1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the XCoreTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "XCoreISelLowering.h"
15#include "XCore.h"
16#include "XCoreMachineFunctionInfo.h"
17#include "XCoreSubtarget.h"
18#include "XCoreTargetMachine.h"
19#include "XCoreTargetObjectFile.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39
40using namespace llvm;
41
42#define DEBUG_TYPE "xcore-lower"
43
44const char *XCoreTargetLowering::
45getTargetNodeName(unsigned Opcode) const
46{
47  switch (Opcode)
48  {
49    case XCoreISD::BL                : return "XCoreISD::BL";
50    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
51    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
52    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
53    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
54    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
55    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
56    case XCoreISD::LADD              : return "XCoreISD::LADD";
57    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
58    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
59    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
60    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
61    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
62    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
63    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
64    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
65    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
66    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
67    default                          : return nullptr;
68  }
69}
70
71XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
72                                         const XCoreSubtarget &Subtarget)
73    : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
74
75  // Set up the register classes.
76  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
77
78  // Compute derived properties from the register classes
79  computeRegisterProperties(Subtarget.getRegisterInfo());
80
81  // Division is expensive
82  setIntDivIsCheap(false);
83
84  setStackPointerRegisterToSaveRestore(XCore::SP);
85
86  setSchedulingPreference(Sched::Source);
87
88  // Use i32 for setcc operations results (slt, sgt, ...).
89  setBooleanContents(ZeroOrOneBooleanContent);
90  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
91
92  // XCore does not have the NodeTypes below.
93  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
94  setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
95  setOperationAction(ISD::ADDC, MVT::i32, Expand);
96  setOperationAction(ISD::ADDE, MVT::i32, Expand);
97  setOperationAction(ISD::SUBC, MVT::i32, Expand);
98  setOperationAction(ISD::SUBE, MVT::i32, Expand);
99
100  // 64bit
101  setOperationAction(ISD::ADD, MVT::i64, Custom);
102  setOperationAction(ISD::SUB, MVT::i64, Custom);
103  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
104  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
105  setOperationAction(ISD::MULHS, MVT::i32, Expand);
106  setOperationAction(ISD::MULHU, MVT::i32, Expand);
107  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
108  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
109  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
110
111  // Bit Manipulation
112  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
113  setOperationAction(ISD::ROTL , MVT::i32, Expand);
114  setOperationAction(ISD::ROTR , MVT::i32, Expand);
115  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
116  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
117
118  setOperationAction(ISD::TRAP, MVT::Other, Legal);
119
120  // Jump tables.
121  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
122
123  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
124  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
125
126  // Conversion of i64 -> double produces constantpool nodes
127  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
128
129  // Loads
130  for (MVT VT : MVT::integer_valuetypes()) {
131    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
132    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
133    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
134
135    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
136    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
137  }
138
139  // Custom expand misaligned loads / stores.
140  setOperationAction(ISD::LOAD, MVT::i32, Custom);
141  setOperationAction(ISD::STORE, MVT::i32, Custom);
142
143  // Varargs
144  setOperationAction(ISD::VAEND, MVT::Other, Expand);
145  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
146  setOperationAction(ISD::VAARG, MVT::Other, Custom);
147  setOperationAction(ISD::VASTART, MVT::Other, Custom);
148
149  // Dynamic stack
150  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
151  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
152  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
153
154  // Exception handling
155  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
156  setExceptionPointerRegister(XCore::R0);
157  setExceptionSelectorRegister(XCore::R1);
158  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
159
160  // Atomic operations
161  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
162  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
163  setInsertFencesForAtomic(true);
164  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
165  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
166  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
167
168  // TRAMPOLINE is custom lowered.
169  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
170  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
171
172  // We want to custom lower some of our intrinsics.
173  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
174
175  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
176  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
177    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
178
179  // We have target-specific dag combine patterns for the following nodes:
180  setTargetDAGCombine(ISD::STORE);
181  setTargetDAGCombine(ISD::ADD);
182  setTargetDAGCombine(ISD::INTRINSIC_VOID);
183  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
184
185  setMinFunctionAlignment(1);
186  setPrefFunctionAlignment(2);
187}
188
189bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
190  if (Val.getOpcode() != ISD::LOAD)
191    return false;
192
193  EVT VT1 = Val.getValueType();
194  if (!VT1.isSimple() || !VT1.isInteger() ||
195      !VT2.isSimple() || !VT2.isInteger())
196    return false;
197
198  switch (VT1.getSimpleVT().SimpleTy) {
199  default: break;
200  case MVT::i8:
201    return true;
202  }
203
204  return false;
205}
206
207SDValue XCoreTargetLowering::
208LowerOperation(SDValue Op, SelectionDAG &DAG) const {
209  switch (Op.getOpcode())
210  {
211  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
212  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
213  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
214  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
215  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
216  case ISD::LOAD:               return LowerLOAD(Op, DAG);
217  case ISD::STORE:              return LowerSTORE(Op, DAG);
218  case ISD::VAARG:              return LowerVAARG(Op, DAG);
219  case ISD::VASTART:            return LowerVASTART(Op, DAG);
220  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
221  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
222  // FIXME: Remove these when LegalizeDAGTypes lands.
223  case ISD::ADD:
224  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
225  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
226  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
227  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
228  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
229  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
230  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
231  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
232  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
233  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
234  default:
235    llvm_unreachable("unimplemented operand");
236  }
237}
238
239/// ReplaceNodeResults - Replace the results of node with an illegal result
240/// type with new values built out of custom code.
241void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
242                                             SmallVectorImpl<SDValue>&Results,
243                                             SelectionDAG &DAG) const {
244  switch (N->getOpcode()) {
245  default:
246    llvm_unreachable("Don't know how to custom expand this!");
247  case ISD::ADD:
248  case ISD::SUB:
249    Results.push_back(ExpandADDSUB(N, DAG));
250    return;
251  }
252}
253
254//===----------------------------------------------------------------------===//
255//  Misc Lower Operation implementation
256//===----------------------------------------------------------------------===//
257
258SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
259                                                     const GlobalValue *GV,
260                                                     SelectionDAG &DAG) const {
261  // FIXME there is no actual debug info here
262  SDLoc dl(GA);
263
264  if (GV->getType()->getElementType()->isFunctionTy())
265    return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
266
267  const auto *GVar = dyn_cast<GlobalVariable>(GV);
268  if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
269      (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
270    return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
271
272  return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
273}
274
275static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
276  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
277    return true;
278
279  Type *ObjType = GV->getType()->getPointerElementType();
280  if (!ObjType->isSized())
281    return false;
282
283  unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
284  return ObjSize < CodeModelLargeSize && ObjSize != 0;
285}
286
287SDValue XCoreTargetLowering::
288LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
289{
290  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
291  const GlobalValue *GV = GN->getGlobal();
292  SDLoc DL(GN);
293  int64_t Offset = GN->getOffset();
294  if (IsSmallObject(GV, *this)) {
295    // We can only fold positive offsets that are a multiple of the word size.
296    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
297    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
298    GA = getGlobalAddressWrapper(GA, GV, DAG);
299    // Handle the rest of the offset.
300    if (Offset != FoldedOffset) {
301      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
302      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
303    }
304    return GA;
305  } else {
306    // Ideally we would not fold in offset with an index <= 11.
307    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
308    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
309    Ty = Type::getInt32Ty(*DAG.getContext());
310    Constant *Idx = ConstantInt::get(Ty, Offset);
311    Constant *GAI = ConstantExpr::getGetElementPtr(
312        Type::getInt8Ty(*DAG.getContext()), GA, Idx);
313    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
314    return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
315                       MachinePointerInfo(), false, false, false, 0);
316  }
317}
318
319SDValue XCoreTargetLowering::
320LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
321{
322  SDLoc DL(Op);
323
324  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
325  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
326
327  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
328}
329
330SDValue XCoreTargetLowering::
331LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
332{
333  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
334  // FIXME there isn't really debug info here
335  SDLoc dl(CP);
336  EVT PtrVT = Op.getValueType();
337  SDValue Res;
338  if (CP->isMachineConstantPoolEntry()) {
339    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
340                                    CP->getAlignment(), CP->getOffset());
341  } else {
342    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
343                                    CP->getAlignment(), CP->getOffset());
344  }
345  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
346}
347
348unsigned XCoreTargetLowering::getJumpTableEncoding() const {
349  return MachineJumpTableInfo::EK_Inline;
350}
351
352SDValue XCoreTargetLowering::
353LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
354{
355  SDValue Chain = Op.getOperand(0);
356  SDValue Table = Op.getOperand(1);
357  SDValue Index = Op.getOperand(2);
358  SDLoc dl(Op);
359  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
360  unsigned JTI = JT->getIndex();
361  MachineFunction &MF = DAG.getMachineFunction();
362  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
363  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
364
365  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
366  if (NumEntries <= 32) {
367    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
368  }
369  assert((NumEntries >> 31) == 0);
370  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
371                                    DAG.getConstant(1, MVT::i32));
372  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
373                     ScaledIndex);
374}
375
376SDValue XCoreTargetLowering::
377lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
378                                       int64_t Offset, SelectionDAG &DAG) const
379{
380  if ((Offset & 0x3) == 0) {
381    return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
382                       false, false, false, 0);
383  }
384  // Lower to pair of consecutive word aligned loads plus some bit shifting.
385  int32_t HighOffset = RoundUpToAlignment(Offset, 4);
386  int32_t LowOffset = HighOffset - 4;
387  SDValue LowAddr, HighAddr;
388  if (GlobalAddressSDNode *GASD =
389        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
390    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
391                                   LowOffset);
392    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
393                                    HighOffset);
394  } else {
395    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
396                          DAG.getConstant(LowOffset, MVT::i32));
397    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
398                           DAG.getConstant(HighOffset, MVT::i32));
399  }
400  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
401  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
402
403  SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
404                            LowAddr, MachinePointerInfo(),
405                            false, false, false, 0);
406  SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
407                             HighAddr, MachinePointerInfo(),
408                             false, false, false, 0);
409  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
410  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
411  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
412  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
413                      High.getValue(1));
414  SDValue Ops[] = { Result, Chain };
415  return DAG.getMergeValues(Ops, DL);
416}
417
418static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
419{
420  APInt KnownZero, KnownOne;
421  DAG.computeKnownBits(Value, KnownZero, KnownOne);
422  return KnownZero.countTrailingOnes() >= 2;
423}
424
425SDValue XCoreTargetLowering::
426LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
427  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
428  LoadSDNode *LD = cast<LoadSDNode>(Op);
429  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
430         "Unexpected extension type");
431  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
432  if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
433                                     LD->getAddressSpace(),
434                                     LD->getAlignment()))
435    return SDValue();
436
437  unsigned ABIAlignment = getDataLayout()->
438    getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
439  // Leave aligned load alone.
440  if (LD->getAlignment() >= ABIAlignment)
441    return SDValue();
442
443  SDValue Chain = LD->getChain();
444  SDValue BasePtr = LD->getBasePtr();
445  SDLoc DL(Op);
446
447  if (!LD->isVolatile()) {
448    const GlobalValue *GV;
449    int64_t Offset = 0;
450    if (DAG.isBaseWithConstantOffset(BasePtr) &&
451        isWordAligned(BasePtr->getOperand(0), DAG)) {
452      SDValue NewBasePtr = BasePtr->getOperand(0);
453      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
454      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
455                                                    Offset, DAG);
456    }
457    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
458        MinAlign(GV->getAlignment(), 4) == 4) {
459      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
460                                                BasePtr->getValueType(0));
461      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
462                                                    Offset, DAG);
463    }
464  }
465
466  if (LD->getAlignment() == 2) {
467    SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
468                                 BasePtr, LD->getPointerInfo(), MVT::i16,
469                                 LD->isVolatile(), LD->isNonTemporal(),
470                                 LD->isInvariant(), 2);
471    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
472                                   DAG.getConstant(2, MVT::i32));
473    SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
474                                  HighAddr,
475                                  LD->getPointerInfo().getWithOffset(2),
476                                  MVT::i16, LD->isVolatile(),
477                                  LD->isNonTemporal(), LD->isInvariant(), 2);
478    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
479                                      DAG.getConstant(16, MVT::i32));
480    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
481    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
482                             High.getValue(1));
483    SDValue Ops[] = { Result, Chain };
484    return DAG.getMergeValues(Ops, DL);
485  }
486
487  // Lower to a call to __misaligned_load(BasePtr).
488  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
489  TargetLowering::ArgListTy Args;
490  TargetLowering::ArgListEntry Entry;
491
492  Entry.Ty = IntPtrTy;
493  Entry.Node = BasePtr;
494  Args.push_back(Entry);
495
496  TargetLowering::CallLoweringInfo CLI(DAG);
497  CLI.setDebugLoc(DL).setChain(Chain)
498    .setCallee(CallingConv::C, IntPtrTy,
499               DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
500               std::move(Args), 0);
501
502  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
503  SDValue Ops[] = { CallResult.first, CallResult.second };
504  return DAG.getMergeValues(Ops, DL);
505}
506
507SDValue XCoreTargetLowering::
508LowerSTORE(SDValue Op, SelectionDAG &DAG) const
509{
510  StoreSDNode *ST = cast<StoreSDNode>(Op);
511  assert(!ST->isTruncatingStore() && "Unexpected store type");
512  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
513  if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
514                                     ST->getAddressSpace(),
515                                     ST->getAlignment())) {
516    return SDValue();
517  }
518  unsigned ABIAlignment = getDataLayout()->
519    getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
520  // Leave aligned store alone.
521  if (ST->getAlignment() >= ABIAlignment) {
522    return SDValue();
523  }
524  SDValue Chain = ST->getChain();
525  SDValue BasePtr = ST->getBasePtr();
526  SDValue Value = ST->getValue();
527  SDLoc dl(Op);
528
529  if (ST->getAlignment() == 2) {
530    SDValue Low = Value;
531    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
532                                      DAG.getConstant(16, MVT::i32));
533    SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
534                                         ST->getPointerInfo(), MVT::i16,
535                                         ST->isVolatile(), ST->isNonTemporal(),
536                                         2);
537    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
538                                   DAG.getConstant(2, MVT::i32));
539    SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
540                                          ST->getPointerInfo().getWithOffset(2),
541                                          MVT::i16, ST->isVolatile(),
542                                          ST->isNonTemporal(), 2);
543    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
544  }
545
546  // Lower to a call to __misaligned_store(BasePtr, Value).
547  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
548  TargetLowering::ArgListTy Args;
549  TargetLowering::ArgListEntry Entry;
550
551  Entry.Ty = IntPtrTy;
552  Entry.Node = BasePtr;
553  Args.push_back(Entry);
554
555  Entry.Node = Value;
556  Args.push_back(Entry);
557
558  TargetLowering::CallLoweringInfo CLI(DAG);
559  CLI.setDebugLoc(dl).setChain(Chain)
560    .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
561               DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
562               std::move(Args), 0);
563
564  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
565  return CallResult.second;
566}
567
568SDValue XCoreTargetLowering::
569LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
570{
571  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
572         "Unexpected operand to lower!");
573  SDLoc dl(Op);
574  SDValue LHS = Op.getOperand(0);
575  SDValue RHS = Op.getOperand(1);
576  SDValue Zero = DAG.getConstant(0, MVT::i32);
577  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
578                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
579                           LHS, RHS);
580  SDValue Lo(Hi.getNode(), 1);
581  SDValue Ops[] = { Lo, Hi };
582  return DAG.getMergeValues(Ops, dl);
583}
584
585SDValue XCoreTargetLowering::
586LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
587{
588  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
589         "Unexpected operand to lower!");
590  SDLoc dl(Op);
591  SDValue LHS = Op.getOperand(0);
592  SDValue RHS = Op.getOperand(1);
593  SDValue Zero = DAG.getConstant(0, MVT::i32);
594  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
595                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
596                           Zero, Zero);
597  SDValue Lo(Hi.getNode(), 1);
598  SDValue Ops[] = { Lo, Hi };
599  return DAG.getMergeValues(Ops, dl);
600}
601
602/// isADDADDMUL - Return whether Op is in a form that is equivalent to
603/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
604/// each intermediate result in the calculation must also have a single use.
605/// If the Op is in the correct form the constituent parts are written to Mul0,
606/// Mul1, Addend0 and Addend1.
607static bool
608isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
609            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
610{
611  if (Op.getOpcode() != ISD::ADD)
612    return false;
613  SDValue N0 = Op.getOperand(0);
614  SDValue N1 = Op.getOperand(1);
615  SDValue AddOp;
616  SDValue OtherOp;
617  if (N0.getOpcode() == ISD::ADD) {
618    AddOp = N0;
619    OtherOp = N1;
620  } else if (N1.getOpcode() == ISD::ADD) {
621    AddOp = N1;
622    OtherOp = N0;
623  } else {
624    return false;
625  }
626  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
627    return false;
628  if (OtherOp.getOpcode() == ISD::MUL) {
629    // add(add(a,b),mul(x,y))
630    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
631      return false;
632    Mul0 = OtherOp.getOperand(0);
633    Mul1 = OtherOp.getOperand(1);
634    Addend0 = AddOp.getOperand(0);
635    Addend1 = AddOp.getOperand(1);
636    return true;
637  }
638  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
639    // add(add(mul(x,y),a),b)
640    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
641      return false;
642    Mul0 = AddOp.getOperand(0).getOperand(0);
643    Mul1 = AddOp.getOperand(0).getOperand(1);
644    Addend0 = AddOp.getOperand(1);
645    Addend1 = OtherOp;
646    return true;
647  }
648  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
649    // add(add(a,mul(x,y)),b)
650    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
651      return false;
652    Mul0 = AddOp.getOperand(1).getOperand(0);
653    Mul1 = AddOp.getOperand(1).getOperand(1);
654    Addend0 = AddOp.getOperand(0);
655    Addend1 = OtherOp;
656    return true;
657  }
658  return false;
659}
660
661SDValue XCoreTargetLowering::
662TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
663{
664  SDValue Mul;
665  SDValue Other;
666  if (N->getOperand(0).getOpcode() == ISD::MUL) {
667    Mul = N->getOperand(0);
668    Other = N->getOperand(1);
669  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
670    Mul = N->getOperand(1);
671    Other = N->getOperand(0);
672  } else {
673    return SDValue();
674  }
675  SDLoc dl(N);
676  SDValue LL, RL, AddendL, AddendH;
677  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678                   Mul.getOperand(0),  DAG.getConstant(0, MVT::i32));
679  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680                   Mul.getOperand(1),  DAG.getConstant(0, MVT::i32));
681  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
682                        Other,  DAG.getConstant(0, MVT::i32));
683  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
684                        Other,  DAG.getConstant(1, MVT::i32));
685  APInt HighMask = APInt::getHighBitsSet(64, 32);
686  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
687  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
688  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
689      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
690    // The inputs are both zero-extended.
691    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
692                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
693                             AddendL, LL, RL);
694    SDValue Lo(Hi.getNode(), 1);
695    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
696  }
697  if (LHSSB > 32 && RHSSB > 32) {
698    // The inputs are both sign-extended.
699    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
700                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
701                             AddendL, LL, RL);
702    SDValue Lo(Hi.getNode(), 1);
703    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
704  }
705  SDValue LH, RH;
706  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707                   Mul.getOperand(0),  DAG.getConstant(1, MVT::i32));
708  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709                   Mul.getOperand(1),  DAG.getConstant(1, MVT::i32));
710  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
711                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
712                           AddendL, LL, RL);
713  SDValue Lo(Hi.getNode(), 1);
714  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
715  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
716  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
717  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
718  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
719}
720
721SDValue XCoreTargetLowering::
722ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
723{
724  assert(N->getValueType(0) == MVT::i64 &&
725         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
726        "Unknown operand to lower!");
727
728  if (N->getOpcode() == ISD::ADD) {
729    SDValue Result = TryExpandADDWithMul(N, DAG);
730    if (Result.getNode())
731      return Result;
732  }
733
734  SDLoc dl(N);
735
736  // Extract components
737  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
738                            N->getOperand(0),  DAG.getConstant(0, MVT::i32));
739  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
740                            N->getOperand(0),  DAG.getConstant(1, MVT::i32));
741  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
742                             N->getOperand(1), DAG.getConstant(0, MVT::i32));
743  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
744                             N->getOperand(1), DAG.getConstant(1, MVT::i32));
745
746  // Expand
747  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
748                                                   XCoreISD::LSUB;
749  SDValue Zero = DAG.getConstant(0, MVT::i32);
750  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
751                           LHSL, RHSL, Zero);
752  SDValue Carry(Lo.getNode(), 1);
753
754  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
755                           LHSH, RHSH, Carry);
756  SDValue Ignored(Hi.getNode(), 1);
757  // Merge the pieces
758  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
759}
760
761SDValue XCoreTargetLowering::
762LowerVAARG(SDValue Op, SelectionDAG &DAG) const
763{
764  // Whist llvm does not support aggregate varargs we can ignore
765  // the possibility of the ValueType being an implicit byVal vararg.
766  SDNode *Node = Op.getNode();
767  EVT VT = Node->getValueType(0); // not an aggregate
768  SDValue InChain = Node->getOperand(0);
769  SDValue VAListPtr = Node->getOperand(1);
770  EVT PtrVT = VAListPtr.getValueType();
771  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
772  SDLoc dl(Node);
773  SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
774                               VAListPtr, MachinePointerInfo(SV),
775                               false, false, false, 0);
776  // Increment the pointer, VAList, to the next vararg
777  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
778                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
779  // Store the incremented VAList to the legalized pointer
780  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
781                         MachinePointerInfo(SV), false, false, 0);
782  // Load the actual argument out of the pointer VAList
783  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
784                     false, false, false, 0);
785}
786
787SDValue XCoreTargetLowering::
788LowerVASTART(SDValue Op, SelectionDAG &DAG) const
789{
790  SDLoc dl(Op);
791  // vastart stores the address of the VarArgsFrameIndex slot into the
792  // memory location argument
793  MachineFunction &MF = DAG.getMachineFunction();
794  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
795  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
796  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
797                      MachinePointerInfo(), false, false, 0);
798}
799
800SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
801                                            SelectionDAG &DAG) const {
802  // This nodes represent llvm.frameaddress on the DAG.
803  // It takes one operand, the index of the frame address to return.
804  // An index of zero corresponds to the current function's frame address.
805  // An index of one to the parent's frame address, and so on.
806  // Depths > 0 not supported yet!
807  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
808    return SDValue();
809
810  MachineFunction &MF = DAG.getMachineFunction();
811  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
812  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
813                            RegInfo->getFrameRegister(MF), MVT::i32);
814}
815
816SDValue XCoreTargetLowering::
817LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
818  // This nodes represent llvm.returnaddress on the DAG.
819  // It takes one operand, the index of the return address to return.
820  // An index of zero corresponds to the current function's return address.
821  // An index of one to the parent's return address, and so on.
822  // Depths > 0 not supported yet!
823  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
824    return SDValue();
825
826  MachineFunction &MF = DAG.getMachineFunction();
827  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
828  int FI = XFI->createLRSpillSlot(MF);
829  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
830  return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
831                     MachinePointerInfo::getFixedStack(FI), false, false,
832                     false, 0);
833}
834
835SDValue XCoreTargetLowering::
836LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
837  // This node represents offset from frame pointer to first on-stack argument.
838  // This is needed for correct stack adjustment during unwind.
839  // However, we don't know the offset until after the frame has be finalised.
840  // This is done during the XCoreFTAOElim pass.
841  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
842}
843
844SDValue XCoreTargetLowering::
845LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
846  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
847  // This node represents 'eh_return' gcc dwarf builtin, which is used to
848  // return from exception. The general meaning is: adjust stack by OFFSET and
849  // pass execution to HANDLER.
850  MachineFunction &MF = DAG.getMachineFunction();
851  SDValue Chain     = Op.getOperand(0);
852  SDValue Offset    = Op.getOperand(1);
853  SDValue Handler   = Op.getOperand(2);
854  SDLoc dl(Op);
855
856  // Absolute SP = (FP + FrameToArgs) + Offset
857  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
858  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
859                            RegInfo->getFrameRegister(MF), MVT::i32);
860  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
861                                    MVT::i32);
862  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
863  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
864
865  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
866  // which leaves 2 caller saved registers, R2 & R3 for us to use.
867  unsigned StackReg = XCore::R2;
868  unsigned HandlerReg = XCore::R3;
869
870  SDValue OutChains[] = {
871    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
872    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
873  };
874
875  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
876
877  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
878                     DAG.getRegister(StackReg, MVT::i32),
879                     DAG.getRegister(HandlerReg, MVT::i32));
880
881}
882
883SDValue XCoreTargetLowering::
884LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
885  return Op.getOperand(0);
886}
887
888SDValue XCoreTargetLowering::
889LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
890  SDValue Chain = Op.getOperand(0);
891  SDValue Trmp = Op.getOperand(1); // trampoline
892  SDValue FPtr = Op.getOperand(2); // nested function
893  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
894
895  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
896
897  // .align 4
898  // LDAPF_u10 r11, nest
899  // LDW_2rus r11, r11[0]
900  // STWSP_ru6 r11, sp[0]
901  // LDAPF_u10 r11, fptr
902  // LDW_2rus r11, r11[0]
903  // BAU_1r r11
904  // nest:
905  // .word nest
906  // fptr:
907  // .word fptr
908  SDValue OutChains[5];
909
910  SDValue Addr = Trmp;
911
912  SDLoc dl(Op);
913  OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
914                              Addr, MachinePointerInfo(TrmpAddr), false, false,
915                              0);
916
917  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
918                     DAG.getConstant(4, MVT::i32));
919  OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
920                              Addr, MachinePointerInfo(TrmpAddr, 4), false,
921                              false, 0);
922
923  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
924                     DAG.getConstant(8, MVT::i32));
925  OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
926                              Addr, MachinePointerInfo(TrmpAddr, 8), false,
927                              false, 0);
928
929  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
930                     DAG.getConstant(12, MVT::i32));
931  OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
932                              MachinePointerInfo(TrmpAddr, 12), false, false,
933                              0);
934
935  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
936                     DAG.getConstant(16, MVT::i32));
937  OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
938                              MachinePointerInfo(TrmpAddr, 16), false, false,
939                              0);
940
941  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
942}
943
944SDValue XCoreTargetLowering::
945LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
946  SDLoc DL(Op);
947  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
948  switch (IntNo) {
949    case Intrinsic::xcore_crc8:
950      EVT VT = Op.getValueType();
951      SDValue Data =
952        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
953                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
954      SDValue Crc(Data.getNode(), 1);
955      SDValue Results[] = { Crc, Data };
956      return DAG.getMergeValues(Results, DL);
957  }
958  return SDValue();
959}
960
961SDValue XCoreTargetLowering::
962LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
963  SDLoc DL(Op);
964  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
965}
966
967SDValue XCoreTargetLowering::
968LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
969  AtomicSDNode *N = cast<AtomicSDNode>(Op);
970  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
971  assert(N->getOrdering() <= Monotonic &&
972         "setInsertFencesForAtomic(true) and yet greater than Monotonic");
973  if (N->getMemoryVT() == MVT::i32) {
974    if (N->getAlignment() < 4)
975      report_fatal_error("atomic load must be aligned");
976    return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
977                       N->getBasePtr(), N->getPointerInfo(),
978                       N->isVolatile(), N->isNonTemporal(),
979                       N->isInvariant(), N->getAlignment(),
980                       N->getAAInfo(), N->getRanges());
981  }
982  if (N->getMemoryVT() == MVT::i16) {
983    if (N->getAlignment() < 2)
984      report_fatal_error("atomic load must be aligned");
985    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
986                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
987                          N->isVolatile(), N->isNonTemporal(),
988                          N->isInvariant(), N->getAlignment(), N->getAAInfo());
989  }
990  if (N->getMemoryVT() == MVT::i8)
991    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
992                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
993                          N->isVolatile(), N->isNonTemporal(),
994                          N->isInvariant(), N->getAlignment(), N->getAAInfo());
995  return SDValue();
996}
997
998SDValue XCoreTargetLowering::
999LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
1000  AtomicSDNode *N = cast<AtomicSDNode>(Op);
1001  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1002  assert(N->getOrdering() <= Monotonic &&
1003         "setInsertFencesForAtomic(true) and yet greater than Monotonic");
1004  if (N->getMemoryVT() == MVT::i32) {
1005    if (N->getAlignment() < 4)
1006      report_fatal_error("atomic store must be aligned");
1007    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1008                        N->getBasePtr(), N->getPointerInfo(),
1009                        N->isVolatile(), N->isNonTemporal(),
1010                        N->getAlignment(), N->getAAInfo());
1011  }
1012  if (N->getMemoryVT() == MVT::i16) {
1013    if (N->getAlignment() < 2)
1014      report_fatal_error("atomic store must be aligned");
1015    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1016                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1017                             N->isVolatile(), N->isNonTemporal(),
1018                             N->getAlignment(), N->getAAInfo());
1019  }
1020  if (N->getMemoryVT() == MVT::i8)
1021    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1022                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1023                             N->isVolatile(), N->isNonTemporal(),
1024                             N->getAlignment(), N->getAAInfo());
1025  return SDValue();
1026}
1027
1028//===----------------------------------------------------------------------===//
1029//                      Calling Convention Implementation
1030//===----------------------------------------------------------------------===//
1031
1032#include "XCoreGenCallingConv.inc"
1033
1034//===----------------------------------------------------------------------===//
1035//                  Call Calling Convention Implementation
1036//===----------------------------------------------------------------------===//
1037
1038/// XCore call implementation
1039SDValue
1040XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1041                               SmallVectorImpl<SDValue> &InVals) const {
1042  SelectionDAG &DAG                     = CLI.DAG;
1043  SDLoc &dl                             = CLI.DL;
1044  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1045  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1046  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1047  SDValue Chain                         = CLI.Chain;
1048  SDValue Callee                        = CLI.Callee;
1049  bool &isTailCall                      = CLI.IsTailCall;
1050  CallingConv::ID CallConv              = CLI.CallConv;
1051  bool isVarArg                         = CLI.IsVarArg;
1052
1053  // XCore target does not yet support tail call optimization.
1054  isTailCall = false;
1055
1056  // For now, only CallingConv::C implemented
1057  switch (CallConv)
1058  {
1059    default:
1060      llvm_unreachable("Unsupported calling convention");
1061    case CallingConv::Fast:
1062    case CallingConv::C:
1063      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1064                            Outs, OutVals, Ins, dl, DAG, InVals);
1065  }
1066}
1067
1068/// LowerCallResult - Lower the result values of a call into the
1069/// appropriate copies out of appropriate physical registers / memory locations.
1070static SDValue
1071LowerCallResult(SDValue Chain, SDValue InFlag,
1072                const SmallVectorImpl<CCValAssign> &RVLocs,
1073                SDLoc dl, SelectionDAG &DAG,
1074                SmallVectorImpl<SDValue> &InVals) {
1075  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1076  // Copy results out of physical registers.
1077  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1078    const CCValAssign &VA = RVLocs[i];
1079    if (VA.isRegLoc()) {
1080      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1081                                 InFlag).getValue(1);
1082      InFlag = Chain.getValue(2);
1083      InVals.push_back(Chain.getValue(0));
1084    } else {
1085      assert(VA.isMemLoc());
1086      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1087                                             InVals.size()));
1088      // Reserve space for this result.
1089      InVals.push_back(SDValue());
1090    }
1091  }
1092
1093  // Copy results out of memory.
1094  SmallVector<SDValue, 4> MemOpChains;
1095  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1096    int offset = ResultMemLocs[i].first;
1097    unsigned index = ResultMemLocs[i].second;
1098    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1099    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
1100    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1101    InVals[index] = load;
1102    MemOpChains.push_back(load.getValue(1));
1103  }
1104
1105  // Transform all loads nodes into one single node because
1106  // all load nodes are independent of each other.
1107  if (!MemOpChains.empty())
1108    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1109
1110  return Chain;
1111}
1112
1113/// LowerCCCCallTo - functions arguments are copied from virtual
1114/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1115/// CALLSEQ_END are emitted.
1116/// TODO: isTailCall, sret.
1117SDValue
1118XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
1119                                    CallingConv::ID CallConv, bool isVarArg,
1120                                    bool isTailCall,
1121                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1122                                    const SmallVectorImpl<SDValue> &OutVals,
1123                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1124                                    SDLoc dl, SelectionDAG &DAG,
1125                                    SmallVectorImpl<SDValue> &InVals) const {
1126
1127  // Analyze operands of the call, assigning locations to each operand.
1128  SmallVector<CCValAssign, 16> ArgLocs;
1129  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1130                 *DAG.getContext());
1131
1132  // The ABI dictates there should be one stack slot available to the callee
1133  // on function entry (for saving lr).
1134  CCInfo.AllocateStack(4, 4);
1135
1136  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1137
1138  SmallVector<CCValAssign, 16> RVLocs;
1139  // Analyze return values to determine the number of bytes of stack required.
1140  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1141                    *DAG.getContext());
1142  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1143  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1144
1145  // Get a count of how many bytes are to be pushed on the stack.
1146  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1147
1148  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
1149                                 getPointerTy(), true), dl);
1150
1151  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1152  SmallVector<SDValue, 12> MemOpChains;
1153
1154  // Walk the register/memloc assignments, inserting copies/loads.
1155  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156    CCValAssign &VA = ArgLocs[i];
1157    SDValue Arg = OutVals[i];
1158
1159    // Promote the value if needed.
1160    switch (VA.getLocInfo()) {
1161      default: llvm_unreachable("Unknown loc info!");
1162      case CCValAssign::Full: break;
1163      case CCValAssign::SExt:
1164        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1165        break;
1166      case CCValAssign::ZExt:
1167        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1168        break;
1169      case CCValAssign::AExt:
1170        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1171        break;
1172    }
1173
1174    // Arguments that can be passed on register must be kept at
1175    // RegsToPass vector
1176    if (VA.isRegLoc()) {
1177      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1178    } else {
1179      assert(VA.isMemLoc());
1180
1181      int Offset = VA.getLocMemOffset();
1182
1183      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1184                                        Chain, Arg,
1185                                        DAG.getConstant(Offset/4, MVT::i32)));
1186    }
1187  }
1188
1189  // Transform all store nodes into one single node because
1190  // all store nodes are independent of each other.
1191  if (!MemOpChains.empty())
1192    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1193
1194  // Build a sequence of copy-to-reg nodes chained together with token
1195  // chain and flag operands which copy the outgoing args into registers.
1196  // The InFlag in necessary since all emitted instructions must be
1197  // stuck together.
1198  SDValue InFlag;
1199  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1200    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1201                             RegsToPass[i].second, InFlag);
1202    InFlag = Chain.getValue(1);
1203  }
1204
1205  // If the callee is a GlobalAddress node (quite common, every direct call is)
1206  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1207  // Likewise ExternalSymbol -> TargetExternalSymbol.
1208  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1209    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1210  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1211    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1212
1213  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1214  //             = Chain, Callee, Reg#1, Reg#2, ...
1215  //
1216  // Returns a chain & a flag for retval copy to use.
1217  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1218  SmallVector<SDValue, 8> Ops;
1219  Ops.push_back(Chain);
1220  Ops.push_back(Callee);
1221
1222  // Add argument registers to the end of the list so that they are
1223  // known live into the call.
1224  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1225    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1226                                  RegsToPass[i].second.getValueType()));
1227
1228  if (InFlag.getNode())
1229    Ops.push_back(InFlag);
1230
1231  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1232  InFlag = Chain.getValue(1);
1233
1234  // Create the CALLSEQ_END node.
1235  Chain = DAG.getCALLSEQ_END(Chain,
1236                             DAG.getConstant(NumBytes, getPointerTy(), true),
1237                             DAG.getConstant(0, getPointerTy(), true),
1238                             InFlag, dl);
1239  InFlag = Chain.getValue(1);
1240
1241  // Handle result values, copying them out of physregs into vregs that we
1242  // return.
1243  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1244}
1245
1246//===----------------------------------------------------------------------===//
1247//             Formal Arguments Calling Convention Implementation
1248//===----------------------------------------------------------------------===//
1249
1250namespace {
1251  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1252}
1253
1254/// XCore formal arguments implementation
1255SDValue
1256XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1257                                          CallingConv::ID CallConv,
1258                                          bool isVarArg,
1259                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1260                                          SDLoc dl,
1261                                          SelectionDAG &DAG,
1262                                          SmallVectorImpl<SDValue> &InVals)
1263                                            const {
1264  switch (CallConv)
1265  {
1266    default:
1267      llvm_unreachable("Unsupported calling convention");
1268    case CallingConv::C:
1269    case CallingConv::Fast:
1270      return LowerCCCArguments(Chain, CallConv, isVarArg,
1271                               Ins, dl, DAG, InVals);
1272  }
1273}
1274
1275/// LowerCCCArguments - transform physical registers into
1276/// virtual registers and generate load operations for
1277/// arguments places on the stack.
1278/// TODO: sret
1279SDValue
1280XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1281                                       CallingConv::ID CallConv,
1282                                       bool isVarArg,
1283                                       const SmallVectorImpl<ISD::InputArg>
1284                                         &Ins,
1285                                       SDLoc dl,
1286                                       SelectionDAG &DAG,
1287                                       SmallVectorImpl<SDValue> &InVals) const {
1288  MachineFunction &MF = DAG.getMachineFunction();
1289  MachineFrameInfo *MFI = MF.getFrameInfo();
1290  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1291  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1292
1293  // Assign locations to all of the incoming arguments.
1294  SmallVector<CCValAssign, 16> ArgLocs;
1295  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1296                 *DAG.getContext());
1297
1298  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1299
1300  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1301
1302  unsigned LRSaveSize = StackSlotSize;
1303
1304  if (!isVarArg)
1305    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1306
1307  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1308  // scheduler clobbering a register before it has been copied.
1309  // The stages are:
1310  // 1. CopyFromReg (and load) arg & vararg registers.
1311  // 2. Chain CopyFromReg nodes into a TokenFactor.
1312  // 3. Memcpy 'byVal' args & push final InVals.
1313  // 4. Chain mem ops nodes into a TokenFactor.
1314  SmallVector<SDValue, 4> CFRegNode;
1315  SmallVector<ArgDataPair, 4> ArgData;
1316  SmallVector<SDValue, 4> MemOps;
1317
1318  // 1a. CopyFromReg (and load) arg registers.
1319  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1320
1321    CCValAssign &VA = ArgLocs[i];
1322    SDValue ArgIn;
1323
1324    if (VA.isRegLoc()) {
1325      // Arguments passed in registers
1326      EVT RegVT = VA.getLocVT();
1327      switch (RegVT.getSimpleVT().SimpleTy) {
1328      default:
1329        {
1330#ifndef NDEBUG
1331          errs() << "LowerFormalArguments Unhandled argument type: "
1332                 << RegVT.getSimpleVT().SimpleTy << "\n";
1333#endif
1334          llvm_unreachable(nullptr);
1335        }
1336      case MVT::i32:
1337        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1338        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1339        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1340        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1341      }
1342    } else {
1343      // sanity check
1344      assert(VA.isMemLoc());
1345      // Load the argument to a virtual register
1346      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1347      if (ObjSize > StackSlotSize) {
1348        errs() << "LowerFormalArguments Unhandled argument type: "
1349               << EVT(VA.getLocVT()).getEVTString()
1350               << "\n";
1351      }
1352      // Create the frame index object for this incoming parameter...
1353      int FI = MFI->CreateFixedObject(ObjSize,
1354                                      LRSaveSize + VA.getLocMemOffset(),
1355                                      true);
1356
1357      // Create the SelectionDAG nodes corresponding to a load
1358      //from this parameter
1359      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1360      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1361                          MachinePointerInfo::getFixedStack(FI),
1362                          false, false, false, 0);
1363    }
1364    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1365    ArgData.push_back(ADP);
1366  }
1367
1368  // 1b. CopyFromReg vararg registers.
1369  if (isVarArg) {
1370    // Argument registers
1371    static const MCPhysReg ArgRegs[] = {
1372      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1373    };
1374    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1375    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1376    if (FirstVAReg < array_lengthof(ArgRegs)) {
1377      int offset = 0;
1378      // Save remaining registers, storing higher register numbers at a higher
1379      // address
1380      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1381        // Create a stack slot
1382        int FI = MFI->CreateFixedObject(4, offset, true);
1383        if (i == (int)FirstVAReg) {
1384          XFI->setVarArgsFrameIndex(FI);
1385        }
1386        offset -= StackSlotSize;
1387        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1388        // Move argument from phys reg -> virt reg
1389        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1390        RegInfo.addLiveIn(ArgRegs[i], VReg);
1391        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1392        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1393        // Move argument from virt reg -> stack
1394        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1395                                     MachinePointerInfo(), false, false, 0);
1396        MemOps.push_back(Store);
1397      }
1398    } else {
1399      // This will point to the next argument passed via stack.
1400      XFI->setVarArgsFrameIndex(
1401        MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1402                               true));
1403    }
1404  }
1405
1406  // 2. chain CopyFromReg nodes into a TokenFactor.
1407  if (!CFRegNode.empty())
1408    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1409
1410  // 3. Memcpy 'byVal' args & push final InVals.
1411  // Aggregates passed "byVal" need to be copied by the callee.
1412  // The callee will use a pointer to this copy, rather than the original
1413  // pointer.
1414  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1415                                                    ArgDE = ArgData.end();
1416       ArgDI != ArgDE; ++ArgDI) {
1417    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1418      unsigned Size = ArgDI->Flags.getByValSize();
1419      unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1420      // Create a new object on the stack and copy the pointee into it.
1421      int FI = MFI->CreateStackObject(Size, Align, false);
1422      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1423      InVals.push_back(FIN);
1424      MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1425                                     DAG.getConstant(Size, MVT::i32),
1426                                     Align, false, false, false,
1427                                     MachinePointerInfo(),
1428                                     MachinePointerInfo()));
1429    } else {
1430      InVals.push_back(ArgDI->SDV);
1431    }
1432  }
1433
1434  // 4, chain mem ops nodes into a TokenFactor.
1435  if (!MemOps.empty()) {
1436    MemOps.push_back(Chain);
1437    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1438  }
1439
1440  return Chain;
1441}
1442
1443//===----------------------------------------------------------------------===//
1444//               Return Value Calling Convention Implementation
1445//===----------------------------------------------------------------------===//
1446
1447bool XCoreTargetLowering::
1448CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1449               bool isVarArg,
1450               const SmallVectorImpl<ISD::OutputArg> &Outs,
1451               LLVMContext &Context) const {
1452  SmallVector<CCValAssign, 16> RVLocs;
1453  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1454  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1455    return false;
1456  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1457    return false;
1458  return true;
1459}
1460
1461SDValue
1462XCoreTargetLowering::LowerReturn(SDValue Chain,
1463                                 CallingConv::ID CallConv, bool isVarArg,
1464                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1465                                 const SmallVectorImpl<SDValue> &OutVals,
1466                                 SDLoc dl, SelectionDAG &DAG) const {
1467
1468  XCoreFunctionInfo *XFI =
1469    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1470  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1471
1472  // CCValAssign - represent the assignment of
1473  // the return value to a location
1474  SmallVector<CCValAssign, 16> RVLocs;
1475
1476  // CCState - Info about the registers and stack slot.
1477  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1478                 *DAG.getContext());
1479
1480  // Analyze return values.
1481  if (!isVarArg)
1482    CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1483
1484  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1485
1486  SDValue Flag;
1487  SmallVector<SDValue, 4> RetOps(1, Chain);
1488
1489  // Return on XCore is always a "retsp 0"
1490  RetOps.push_back(DAG.getConstant(0, MVT::i32));
1491
1492  SmallVector<SDValue, 4> MemOpChains;
1493  // Handle return values that must be copied to memory.
1494  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1495    CCValAssign &VA = RVLocs[i];
1496    if (VA.isRegLoc())
1497      continue;
1498    assert(VA.isMemLoc());
1499    if (isVarArg) {
1500      report_fatal_error("Can't return value from vararg function in memory");
1501    }
1502
1503    int Offset = VA.getLocMemOffset();
1504    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1505    // Create the frame index object for the memory location.
1506    int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1507
1508    // Create a SelectionDAG node corresponding to a store
1509    // to this memory location.
1510    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1511    MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
1512                          MachinePointerInfo::getFixedStack(FI), false, false,
1513                          0));
1514  }
1515
1516  // Transform all store nodes into one single node because
1517  // all stores are independent of each other.
1518  if (!MemOpChains.empty())
1519    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1520
1521  // Now handle return values copied to registers.
1522  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1523    CCValAssign &VA = RVLocs[i];
1524    if (!VA.isRegLoc())
1525      continue;
1526    // Copy the result values into the output registers.
1527    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1528
1529    // guarantee that all emitted copies are
1530    // stuck together, avoiding something bad
1531    Flag = Chain.getValue(1);
1532    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1533  }
1534
1535  RetOps[0] = Chain;  // Update chain.
1536
1537  // Add the flag if we have it.
1538  if (Flag.getNode())
1539    RetOps.push_back(Flag);
1540
1541  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1542}
1543
1544//===----------------------------------------------------------------------===//
1545//  Other Lowering Code
1546//===----------------------------------------------------------------------===//
1547
1548MachineBasicBlock *
1549XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1550                                                 MachineBasicBlock *BB) const {
1551  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1552  DebugLoc dl = MI->getDebugLoc();
1553  assert((MI->getOpcode() == XCore::SELECT_CC) &&
1554         "Unexpected instr type to insert");
1555
1556  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1557  // control-flow pattern.  The incoming instruction knows the destination vreg
1558  // to set, the condition code register to branch on, the true/false values to
1559  // select between, and a branch opcode to use.
1560  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1561  MachineFunction::iterator It = BB;
1562  ++It;
1563
1564  //  thisMBB:
1565  //  ...
1566  //   TrueVal = ...
1567  //   cmpTY ccX, r1, r2
1568  //   bCC copy1MBB
1569  //   fallthrough --> copy0MBB
1570  MachineBasicBlock *thisMBB = BB;
1571  MachineFunction *F = BB->getParent();
1572  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1573  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1574  F->insert(It, copy0MBB);
1575  F->insert(It, sinkMBB);
1576
1577  // Transfer the remainder of BB and its successor edges to sinkMBB.
1578  sinkMBB->splice(sinkMBB->begin(), BB,
1579                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1580  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1581
1582  // Next, add the true and fallthrough blocks as its successors.
1583  BB->addSuccessor(copy0MBB);
1584  BB->addSuccessor(sinkMBB);
1585
1586  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1587    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1588
1589  //  copy0MBB:
1590  //   %FalseValue = ...
1591  //   # fallthrough to sinkMBB
1592  BB = copy0MBB;
1593
1594  // Update machine-CFG edges
1595  BB->addSuccessor(sinkMBB);
1596
1597  //  sinkMBB:
1598  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1599  //  ...
1600  BB = sinkMBB;
1601  BuildMI(*BB, BB->begin(), dl,
1602          TII.get(XCore::PHI), MI->getOperand(0).getReg())
1603    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1604    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1605
1606  MI->eraseFromParent();   // The pseudo instruction is gone now.
1607  return BB;
1608}
1609
1610//===----------------------------------------------------------------------===//
1611// Target Optimization Hooks
1612//===----------------------------------------------------------------------===//
1613
1614SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1615                                             DAGCombinerInfo &DCI) const {
1616  SelectionDAG &DAG = DCI.DAG;
1617  SDLoc dl(N);
1618  switch (N->getOpcode()) {
1619  default: break;
1620  case ISD::INTRINSIC_VOID:
1621    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1622    case Intrinsic::xcore_outt:
1623    case Intrinsic::xcore_outct:
1624    case Intrinsic::xcore_chkct: {
1625      SDValue OutVal = N->getOperand(3);
1626      // These instructions ignore the high bits.
1627      if (OutVal.hasOneUse()) {
1628        unsigned BitWidth = OutVal.getValueSizeInBits();
1629        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1630        APInt KnownZero, KnownOne;
1631        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1632                                              !DCI.isBeforeLegalizeOps());
1633        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1634        if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1635            TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1636                                     TLO))
1637          DCI.CommitTargetLoweringOpt(TLO);
1638      }
1639      break;
1640    }
1641    case Intrinsic::xcore_setpt: {
1642      SDValue Time = N->getOperand(3);
1643      // This instruction ignores the high bits.
1644      if (Time.hasOneUse()) {
1645        unsigned BitWidth = Time.getValueSizeInBits();
1646        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1647        APInt KnownZero, KnownOne;
1648        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1649                                              !DCI.isBeforeLegalizeOps());
1650        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1651        if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1652            TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1653                                     TLO))
1654          DCI.CommitTargetLoweringOpt(TLO);
1655      }
1656      break;
1657    }
1658    }
1659    break;
1660  case XCoreISD::LADD: {
1661    SDValue N0 = N->getOperand(0);
1662    SDValue N1 = N->getOperand(1);
1663    SDValue N2 = N->getOperand(2);
1664    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1665    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1666    EVT VT = N0.getValueType();
1667
1668    // canonicalize constant to RHS
1669    if (N0C && !N1C)
1670      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1671
1672    // fold (ladd 0, 0, x) -> 0, x & 1
1673    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1674      SDValue Carry = DAG.getConstant(0, VT);
1675      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1676                                   DAG.getConstant(1, VT));
1677      SDValue Ops[] = { Result, Carry };
1678      return DAG.getMergeValues(Ops, dl);
1679    }
1680
1681    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1682    // low bit set
1683    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1684      APInt KnownZero, KnownOne;
1685      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1686                                         VT.getSizeInBits() - 1);
1687      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1688      if ((KnownZero & Mask) == Mask) {
1689        SDValue Carry = DAG.getConstant(0, VT);
1690        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1691        SDValue Ops[] = { Result, Carry };
1692        return DAG.getMergeValues(Ops, dl);
1693      }
1694    }
1695  }
1696  break;
1697  case XCoreISD::LSUB: {
1698    SDValue N0 = N->getOperand(0);
1699    SDValue N1 = N->getOperand(1);
1700    SDValue N2 = N->getOperand(2);
1701    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1702    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1703    EVT VT = N0.getValueType();
1704
1705    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1706    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1707      APInt KnownZero, KnownOne;
1708      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1709                                         VT.getSizeInBits() - 1);
1710      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1711      if ((KnownZero & Mask) == Mask) {
1712        SDValue Borrow = N2;
1713        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1714                                     DAG.getConstant(0, VT), N2);
1715        SDValue Ops[] = { Result, Borrow };
1716        return DAG.getMergeValues(Ops, dl);
1717      }
1718    }
1719
1720    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1721    // low bit set
1722    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1723      APInt KnownZero, KnownOne;
1724      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1725                                         VT.getSizeInBits() - 1);
1726      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1727      if ((KnownZero & Mask) == Mask) {
1728        SDValue Borrow = DAG.getConstant(0, VT);
1729        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1730        SDValue Ops[] = { Result, Borrow };
1731        return DAG.getMergeValues(Ops, dl);
1732      }
1733    }
1734  }
1735  break;
1736  case XCoreISD::LMUL: {
1737    SDValue N0 = N->getOperand(0);
1738    SDValue N1 = N->getOperand(1);
1739    SDValue N2 = N->getOperand(2);
1740    SDValue N3 = N->getOperand(3);
1741    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1742    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1743    EVT VT = N0.getValueType();
1744    // Canonicalize multiplicative constant to RHS. If both multiplicative
1745    // operands are constant canonicalize smallest to RHS.
1746    if ((N0C && !N1C) ||
1747        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1748      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1749                         N1, N0, N2, N3);
1750
1751    // lmul(x, 0, a, b)
1752    if (N1C && N1C->isNullValue()) {
1753      // If the high result is unused fold to add(a, b)
1754      if (N->hasNUsesOfValue(0, 0)) {
1755        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1756        SDValue Ops[] = { Lo, Lo };
1757        return DAG.getMergeValues(Ops, dl);
1758      }
1759      // Otherwise fold to ladd(a, b, 0)
1760      SDValue Result =
1761        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1762      SDValue Carry(Result.getNode(), 1);
1763      SDValue Ops[] = { Carry, Result };
1764      return DAG.getMergeValues(Ops, dl);
1765    }
1766  }
1767  break;
1768  case ISD::ADD: {
1769    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1770    // lmul(x, y, a, b). The high result of lmul will be ignored.
1771    // This is only profitable if the intermediate results are unused
1772    // elsewhere.
1773    SDValue Mul0, Mul1, Addend0, Addend1;
1774    if (N->getValueType(0) == MVT::i32 &&
1775        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1776      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1777                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1778                                    Mul1, Addend0, Addend1);
1779      SDValue Result(Ignored.getNode(), 1);
1780      return Result;
1781    }
1782    APInt HighMask = APInt::getHighBitsSet(64, 32);
1783    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1784    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1785    // before type legalization as it is messy to match the operands after
1786    // that.
1787    if (N->getValueType(0) == MVT::i64 &&
1788        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1789        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1790        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1791        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1792        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1793      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1794                                  Mul0, DAG.getConstant(0, MVT::i32));
1795      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1796                                  Mul1, DAG.getConstant(0, MVT::i32));
1797      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1798                                     Addend0, DAG.getConstant(0, MVT::i32));
1799      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1800                                     Addend1, DAG.getConstant(0, MVT::i32));
1801      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1802                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1803                               Addend0L, Addend1L);
1804      SDValue Lo(Hi.getNode(), 1);
1805      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1806    }
1807  }
1808  break;
1809  case ISD::STORE: {
1810    // Replace unaligned store of unaligned load with memmove.
1811    StoreSDNode *ST  = cast<StoreSDNode>(N);
1812    if (!DCI.isBeforeLegalize() ||
1813        allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1814                                       ST->getAddressSpace(),
1815                                       ST->getAlignment()) ||
1816        ST->isVolatile() || ST->isIndexed()) {
1817      break;
1818    }
1819    SDValue Chain = ST->getChain();
1820
1821    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1822    if (StoreBits % 8) {
1823      break;
1824    }
1825    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
1826        ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1827    unsigned Alignment = ST->getAlignment();
1828    if (Alignment >= ABIAlignment) {
1829      break;
1830    }
1831
1832    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1833      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1834        LD->getAlignment() == Alignment &&
1835        !LD->isVolatile() && !LD->isIndexed() &&
1836        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1837        bool isTail = isInTailCallPosition(DAG, ST, Chain);
1838        return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1839                              LD->getBasePtr(),
1840                              DAG.getConstant(StoreBits/8, MVT::i32),
1841                              Alignment, false, isTail, ST->getPointerInfo(),
1842                              LD->getPointerInfo());
1843      }
1844    }
1845    break;
1846  }
1847  }
1848  return SDValue();
1849}
1850
1851void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1852                                                        APInt &KnownZero,
1853                                                        APInt &KnownOne,
1854                                                        const SelectionDAG &DAG,
1855                                                        unsigned Depth) const {
1856  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1857  switch (Op.getOpcode()) {
1858  default: break;
1859  case XCoreISD::LADD:
1860  case XCoreISD::LSUB:
1861    if (Op.getResNo() == 1) {
1862      // Top bits of carry / borrow are clear.
1863      KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1864                                        KnownZero.getBitWidth() - 1);
1865    }
1866    break;
1867  case ISD::INTRINSIC_W_CHAIN:
1868    {
1869      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1870      switch (IntNo) {
1871      case Intrinsic::xcore_getts:
1872        // High bits are known to be zero.
1873        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1874                                          KnownZero.getBitWidth() - 16);
1875        break;
1876      case Intrinsic::xcore_int:
1877      case Intrinsic::xcore_inct:
1878        // High bits are known to be zero.
1879        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1880                                          KnownZero.getBitWidth() - 8);
1881        break;
1882      case Intrinsic::xcore_testct:
1883        // Result is either 0 or 1.
1884        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1885                                          KnownZero.getBitWidth() - 1);
1886        break;
1887      case Intrinsic::xcore_testwct:
1888        // Result is in the range 0 - 4.
1889        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1890                                          KnownZero.getBitWidth() - 3);
1891        break;
1892      }
1893    }
1894    break;
1895  }
1896}
1897
1898//===----------------------------------------------------------------------===//
1899//  Addressing mode description hooks
1900//===----------------------------------------------------------------------===//
1901
1902static inline bool isImmUs(int64_t val)
1903{
1904  return (val >= 0 && val <= 11);
1905}
1906
1907static inline bool isImmUs2(int64_t val)
1908{
1909  return (val%2 == 0 && isImmUs(val/2));
1910}
1911
1912static inline bool isImmUs4(int64_t val)
1913{
1914  return (val%4 == 0 && isImmUs(val/4));
1915}
1916
1917/// isLegalAddressingMode - Return true if the addressing mode represented
1918/// by AM is legal for this target, for a load/store of the specified type.
1919bool
1920XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1921                                              Type *Ty) const {
1922  if (Ty->getTypeID() == Type::VoidTyID)
1923    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1924
1925  const DataLayout *TD = TM.getDataLayout();
1926  unsigned Size = TD->getTypeAllocSize(Ty);
1927  if (AM.BaseGV) {
1928    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1929                 AM.BaseOffs%4 == 0;
1930  }
1931
1932  switch (Size) {
1933  case 1:
1934    // reg + imm
1935    if (AM.Scale == 0) {
1936      return isImmUs(AM.BaseOffs);
1937    }
1938    // reg + reg
1939    return AM.Scale == 1 && AM.BaseOffs == 0;
1940  case 2:
1941  case 3:
1942    // reg + imm
1943    if (AM.Scale == 0) {
1944      return isImmUs2(AM.BaseOffs);
1945    }
1946    // reg + reg<<1
1947    return AM.Scale == 2 && AM.BaseOffs == 0;
1948  default:
1949    // reg + imm
1950    if (AM.Scale == 0) {
1951      return isImmUs4(AM.BaseOffs);
1952    }
1953    // reg + reg<<2
1954    return AM.Scale == 4 && AM.BaseOffs == 0;
1955  }
1956}
1957
1958//===----------------------------------------------------------------------===//
1959//                           XCore Inline Assembly Support
1960//===----------------------------------------------------------------------===//
1961
1962std::pair<unsigned, const TargetRegisterClass *>
1963XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1964                                                  const std::string &Constraint,
1965                                                  MVT VT) const {
1966  if (Constraint.size() == 1) {
1967    switch (Constraint[0]) {
1968    default : break;
1969    case 'r':
1970      return std::make_pair(0U, &XCore::GRRegsRegClass);
1971    }
1972  }
1973  // Use the default implementation in TargetLowering to convert the register
1974  // constraint into a member of a register class.
1975  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1976}
1977