r:
3185    case X86::VFNMSUBSDr231r:
3186    case X86::VFNMSUBSSr231r:
3187    case X86::VFMADDPDr231rY:
3188    case X86::VFMADDPSr231rY:
3189    case X86::VFMSUBPDr231rY:
3190    case X86::VFMSUBPSr231rY:
3191    case X86::VFNMADDPDr231rY:
3192    case X86::VFNMADDPSr231rY:
3193    case X86::VFNMSUBPDr231rY:
3194    case X86::VFNMSUBPSr231rY:
3195      SrcOpIdx1 = 2;
3196      SrcOpIdx2 = 3;
3197      return true;
3198    default:
3199      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3200  }
3201}
3202
3203static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
3204  switch (BrOpc) {
3205  default: return X86::COND_INVALID;
3206  case X86::JE_1:  return X86::COND_E;
3207  case X86::JNE_1: return X86::COND_NE;
3208  case X86::JL_1:  return X86::COND_L;
3209  case X86::JLE_1: return X86::COND_LE;
3210  case X86::JG_1:  return X86::COND_G;
3211  case X86::JGE_1: return X86::COND_GE;
3212  case X86::JB_1:  return X86::COND_B;
3213  case X86::JBE_1: return X86::COND_BE;
3214  case X86::JA_1:  return X86::COND_A;
3215  case X86::JAE_1: return X86::COND_AE;
3216  case X86::JS_1:  return X86::COND_S;
3217  case X86::JNS_1: return X86::COND_NS;
3218  case X86::JP_1:  return X86::COND_P;
3219  case X86::JNP_1: return X86::COND_NP;
3220  case X86::JO_1:  return X86::COND_O;
3221  case X86::JNO_1: return X86::COND_NO;
3222  }
3223}
3224
3225/// Return condition code of a SET opcode.
3226static X86::CondCode getCondFromSETOpc(unsigned Opc) {
3227  switch (Opc) {
3228  default: return X86::COND_INVALID;
3229  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
3230  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
3231  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
3232  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
3233  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
3234  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
3235  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
3236  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
3237  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
3238  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
3239  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
3240  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
3241  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
3242  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
3243  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
3244  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
3245  }
3246}
3247
3248/// Return condition code of a CMov opcode.
3249X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
3250  switch (Opc) {
3251  default: return X86::COND_INVALID;
3252  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
3253  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
3254    return X86::COND_A;
3255  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
3256  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
3257    return X86::COND_AE;
3258  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
3259  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
3260    return X86::COND_B;
3261  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
3262  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
3263    return X86::COND_BE;
3264  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
3265  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
3266    return X86::COND_E;
3267  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
3268  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
3269    return X86::COND_G;
3270  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
3271  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
3272    return X86::COND_GE;
3273  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
3274  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
3275    return X86::COND_L;
3276  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
3277  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
3278    return X86::COND_LE;
3279  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
3280  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
3281    return X86::COND_NE;
3282  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
3283  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
3284    return X86::COND_NO;
3285  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
3286  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
3287    return X86::COND_NP;
3288  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
3289  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
3290    return X86::COND_NS;
3291  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
3292  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
3293    return X86::COND_O;
3294  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
3295  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
3296    return X86::COND_P;
3297  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
3298  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
3299    return X86::COND_S;
3300  }
3301}
3302
3303unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
3304  switch (CC) {
3305  default: llvm_unreachable("Illegal condition code!");
3306  case X86::COND_E:  return X86::JE_1;
3307  case X86::COND_NE: return X86::JNE_1;
3308  case X86::COND_L:  return X86::JL_1;
3309  case X86::COND_LE: return X86::JLE_1;
3310  case X86::COND_G:  return X86::JG_1;
3311  case X86::COND_GE: return X86::JGE_1;
3312  case X86::COND_B:  return X86::JB_1;
3313  case X86::COND_BE: return X86::JBE_1;
3314  case X86::COND_A:  return X86::JA_1;
3315  case X86::COND_AE: return X86::JAE_1;
3316  case X86::COND_S:  return X86::JS_1;
3317  case X86::COND_NS: return X86::JNS_1;
3318  case X86::COND_P:  return X86::JP_1;
3319  case X86::COND_NP: return X86::JNP_1;
3320  case X86::COND_O:  return X86::JO_1;
3321  case X86::COND_NO: return X86::JNO_1;
3322  }
3323}
3324
3325/// Return the inverse of the specified condition,
3326/// e.g. turning COND_E to COND_NE.
3327X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3328  switch (CC) {
3329  default: llvm_unreachable("Illegal condition code!");
3330  case X86::COND_E:  return X86::COND_NE;
3331  case X86::COND_NE: return X86::COND_E;
3332  case X86::COND_L:  return X86::COND_GE;
3333  case X86::COND_LE: return X86::COND_G;
3334  case X86::COND_G:  return X86::COND_LE;
3335  case X86::COND_GE: return X86::COND_L;
3336  case X86::COND_B:  return X86::COND_AE;
3337  case X86::COND_BE: return X86::COND_A;
3338  case X86::COND_A:  return X86::COND_BE;
3339  case X86::COND_AE: return X86::COND_B;
3340  case X86::COND_S:  return X86::COND_NS;
3341  case X86::COND_NS: return X86::COND_S;
3342  case X86::COND_P:  return X86::COND_NP;
3343  case X86::COND_NP: return X86::COND_P;
3344  case X86::COND_O:  return X86::COND_NO;
3345  case X86::COND_NO: return X86::COND_O;
3346  }
3347}
3348
3349/// Assuming the flags are set by MI(a,b), return the condition code if we
3350/// modify the instructions such that flags are set by MI(b,a).
3351static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3352  switch (CC) {
3353  default: return X86::COND_INVALID;
3354  case X86::COND_E:  return X86::COND_E;
3355  case X86::COND_NE: return X86::COND_NE;
3356  case X86::COND_L:  return X86::COND_G;
3357  case X86::COND_LE: return X86::COND_GE;
3358  case X86::COND_G:  return X86::COND_L;
3359  case X86::COND_GE: return X86::COND_LE;
3360  case X86::COND_B:  return X86::COND_A;
3361  case X86::COND_BE: return X86::COND_AE;
3362  case X86::COND_A:  return X86::COND_B;
3363  case X86::COND_AE: return X86::COND_BE;
3364  }
3365}
3366
3367/// Return a set opcode for the given condition and
3368/// whether it has memory operand.
3369unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
3370  static const uint16_t Opc[16][2] = {
3371    { X86::SETAr,  X86::SETAm  },
3372    { X86::SETAEr, X86::SETAEm },
3373    { X86::SETBr,  X86::SETBm  },
3374    { X86::SETBEr, X86::SETBEm },
3375    { X86::SETEr,  X86::SETEm  },
3376    { X86::SETGr,  X86::SETGm  },
3377    { X86::SETGEr, X86::SETGEm },
3378    { X86::SETLr,  X86::SETLm  },
3379    { X86::SETLEr, X86::SETLEm },
3380    { X86::SETNEr, X86::SETNEm },
3381    { X86::SETNOr, X86::SETNOm },
3382    { X86::SETNPr, X86::SETNPm },
3383    { X86::SETNSr, X86::SETNSm },
3384    { X86::SETOr,  X86::SETOm  },
3385    { X86::SETPr,  X86::SETPm  },
3386    { X86::SETSr,  X86::SETSm  }
3387  };
3388
3389  assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
3390  return Opc[CC][HasMemoryOperand ? 1 : 0];
3391}
3392
3393/// Return a cmov opcode for the given condition,
3394/// register size in bytes, and operand type.
3395unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
3396                              bool HasMemoryOperand) {
3397  static const uint16_t Opc[32][3] = {
3398    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
3399    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
3400    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
3401    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
3402    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
3403    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
3404    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
3405    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
3406    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
3407    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
3408    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
3409    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
3410    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
3411    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
3412    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
3413    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
3414    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
3415    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
3416    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
3417    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
3418    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
3419    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
3420    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
3421    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
3422    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
3423    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
3424    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
3425    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
3426    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
3427    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
3428    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
3429    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
3430  };
3431
3432  assert(CC < 16 && "Can only handle standard cond codes");
3433  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
3434  switch(RegBytes) {
3435  default: llvm_unreachable("Illegal register size!");
3436  case 2: return Opc[Idx][0];
3437  case 4: return Opc[Idx][1];
3438  case 8: return Opc[Idx][2];
3439  }
3440}
3441
3442bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
3443  if (!MI->isTerminator()) return false;
3444
3445  // Conditional branch is a special case.
3446  if (MI->isBranch() && !MI->isBarrier())
3447    return true;
3448  if (!MI->isPredicable())
3449    return true;
3450  return !isPredicated(MI);
3451}
3452
3453bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
3454                                 MachineBasicBlock *&TBB,
3455                                 MachineBasicBlock *&FBB,
3456                                 SmallVectorImpl<MachineOperand> &Cond,
3457                                 bool AllowModify) const {
3458  // Start from the bottom of the block and work up, examining the
3459  // terminator instructions.
3460  MachineBasicBlock::iterator I = MBB.end();
3461  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3462  while (I != MBB.begin()) {
3463    --I;
3464    if (I->isDebugValue())
3465      continue;
3466
3467    // Working from the bottom, when we see a non-terminator instruction, we're
3468    // done.
3469    if (!isUnpredicatedTerminator(I))
3470      break;
3471
3472    // A terminator that isn't a branch can't easily be handled by this
3473    // analysis.
3474    if (!I->isBranch())
3475      return true;
3476
3477    // Handle unconditional branches.
3478    if (I->getOpcode() == X86::JMP_1) {
3479      UnCondBrIter = I;
3480
3481      if (!AllowModify) {
3482        TBB = I->getOperand(0).getMBB();
3483        continue;
3484      }
3485
3486      // If the block has any instructions after a JMP, delete them.
3487      while (std::next(I) != MBB.end())
3488        std::next(I)->eraseFromParent();
3489
3490      Cond.clear();
3491      FBB = nullptr;
3492
3493      // Delete the JMP if it's equivalent to a fall-through.
3494      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3495        TBB = nullptr;
3496        I->eraseFromParent();
3497        I = MBB.end();
3498        UnCondBrIter = MBB.end();
3499        continue;
3500      }
3501
3502      // TBB is used to indicate the unconditional destination.
3503      TBB = I->getOperand(0).getMBB();
3504      continue;
3505    }
3506
3507    // Handle conditional branches.
3508    X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
3509    if (BranchCode == X86::COND_INVALID)
3510      return true;  // Can't handle indirect branch.
3511
3512    // Working from the bottom, handle the first conditional branch.
3513    if (Cond.empty()) {
3514      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3515      if (AllowModify && UnCondBrIter != MBB.end() &&
3516          MBB.isLayoutSuccessor(TargetBB)) {
3517        // If we can modify the code and it ends in something like:
3518        //
3519        //     jCC L1
3520        //     jmp L2
3521        //   L1:
3522        //     ...
3523        //   L2:
3524        //
3525        // Then we can change this to:
3526        //
3527        //     jnCC L2
3528        //   L1:
3529        //     ...
3530        //   L2:
3531        //
3532        // Which is a bit more efficient.
3533        // We conditionally jump to the fall-through block.
3534        BranchCode = GetOppositeBranchCondition(BranchCode);
3535        unsigned JNCC = GetCondBranchFromCond(BranchCode);
3536        MachineBasicBlock::iterator OldInst = I;
3537
3538        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
3539          .addMBB(UnCondBrIter->getOperand(0).getMBB());
3540        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3541          .addMBB(TargetBB);
3542
3543        OldInst->eraseFromParent();
3544        UnCondBrIter->eraseFromParent();
3545
3546        // Restart the analysis.
3547        UnCondBrIter = MBB.end();
3548        I = MBB.end();
3549        continue;
3550      }
3551
3552      FBB = TBB;
3553      TBB = I->getOperand(0).getMBB();
3554      Cond.push_back(MachineOperand::CreateImm(BranchCode));
3555      continue;
3556    }
3557
3558    // Handle subsequent conditional branches. Only handle the case where all
3559    // conditional branches branch to the same destination and their condition
3560    // opcodes fit one of the special multi-branch idioms.
3561    assert(Cond.size() == 1);
3562    assert(TBB);
3563
3564    // Only handle the case where all conditional branches branch to the same
3565    // destination.
3566    if (TBB != I->getOperand(0).getMBB())
3567      return true;
3568
3569    // If the conditions are the same, we can leave them alone.
3570    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3571    if (OldBranchCode == BranchCode)
3572      continue;
3573
3574    // If they differ, see if they fit one of the known patterns. Theoretically,
3575    // we could handle more patterns here, but we shouldn't expect to see them
3576    // if instruction selection has done a reasonable job.
3577    if ((OldBranchCode == X86::COND_NP &&
3578         BranchCode == X86::COND_E) ||
3579        (OldBranchCode == X86::COND_E &&
3580         BranchCode == X86::COND_NP))
3581      BranchCode = X86::COND_NP_OR_E;
3582    else if ((OldBranchCode == X86::COND_P &&
3583              BranchCode == X86::COND_NE) ||
3584             (OldBranchCode == X86::COND_NE &&
3585              BranchCode == X86::COND_P))
3586      BranchCode = X86::COND_NE_OR_P;
3587    else
3588      return true;
3589
3590    // Update the MachineOperand.
3591    Cond[0].setImm(BranchCode);
3592  }
3593
3594  return false;
3595}
3596
3597unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
3598  MachineBasicBlock::iterator I = MBB.end();
3599  unsigned Count = 0;
3600
3601  while (I != MBB.begin()) {
3602    --I;
3603    if (I->isDebugValue())
3604      continue;
3605    if (I->getOpcode() != X86::JMP_1 &&
3606        getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
3607      break;
3608    // Remove the branch.
3609    I->eraseFromParent();
3610    I = MBB.end();
3611    ++Count;
3612  }
3613
3614  return Count;
3615}
3616
3617unsigned
3618X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
3619                           MachineBasicBlock *FBB,
3620                           const SmallVectorImpl<MachineOperand> &Cond,
3621                           DebugLoc DL) const {
3622  // Shouldn't be a fall through.
3623  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
3624  assert((Cond.size() == 1 || Cond.size() == 0) &&
3625         "X86 branch conditions have one component!");
3626
3627  if (Cond.empty()) {
3628    // Unconditional branch?
3629    assert(!FBB && "Unconditional branch with multiple successors!");
3630    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3631    return 1;
3632  }
3633
3634  // Conditional branch.
3635  unsigned Count = 0;
3636  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3637  switch (CC) {
3638  case X86::COND_NP_OR_E:
3639    // Synthesize NP_OR_E with two branches.
3640    BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
3641    ++Count;
3642    BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
3643    ++Count;
3644    break;
3645  case X86::COND_NE_OR_P:
3646    // Synthesize NE_OR_P with two branches.
3647    BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
3648    ++Count;
3649    BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
3650    ++Count;
3651    break;
3652  default: {
3653    unsigned Opc = GetCondBranchFromCond(CC);
3654    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
3655    ++Count;
3656  }
3657  }
3658  if (FBB) {
3659    // Two-way Conditional branch. Insert the second branch.
3660    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3661    ++Count;
3662  }
3663  return Count;
3664}
3665
3666bool X86InstrInfo::
3667canInsertSelect(const MachineBasicBlock &MBB,
3668                const SmallVectorImpl<MachineOperand> &Cond,
3669                unsigned TrueReg, unsigned FalseReg,
3670                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
3671  // Not all subtargets have cmov instructions.
3672  if (!Subtarget.hasCMov())
3673    return false;
3674  if (Cond.size() != 1)
3675    return false;
3676  // We cannot do the composite conditions, at least not in SSA form.
3677  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
3678    return false;
3679
3680  // Check register classes.
3681  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3682  const TargetRegisterClass *RC =
3683    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3684  if (!RC)
3685    return false;
3686
3687  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3688  if (X86::GR16RegClass.hasSubClassEq(RC) ||
3689      X86::GR32RegClass.hasSubClassEq(RC) ||
3690      X86::GR64RegClass.hasSubClassEq(RC)) {
3691    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3692    // Bridge. Probably Ivy Bridge as well.
3693    CondCycles = 2;
3694    TrueCycles = 2;
3695    FalseCycles = 2;
3696    return true;
3697  }
3698
3699  // Can't do vectors.
3700  return false;
3701}
3702
3703void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3704                                MachineBasicBlock::iterator I, DebugLoc DL,
3705                                unsigned DstReg,
3706                                const SmallVectorImpl<MachineOperand> &Cond,
3707                                unsigned TrueReg, unsigned FalseReg) const {
3708   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3709   assert(Cond.size() == 1 && "Invalid Cond array");
3710   unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
3711                                  MRI.getRegClass(DstReg)->getSize(),
3712                                  false/*HasMemoryOperand*/);
3713   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
3714}
3715
3716/// Test if the given register is a physical h register.
3717static bool isHReg(unsigned Reg) {
3718  return X86::GR8_ABCD_HRegClass.contains(Reg);
3719}
3720
3721// Try and copy between VR128/VR64 and GR64 registers.
3722static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3723                                        const X86Subtarget &Subtarget) {
3724
3725  // SrcReg(VR128) -> DestReg(GR64)
3726  // SrcReg(VR64)  -> DestReg(GR64)
3727  // SrcReg(GR64)  -> DestReg(VR128)
3728  // SrcReg(GR64)  -> DestReg(VR64)
3729
3730  bool HasAVX = Subtarget.hasAVX();
3731  bool HasAVX512 = Subtarget.hasAVX512();
3732  if (X86::GR64RegClass.contains(DestReg)) {
3733    if (X86::VR128XRegClass.contains(SrcReg))
3734      // Copy from a VR128 register to a GR64 register.
3735      return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
3736                                               X86::MOVPQIto64rr);
3737    if (X86::VR64RegClass.contains(SrcReg))
3738      // Copy from a VR64 register to a GR64 register.
3739      return X86::MOVSDto64rr;
3740  } else if (X86::GR64RegClass.contains(SrcReg)) {
3741    // Copy from a GR64 register to a VR128 register.
3742    if (X86::VR128XRegClass.contains(DestReg))
3743      return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
3744                                               X86::MOV64toPQIrr);
3745    // Copy from a GR64 register to a VR64 register.
3746    if (X86::VR64RegClass.contains(DestReg))
3747      return X86::MOV64toSDrr;
3748  }
3749
3750  // SrcReg(FR32) -> DestReg(GR32)
3751  // SrcReg(GR32) -> DestReg(FR32)
3752
3753  if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
3754    // Copy from a FR32 register to a GR32 register.
3755    return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
3756
3757  if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
3758    // Copy from a GR32 register to a FR32 register.
3759    return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
3760  return 0;
3761}
3762
3763inline static bool MaskRegClassContains(unsigned Reg) {
3764  return X86::VK8RegClass.contains(Reg) ||
3765         X86::VK16RegClass.contains(Reg) ||
3766         X86::VK32RegClass.contains(Reg) ||
3767         X86::VK64RegClass.contains(Reg) ||
3768         X86::VK1RegClass.contains(Reg);
3769}
3770static
3771unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3772  if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3773      X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3774      X86::VR512RegClass.contains(DestReg, SrcReg)) {
3775     DestReg = get512BitSuperRegister(DestReg);
3776     SrcReg = get512BitSuperRegister(SrcReg);
3777     return X86::VMOVAPSZrr;
3778  }
3779  if (MaskRegClassContains(DestReg) &&
3780      MaskRegClassContains(SrcReg))
3781    return X86::KMOVWkk;
3782  if (MaskRegClassContains(DestReg) &&
3783      (X86::GR32RegClass.contains(SrcReg) ||
3784       X86::GR16RegClass.contains(SrcReg) ||
3785       X86::GR8RegClass.contains(SrcReg))) {
3786    SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
3787    return X86::KMOVWkr;
3788  }
3789  if ((X86::GR32RegClass.contains(DestReg) ||
3790       X86::GR16RegClass.contains(DestReg) ||
3791       X86::GR8RegClass.contains(DestReg)) &&
3792       MaskRegClassContains(SrcReg)) {
3793    DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
3794    return X86::KMOVWrk;
3795  }
3796  return 0;
3797}
3798
3799void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3800                               MachineBasicBlock::iterator MI, DebugLoc DL,
3801                               unsigned DestReg, unsigned SrcReg,
3802                               bool KillSrc) const {
3803  // First deal with the normal symmetric copies.
3804  bool HasAVX = Subtarget.hasAVX();
3805  bool HasAVX512 = Subtarget.hasAVX512();
3806  unsigned Opc = 0;
3807  if (X86::GR64RegClass.contains(DestReg, SrcReg))
3808    Opc = X86::MOV64rr;
3809  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3810    Opc = X86::MOV32rr;
3811  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3812    Opc = X86::MOV16rr;
3813  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3814    // Copying to or from a physical H register on x86-64 requires a NOREX
3815    // move.  Otherwise use a normal move.
3816    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3817        Subtarget.is64Bit()) {
3818      Opc = X86::MOV8rr_NOREX;
3819      // Both operands must be encodable without an REX prefix.
3820      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3821             "8-bit H register can not be copied outside GR8_NOREX");
3822    } else
3823      Opc = X86::MOV8rr;
3824  }
3825  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3826    Opc = X86::MMX_MOVQ64rr;
3827  else if (HasAVX512)
3828    Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3829  else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3830    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3831  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3832    Opc = X86::VMOVAPSYrr;
3833  if (!Opc)
3834    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3835
3836  if (Opc) {
3837    BuildMI(MBB, MI, DL, get(Opc), DestReg)
3838      .addReg(SrcReg, getKillRegState(KillSrc));
3839    return;
3840  }
3841
3842  // Moving EFLAGS to / from another register requires a push and a pop.
3843  // Notice that we have to adjust the stack if we don't want to clobber the
3844  // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
3845  if (SrcReg == X86::EFLAGS) {
3846    if (X86::GR64RegClass.contains(DestReg)) {
3847      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3848      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3849      return;
3850    }
3851    if (X86::GR32RegClass.contains(DestReg)) {
3852      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3853      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3854      return;
3855    }
3856  }
3857  if (DestReg == X86::EFLAGS) {
3858    if (X86::GR64RegClass.contains(SrcReg)) {
3859      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3860        .addReg(SrcReg, getKillRegState(KillSrc));
3861      BuildMI(MBB, MI, DL, get(X86::POPF64));
3862      return;
3863    }
3864    if (X86::GR32RegClass.contains(SrcReg)) {
3865      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3866        .addReg(SrcReg, getKillRegState(KillSrc));
3867      BuildMI(MBB, MI, DL, get(X86::POPF32));
3868      return;
3869    }
3870  }
3871
3872  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3873               << " to " << RI.getName(DestReg) << '\n');
3874  llvm_unreachable("Cannot emit physreg copy instruction");
3875}
3876
3877static unsigned getLoadStoreRegOpcode(unsigned Reg,
3878                                      const TargetRegisterClass *RC,
3879                                      bool isStackAligned,
3880                                      const X86Subtarget &STI,
3881                                      bool load) {
3882  if (STI.hasAVX512()) {
3883    if (X86::VK8RegClass.hasSubClassEq(RC)  ||
3884      X86::VK16RegClass.hasSubClassEq(RC))
3885      return load ? X86::KMOVWkm : X86::KMOVWmk;
3886    if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
3887      return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
3888    if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
3889      return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
3890    if (X86::VR512RegClass.hasSubClassEq(RC))
3891      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3892  }
3893
3894  bool HasAVX = STI.hasAVX();
3895  switch (RC->getSize()) {
3896  default:
3897    llvm_unreachable("Unknown spill size");
3898  case 1:
3899    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3900    if (STI.is64Bit())
3901      // Copying to or from a physical H register on x86-64 requires a NOREX
3902      // move.  Otherwise use a normal move.
3903      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3904        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3905    return load ? X86::MOV8rm : X86::MOV8mr;
3906  case 2:
3907    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3908    return load ? X86::MOV16rm : X86::MOV16mr;
3909  case 4:
3910    if (X86::GR32RegClass.hasSubClassEq(RC))
3911      return load ? X86::MOV32rm : X86::MOV32mr;
3912    if (X86::FR32RegClass.hasSubClassEq(RC))
3913      return load ?
3914        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3915        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3916    if (X86::RFP32RegClass.hasSubClassEq(RC))
3917      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3918    llvm_unreachable("Unknown 4-byte regclass");
3919  case 8:
3920    if (X86::GR64RegClass.hasSubClassEq(RC))
3921      return load ? X86::MOV64rm : X86::MOV64mr;
3922    if (X86::FR64RegClass.hasSubClassEq(RC))
3923      return load ?
3924        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3925        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3926    if (X86::VR64RegClass.hasSubClassEq(RC))
3927      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3928    if (X86::RFP64RegClass.hasSubClassEq(RC))
3929      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3930    llvm_unreachable("Unknown 8-byte regclass");
3931  case 10:
3932    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3933    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3934  case 16: {
3935    assert((X86::VR128RegClass.hasSubClassEq(RC) ||
3936            X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
3937    // If stack is realigned we can use aligned stores.
3938    if (isStackAligned)
3939      return load ?
3940        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3941        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
3942    else
3943      return load ?
3944        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3945        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3946  }
3947  case 32:
3948    assert((X86::VR256RegClass.hasSubClassEq(RC) ||
3949            X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
3950    // If stack is realigned we can use aligned stores.
3951    if (isStackAligned)
3952      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3953    else
3954      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
3955  case 64:
3956    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3957    if (isStackAligned)
3958      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3959    else
3960      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3961  }
3962}
3963
3964static unsigned getStoreRegOpcode(unsigned SrcReg,
3965                                  const TargetRegisterClass *RC,
3966                                  bool isStackAligned,
3967                                  const X86Subtarget &STI) {
3968  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3969}
3970
3971
3972static unsigned getLoadRegOpcode(unsigned DestReg,
3973                                 const TargetRegisterClass *RC,
3974                                 bool isStackAligned,
3975                                 const X86Subtarget &STI) {
3976  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3977}
3978
3979void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3980                                       MachineBasicBlock::iterator MI,
3981                                       unsigned SrcReg, bool isKill, int FrameIdx,
3982                                       const TargetRegisterClass *RC,
3983                                       const TargetRegisterInfo *TRI) const {
3984  const MachineFunction &MF = *MBB.getParent();
3985  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3986         "Stack slot too small for store");
3987  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3988  bool isAligned =
3989      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3990      RI.canRealignStack(MF);
3991  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3992  DebugLoc DL = MBB.findDebugLoc(MI);
3993  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3994    .addReg(SrcReg, getKillRegState(isKill));
3995}
3996
3997void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3998                                  bool isKill,
3999                                  SmallVectorImpl<MachineOperand> &Addr,
4000                                  const TargetRegisterClass *RC,
4001                                  MachineInstr::mmo_iterator MMOBegin,
4002                                  MachineInstr::mmo_iterator MMOEnd,
4003                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
4004  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4005  bool isAligned = MMOBegin != MMOEnd &&
4006                   (*MMOBegin)->getAlignment() >= Alignment;
4007  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4008  DebugLoc DL;
4009  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
4010  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4011    MIB.addOperand(Addr[i]);
4012  MIB.addReg(SrcReg, getKillRegState(isKill));
4013  (*MIB).setMemRefs(MMOBegin, MMOEnd);
4014  NewMIs.push_back(MIB);
4015}
4016
4017
4018void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4019                                        MachineBasicBlock::iterator MI,
4020                                        unsigned DestReg, int FrameIdx,
4021                                        const TargetRegisterClass *RC,
4022                                        const TargetRegisterInfo *TRI) const {
4023  const MachineFunction &MF = *MBB.getParent();
4024  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4025  bool isAligned =
4026      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
4027      RI.canRealignStack(MF);
4028  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4029  DebugLoc DL = MBB.findDebugLoc(MI);
4030  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
4031}
4032
4033void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
4034                                 SmallVectorImpl<MachineOperand> &Addr,
4035                                 const TargetRegisterClass *RC,
4036                                 MachineInstr::mmo_iterator MMOBegin,
4037                                 MachineInstr::mmo_iterator MMOEnd,
4038                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
4039  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4040  bool isAligned = MMOBegin != MMOEnd &&
4041                   (*MMOBegin)->getAlignment() >= Alignment;
4042  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4043  DebugLoc DL;
4044  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
4045  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4046    MIB.addOperand(Addr[i]);
4047  (*MIB).setMemRefs(MMOBegin, MMOEnd);
4048  NewMIs.push_back(MIB);
4049}
4050
4051bool X86InstrInfo::
4052analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
4053               int &CmpMask, int &CmpValue) const {
4054  switch (MI->getOpcode()) {
4055  default: break;
4056  case X86::CMP64ri32:
4057  case X86::CMP64ri8:
4058  case X86::CMP32ri:
4059  case X86::CMP32ri8:
4060  case X86::CMP16ri:
4061  case X86::CMP16ri8:
4062  case X86::CMP8ri:
4063    SrcReg = MI->getOperand(0).getReg();
4064    SrcReg2 = 0;
4065    CmpMask = ~0;
4066    CmpValue = MI->getOperand(1).getImm();
4067    return true;
4068  // A SUB can be used to perform comparison.
4069  case X86::SUB64rm:
4070  case X86::SUB32rm:
4071  case X86::SUB16rm:
4072  case X86::SUB8rm:
4073    SrcReg = MI->getOperand(1).getReg();
4074    SrcReg2 = 0;
4075    CmpMask = ~0;
4076    CmpValue = 0;
4077    return true;
4078  case X86::SUB64rr:
4079  case X86::SUB32rr:
4080  case X86::SUB16rr:
4081  case X86::SUB8rr:
4082    SrcReg = MI->getOperand(1).getReg();
4083    SrcReg2 = MI->getOperand(2).getReg();
4084    CmpMask = ~0;
4085    CmpValue = 0;
4086    return true;
4087  case X86::SUB64ri32:
4088  case X86::SUB64ri8:
4089  case X86::SUB32ri:
4090  case X86::SUB32ri8:
4091  case X86::SUB16ri:
4092  case X86::SUB16ri8:
4093  case X86::SUB8ri:
4094    SrcReg = MI->getOperand(1).getReg();
4095    SrcReg2 = 0;
4096    CmpMask = ~0;
4097    CmpValue = MI->getOperand(2).getImm();
4098    return true;
4099  case X86::CMP64rr:
4100  case X86::CMP32rr:
4101  case X86::CMP16rr:
4102  case X86::CMP8rr:
4103    SrcReg = MI->getOperand(0).getReg();
4104    SrcReg2 = MI->getOperand(1).getReg();
4105    CmpMask = ~0;
4106    CmpValue = 0;
4107    return true;
4108  case X86::TEST8rr:
4109  case X86::TEST16rr:
4110  case X86::TEST32rr:
4111  case X86::TEST64rr:
4112    SrcReg = MI->getOperand(0).getReg();
4113    if (MI->getOperand(1).getReg() != SrcReg) return false;
4114    // Compare against zero.
4115    SrcReg2 = 0;
4116    CmpMask = ~0;
4117    CmpValue = 0;
4118    return true;
4119  }
4120  return false;
4121}
4122
4123/// Check whether the first instruction, whose only
4124/// purpose is to update flags, can be made redundant.
4125/// CMPrr can be made redundant by SUBrr if the operands are the same.
4126/// This function can be extended later on.
4127/// SrcReg, SrcRegs: register operands for FlagI.
4128/// ImmValue: immediate for FlagI if it takes an immediate.
4129inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
4130                                        unsigned SrcReg2, int ImmValue,
4131                                        MachineInstr *OI) {
4132  if (((FlagI->getOpcode() == X86::CMP64rr &&
4133        OI->getOpcode() == X86::SUB64rr) ||
4134       (FlagI->getOpcode() == X86::CMP32rr &&
4135        OI->getOpcode() == X86::SUB32rr)||
4136       (FlagI->getOpcode() == X86::CMP16rr &&
4137        OI->getOpcode() == X86::SUB16rr)||
4138       (FlagI->getOpcode() == X86::CMP8rr &&
4139        OI->getOpcode() == X86::SUB8rr)) &&
4140      ((OI->getOperand(1).getReg() == SrcReg &&
4141        OI->getOperand(2).getReg() == SrcReg2) ||
4142       (OI->getOperand(1).getReg() == SrcReg2 &&
4143        OI->getOperand(2).getReg() == SrcReg)))
4144    return true;
4145
4146  if (((FlagI->getOpcode() == X86::CMP64ri32 &&
4147        OI->getOpcode() == X86::SUB64ri32) ||
4148       (FlagI->getOpcode() == X86::CMP64ri8 &&
4149        OI->getOpcode() == X86::SUB64ri8) ||
4150       (FlagI->getOpcode() == X86::CMP32ri &&
4151        OI->getOpcode() == X86::SUB32ri) ||
4152       (FlagI->getOpcode() == X86::CMP32ri8 &&
4153        OI->getOpcode() == X86::SUB32ri8) ||
4154       (FlagI->getOpcode() == X86::CMP16ri &&
4155        OI->getOpcode() == X86::SUB16ri) ||
4156       (FlagI->getOpcode() == X86::CMP16ri8 &&
4157        OI->getOpcode() == X86::SUB16ri8) ||
4158       (FlagI->getOpcode() == X86::CMP8ri &&
4159        OI->getOpcode() == X86::SUB8ri)) &&
4160      OI->getOperand(1).getReg() == SrcReg &&
4161      OI->getOperand(2).getImm() == ImmValue)
4162    return true;
4163  return false;
4164}
4165
4166/// Check whether the definition can be converted
4167/// to remove a comparison against zero.
4168inline static bool isDefConvertible(MachineInstr *MI) {
4169  switch (MI->getOpcode()) {
4170  default: return false;
4171
4172  // The shift instructions only modify ZF if their shift count is non-zero.
4173  // N.B.: The processor truncates the shift count depending on the encoding.
4174  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
4175  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
4176     return getTruncatedShiftCount(MI, 2) != 0;
4177
4178  // Some left shift instructions can be turned into LEA instructions but only
4179  // if their flags aren't used. Avoid transforming such instructions.
4180  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
4181    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4182    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4183    return ShAmt != 0;
4184  }
4185
4186  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4187  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4188     return getTruncatedShiftCount(MI, 3) != 0;
4189
4190  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4191  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
4192  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
4193  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
4194  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
4195  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
4196  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4197  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
4198  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
4199  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
4200  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
4201  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
4202  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4203  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
4204  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
4205  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
4206  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
4207  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4208  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
4209  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
4210  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
4211  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
4212  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
4213  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
4214  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
4215  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
4216  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
4217  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
4218  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
4219  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
4220  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
4221  case X86::ADC32ri:   case X86::ADC32ri8:
4222  case X86::ADC32rr:   case X86::ADC64ri32:
4223  case X86::ADC64ri8:  case X86::ADC64rr:
4224  case X86::SBB32ri:   case X86::SBB32ri8:
4225  case X86::SBB32rr:   case X86::SBB64ri32:
4226  case X86::SBB64ri8:  case X86::SBB64rr:
4227  case X86::ANDN32rr:  case X86::ANDN32rm:
4228  case X86::ANDN64rr:  case X86::ANDN64rm:
4229  case X86::BEXTR32rr: case X86::BEXTR64rr:
4230  case X86::BEXTR32rm: case X86::BEXTR64rm:
4231  case X86::BLSI32rr:  case X86::BLSI32rm:
4232  case X86::BLSI64rr:  case X86::BLSI64rm:
4233  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
4234  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
4235  case X86::BLSR32rr:  case X86::BLSR32rm:
4236  case X86::BLSR64rr:  case X86::BLSR64rm:
4237  case X86::BZHI32rr:  case X86::BZHI32rm:
4238  case X86::BZHI64rr:  case X86::BZHI64rm:
4239  case X86::LZCNT16rr: case X86::LZCNT16rm:
4240  case X86::LZCNT32rr: case X86::LZCNT32rm:
4241  case X86::LZCNT64rr: case X86::LZCNT64rm:
4242  case X86::POPCNT16rr:case X86::POPCNT16rm:
4243  case X86::POPCNT32rr:case X86::POPCNT32rm:
4244  case X86::POPCNT64rr:case X86::POPCNT64rm:
4245  case X86::TZCNT16rr: case X86::TZCNT16rm:
4246  case X86::TZCNT32rr: case X86::TZCNT32rm:
4247  case X86::TZCNT64rr: case X86::TZCNT64rm:
4248    return true;
4249  }
4250}
4251
4252/// Check whether the use can be converted to remove a comparison against zero.
4253static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
4254  switch (MI->getOpcode()) {
4255  default: return X86::COND_INVALID;
4256  case X86::LZCNT16rr: case X86::LZCNT16rm:
4257  case X86::LZCNT32rr: case X86::LZCNT32rm:
4258  case X86::LZCNT64rr: case X86::LZCNT64rm:
4259    return X86::COND_B;
4260  case X86::POPCNT16rr:case X86::POPCNT16rm:
4261  case X86::POPCNT32rr:case X86::POPCNT32rm:
4262  case X86::POPCNT64rr:case X86::POPCNT64rm:
4263    return X86::COND_E;
4264  case X86::TZCNT16rr: case X86::TZCNT16rm:
4265  case X86::TZCNT32rr: case X86::TZCNT32rm:
4266  case X86::TZCNT64rr: case X86::TZCNT64rm:
4267    return X86::COND_B;
4268  }
4269}
4270
4271/// Check if there exists an earlier instruction that
4272/// operates on the same source operands and sets flags in the same way as
4273/// Compare; remove Compare if possible.
4274bool X86InstrInfo::
4275optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
4276                     int CmpMask, int CmpValue,
4277                     const MachineRegisterInfo *MRI) const {
4278  // Check whether we can replace SUB with CMP.
4279  unsigned NewOpcode = 0;
4280  switch (CmpInstr->getOpcode()) {
4281  default: break;
4282  case X86::SUB64ri32:
4283  case X86::SUB64ri8:
4284  case X86::SUB32ri:
4285  case X86::SUB32ri8:
4286  case X86::SUB16ri:
4287  case X86::SUB16ri8:
4288  case X86::SUB8ri:
4289  case X86::SUB64rm:
4290  case X86::SUB32rm:
4291  case X86::SUB16rm:
4292  case X86::SUB8rm:
4293  case X86::SUB64rr:
4294  case X86::SUB32rr:
4295  case X86::SUB16rr:
4296  case X86::SUB8rr: {
4297    if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
4298      return false;
4299    // There is no use of the destination register, we can replace SUB with CMP.
4300    switch (CmpInstr->getOpcode()) {
4301    default: llvm_unreachable("Unreachable!");
4302    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
4303    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
4304    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
4305    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
4306    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
4307    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
4308    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
4309    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
4310    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4311    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
4312    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
4313    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
4314    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
4315    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
4316    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
4317    }
4318    CmpInstr->setDesc(get(NewOpcode));
4319    CmpInstr->RemoveOperand(0);
4320    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4321    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4322        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4323      return false;
4324  }
4325  }
4326
4327  // Get the unique definition of SrcReg.
4328  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4329  if (!MI) return false;
4330
4331  // CmpInstr is the first instruction of the BB.
4332  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4333
4334  // If we are comparing against zero, check whether we can use MI to update
4335  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4336  bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
4337  if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
4338    return false;
4339
4340  // If we have a use of the source register between the def and our compare
4341  // instruction we can eliminate the compare iff the use sets EFLAGS in the
4342  // right way.
4343  bool ShouldUpdateCC = false;
4344  X86::CondCode NewCC = X86::COND_INVALID;
4345  if (IsCmpZero && !isDefConvertible(MI)) {
4346    // Scan forward from the use until we hit the use we're looking for or the
4347    // compare instruction.
4348    for (MachineBasicBlock::iterator J = MI;; ++J) {
4349      // Do we have a convertible instruction?
4350      NewCC = isUseDefConvertible(J);
4351      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4352          J->getOperand(1).getReg() == SrcReg) {
4353        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
4354        ShouldUpdateCC = true; // Update CC later on.
4355        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4356        // with the new def.
4357        MI = Def = J;
4358        break;
4359      }
4360
4361      if (J == I)
4362        return false;
4363    }
4364  }
4365
4366  // We are searching for an earlier instruction that can make CmpInstr
4367  // redundant and that instruction will be saved in Sub.
4368  MachineInstr *Sub = nullptr;
4369  const TargetRegisterInfo *TRI = &getRegisterInfo();
4370
4371  // We iterate backward, starting from the instruction before CmpInstr and
4372  // stop when reaching the definition of a source register or done with the BB.
4373  // RI points to the instruction before CmpInstr.
4374  // If the definition is in this basic block, RE points to the definition;
4375  // otherwise, RE is the rend of the basic block.
4376  MachineBasicBlock::reverse_iterator
4377      RI = MachineBasicBlock::reverse_iterator(I),
4378      RE = CmpInstr->getParent() == MI->getParent() ?
4379           MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
4380           CmpInstr->getParent()->rend();
4381  MachineInstr *Movr0Inst = nullptr;
4382  for (; RI != RE; ++RI) {
4383    MachineInstr *Instr = &*RI;
4384    // Check whether CmpInstr can be made redundant by the current instruction.
4385    if (!IsCmpZero &&
4386        isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
4387      Sub = Instr;
4388      break;
4389    }
4390
4391    if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
4392        Instr->readsRegister(X86::EFLAGS, TRI)) {
4393      // This instruction modifies or uses EFLAGS.
4394
4395      // MOV32r0 etc. are implemented with xor which clobbers condition code.
4396      // They are safe to move up, if the definition to EFLAGS is dead and
4397      // earlier instructions do not read or write EFLAGS.
4398      if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
4399          Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
4400        Movr0Inst = Instr;
4401        continue;
4402      }
4403
4404      // We can't remove CmpInstr.
4405      return false;
4406    }
4407  }
4408
4409  // Return false if no candidates exist.
4410  if (!IsCmpZero && !Sub)
4411    return false;
4412
4413  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
4414                    Sub->getOperand(2).getReg() == SrcReg);
4415
4416  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4417  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4418  // If we are done with the basic block, we need to check whether EFLAGS is
4419  // live-out.
4420  bool IsSafe = false;
4421  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
4422  MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
4423  for (++I; I != E; ++I) {
4424    const MachineInstr &Instr = *I;
4425    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4426    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4427    // We should check the usage if this instruction uses and updates EFLAGS.
4428    if (!UseEFLAGS && ModifyEFLAGS) {
4429      // It is safe to remove CmpInstr if EFLAGS is updated again.
4430      IsSafe = true;
4431      break;
4432    }
4433    if (!UseEFLAGS && !ModifyEFLAGS)
4434      continue;
4435
4436    // EFLAGS is used by this instruction.
4437    X86::CondCode OldCC = X86::COND_INVALID;
4438    bool OpcIsSET = false;
4439    if (IsCmpZero || IsSwapped) {
4440      // We decode the condition code from opcode.
4441      if (Instr.isBranch())
4442        OldCC = getCondFromBranchOpc(Instr.getOpcode());
4443      else {
4444        OldCC = getCondFromSETOpc(Instr.getOpcode());
4445        if (OldCC != X86::COND_INVALID)
4446          OpcIsSET = true;
4447        else
4448          OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
4449      }
4450      if (OldCC == X86::COND_INVALID) return false;
4451    }
4452    if (IsCmpZero) {
4453      switch (OldCC) {
4454      default: break;
4455      case X86::COND_A: case X86::COND_AE:
4456      case X86::COND_B: case X86::COND_BE:
4457      case X86::COND_G: case X86::COND_GE:
4458      case X86::COND_L: case X86::COND_LE:
4459      case X86::COND_O: case X86::COND_NO:
4460        // CF and OF are used, we can't perform this optimization.
4461        return false;
4462      }
4463
4464      // If we're updating the condition code check if we have to reverse the
4465      // condition.
4466      if (ShouldUpdateCC)
4467        switch (OldCC) {
4468        default:
4469          return false;
4470        case X86::COND_E:
4471          break;
4472        case X86::COND_NE:
4473          NewCC = GetOppositeBranchCondition(NewCC);
4474          break;
4475        }
4476    } else if (IsSwapped) {
4477      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4478      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4479      // We swap the condition code and synthesize the new opcode.
4480      NewCC = getSwappedCondition(OldCC);
4481      if (NewCC == X86::COND_INVALID) return false;
4482    }
4483
4484    if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
4485      // Synthesize the new opcode.
4486      bool HasMemoryOperand = Instr.hasOneMemOperand();
4487      unsigned NewOpc;
4488      if (Instr.isBranch())
4489        NewOpc = GetCondBranchFromCond(NewCC);
4490      else if(OpcIsSET)
4491        NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
4492      else {
4493        unsigned DstReg = Instr.getOperand(0).getReg();
4494        NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
4495                                 HasMemoryOperand);
4496      }
4497
4498      // Push the MachineInstr to OpsToUpdate.
4499      // If it is safe to remove CmpInstr, the condition code of these
4500      // instructions will be modified.
4501      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
4502    }
4503    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4504      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4505      IsSafe = true;
4506      break;
4507    }
4508  }
4509
4510  // If EFLAGS is not killed nor re-defined, we should check whether it is
4511  // live-out. If it is live-out, do not optimize.
4512  if ((IsCmpZero || IsSwapped) && !IsSafe) {
4513    MachineBasicBlock *MBB = CmpInstr->getParent();
4514    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
4515             SE = MBB->succ_end(); SI != SE; ++SI)
4516      if ((*SI)->isLiveIn(X86::EFLAGS))
4517        return false;
4518  }
4519
4520  // The instruction to be updated is either Sub or MI.
4521  Sub = IsCmpZero ? MI : Sub;
4522  // Move Movr0Inst to the appropriate place before Sub.
4523  if (Movr0Inst) {
4524    // Look backwards until we find a def that doesn't use the current EFLAGS.
4525    Def = Sub;
4526    MachineBasicBlock::reverse_iterator
4527      InsertI = MachineBasicBlock::reverse_iterator(++Def),
4528                InsertE = Sub->getParent()->rend();
4529    for (; InsertI != InsertE; ++InsertI) {
4530      MachineInstr *Instr = &*InsertI;
4531      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4532          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4533        Sub->getParent()->remove(Movr0Inst);
4534        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4535                                   Movr0Inst);
4536        break;
4537      }
4538    }
4539    if (InsertI == InsertE)
4540      return false;
4541  }
4542
4543  // Make sure Sub instruction defines EFLAGS and mark the def live.
4544  unsigned i = 0, e = Sub->getNumOperands();
4545  for (; i != e; ++i) {
4546    MachineOperand &MO = Sub->getOperand(i);
4547    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
4548      MO.setIsDead(false);
4549      break;
4550    }
4551  }
4552  assert(i != e && "Unable to locate a def EFLAGS operand");
4553
4554  CmpInstr->eraseFromParent();
4555
4556  // Modify the condition code of instructions in OpsToUpdate.
4557  for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
4558    OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
4559  return true;
4560}
4561
4562/// Try to remove the load by folding it to a register
4563/// operand at the use. We fold the load instructions if load defines a virtual
4564/// register, the virtual register is used once in the same BB, and the
4565/// instructions in-between do not load or store, and have no side effects.
4566MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
4567                                              const MachineRegisterInfo *MRI,
4568                                              unsigned &FoldAsLoadDefReg,
4569                                              MachineInstr *&DefMI) const {
4570  if (FoldAsLoadDefReg == 0)
4571    return nullptr;
4572  // To be conservative, if there exists another load, clear the load candidate.
4573  if (MI->mayLoad()) {
4574    FoldAsLoadDefReg = 0;
4575    return nullptr;
4576  }
4577
4578  // Check whether we can move DefMI here.
4579  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4580  assert(DefMI);
4581  bool SawStore = false;
4582  if (!DefMI->isSafeToMove(this, nullptr, SawStore))
4583    return nullptr;
4584
4585  // Collect information about virtual register operands of MI.
4586  unsigned SrcOperandId = 0;
4587  bool FoundSrcOperand = false;
4588  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
4589    MachineOperand &MO = MI->getOperand(i);
4590    if (!MO.isReg())
4591      continue;
4592    unsigned Reg = MO.getReg();
4593    if (Reg != FoldAsLoadDefReg)
4594      continue;
4595    // Do not fold if we have a subreg use or a def or multiple uses.
4596    if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
4597      return nullptr;
4598
4599    SrcOperandId = i;
4600    FoundSrcOperand = true;
4601  }
4602  if (!FoundSrcOperand)
4603    return nullptr;
4604
4605  // Check whether we can fold the def into SrcOperandId.
4606  MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI);
4607  if (FoldMI) {
4608    FoldAsLoadDefReg = 0;
4609    return FoldMI;
4610  }
4611
4612  return nullptr;
4613}
4614
4615/// Expand a single-def pseudo instruction to a two-addr
4616/// instruction with two undef reads of the register being defined.
4617/// This is used for mapping:
4618///   %xmm4 = V_SET0
4619/// to:
4620///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
4621///
4622static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4623                             const MCInstrDesc &Desc) {
4624  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4625  unsigned Reg = MIB->getOperand(0).getReg();
4626  MIB->setDesc(Desc);
4627
4628  // MachineInstr::addOperand() will insert explicit operands before any
4629  // implicit operands.
4630  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4631  // But we don't trust that.
4632  assert(MIB->getOperand(1).getReg() == Reg &&
4633         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
4634  return true;
4635}
4636
4637// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4638// code sequence is needed for other targets.
4639static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4640                                 const TargetInstrInfo &TII) {
4641  MachineBasicBlock &MBB = *MIB->getParent();
4642  DebugLoc DL = MIB->getDebugLoc();
4643  unsigned Reg = MIB->getOperand(0).getReg();
4644  const GlobalValue *GV =
4645      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4646  unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4647  MachineMemOperand *MMO = MBB.getParent()->
4648      getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
4649  MachineBasicBlock::iterator I = MIB.getInstr();
4650
4651  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4652      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4653      .addMemOperand(MMO);
4654  MIB->setDebugLoc(DL);
4655  MIB->setDesc(TII.get(X86::MOV64rm));
4656  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4657}
4658
4659bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
4660  bool HasAVX = Subtarget.hasAVX();
4661  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
4662  switch (MI->getOpcode()) {
4663  case X86::MOV32r0:
4664    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4665  case X86::SETB_C8r:
4666    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4667  case X86::SETB_C16r:
4668    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4669  case X86::SETB_C32r:
4670    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4671  case X86::SETB_C64r:
4672    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4673  case X86::V_SET0:
4674  case X86::FsFLD0SS:
4675  case X86::FsFLD0SD:
4676    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4677  case X86::AVX_SET0:
4678    assert(HasAVX && "AVX not supported");
4679    return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
4680  case X86::AVX512_512_SET0:
4681    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4682  case X86::V_SETALLONES:
4683    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4684  case X86::AVX2_SETALLONES:
4685    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4686  case X86::TEST8ri_NOREX:
4687    MI->setDesc(get(X86::TEST8ri));
4688    return true;
4689  case X86::KSET0B:
4690  case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
4691  case X86::KSET1B:
4692  case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
4693  case TargetOpcode::LOAD_STACK_GUARD:
4694    expandLoadStackGuard(MIB, *this);
4695    return true;
4696  }
4697  return false;
4698}
4699
4700static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4701                                     ArrayRef<MachineOperand> MOs,
4702                                     MachineInstr *MI,
4703                                     const TargetInstrInfo &TII) {
4704  // Create the base instruction with the memory operand as the first part.
4705  // Omit the implicit operands, something BuildMI can't do.
4706  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4707                                              MI->getDebugLoc(), true);
4708  MachineInstrBuilder MIB(MF, NewMI);
4709  unsigned NumAddrOps = MOs.size();
4710  for (unsigned i = 0; i != NumAddrOps; ++i)
4711    MIB.addOperand(MOs[i]);
4712  if (NumAddrOps < 4)  // FrameIndex only
4713    addOffset(MIB, 0);
4714
4715  // Loop over the rest of the ri operands, converting them over.
4716  unsigned NumOps = MI->getDesc().getNumOperands()-2;
4717  for (unsigned i = 0; i != NumOps; ++i) {
4718    MachineOperand &MO = MI->getOperand(i+2);
4719    MIB.addOperand(MO);
4720  }
4721  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
4722    MachineOperand &MO = MI->getOperand(i);
4723    MIB.addOperand(MO);
4724  }
4725  return MIB;
4726}
4727
4728static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4729                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
4730                              MachineInstr *MI, const TargetInstrInfo &TII) {
4731  // Omit the implicit operands, something BuildMI can't do.
4732  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4733                                              MI->getDebugLoc(), true);
4734  MachineInstrBuilder MIB(MF, NewMI);
4735
4736  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4737    MachineOperand &MO = MI->getOperand(i);
4738    if (i == OpNo) {
4739      assert(MO.isReg() && "Expected to fold into reg operand!");
4740      unsigned NumAddrOps = MOs.size();
4741      for (unsigned i = 0; i != NumAddrOps; ++i)
4742        MIB.addOperand(MOs[i]);
4743      if (NumAddrOps < 4)  // FrameIndex only
4744        addOffset(MIB, 0);
4745    } else {
4746      MIB.addOperand(MO);
4747    }
4748  }
4749  return MIB;
4750}
4751
4752static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4753                                ArrayRef<MachineOperand> MOs,
4754                                MachineInstr *MI) {
4755  MachineFunction &MF = *MI->getParent()->getParent();
4756  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
4757
4758  unsigned NumAddrOps = MOs.size();
4759  for (unsigned i = 0; i != NumAddrOps; ++i)
4760    MIB.addOperand(MOs[i]);
4761  if (NumAddrOps < 4)  // FrameIndex only
4762    addOffset(MIB, 0);
4763  return MIB.addImm(0);
4764}
4765
4766MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4767                                                  MachineInstr *MI,
4768                                                  unsigned OpNum,
4769                                                  ArrayRef<MachineOperand> MOs,
4770                                                  unsigned Size, unsigned Align,
4771                                                  bool AllowCommute) const {
4772  const DenseMap<unsigned,
4773                 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
4774  bool isCallRegIndirect = Subtarget.callRegIndirect();
4775  bool isTwoAddrFold = false;
4776
4777  // For CPUs that favor the register form of a call,
4778  // do not fold loads into calls.
4779  if (isCallRegIndirect &&
4780    (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
4781    return nullptr;
4782
4783  unsigned NumOps = MI->getDesc().getNumOperands();
4784  bool isTwoAddr = NumOps > 1 &&
4785    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4786
4787  // FIXME: AsmPrinter doesn't know how to handle
4788  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4789  if (MI->getOpcode() == X86::ADD32ri &&
4790      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4791    return nullptr;
4792
4793  MachineInstr *NewMI = nullptr;
4794  // Folding a memory location into the two-address part of a two-address
4795  // instruction is different than folding it other places.  It requires
4796  // replacing the *two* registers with the memory location.
4797  if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
4798      MI->getOperand(0).isReg() &&
4799      MI->getOperand(1).isReg() &&
4800      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
4801    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4802    isTwoAddrFold = true;
4803  } else if (OpNum == 0) {
4804    if (MI->getOpcode() == X86::MOV32r0) {
4805      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
4806      if (NewMI)
4807        return NewMI;
4808    }
4809
4810    OpcodeTablePtr = &RegOp2MemOpTable0;
4811  } else if (OpNum == 1) {
4812    OpcodeTablePtr = &RegOp2MemOpTable1;
4813  } else if (OpNum == 2) {
4814    OpcodeTablePtr = &RegOp2MemOpTable2;
4815  } else if (OpNum == 3) {
4816    OpcodeTablePtr = &RegOp2MemOpTable3;
4817  } else if (OpNum == 4) {
4818    OpcodeTablePtr = &RegOp2MemOpTable4;
4819  }
4820
4821  // If table selected...
4822  if (OpcodeTablePtr) {
4823    // Find the Opcode to fuse
4824    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4825      OpcodeTablePtr->find(MI->getOpcode());
4826    if (I != OpcodeTablePtr->end()) {
4827      unsigned Opcode = I->second.first;
4828      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4829      if (Align < MinAlign)
4830        return nullptr;
4831      bool NarrowToMOV32rm = false;
4832      if (Size) {
4833        unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
4834        if (Size < RCSize) {
4835          // Check if it's safe to fold the load. If the size of the object is
4836          // narrower than the load width, then it's not.
4837          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4838            return nullptr;
4839          // If this is a 64-bit load, but the spill slot is 32, then we can do
4840          // a 32-bit load which is implicitly zero-extended. This likely is
4841          // due to live interval analysis remat'ing a load from stack slot.
4842          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
4843            return nullptr;
4844          Opcode = X86::MOV32rm;
4845          NarrowToMOV32rm = true;
4846        }
4847      }
4848
4849      if (isTwoAddrFold)
4850        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
4851      else
4852        NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this);
4853
4854      if (NarrowToMOV32rm) {
4855        // If this is the special case where we use a MOV32rm to load a 32-bit
4856        // value and zero-extend the top bits. Change the destination register
4857        // to a 32-bit one.
4858        unsigned DstReg = NewMI->getOperand(0).getReg();
4859        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4860          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4861        else
4862          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4863      }
4864      return NewMI;
4865    }
4866  }
4867
4868  // If the instruction and target operand are commutable, commute the
4869  // instruction and try again.
4870  if (AllowCommute) {
4871    unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
4872    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4873      bool HasDef = MI->getDesc().getNumDefs();
4874      unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
4875      unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
4876      unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
4877      bool Tied0 =
4878          0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4879      bool Tied1 =
4880          0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4881
4882      // If either of the commutable operands are tied to the destination
4883      // then we can not commute + fold.
4884      if ((HasDef && Reg0 == Reg1 && Tied0) ||
4885          (HasDef && Reg0 == Reg2 && Tied1))
4886        return nullptr;
4887
4888      if ((CommuteOpIdx1 == OriginalOpIdx) ||
4889          (CommuteOpIdx2 == OriginalOpIdx)) {
4890        MachineInstr *CommutedMI = commuteInstruction(MI, false);
4891        if (!CommutedMI) {
4892          // Unable to commute.
4893          return nullptr;
4894        }
4895        if (CommutedMI != MI) {
4896          // New instruction. We can't fold from this.
4897          CommutedMI->eraseFromParent();
4898          return nullptr;
4899        }
4900
4901        // Attempt to fold with the commuted version of the instruction.
4902        unsigned CommuteOp =
4903            (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
4904        NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
4905                                      /*AllowCommute=*/false);
4906        if (NewMI)
4907          return NewMI;
4908
4909        // Folding failed again - undo the commute before returning.
4910        MachineInstr *UncommutedMI = commuteInstruction(MI, false);
4911        if (!UncommutedMI) {
4912          // Unable to commute.
4913          return nullptr;
4914        }
4915        if (UncommutedMI != MI) {
4916          // New instruction. It doesn't need to be kept.
4917          UncommutedMI->eraseFromParent();
4918          return nullptr;
4919        }
4920
4921        // Return here to prevent duplicate fuse failure report.
4922        return nullptr;
4923      }
4924    }
4925  }
4926
4927  // No fusion
4928  if (PrintFailedFusing && !MI->isCopy())
4929    dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
4930  return nullptr;
4931}
4932
4933/// Return true for all instructions that only update
4934/// the first 32 or 64-bits of the destination register and leave the rest
4935/// unmodified. This can be used to avoid folding loads if the instructions
4936/// only update part of the destination register, and the non-updated part is
4937/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4938/// instructions breaks the partial register dependency and it can improve
4939/// performance. e.g.:
4940///
4941///   movss (%rdi), %xmm0
4942///   cvtss2sd %xmm0, %xmm0
4943///
4944/// Instead of
4945///   cvtss2sd (%rdi), %xmm0
4946///
4947/// FIXME: This should be turned into a TSFlags.
4948///
4949static bool hasPartialRegUpdate(unsigned Opcode) {
4950  switch (Opcode) {
4951  case X86::CVTSI2SSrr:
4952  case X86::CVTSI2SSrm:
4953  case X86::CVTSI2SS64rr:
4954  case X86::CVTSI2SS64rm:
4955  case X86::CVTSI2SDrr:
4956  case X86::CVTSI2SDrm:
4957  case X86::CVTSI2SD64rr:
4958  case X86::CVTSI2SD64rm:
4959  case X86::CVTSD2SSrr:
4960  case X86::CVTSD2SSrm:
4961  case X86::Int_CVTSD2SSrr:
4962  case X86::Int_CVTSD2SSrm:
4963  case X86::CVTSS2SDrr:
4964  case X86::CVTSS2SDrm:
4965  case X86::Int_CVTSS2SDrr:
4966  case X86::Int_CVTSS2SDrm:
4967  case X86::RCPSSr:
4968  case X86::RCPSSm:
4969  case X86::RCPSSr_Int:
4970  case X86::RCPSSm_Int:
4971  case X86::ROUNDSDr:
4972  case X86::ROUNDSDm:
4973  case X86::ROUNDSDr_Int:
4974  case X86::ROUNDSSr:
4975  case X86::ROUNDSSm:
4976  case X86::ROUNDSSr_Int:
4977  case X86::RSQRTSSr:
4978  case X86::RSQRTSSm:
4979  case X86::RSQRTSSr_Int:
4980  case X86::RSQRTSSm_Int:
4981  case X86::SQRTSSr:
4982  case X86::SQRTSSm:
4983  case X86::SQRTSSr_Int:
4984  case X86::SQRTSSm_Int:
4985  case X86::SQRTSDr:
4986  case X86::SQRTSDm:
4987  case X86::SQRTSDr_Int:
4988  case X86::SQRTSDm_Int:
4989    return true;
4990  }
4991
4992  return false;
4993}
4994
4995/// Inform the ExeDepsFix pass how many idle
4996/// instructions we would like before a partial register update.
4997unsigned X86InstrInfo::
4998getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4999                             const TargetRegisterInfo *TRI) const {
5000  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
5001    return 0;
5002
5003  // If MI is marked as reading Reg, the partial register update is wanted.
5004  const MachineOperand &MO = MI->getOperand(0);
5005  unsigned Reg = MO.getReg();
5006  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
5007    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
5008      return 0;
5009  } else {
5010    if (MI->readsRegister(Reg, TRI))
5011      return 0;
5012  }
5013
5014  // If any of the preceding 16 instructions are reading Reg, insert a
5015  // dependency breaking instruction.  The magic number is based on a few
5016  // Nehalem experiments.
5017  return 16;
5018}
5019
5020// Return true for any instruction the copies the high bits of the first source
5021// operand into the unused high bits of the destination operand.
5022static bool hasUndefRegUpdate(unsigned Opcode) {
5023  switch (Opcode) {
5024  case X86::VCVTSI2SSrr:
5025  case X86::VCVTSI2SSrm:
5026  case X86::Int_VCVTSI2SSrr:
5027  case X86::Int_VCVTSI2SSrm:
5028  case X86::VCVTSI2SS64rr:
5029  case X86::VCVTSI2SS64rm:
5030  case X86::Int_VCVTSI2SS64rr:
5031  case X86::Int_VCVTSI2SS64rm:
5032  case X86::VCVTSI2SDrr:
5033  case X86::VCVTSI2SDrm:
5034  case X86::Int_VCVTSI2SDrr:
5035  case X86::Int_VCVTSI2SDrm:
5036  case X86::VCVTSI2SD64rr:
5037  case X86::VCVTSI2SD64rm:
5038  case X86::Int_VCVTSI2SD64rr:
5039  case X86::Int_VCVTSI2SD64rm:
5040  case X86::VCVTSD2SSrr:
5041  case X86::VCVTSD2SSrm:
5042  case X86::Int_VCVTSD2SSrr:
5043  case X86::Int_VCVTSD2SSrm:
5044  case X86::VCVTSS2SDrr:
5045  case X86::VCVTSS2SDrm:
5046  case X86::Int_VCVTSS2SDrr:
5047  case X86::Int_VCVTSS2SDrm:
5048  case X86::VRCPSSr:
5049  case X86::VRCPSSm:
5050  case X86::VRCPSSm_Int:
5051  case X86::VROUNDSDr:
5052  case X86::VROUNDSDm:
5053  case X86::VROUNDSDr_Int:
5054  case X86::VROUNDSSr:
5055  case X86::VROUNDSSm:
5056  case X86::VROUNDSSr_Int:
5057  case X86::VRSQRTSSr:
5058  case X86::VRSQRTSSm:
5059  case X86::VRSQRTSSm_Int:
5060  case X86::VSQRTSSr:
5061  case X86::VSQRTSSm:
5062  case X86::VSQRTSSm_Int:
5063  case X86::VSQRTSDr:
5064  case X86::VSQRTSDm:
5065  case X86::VSQRTSDm_Int:
5066    // AVX-512
5067  case X86::VCVTSD2SSZrr:
5068  case X86::VCVTSD2SSZrm:
5069  case X86::VCVTSS2SDZrr:
5070  case X86::VCVTSS2SDZrm:
5071    return true;
5072  }
5073
5074  return false;
5075}
5076
5077/// Inform the ExeDepsFix pass how many idle instructions we would like before
5078/// certain undef register reads.
5079///
5080/// This catches the VCVTSI2SD family of instructions:
5081///
5082/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
5083///
5084/// We should to be careful *not* to catch VXOR idioms which are presumably
5085/// handled specially in the pipeline:
5086///
5087/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
5088///
5089/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5090/// high bits that are passed-through are not live.
5091unsigned X86InstrInfo::
5092getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
5093                     const TargetRegisterInfo *TRI) const {
5094  if (!hasUndefRegUpdate(MI->getOpcode()))
5095    return 0;
5096
5097  // Set the OpNum parameter to the first source operand.
5098  OpNum = 1;
5099
5100  const MachineOperand &MO = MI->getOperand(OpNum);
5101  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
5102    // Use the same magic number as getPartialRegUpdateClearance.
5103    return 16;
5104  }
5105  return 0;
5106}
5107
5108void X86InstrInfo::
5109breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
5110                          const TargetRegisterInfo *TRI) const {
5111  unsigned Reg = MI->getOperand(OpNum).getReg();
5112  // If MI kills this register, the false dependence is already broken.
5113  if (MI->killsRegister(Reg, TRI))
5114    return;
5115  if (X86::VR128RegClass.contains(Reg)) {
5116    // These instructions are all floating point domain, so xorps is the best
5117    // choice.
5118    bool HasAVX = Subtarget.hasAVX();
5119    unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
5120    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
5121      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5122  } else if (X86::VR256RegClass.contains(Reg)) {
5123    // Use vxorps to clear the full ymm register.
5124    // It wants to read and write the xmm sub-register.
5125    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5126    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
5127      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
5128      .addReg(Reg, RegState::ImplicitDefine);
5129  } else
5130    return;
5131  MI->addRegisterKilled(Reg, TRI, true);
5132}
5133
5134MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
5135                                                  MachineInstr *MI,
5136                                                  ArrayRef<unsigned> Ops,
5137                                                  int FrameIndex) const {
5138  // Check switch flag
5139  if (NoFusing) return nullptr;
5140
5141  // Unless optimizing for size, don't fold to avoid partial
5142  // register update stalls
5143  if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
5144      hasPartialRegUpdate(MI->getOpcode()))
5145    return nullptr;
5146
5147  const MachineFrameInfo *MFI = MF.getFrameInfo();
5148  unsigned Size = MFI->getObjectSize(FrameIndex);
5149  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
5150  // If the function stack isn't realigned we don't want to fold instructions
5151  // that need increased alignment.
5152  if (!RI.needsStackRealignment(MF))
5153    Alignment =
5154        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5155  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5156    unsigned NewOpc = 0;
5157    unsigned RCSize = 0;
5158    switch (MI->getOpcode()) {
5159    default: return nullptr;
5160    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5161    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5162    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5163    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5164    }
5165    // Check if it's safe to fold the load. If the size of the object is
5166    // narrower than the load width, then it's not.
5167    if (Size < RCSize)
5168      return nullptr;
5169    // Change to CMPXXri r, 0 first.
5170    MI->setDesc(get(NewOpc));
5171    MI->getOperand(1).ChangeToImmediate(0);
5172  } else if (Ops.size() != 1)
5173    return nullptr;
5174
5175  return foldMemoryOperandImpl(MF, MI, Ops[0],
5176                               MachineOperand::CreateFI(FrameIndex), Size,
5177                               Alignment, /*AllowCommute=*/true);
5178}
5179
5180static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
5181                                  const MachineFunction &MF) {
5182  unsigned Opc = LoadMI.getOpcode();
5183  unsigned RegSize =
5184      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
5185
5186  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
5187    // These instructions only load 32 bits, we can't fold them if the
5188    // destination register is wider than 32 bits (4 bytes).
5189    return true;
5190
5191  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
5192    // These instructions only load 64 bits, we can't fold them if the
5193    // destination register is wider than 64 bits (8 bytes).
5194    return true;
5195
5196  return false;
5197}
5198
5199MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
5200                                                  MachineInstr *MI,
5201                                                  ArrayRef<unsigned> Ops,
5202                                                  MachineInstr *LoadMI) const {
5203  // If loading from a FrameIndex, fold directly from the FrameIndex.
5204  unsigned NumOps = LoadMI->getDesc().getNumOperands();
5205  int FrameIndex;
5206  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5207    if (isPartialRegisterLoad(*LoadMI, MF))
5208      return nullptr;
5209    return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
5210  }
5211
5212  // Check switch flag
5213  if (NoFusing) return nullptr;
5214
5215  // Unless optimizing for size, don't fold to avoid partial
5216  // register update stalls
5217  if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
5218      hasPartialRegUpdate(MI->getOpcode()))
5219    return nullptr;
5220
5221  // Determine the alignment of the load.
5222  unsigned Alignment = 0;
5223  if (LoadMI->hasOneMemOperand())
5224    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
5225  else
5226    switch (LoadMI->getOpcode()) {
5227    case X86::AVX2_SETALLONES:
5228    case X86::AVX_SET0:
5229      Alignment = 32;
5230      break;
5231    case X86::V_SET0:
5232    case X86::V_SETALLONES:
5233      Alignment = 16;
5234      break;
5235    case X86::FsFLD0SD:
5236      Alignment = 8;
5237      break;
5238    case X86::FsFLD0SS:
5239      Alignment = 4;
5240      break;
5241    default:
5242      return nullptr;
5243    }
5244  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5245    unsigned NewOpc = 0;
5246    switch (MI->getOpcode()) {
5247    default: return nullptr;
5248    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5249    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5250    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5251    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5252    }
5253    // Change to CMPXXri r, 0 first.
5254    MI->setDesc(get(NewOpc));
5255    MI->getOperand(1).ChangeToImmediate(0);
5256  } else if (Ops.size() != 1)
5257    return nullptr;
5258
5259  // Make sure the subregisters match.
5260  // Otherwise we risk changing the size of the load.
5261  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
5262    return nullptr;
5263
5264  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5265  switch (LoadMI->getOpcode()) {
5266  case X86::V_SET0:
5267  case X86::V_SETALLONES:
5268  case X86::AVX2_SETALLONES:
5269  case X86::AVX_SET0:
5270  case X86::FsFLD0SD:
5271  case X86::FsFLD0SS: {
5272    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5273    // Create a constant-pool entry and operands to load from it.
5274
5275    // Medium and large mode can't fold loads this way.
5276    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5277        MF.getTarget().getCodeModel() != CodeModel::Kernel)
5278      return nullptr;
5279
5280    // x86-32 PIC requires a PIC base register for constant pools.
5281    unsigned PICBase = 0;
5282    if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
5283      if (Subtarget.is64Bit())
5284        PICBase = X86::RIP;
5285      else
5286        // FIXME: PICBase = getGlobalBaseReg(&MF);
5287        // This doesn't work for several reasons.
5288        // 1. GlobalBaseReg may have been spilled.
5289        // 2. It may not be live at MI.
5290        return nullptr;
5291    }
5292
5293    // Create a constant-pool entry.
5294    MachineConstantPool &MCP = *MF.getConstantPool();
5295    Type *Ty;
5296    unsigned Opc = LoadMI->getOpcode();
5297    if (Opc == X86::FsFLD0SS)
5298      Ty = Type::getFloatTy(MF.getFunction()->getContext());
5299    else if (Opc == X86::FsFLD0SD)
5300      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
5301    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
5302      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
5303    else
5304      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
5305
5306    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
5307    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5308                                    Constant::getNullValue(Ty);
5309    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5310
5311    // Create operands to load from the constant pool entry.
5312    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5313    MOs.push_back(MachineOperand::CreateImm(1));
5314    MOs.push_back(MachineOperand::CreateReg(0, false));
5315    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5316    MOs.push_back(MachineOperand::CreateReg(0, false));
5317    break;
5318  }
5319  default: {
5320    if (isPartialRegisterLoad(*LoadMI, MF))
5321      return nullptr;
5322
5323    // Folding a normal load. Just copy the load's address operands.
5324    MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
5325               LoadMI->operands_begin() + NumOps);
5326    break;
5327  }
5328  }
5329  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
5330                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
5331}
5332
5333bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
5334                                        ArrayRef<unsigned> Ops) const {
5335  // Check switch flag
5336  if (NoFusing) return 0;
5337
5338  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5339    switch (MI->getOpcode()) {
5340    default: return false;
5341    case X86::TEST8rr:
5342    case X86::TEST16rr:
5343    case X86::TEST32rr:
5344    case X86::TEST64rr:
5345      return true;
5346    case X86::ADD32ri:
5347      // FIXME: AsmPrinter doesn't know how to handle
5348      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5349      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5350        return false;
5351      break;
5352    }
5353  }
5354
5355  if (Ops.size() != 1)
5356    return false;
5357
5358  unsigned OpNum = Ops[0];
5359  unsigned Opc = MI->getOpcode();
5360  unsigned NumOps = MI->getDesc().getNumOperands();
5361  bool isTwoAddr = NumOps > 1 &&
5362    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5363
5364  // Folding a memory location into the two-address part of a two-address
5365  // instruction is different than folding it other places.  It requires
5366  // replacing the *two* registers with the memory location.
5367  const DenseMap<unsigned,
5368                 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
5369  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
5370    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
5371  } else if (OpNum == 0) {
5372    if (Opc == X86::MOV32r0)
5373      return true;
5374
5375    OpcodeTablePtr = &RegOp2MemOpTable0;
5376  } else if (OpNum == 1) {
5377    OpcodeTablePtr = &RegOp2MemOpTable1;
5378  } else if (OpNum == 2) {
5379    OpcodeTablePtr = &RegOp2MemOpTable2;
5380  } else if (OpNum == 3) {
5381    OpcodeTablePtr = &RegOp2MemOpTable3;
5382  }
5383
5384  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
5385    return true;
5386  return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
5387}
5388
5389bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
5390                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
5391                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
5392  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5393    MemOp2RegOpTable.find(MI->getOpcode());
5394  if (I == MemOp2RegOpTable.end())
5395    return false;
5396  unsigned Opc = I->second.first;
5397  unsigned Index = I->second.second & TB_INDEX_MASK;
5398  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5399  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5400  if (UnfoldLoad && !FoldedLoad)
5401    return false;
5402  UnfoldLoad &= FoldedLoad;
5403  if (UnfoldStore && !FoldedStore)
5404    return false;
5405  UnfoldStore &= FoldedStore;
5406
5407  const MCInstrDesc &MCID = get(Opc);
5408  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5409  if (!MI->hasOneMemOperand() &&
5410      RC == &X86::VR128RegClass &&
5411      !Subtarget.isUnalignedMemAccessFast())
5412    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5413    // conservatively assume the address is unaligned. That's bad for
5414    // performance.
5415    return false;
5416  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5417  SmallVector<MachineOperand,2> BeforeOps;
5418  SmallVector<MachineOperand,2> AfterOps;
5419  SmallVector<MachineOperand,4> ImpOps;
5420  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
5421    MachineOperand &Op = MI->getOperand(i);
5422    if (i >= Index && i < Index + X86::AddrNumOperands)
5423      AddrOps.push_back(Op);
5424    else if (Op.isReg() && Op.isImplicit())
5425      ImpOps.push_back(Op);
5426    else if (i < Index)
5427      BeforeOps.push_back(Op);
5428    else if (i > Index)
5429      AfterOps.push_back(Op);
5430  }
5431
5432  // Emit the load instruction.
5433  if (UnfoldLoad) {
5434    std::pair<MachineInstr::mmo_iterator,
5435              MachineInstr::mmo_iterator> MMOs =
5436      MF.extractLoadMemRefs(MI->memoperands_begin(),
5437                            MI->memoperands_end());
5438    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
5439    if (UnfoldStore) {
5440      // Address operands cannot be marked isKill.
5441      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5442        MachineOperand &MO = NewMIs[0]->getOperand(i);
5443        if (MO.isReg())
5444          MO.setIsKill(false);
5445      }
5446    }
5447  }
5448
5449  // Emit the data processing instruction.
5450  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
5451  MachineInstrBuilder MIB(MF, DataMI);
5452
5453  if (FoldedStore)
5454    MIB.addReg(Reg, RegState::Define);
5455  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
5456    MIB.addOperand(BeforeOps[i]);
5457  if (FoldedLoad)
5458    MIB.addReg(Reg);
5459  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
5460    MIB.addOperand(AfterOps[i]);
5461  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
5462    MachineOperand &MO = ImpOps[i];
5463    MIB.addReg(MO.getReg(),
5464               getDefRegState(MO.isDef()) |
5465               RegState::Implicit |
5466               getKillRegState(MO.isKill()) |
5467               getDeadRegState(MO.isDead()) |
5468               getUndefRegState(MO.isUndef()));
5469  }
5470  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5471  switch (DataMI->getOpcode()) {
5472  default: break;
5473  case X86::CMP64ri32:
5474  case X86::CMP64ri8:
5475  case X86::CMP32ri:
5476  case X86::CMP32ri8:
5477  case X86::CMP16ri:
5478  case X86::CMP16ri8:
5479  case X86::CMP8ri: {
5480    MachineOperand &MO0 = DataMI->getOperand(0);
5481    MachineOperand &MO1 = DataMI->getOperand(1);
5482    if (MO1.getImm() == 0) {
5483      unsigned NewOpc;
5484      switch (DataMI->getOpcode()) {
5485      default: llvm_unreachable("Unreachable!");
5486      case X86::CMP64ri8:
5487      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5488      case X86::CMP32ri8:
5489      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5490      case X86::CMP16ri8:
5491      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5492      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5493      }
5494      DataMI->setDesc(get(NewOpc));
5495      MO1.ChangeToRegister(MO0.getReg(), false);
5496    }
5497  }
5498  }
5499  NewMIs.push_back(DataMI);
5500
5501  // Emit the store instruction.
5502  if (UnfoldStore) {
5503    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5504    std::pair<MachineInstr::mmo_iterator,
5505              MachineInstr::mmo_iterator> MMOs =
5506      MF.extractStoreMemRefs(MI->memoperands_begin(),
5507                             MI->memoperands_end());
5508    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
5509  }
5510
5511  return true;
5512}
5513
5514bool
5515X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5516                                  SmallVectorImpl<SDNode*> &NewNodes) const {
5517  if (!N->isMachineOpcode())
5518    return false;
5519
5520  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5521    MemOp2RegOpTable.find(N->getMachineOpcode());
5522  if (I == MemOp2RegOpTable.end())
5523    return false;
5524  unsigned Opc = I->second.first;
5525  unsigned Index = I->second.second & TB_INDEX_MASK;
5526  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5527  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5528  const MCInstrDesc &MCID = get(Opc);
5529  MachineFunction &MF = DAG.getMachineFunction();
5530  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5531  unsigned NumDefs = MCID.NumDefs;
5532  std::vector<SDValue> AddrOps;
5533  std::vector<SDValue> BeforeOps;
5534  std::vector<SDValue> AfterOps;
5535  SDLoc dl(N);
5536  unsigned NumOps = N->getNumOperands();
5537  for (unsigned i = 0; i != NumOps-1; ++i) {
5538    SDValue Op = N->getOperand(i);
5539    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5540      AddrOps.push_back(Op);
5541    else if (i < Index-NumDefs)
5542      BeforeOps.push_back(Op);
5543    else if (i > Index-NumDefs)
5544      AfterOps.push_back(Op);
5545  }
5546  SDValue Chain = N->getOperand(NumOps-1);
5547  AddrOps.push_back(Chain);
5548
5549  // Emit the load instruction.
5550  SDNode *Load = nullptr;
5551  if (FoldedLoad) {
5552    EVT VT = *RC->vt_begin();
5553    std::pair<MachineInstr::mmo_iterator,
5554              MachineInstr::mmo_iterator> MMOs =
5555      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5556                            cast<MachineSDNode>(N)->memoperands_end());
5557    if (!(*MMOs.first) &&
5558        RC == &X86::VR128RegClass &&
5559        !Subtarget.isUnalignedMemAccessFast())
5560      // Do not introduce a slow unaligned load.
5561      return false;
5562    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5563    bool isAligned = (*MMOs.first) &&
5564                     (*MMOs.first)->getAlignment() >= Alignment;
5565    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5566                              VT, MVT::Other, AddrOps);
5567    NewNodes.push_back(Load);
5568
5569    // Preserve memory reference information.
5570    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
5571  }
5572
5573  // Emit the data processing instruction.
5574  std::vector<EVT> VTs;
5575  const TargetRegisterClass *DstRC = nullptr;
5576  if (MCID.getNumDefs() > 0) {
5577    DstRC = getRegClass(MCID, 0, &RI, MF);
5578    VTs.push_back(*DstRC->vt_begin());
5579  }
5580  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5581    EVT VT = N->getValueType(i);
5582    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5583      VTs.push_back(VT);
5584  }
5585  if (Load)
5586    BeforeOps.push_back(SDValue(Load, 0));
5587  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5588  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5589  NewNodes.push_back(NewNode);
5590
5591  // Emit the store instruction.
5592  if (FoldedStore) {
5593    AddrOps.pop_back();
5594    AddrOps.push_back(SDValue(NewNode, 0));
5595    AddrOps.push_back(Chain);
5596    std::pair<MachineInstr::mmo_iterator,
5597              MachineInstr::mmo_iterator> MMOs =
5598      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5599                             cast<MachineSDNode>(N)->memoperands_end());
5600    if (!(*MMOs.first) &&
5601        RC == &X86::VR128RegClass &&
5602        !Subtarget.isUnalignedMemAccessFast())
5603      // Do not introduce a slow unaligned store.
5604      return false;
5605    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5606    bool isAligned = (*MMOs.first) &&
5607                     (*MMOs.first)->getAlignment() >= Alignment;
5608    SDNode *Store =
5609        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5610                           dl, MVT::Other, AddrOps);
5611    NewNodes.push_back(Store);
5612
5613    // Preserve memory reference information.
5614    cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
5615  }
5616
5617  return true;
5618}
5619
5620unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5621                                      bool UnfoldLoad, bool UnfoldStore,
5622                                      unsigned *LoadRegIndex) const {
5623  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5624    MemOp2RegOpTable.find(Opc);
5625  if (I == MemOp2RegOpTable.end())
5626    return 0;
5627  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5628  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5629  if (UnfoldLoad && !FoldedLoad)
5630    return 0;
5631  if (UnfoldStore && !FoldedStore)
5632    return 0;
5633  if (LoadRegIndex)
5634    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
5635  return I->second.first;
5636}
5637
5638bool
5639X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5640                                     int64_t &Offset1, int64_t &Offset2) const {
5641  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5642    return false;
5643  unsigned Opc1 = Load1->getMachineOpcode();
5644  unsigned Opc2 = Load2->getMachineOpcode();
5645  switch (Opc1) {
5646  default: return false;
5647  case X86::MOV8rm:
5648  case X86::MOV16rm:
5649  case X86::MOV32rm:
5650  case X86::MOV64rm:
5651  case X86::LD_Fp32m:
5652  case X86::LD_Fp64m:
5653  case X86::LD_Fp80m:
5654  case X86::MOVSSrm:
5655  case X86::MOVSDrm:
5656  case X86::MMX_MOVD64rm:
5657  case X86::MMX_MOVQ64rm:
5658  case X86::FsMOVAPSrm:
5659  case X86::FsMOVAPDrm:
5660  case X86::MOVAPSrm:
5661  case X86::MOVUPSrm:
5662  case X86::MOVAPDrm:
5663  case X86::MOVDQArm:
5664  case X86::MOVDQUrm:
5665  // AVX load instructions
5666  case X86::VMOVSSrm:
5667  case X86::VMOVSDrm:
5668  case X86::FsVMOVAPSrm:
5669  case X86::FsVMOVAPDrm:
5670  case X86::VMOVAPSrm:
5671  case X86::VMOVUPSrm:
5672  case X86::VMOVAPDrm:
5673  case X86::VMOVDQArm:
5674  case X86::VMOVDQUrm:
5675  case X86::VMOVAPSYrm:
5676  case X86::VMOVUPSYrm:
5677  case X86::VMOVAPDYrm:
5678  case X86::VMOVDQAYrm:
5679  case X86::VMOVDQUYrm:
5680    break;
5681  }
5682  switch (Opc2) {
5683  default: return false;
5684  case X86::MOV8rm:
5685  case X86::MOV16rm:
5686  case X86::MOV32rm:
5687  case X86::MOV64rm:
5688  case X86::LD_Fp32m:
5689  case X86::LD_Fp64m:
5690  case X86::LD_Fp80m:
5691  case X86::MOVSSrm:
5692  case X86::MOVSDrm:
5693  case X86::MMX_MOVD64rm:
5694  case X86::MMX_MOVQ64rm:
5695  case X86::FsMOVAPSrm:
5696  case X86::FsMOVAPDrm:
5697  case X86::MOVAPSrm:
5698  case X86::MOVUPSrm:
5699  case X86::MOVAPDrm:
5700  case X86::MOVDQArm:
5701  case X86::MOVDQUrm:
5702  // AVX load instructions
5703  case X86::VMOVSSrm:
5704  case X86::VMOVSDrm:
5705  case X86::FsVMOVAPSrm:
5706  case X86::FsVMOVAPDrm:
5707  case X86::VMOVAPSrm:
5708  case X86::VMOVUPSrm:
5709  case X86::VMOVAPDrm:
5710  case X86::VMOVDQArm:
5711  case X86::VMOVDQUrm:
5712  case X86::VMOVAPSYrm:
5713  case X86::VMOVUPSYrm:
5714  case X86::VMOVAPDYrm:
5715  case X86::VMOVDQAYrm:
5716  case X86::VMOVDQUYrm:
5717    break;
5718  }
5719
5720  // Check if chain operands and base addresses match.
5721  if (Load1->getOperand(0) != Load2->getOperand(0) ||
5722      Load1->getOperand(5) != Load2->getOperand(5))
5723    return false;
5724  // Segment operands should match as well.
5725  if (Load1->getOperand(4) != Load2->getOperand(4))
5726    return false;
5727  // Scale should be 1, Index should be Reg0.
5728  if (Load1->getOperand(1) == Load2->getOperand(1) &&
5729      Load1->getOperand(2) == Load2->getOperand(2)) {
5730    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
5731      return false;
5732
5733    // Now let's examine the displacements.
5734    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
5735        isa<ConstantSDNode>(Load2->getOperand(3))) {
5736      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
5737      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
5738      return true;
5739    }
5740  }
5741  return false;
5742}
5743
5744bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5745                                           int64_t Offset1, int64_t Offset2,
5746                                           unsigned NumLoads) const {
5747  assert(Offset2 > Offset1);
5748  if ((Offset2 - Offset1) / 8 > 64)
5749    return false;
5750
5751  unsigned Opc1 = Load1->getMachineOpcode();
5752  unsigned Opc2 = Load2->getMachineOpcode();
5753  if (Opc1 != Opc2)
5754    return false;  // FIXME: overly conservative?
5755
5756  switch (Opc1) {
5757  default: break;
5758  case X86::LD_Fp32m:
5759  case X86::LD_Fp64m:
5760  case X86::LD_Fp80m:
5761  case X86::MMX_MOVD64rm:
5762  case X86::MMX_MOVQ64rm:
5763    return false;
5764  }
5765
5766  EVT VT = Load1->getValueType(0);
5767  switch (VT.getSimpleVT().SimpleTy) {
5768  default:
5769    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5770    // have 16 of them to play with.
5771    if (Subtarget.is64Bit()) {
5772      if (NumLoads >= 3)
5773        return false;
5774    } else if (NumLoads) {
5775      return false;
5776    }
5777    break;
5778  case MVT::i8:
5779  case MVT::i16:
5780  case MVT::i32:
5781  case MVT::i64:
5782  case MVT::f32:
5783  case MVT::f64:
5784    if (NumLoads)
5785      return false;
5786    break;
5787  }
5788
5789  return true;
5790}
5791
5792bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
5793                                          MachineInstr *Second) const {
5794  // Check if this processor supports macro-fusion. Since this is a minor
5795  // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
5796  // proxy for SandyBridge+.
5797  if (!Subtarget.hasAVX())
5798    return false;
5799
5800  enum {
5801    FuseTest,
5802    FuseCmp,
5803    FuseInc
5804  } FuseKind;
5805
5806  switch(Second->getOpcode()) {
5807  default:
5808    return false;
5809  case X86::JE_1:
5810  case X86::JNE_1:
5811  case X86::JL_1:
5812  case X86::JLE_1:
5813  case X86::JG_1:
5814  case X86::JGE_1:
5815    FuseKind = FuseInc;
5816    break;
5817  case X86::JB_1:
5818  case X86::JBE_1:
5819  case X86::JA_1:
5820  case X86::JAE_1:
5821    FuseKind = FuseCmp;
5822    break;
5823  case X86::JS_1:
5824  case X86::JNS_1:
5825  case X86::JP_1:
5826  case X86::JNP_1:
5827  case X86::JO_1:
5828  case X86::JNO_1:
5829    FuseKind = FuseTest;
5830    break;
5831  }
5832  switch (First->getOpcode()) {
5833  default:
5834    return false;
5835  case X86::TEST8rr:
5836  case X86::TEST16rr:
5837  case X86::TEST32rr:
5838  case X86::TEST64rr:
5839  case X86::TEST8ri:
5840  case X86::TEST16ri:
5841  case X86::TEST32ri:
5842  case X86::TEST32i32:
5843  case X86::TEST64i32:
5844  case X86::TEST64ri32:
5845  case X86::TEST8rm:
5846  case X86::TEST16rm:
5847  case X86::TEST32rm:
5848  case X86::TEST64rm:
5849  case X86::TEST8ri_NOREX:
5850  case X86::AND16i16:
5851  case X86::AND16ri:
5852  case X86::AND16ri8:
5853  case X86::AND16rm:
5854  case X86::AND16rr:
5855  case X86::AND32i32:
5856  case X86::AND32ri:
5857  case X86::AND32ri8:
5858  case X86::AND32rm:
5859  case X86::AND32rr:
5860  case X86::AND64i32:
5861  case X86::AND64ri32:
5862  case X86::AND64ri8:
5863  case X86::AND64rm:
5864  case X86::AND64rr:
5865  case X86::AND8i8:
5866  case X86::AND8ri:
5867  case X86::AND8rm:
5868  case X86::AND8rr:
5869    return true;
5870  case X86::CMP16i16:
5871  case X86::CMP16ri:
5872  case X86::CMP16ri8:
5873  case X86::CMP16rm:
5874  case X86::CMP16rr:
5875  case X86::CMP32i32:
5876  case X86::CMP32ri:
5877  case X86::CMP32ri8:
5878  case X86::CMP32rm:
5879  case X86::CMP32rr:
5880  case X86::CMP64i32:
5881  case X86::CMP64ri32:
5882  case X86::CMP64ri8:
5883  case X86::CMP64rm:
5884  case X86::CMP64rr:
5885  case X86::CMP8i8:
5886  case X86::CMP8ri:
5887  case X86::CMP8rm:
5888  case X86::CMP8rr:
5889  case X86::ADD16i16:
5890  case X86::ADD16ri:
5891  case X86::ADD16ri8:
5892  case X86::ADD16ri8_DB:
5893  case X86::ADD16ri_DB:
5894  case X86::ADD16rm:
5895  case X86::ADD16rr:
5896  case X86::ADD16rr_DB:
5897  case X86::ADD32i32:
5898  case X86::ADD32ri:
5899  case X86::ADD32ri8:
5900  case X86::ADD32ri8_DB:
5901  case X86::ADD32ri_DB:
5902  case X86::ADD32rm:
5903  case X86::ADD32rr:
5904  case X86::ADD32rr_DB:
5905  case X86::ADD64i32:
5906  case X86::ADD64ri32:
5907  case X86::ADD64ri32_DB:
5908  case X86::ADD64ri8:
5909  case X86::ADD64ri8_DB:
5910  case X86::ADD64rm:
5911  case X86::ADD64rr:
5912  case X86::ADD64rr_DB:
5913  case X86::ADD8i8:
5914  case X86::ADD8mi:
5915  case X86::ADD8mr:
5916  case X86::ADD8ri:
5917  case X86::ADD8rm:
5918  case X86::ADD8rr:
5919  case X86::SUB16i16:
5920  case X86::SUB16ri:
5921  case X86::SUB16ri8:
5922  case X86::SUB16rm:
5923  case X86::SUB16rr:
5924  case X86::SUB32i32:
5925  case X86::SUB32ri:
5926  case X86::SUB32ri8:
5927  case X86::SUB32rm:
5928  case X86::SUB32rr:
5929  case X86::SUB64i32:
5930  case X86::SUB64ri32:
5931  case X86::SUB64ri8:
5932  case X86::SUB64rm:
5933  case X86::SUB64rr:
5934  case X86::SUB8i8:
5935  case X86::SUB8ri:
5936  case X86::SUB8rm:
5937  case X86::SUB8rr:
5938    return FuseKind == FuseCmp || FuseKind == FuseInc;
5939  case X86::INC16r:
5940  case X86::INC32r:
5941  case X86::INC64r:
5942  case X86::INC8r:
5943  case X86::DEC16r:
5944  case X86::DEC32r:
5945  case X86::DEC64r:
5946  case X86::DEC8r:
5947    return FuseKind == FuseInc;
5948  }
5949}
5950
5951bool X86InstrInfo::
5952ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5953  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5954  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5955  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5956    return true;
5957  Cond[0].setImm(GetOppositeBranchCondition(CC));
5958  return false;
5959}
5960
5961bool X86InstrInfo::
5962isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5963  // FIXME: Return false for x87 stack register classes for now. We can't
5964  // allow any loads of these registers before FpGet_ST0_80.
5965  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5966           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
5967}
5968
5969/// Return a virtual register initialized with the
5970/// the global base register value. Output instructions required to
5971/// initialize the register in the function entry block, if necessary.
5972///
5973/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5974///
5975unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5976  assert(!Subtarget.is64Bit() &&
5977         "X86-64 PIC uses RIP relative addressing");
5978
5979  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5980  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5981  if (GlobalBaseReg != 0)
5982    return GlobalBaseReg;
5983
5984  // Create the register. The code to initialize it is inserted
5985  // later, by the CGBR pass (below).
5986  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5987  GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
5988  X86FI->setGlobalBaseReg(GlobalBaseReg);
5989  return GlobalBaseReg;
5990}
5991
5992// These are the replaceable SSE instructions. Some of these have Int variants
5993// that we don't include here. We don't want to replace instructions selected
5994// by intrinsics.
5995static const uint16_t ReplaceableInstrs[][3] = {
5996  //PackedSingle     PackedDouble    PackedInt
5997  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5998  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5999  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6000  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6001  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6002  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr  },
6003  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6004  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6005  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6006  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6007  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6008  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6009  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6010  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6011  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6012  // AVX 128-bit support
6013  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6014  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6015  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6016  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6017  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6018  // TODO: Add the AVX versions of MOVLPSmr
6019  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6020  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6021  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6022  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6023  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6024  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6025  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6026  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6027  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6028  // AVX 256-bit support
6029  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6030  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6031  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6032  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6033  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6034  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
6035};
6036
6037static const uint16_t ReplaceableInstrsAVX2[][3] = {
6038  //PackedSingle       PackedDouble       PackedInt
6039  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6040  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6041  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6042  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6043  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6044  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6045  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6046  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6047  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6048  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6049  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6050  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6051  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6052  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6053  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6054  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6055  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6056  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6057  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6058  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
6059};
6060
6061// FIXME: Some shuffle and unpack instructions have equivalents in different
6062// domains, but they require a bit more work than just switching opcodes.
6063
6064static const uint16_t *lookup(unsigned opcode, unsigned domain) {
6065  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
6066    if (ReplaceableInstrs[i][domain-1] == opcode)
6067      return ReplaceableInstrs[i];
6068  return nullptr;
6069}
6070
6071static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
6072  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
6073    if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
6074      return ReplaceableInstrsAVX2[i];
6075  return nullptr;
6076}
6077
6078std::pair<uint16_t, uint16_t>
6079X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
6080  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6081  bool hasAVX2 = Subtarget.hasAVX2();
6082  uint16_t validDomains = 0;
6083  if (domain && lookup(MI->getOpcode(), domain))
6084    validDomains = 0xe;
6085  else if (domain && lookupAVX2(MI->getOpcode(), domain))
6086    validDomains = hasAVX2 ? 0xe : 0x6;
6087  return std::make_pair(domain, validDomains);
6088}
6089
6090void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
6091  assert(Domain>0 && Domain<4 && "Invalid execution domain");
6092  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6093  assert(dom && "Not an SSE instruction");
6094  const uint16_t *table = lookup(MI->getOpcode(), dom);
6095  if (!table) { // try the other table
6096    assert((Subtarget.hasAVX2() || Domain < 3) &&
6097           "256-bit vector operations only available in AVX2");
6098    table = lookupAVX2(MI->getOpcode(), dom);
6099  }
6100  assert(table && "Cannot change domain");
6101  MI->setDesc(get(table[Domain-1]));
6102}
6103
6104/// Return the noop instruction to use for a noop.
6105void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
6106  NopInst.setOpcode(X86::NOOP);
6107}
6108
6109// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6110// In particular, getJumpInstrTableEntryBound must always return an upper bound
6111// on the encoding lengths of the instructions generated by
6112// getUnconditionalBranch and getTrap.
6113void X86InstrInfo::getUnconditionalBranch(
6114    MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
6115  Branch.setOpcode(X86::JMP_1);
6116  Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
6117}
6118
6119// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6120// In particular, getJumpInstrTableEntryBound must always return an upper bound
6121// on the encoding lengths of the instructions generated by
6122// getUnconditionalBranch and getTrap.
6123void X86InstrInfo::getTrap(MCInst &MI) const {
6124  MI.setOpcode(X86::TRAP);
6125}
6126
6127// See getTrap and getUnconditionalBranch for conditions on the value returned
6128// by this function.
6129unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
6130  // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
6131  // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
6132  return 5;
6133}
6134
6135bool X86InstrInfo::isHighLatencyDef(int opc) const {
6136  switch (opc) {
6137  default: return false;
6138  case X86::DIVSDrm:
6139  case X86::DIVSDrm_Int:
6140  case X86::DIVSDrr:
6141  case X86::DIVSDrr_Int:
6142  case X86::DIVSSrm:
6143  case X86::DIVSSrm_Int:
6144  case X86::DIVSSrr:
6145  case X86::DIVSSrr_Int:
6146  case X86::SQRTPDm:
6147  case X86::SQRTPDr:
6148  case X86::SQRTPSm:
6149  case X86::SQRTPSr:
6150  case X86::SQRTSDm:
6151  case X86::SQRTSDm_Int:
6152  case X86::SQRTSDr:
6153  case X86::SQRTSDr_Int:
6154  case X86::SQRTSSm:
6155  case X86::SQRTSSm_Int:
6156  case X86::SQRTSSr:
6157  case X86::SQRTSSr_Int:
6158  // AVX instructions with high latency
6159  case X86::VDIVSDrm:
6160  case X86::VDIVSDrm_Int:
6161  case X86::VDIVSDrr:
6162  case X86::VDIVSDrr_Int:
6163  case X86::VDIVSSrm:
6164  case X86::VDIVSSrm_Int:
6165  case X86::VDIVSSrr:
6166  case X86::VDIVSSrr_Int:
6167  case X86::VSQRTPDm:
6168  case X86::VSQRTPDr:
6169  case X86::VSQRTPSm:
6170  case X86::VSQRTPSr:
6171  case X86::VSQRTSDm:
6172  case X86::VSQRTSDm_Int:
6173  case X86::VSQRTSDr:
6174  case X86::VSQRTSSm:
6175  case X86::VSQRTSSm_Int:
6176  case X86::VSQRTSSr:
6177  case X86::VSQRTPDZm:
6178  case X86::VSQRTPDZr:
6179  case X86::VSQRTPSZm:
6180  case X86::VSQRTPSZr:
6181  case X86::VSQRTSDZm:
6182  case X86::VSQRTSDZm_Int:
6183  case X86::VSQRTSDZr:
6184  case X86::VSQRTSSZm_Int:
6185  case X86::VSQRTSSZr:
6186  case X86::VSQRTSSZm:
6187  case X86::VDIVSDZrm:
6188  case X86::VDIVSDZrr:
6189  case X86::VDIVSSZrm:
6190  case X86::VDIVSSZrr:
6191
6192  case X86::VGATHERQPSZrm:
6193  case X86::VGATHERQPDZrm:
6194  case X86::VGATHERDPDZrm:
6195  case X86::VGATHERDPSZrm:
6196  case X86::VPGATHERQDZrm:
6197  case X86::VPGATHERQQZrm:
6198  case X86::VPGATHERDDZrm:
6199  case X86::VPGATHERDQZrm:
6200  case X86::VSCATTERQPDZmr:
6201  case X86::VSCATTERQPSZmr:
6202  case X86::VSCATTERDPDZmr:
6203  case X86::VSCATTERDPSZmr:
6204  case X86::VPSCATTERQDZmr:
6205  case X86::VPSCATTERQQZmr:
6206  case X86::VPSCATTERDDZmr:
6207  case X86::VPSCATTERDQZmr:
6208    return true;
6209  }
6210}
6211
6212bool X86InstrInfo::
6213hasHighOperandLatency(const InstrItineraryData *ItinData,
6214                      const MachineRegisterInfo *MRI,
6215                      const MachineInstr *DefMI, unsigned DefIdx,
6216                      const MachineInstr *UseMI, unsigned UseIdx) const {
6217  return isHighLatencyDef(DefMI->getOpcode());
6218}
6219
6220namespace {
6221  /// Create Global Base Reg pass. This initializes the PIC
6222  /// global base register for x86-32.
6223  struct CGBR : public MachineFunctionPass {
6224    static char ID;
6225    CGBR() : MachineFunctionPass(ID) {}
6226
6227    bool runOnMachineFunction(MachineFunction &MF) override {
6228      const X86TargetMachine *TM =
6229        static_cast<const X86TargetMachine *>(&MF.getTarget());
6230      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
6231
6232      // Don't do anything if this is 64-bit as 64-bit PIC
6233      // uses RIP relative addressing.
6234      if (STI.is64Bit())
6235        return false;
6236
6237      // Only emit a global base reg in PIC mode.
6238      if (TM->getRelocationModel() != Reloc::PIC_)
6239        return false;
6240
6241      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
6242      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6243
6244      // If we didn't need a GlobalBaseReg, don't insert code.
6245      if (GlobalBaseReg == 0)
6246        return false;
6247
6248      // Insert the set of GlobalBaseReg into the first MBB of the function
6249      MachineBasicBlock &FirstMBB = MF.front();
6250      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
6251      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
6252      MachineRegisterInfo &RegInfo = MF.getRegInfo();
6253      const X86InstrInfo *TII = STI.getInstrInfo();
6254
6255      unsigned PC;
6256      if (STI.isPICStyleGOT())
6257        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
6258      else
6259        PC = GlobalBaseReg;
6260
6261      // Operand of MovePCtoStack is completely ignored by asm printer. It's
6262      // only used in JIT code emission as displacement to pc.
6263      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
6264
6265      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
6266      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
6267      if (STI.isPICStyleGOT()) {
6268        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
6269        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
6270          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
6271                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
6272      }
6273
6274      return true;
6275    }
6276
6277    const char *getPassName() const override {
6278      return "X86 PIC Global Base Reg Initialization";
6279    }
6280
6281    void getAnalysisUsage(AnalysisUsage &AU) const override {
6282      AU.setPreservesCFG();
6283      MachineFunctionPass::getAnalysisUsage(AU);
6284    }
6285  };
6286}
6287
6288char CGBR::ID = 0;
6289FunctionPass*
6290llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
6291
6292namespace {
6293  struct LDTLSCleanup : public MachineFunctionPass {
6294    static char ID;
6295    LDTLSCleanup() : MachineFunctionPass(ID) {}
6296
6297    bool runOnMachineFunction(MachineFunction &MF) override {
6298      X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
6299      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
6300        // No point folding accesses if there isn't at least two.
6301        return false;
6302      }
6303
6304      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
6305      return VisitNode(DT->getRootNode(), 0);
6306    }
6307
6308    // Visit the dominator subtree rooted at Node in pre-order.
6309    // If TLSBaseAddrReg is non-null, then use that to replace any
6310    // TLS_base_addr instructions. Otherwise, create the register
6311    // when the first such instruction is seen, and then use it
6312    // as we encounter more instructions.
6313    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
6314      MachineBasicBlock *BB = Node->getBlock();
6315      bool Changed = false;
6316
6317      // Traverse the current block.
6318      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
6319           ++I) {
6320        switch (I->getOpcode()) {
6321          case X86::TLS_base_addr32:
6322          case X86::TLS_base_addr64:
6323            if (TLSBaseAddrReg)
6324              I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
6325            else
6326              I = SetRegister(I, &TLSBaseAddrReg);
6327            Changed = true;
6328            break;
6329          default:
6330            break;
6331        }
6332      }
6333
6334      // Visit the children of this block in the dominator tree.
6335      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
6336           I != E; ++I) {
6337        Changed |= VisitNode(*I, TLSBaseAddrReg);
6338      }
6339
6340      return Changed;
6341    }
6342
6343    // Replace the TLS_base_addr instruction I with a copy from
6344    // TLSBaseAddrReg, returning the new instruction.
6345    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
6346                                         unsigned TLSBaseAddrReg) {
6347      MachineFunction *MF = I->getParent()->getParent();
6348      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6349      const bool is64Bit = STI.is64Bit();
6350      const X86InstrInfo *TII = STI.getInstrInfo();
6351
6352      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
6353      MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
6354                                   TII->get(TargetOpcode::COPY),
6355                                   is64Bit ? X86::RAX : X86::EAX)
6356                                   .addReg(TLSBaseAddrReg);
6357
6358      // Erase the TLS_base_addr instruction.
6359      I->eraseFromParent();
6360
6361      return Copy;
6362    }
6363
6364    // Create a virtal register in *TLSBaseAddrReg, and populate it by
6365    // inserting a copy instruction after I. Returns the new instruction.
6366    MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
6367      MachineFunction *MF = I->getParent()->getParent();
6368      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6369      const bool is64Bit = STI.is64Bit();
6370      const X86InstrInfo *TII = STI.getInstrInfo();
6371
6372      // Create a virtual register for the TLS base address.
6373      MachineRegisterInfo &RegInfo = MF->getRegInfo();
6374      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
6375                                                      ? &X86::GR64RegClass
6376                                                      : &X86::GR32RegClass);
6377
6378      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
6379      MachineInstr *Next = I->getNextNode();
6380      MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
6381                                   TII->get(TargetOpcode::COPY),
6382                                   *TLSBaseAddrReg)
6383                                   .addReg(is64Bit ? X86::RAX : X86::EAX);
6384
6385      return Copy;
6386    }
6387
6388    const char *getPassName() const override {
6389      return "Local Dynamic TLS Access Clean-up";
6390    }
6391
6392    void getAnalysisUsage(AnalysisUsage &AU) const override {
6393      AU.setPreservesCFG();
6394      AU.addRequired<MachineDominatorTree>();
6395      MachineFunctionPass::getAnalysisUsage(AU);
6396    }
6397  };
6398}
6399
6400char LDTLSCleanup::ID = 0;
6401FunctionPass*
6402llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
6403