1//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/Loads.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/LLVMContext.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/IR/MDBuilder.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Transforms/Utils/Local.h"
23using namespace llvm;
24
25#define DEBUG_TYPE "instcombine"
26
27STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
28STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
29
30/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
31/// some part of a constant global variable.  This intentionally only accepts
32/// constant expressions because we can't rewrite arbitrary instructions.
33static bool pointsToConstantGlobal(Value *V) {
34  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
35    return GV->isConstant();
36
37  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
38    if (CE->getOpcode() == Instruction::BitCast ||
39        CE->getOpcode() == Instruction::AddrSpaceCast ||
40        CE->getOpcode() == Instruction::GetElementPtr)
41      return pointsToConstantGlobal(CE->getOperand(0));
42  }
43  return false;
44}
45
46/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
47/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
48/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
49/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
50/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
51/// the alloca, and if the source pointer is a pointer to a constant global, we
52/// can optimize this.
53static bool
54isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
55                               SmallVectorImpl<Instruction *> &ToDelete) {
56  // We track lifetime intrinsics as we encounter them.  If we decide to go
57  // ahead and replace the value with the global, this lets the caller quickly
58  // eliminate the markers.
59
60  SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
61  ValuesToInspect.push_back(std::make_pair(V, false));
62  while (!ValuesToInspect.empty()) {
63    auto ValuePair = ValuesToInspect.pop_back_val();
64    const bool IsOffset = ValuePair.second;
65    for (auto &U : ValuePair.first->uses()) {
66      Instruction *I = cast<Instruction>(U.getUser());
67
68      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
69        // Ignore non-volatile loads, they are always ok.
70        if (!LI->isSimple()) return false;
71        continue;
72      }
73
74      if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
75        // If uses of the bitcast are ok, we are ok.
76        ValuesToInspect.push_back(std::make_pair(I, IsOffset));
77        continue;
78      }
79      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
80        // If the GEP has all zero indices, it doesn't offset the pointer. If it
81        // doesn't, it does.
82        ValuesToInspect.push_back(
83            std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
84        continue;
85      }
86
87      if (auto CS = CallSite(I)) {
88        // If this is the function being called then we treat it like a load and
89        // ignore it.
90        if (CS.isCallee(&U))
91          continue;
92
93        // Inalloca arguments are clobbered by the call.
94        unsigned ArgNo = CS.getArgumentNo(&U);
95        if (CS.isInAllocaArgument(ArgNo))
96          return false;
97
98        // If this is a readonly/readnone call site, then we know it is just a
99        // load (but one that potentially returns the value itself), so we can
100        // ignore it if we know that the value isn't captured.
101        if (CS.onlyReadsMemory() &&
102            (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
103          continue;
104
105        // If this is being passed as a byval argument, the caller is making a
106        // copy, so it is only a read of the alloca.
107        if (CS.isByValArgument(ArgNo))
108          continue;
109      }
110
111      // Lifetime intrinsics can be handled by the caller.
112      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
113        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
114            II->getIntrinsicID() == Intrinsic::lifetime_end) {
115          assert(II->use_empty() && "Lifetime markers have no result to use!");
116          ToDelete.push_back(II);
117          continue;
118        }
119      }
120
121      // If this is isn't our memcpy/memmove, reject it as something we can't
122      // handle.
123      MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
124      if (!MI)
125        return false;
126
127      // If the transfer is using the alloca as a source of the transfer, then
128      // ignore it since it is a load (unless the transfer is volatile).
129      if (U.getOperandNo() == 1) {
130        if (MI->isVolatile()) return false;
131        continue;
132      }
133
134      // If we already have seen a copy, reject the second one.
135      if (TheCopy) return false;
136
137      // If the pointer has been offset from the start of the alloca, we can't
138      // safely handle this.
139      if (IsOffset) return false;
140
141      // If the memintrinsic isn't using the alloca as the dest, reject it.
142      if (U.getOperandNo() != 0) return false;
143
144      // If the source of the memcpy/move is not a constant global, reject it.
145      if (!pointsToConstantGlobal(MI->getSource()))
146        return false;
147
148      // Otherwise, the transform is safe.  Remember the copy instruction.
149      TheCopy = MI;
150    }
151  }
152  return true;
153}
154
155/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
156/// modified by a copy from a constant global.  If we can prove this, we can
157/// replace any uses of the alloca with uses of the global directly.
158static MemTransferInst *
159isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
160                               SmallVectorImpl<Instruction *> &ToDelete) {
161  MemTransferInst *TheCopy = nullptr;
162  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
163    return TheCopy;
164  return nullptr;
165}
166
167static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
168  // Check for array size of 1 (scalar allocation).
169  if (!AI.isArrayAllocation()) {
170    // i32 1 is the canonical array size for scalar allocations.
171    if (AI.getArraySize()->getType()->isIntegerTy(32))
172      return nullptr;
173
174    // Canonicalize it.
175    Value *V = IC.Builder->getInt32(1);
176    AI.setOperand(0, V);
177    return &AI;
178  }
179
180  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
181  if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
182    Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
183    AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
184    New->setAlignment(AI.getAlignment());
185
186    // Scan to the end of the allocation instructions, to skip over a block of
187    // allocas if possible...also skip interleaved debug info
188    //
189    BasicBlock::iterator It = New;
190    while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
191      ++It;
192
193    // Now that I is pointing to the first non-allocation-inst in the block,
194    // insert our getelementptr instruction...
195    //
196    Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
197    Value *NullIdx = Constant::getNullValue(IdxTy);
198    Value *Idx[2] = {NullIdx, NullIdx};
199    Instruction *GEP =
200        GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
201    IC.InsertNewInstBefore(GEP, *It);
202
203    // Now make everything use the getelementptr instead of the original
204    // allocation.
205    return IC.ReplaceInstUsesWith(AI, GEP);
206  }
207
208  if (isa<UndefValue>(AI.getArraySize()))
209    return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
210
211  // Ensure that the alloca array size argument has type intptr_t, so that
212  // any casting is exposed early.
213  Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
214  if (AI.getArraySize()->getType() != IntPtrTy) {
215    Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
216    AI.setOperand(0, V);
217    return &AI;
218  }
219
220  return nullptr;
221}
222
223Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
224  if (auto *I = simplifyAllocaArraySize(*this, AI))
225    return I;
226
227  if (AI.getAllocatedType()->isSized()) {
228    // If the alignment is 0 (unspecified), assign it the preferred alignment.
229    if (AI.getAlignment() == 0)
230      AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
231
232    // Move all alloca's of zero byte objects to the entry block and merge them
233    // together.  Note that we only do this for alloca's, because malloc should
234    // allocate and return a unique pointer, even for a zero byte allocation.
235    if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
236      // For a zero sized alloca there is no point in doing an array allocation.
237      // This is helpful if the array size is a complicated expression not used
238      // elsewhere.
239      if (AI.isArrayAllocation()) {
240        AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
241        return &AI;
242      }
243
244      // Get the first instruction in the entry block.
245      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
246      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
247      if (FirstInst != &AI) {
248        // If the entry block doesn't start with a zero-size alloca then move
249        // this one to the start of the entry block.  There is no problem with
250        // dominance as the array size was forced to a constant earlier already.
251        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
252        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
253            DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
254          AI.moveBefore(FirstInst);
255          return &AI;
256        }
257
258        // If the alignment of the entry block alloca is 0 (unspecified),
259        // assign it the preferred alignment.
260        if (EntryAI->getAlignment() == 0)
261          EntryAI->setAlignment(
262              DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
263        // Replace this zero-sized alloca with the one at the start of the entry
264        // block after ensuring that the address will be aligned enough for both
265        // types.
266        unsigned MaxAlign = std::max(EntryAI->getAlignment(),
267                                     AI.getAlignment());
268        EntryAI->setAlignment(MaxAlign);
269        if (AI.getType() != EntryAI->getType())
270          return new BitCastInst(EntryAI, AI.getType());
271        return ReplaceInstUsesWith(AI, EntryAI);
272      }
273    }
274  }
275
276  if (AI.getAlignment()) {
277    // Check to see if this allocation is only modified by a memcpy/memmove from
278    // a constant global whose alignment is equal to or exceeds that of the
279    // allocation.  If this is the case, we can change all users to use
280    // the constant global instead.  This is commonly produced by the CFE by
281    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
282    // is only subsequently read.
283    SmallVector<Instruction *, 4> ToDelete;
284    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
285      unsigned SourceAlign = getOrEnforceKnownAlignment(
286          Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
287      if (AI.getAlignment() <= SourceAlign) {
288        DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
289        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
290        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
291          EraseInstFromFunction(*ToDelete[i]);
292        Constant *TheSrc = cast<Constant>(Copy->getSource());
293        Constant *Cast
294          = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
295        Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
296        EraseInstFromFunction(*Copy);
297        ++NumGlobalCopies;
298        return NewI;
299      }
300    }
301  }
302
303  // At last, use the generic allocation site handler to aggressively remove
304  // unused allocas.
305  return visitAllocSite(AI);
306}
307
308/// \brief Helper to combine a load to a new type.
309///
310/// This just does the work of combining a load to a new type. It handles
311/// metadata, etc., and returns the new instruction. The \c NewTy should be the
312/// loaded *value* type. This will convert it to a pointer, cast the operand to
313/// that pointer type, load it, etc.
314///
315/// Note that this will create all of the instructions with whatever insert
316/// point the \c InstCombiner currently is using.
317static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy) {
318  Value *Ptr = LI.getPointerOperand();
319  unsigned AS = LI.getPointerAddressSpace();
320  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
321  LI.getAllMetadata(MD);
322
323  LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
324      IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
325      LI.getAlignment(), LI.getName());
326  MDBuilder MDB(NewLoad->getContext());
327  for (const auto &MDPair : MD) {
328    unsigned ID = MDPair.first;
329    MDNode *N = MDPair.second;
330    // Note, essentially every kind of metadata should be preserved here! This
331    // routine is supposed to clone a load instruction changing *only its type*.
332    // The only metadata it makes sense to drop is metadata which is invalidated
333    // when the pointer type changes. This should essentially never be the case
334    // in LLVM, but we explicitly switch over only known metadata to be
335    // conservatively correct. If you are adding metadata to LLVM which pertains
336    // to loads, you almost certainly want to add it here.
337    switch (ID) {
338    case LLVMContext::MD_dbg:
339    case LLVMContext::MD_tbaa:
340    case LLVMContext::MD_prof:
341    case LLVMContext::MD_fpmath:
342    case LLVMContext::MD_tbaa_struct:
343    case LLVMContext::MD_invariant_load:
344    case LLVMContext::MD_alias_scope:
345    case LLVMContext::MD_noalias:
346    case LLVMContext::MD_nontemporal:
347    case LLVMContext::MD_mem_parallel_loop_access:
348      // All of these directly apply.
349      NewLoad->setMetadata(ID, N);
350      break;
351
352    case LLVMContext::MD_nonnull:
353      // This only directly applies if the new type is also a pointer.
354      if (NewTy->isPointerTy()) {
355        NewLoad->setMetadata(ID, N);
356        break;
357      }
358      // If it's integral now, translate it to !range metadata.
359      if (NewTy->isIntegerTy()) {
360        auto *ITy = cast<IntegerType>(NewTy);
361        auto *NullInt = ConstantExpr::getPtrToInt(
362            ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
363        auto *NonNullInt =
364            ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
365        NewLoad->setMetadata(LLVMContext::MD_range,
366                             MDB.createRange(NonNullInt, NullInt));
367      }
368      break;
369
370    case LLVMContext::MD_range:
371      // FIXME: It would be nice to propagate this in some way, but the type
372      // conversions make it hard. If the new type is a pointer, we could
373      // translate it to !nonnull metadata.
374      break;
375    }
376  }
377  return NewLoad;
378}
379
380/// \brief Combine a store to a new type.
381///
382/// Returns the newly created store instruction.
383static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
384  Value *Ptr = SI.getPointerOperand();
385  unsigned AS = SI.getPointerAddressSpace();
386  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
387  SI.getAllMetadata(MD);
388
389  StoreInst *NewStore = IC.Builder->CreateAlignedStore(
390      V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
391      SI.getAlignment());
392  for (const auto &MDPair : MD) {
393    unsigned ID = MDPair.first;
394    MDNode *N = MDPair.second;
395    // Note, essentially every kind of metadata should be preserved here! This
396    // routine is supposed to clone a store instruction changing *only its
397    // type*. The only metadata it makes sense to drop is metadata which is
398    // invalidated when the pointer type changes. This should essentially
399    // never be the case in LLVM, but we explicitly switch over only known
400    // metadata to be conservatively correct. If you are adding metadata to
401    // LLVM which pertains to stores, you almost certainly want to add it
402    // here.
403    switch (ID) {
404    case LLVMContext::MD_dbg:
405    case LLVMContext::MD_tbaa:
406    case LLVMContext::MD_prof:
407    case LLVMContext::MD_fpmath:
408    case LLVMContext::MD_tbaa_struct:
409    case LLVMContext::MD_alias_scope:
410    case LLVMContext::MD_noalias:
411    case LLVMContext::MD_nontemporal:
412    case LLVMContext::MD_mem_parallel_loop_access:
413      // All of these directly apply.
414      NewStore->setMetadata(ID, N);
415      break;
416
417    case LLVMContext::MD_invariant_load:
418    case LLVMContext::MD_nonnull:
419    case LLVMContext::MD_range:
420      // These don't apply for stores.
421      break;
422    }
423  }
424
425  return NewStore;
426}
427
428/// \brief Combine loads to match the type of value their uses after looking
429/// through intervening bitcasts.
430///
431/// The core idea here is that if the result of a load is used in an operation,
432/// we should load the type most conducive to that operation. For example, when
433/// loading an integer and converting that immediately to a pointer, we should
434/// instead directly load a pointer.
435///
436/// However, this routine must never change the width of a load or the number of
437/// loads as that would introduce a semantic change. This combine is expected to
438/// be a semantic no-op which just allows loads to more closely model the types
439/// of their consuming operations.
440///
441/// Currently, we also refuse to change the precise type used for an atomic load
442/// or a volatile load. This is debatable, and might be reasonable to change
443/// later. However, it is risky in case some backend or other part of LLVM is
444/// relying on the exact type loaded to select appropriate atomic operations.
445static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
446  // FIXME: We could probably with some care handle both volatile and atomic
447  // loads here but it isn't clear that this is important.
448  if (!LI.isSimple())
449    return nullptr;
450
451  if (LI.use_empty())
452    return nullptr;
453
454  Type *Ty = LI.getType();
455  const DataLayout &DL = IC.getDataLayout();
456
457  // Try to canonicalize loads which are only ever stored to operate over
458  // integers instead of any other type. We only do this when the loaded type
459  // is sized and has a size exactly the same as its store size and the store
460  // size is a legal integer type.
461  if (!Ty->isIntegerTy() && Ty->isSized() &&
462      DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
463      DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
464    if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
465          auto *SI = dyn_cast<StoreInst>(U);
466          return SI && SI->getPointerOperand() != &LI;
467        })) {
468      LoadInst *NewLoad = combineLoadToNewType(
469          IC, LI,
470          Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
471      // Replace all the stores with stores of the newly loaded value.
472      for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
473        auto *SI = cast<StoreInst>(*UI++);
474        IC.Builder->SetInsertPoint(SI);
475        combineStoreToNewValue(IC, *SI, NewLoad);
476        IC.EraseInstFromFunction(*SI);
477      }
478      assert(LI.use_empty() && "Failed to remove all users of the load!");
479      // Return the old load so the combiner can delete it safely.
480      return &LI;
481    }
482  }
483
484  // Fold away bit casts of the loaded value by loading the desired type.
485  if (LI.hasOneUse())
486    if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
487      LoadInst *NewLoad = combineLoadToNewType(IC, LI, BC->getDestTy());
488      BC->replaceAllUsesWith(NewLoad);
489      IC.EraseInstFromFunction(*BC);
490      return &LI;
491    }
492
493  // FIXME: We should also canonicalize loads of vectors when their elements are
494  // cast to other types.
495  return nullptr;
496}
497
498// If we can determine that all possible objects pointed to by the provided
499// pointer value are, not only dereferenceable, but also definitively less than
500// or equal to the provided maximum size, then return true. Otherwise, return
501// false (constant global values and allocas fall into this category).
502//
503// FIXME: This should probably live in ValueTracking (or similar).
504static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
505                                     const DataLayout &DL) {
506  SmallPtrSet<Value *, 4> Visited;
507  SmallVector<Value *, 4> Worklist(1, V);
508
509  do {
510    Value *P = Worklist.pop_back_val();
511    P = P->stripPointerCasts();
512
513    if (!Visited.insert(P).second)
514      continue;
515
516    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
517      Worklist.push_back(SI->getTrueValue());
518      Worklist.push_back(SI->getFalseValue());
519      continue;
520    }
521
522    if (PHINode *PN = dyn_cast<PHINode>(P)) {
523      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
524        Worklist.push_back(PN->getIncomingValue(i));
525      continue;
526    }
527
528    if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
529      if (GA->mayBeOverridden())
530        return false;
531      Worklist.push_back(GA->getAliasee());
532      continue;
533    }
534
535    // If we know how big this object is, and it is less than MaxSize, continue
536    // searching. Otherwise, return false.
537    if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
538      if (!AI->getAllocatedType()->isSized())
539        return false;
540
541      ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
542      if (!CS)
543        return false;
544
545      uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
546      // Make sure that, even if the multiplication below would wrap as an
547      // uint64_t, we still do the right thing.
548      if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
549        return false;
550      continue;
551    }
552
553    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
554      if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
555        return false;
556
557      uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
558      if (InitSize > MaxSize)
559        return false;
560      continue;
561    }
562
563    return false;
564  } while (!Worklist.empty());
565
566  return true;
567}
568
569// If we're indexing into an object of a known size, and the outer index is
570// not a constant, but having any value but zero would lead to undefined
571// behavior, replace it with zero.
572//
573// For example, if we have:
574// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
575// ...
576// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
577// ... = load i32* %arrayidx, align 4
578// Then we know that we can replace %x in the GEP with i64 0.
579//
580// FIXME: We could fold any GEP index to zero that would cause UB if it were
581// not zero. Currently, we only handle the first such index. Also, we could
582// also search through non-zero constant indices if we kept track of the
583// offsets those indices implied.
584static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
585                                     Instruction *MemI, unsigned &Idx) {
586  if (GEPI->getNumOperands() < 2)
587    return false;
588
589  // Find the first non-zero index of a GEP. If all indices are zero, return
590  // one past the last index.
591  auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
592    unsigned I = 1;
593    for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
594      Value *V = GEPI->getOperand(I);
595      if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
596        if (CI->isZero())
597          continue;
598
599      break;
600    }
601
602    return I;
603  };
604
605  // Skip through initial 'zero' indices, and find the corresponding pointer
606  // type. See if the next index is not a constant.
607  Idx = FirstNZIdx(GEPI);
608  if (Idx == GEPI->getNumOperands())
609    return false;
610  if (isa<Constant>(GEPI->getOperand(Idx)))
611    return false;
612
613  SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
614  Type *AllocTy = GetElementPtrInst::getIndexedType(
615      cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType())
616          ->getElementType(),
617      Ops);
618  if (!AllocTy || !AllocTy->isSized())
619    return false;
620  const DataLayout &DL = IC.getDataLayout();
621  uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
622
623  // If there are more indices after the one we might replace with a zero, make
624  // sure they're all non-negative. If any of them are negative, the overall
625  // address being computed might be before the base address determined by the
626  // first non-zero index.
627  auto IsAllNonNegative = [&]() {
628    for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
629      bool KnownNonNegative, KnownNegative;
630      IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
631                        KnownNegative, 0, MemI);
632      if (KnownNonNegative)
633        continue;
634      return false;
635    }
636
637    return true;
638  };
639
640  // FIXME: If the GEP is not inbounds, and there are extra indices after the
641  // one we'll replace, those could cause the address computation to wrap
642  // (rendering the IsAllNonNegative() check below insufficient). We can do
643  // better, ignoring zero indicies (and other indicies we can prove small
644  // enough not to wrap).
645  if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
646    return false;
647
648  // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
649  // also known to be dereferenceable.
650  return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
651         IsAllNonNegative();
652}
653
654// If we're indexing into an object with a variable index for the memory
655// access, but the object has only one element, we can assume that the index
656// will always be zero. If we replace the GEP, return it.
657template <typename T>
658static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
659                                          T &MemI) {
660  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
661    unsigned Idx;
662    if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
663      Instruction *NewGEPI = GEPI->clone();
664      NewGEPI->setOperand(Idx,
665        ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
666      NewGEPI->insertBefore(GEPI);
667      MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
668      return NewGEPI;
669    }
670  }
671
672  return nullptr;
673}
674
675Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
676  Value *Op = LI.getOperand(0);
677
678  // Try to canonicalize the loaded type.
679  if (Instruction *Res = combineLoadToOperationType(*this, LI))
680    return Res;
681
682  // Attempt to improve the alignment.
683  unsigned KnownAlign = getOrEnforceKnownAlignment(
684      Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
685  unsigned LoadAlign = LI.getAlignment();
686  unsigned EffectiveLoadAlign =
687      LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
688
689  if (KnownAlign > EffectiveLoadAlign)
690    LI.setAlignment(KnownAlign);
691  else if (LoadAlign == 0)
692    LI.setAlignment(EffectiveLoadAlign);
693
694  // Replace GEP indices if possible.
695  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
696      Worklist.Add(NewGEPI);
697      return &LI;
698  }
699
700  // None of the following transforms are legal for volatile/atomic loads.
701  // FIXME: Some of it is okay for atomic loads; needs refactoring.
702  if (!LI.isSimple()) return nullptr;
703
704  // Do really simple store-to-load forwarding and load CSE, to catch cases
705  // where there are several consecutive memory accesses to the same location,
706  // separated by a few arithmetic operations.
707  BasicBlock::iterator BBI = &LI;
708  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
709    return ReplaceInstUsesWith(
710        LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
711                                            LI.getName() + ".cast"));
712
713  // load(gep null, ...) -> unreachable
714  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
715    const Value *GEPI0 = GEPI->getOperand(0);
716    // TODO: Consider a target hook for valid address spaces for this xform.
717    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
718      // Insert a new store to null instruction before the load to indicate
719      // that this code is not reachable.  We do this instead of inserting
720      // an unreachable instruction directly because we cannot modify the
721      // CFG.
722      new StoreInst(UndefValue::get(LI.getType()),
723                    Constant::getNullValue(Op->getType()), &LI);
724      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
725    }
726  }
727
728  // load null/undef -> unreachable
729  // TODO: Consider a target hook for valid address spaces for this xform.
730  if (isa<UndefValue>(Op) ||
731      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
732    // Insert a new store to null instruction before the load to indicate that
733    // this code is not reachable.  We do this instead of inserting an
734    // unreachable instruction directly because we cannot modify the CFG.
735    new StoreInst(UndefValue::get(LI.getType()),
736                  Constant::getNullValue(Op->getType()), &LI);
737    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
738  }
739
740  if (Op->hasOneUse()) {
741    // Change select and PHI nodes to select values instead of addresses: this
742    // helps alias analysis out a lot, allows many others simplifications, and
743    // exposes redundancy in the code.
744    //
745    // Note that we cannot do the transformation unless we know that the
746    // introduced loads cannot trap!  Something like this is valid as long as
747    // the condition is always false: load (select bool %C, int* null, int* %G),
748    // but it would not be valid if we transformed it to load from null
749    // unconditionally.
750    //
751    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
752      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
753      unsigned Align = LI.getAlignment();
754      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
755          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
756        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
757                                           SI->getOperand(1)->getName()+".val");
758        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
759                                           SI->getOperand(2)->getName()+".val");
760        V1->setAlignment(Align);
761        V2->setAlignment(Align);
762        return SelectInst::Create(SI->getCondition(), V1, V2);
763      }
764
765      // load (select (cond, null, P)) -> load P
766      if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
767          LI.getPointerAddressSpace() == 0) {
768        LI.setOperand(0, SI->getOperand(2));
769        return &LI;
770      }
771
772      // load (select (cond, P, null)) -> load P
773      if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
774          LI.getPointerAddressSpace() == 0) {
775        LI.setOperand(0, SI->getOperand(1));
776        return &LI;
777      }
778    }
779  }
780  return nullptr;
781}
782
783/// \brief Combine stores to match the type of value being stored.
784///
785/// The core idea here is that the memory does not have any intrinsic type and
786/// where we can we should match the type of a store to the type of value being
787/// stored.
788///
789/// However, this routine must never change the width of a store or the number of
790/// stores as that would introduce a semantic change. This combine is expected to
791/// be a semantic no-op which just allows stores to more closely model the types
792/// of their incoming values.
793///
794/// Currently, we also refuse to change the precise type used for an atomic or
795/// volatile store. This is debatable, and might be reasonable to change later.
796/// However, it is risky in case some backend or other part of LLVM is relying
797/// on the exact type stored to select appropriate atomic operations.
798///
799/// \returns true if the store was successfully combined away. This indicates
800/// the caller must erase the store instruction. We have to let the caller erase
801/// the store instruction sas otherwise there is no way to signal whether it was
802/// combined or not: IC.EraseInstFromFunction returns a null pointer.
803static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
804  // FIXME: We could probably with some care handle both volatile and atomic
805  // stores here but it isn't clear that this is important.
806  if (!SI.isSimple())
807    return false;
808
809  Value *V = SI.getValueOperand();
810
811  // Fold away bit casts of the stored value by storing the original type.
812  if (auto *BC = dyn_cast<BitCastInst>(V)) {
813    V = BC->getOperand(0);
814    combineStoreToNewValue(IC, SI, V);
815    return true;
816  }
817
818  // FIXME: We should also canonicalize loads of vectors when their elements are
819  // cast to other types.
820  return false;
821}
822
823static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
824  // FIXME: We could probably with some care handle both volatile and atomic
825  // stores here but it isn't clear that this is important.
826  if (!SI.isSimple())
827    return false;
828
829  Value *V = SI.getValueOperand();
830  Type *T = V->getType();
831
832  if (!T->isAggregateType())
833    return false;
834
835  if (StructType *ST = dyn_cast<StructType>(T)) {
836    // If the struct only have one element, we unpack.
837    if (ST->getNumElements() == 1) {
838      V = IC.Builder->CreateExtractValue(V, 0);
839      combineStoreToNewValue(IC, SI, V);
840      return true;
841    }
842  }
843
844  return false;
845}
846
847/// equivalentAddressValues - Test if A and B will obviously have the same
848/// value. This includes recognizing that %t0 and %t1 will have the same
849/// value in code like this:
850///   %t0 = getelementptr \@a, 0, 3
851///   store i32 0, i32* %t0
852///   %t1 = getelementptr \@a, 0, 3
853///   %t2 = load i32* %t1
854///
855static bool equivalentAddressValues(Value *A, Value *B) {
856  // Test if the values are trivially equivalent.
857  if (A == B) return true;
858
859  // Test if the values come form identical arithmetic instructions.
860  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
861  // its only used to compare two uses within the same basic block, which
862  // means that they'll always either have the same value or one of them
863  // will have an undefined value.
864  if (isa<BinaryOperator>(A) ||
865      isa<CastInst>(A) ||
866      isa<PHINode>(A) ||
867      isa<GetElementPtrInst>(A))
868    if (Instruction *BI = dyn_cast<Instruction>(B))
869      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
870        return true;
871
872  // Otherwise they may not be equivalent.
873  return false;
874}
875
876Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
877  Value *Val = SI.getOperand(0);
878  Value *Ptr = SI.getOperand(1);
879
880  // Try to canonicalize the stored type.
881  if (combineStoreToValueType(*this, SI))
882    return EraseInstFromFunction(SI);
883
884  // Attempt to improve the alignment.
885  unsigned KnownAlign = getOrEnforceKnownAlignment(
886      Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
887  unsigned StoreAlign = SI.getAlignment();
888  unsigned EffectiveStoreAlign =
889      StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
890
891  if (KnownAlign > EffectiveStoreAlign)
892    SI.setAlignment(KnownAlign);
893  else if (StoreAlign == 0)
894    SI.setAlignment(EffectiveStoreAlign);
895
896  // Try to canonicalize the stored type.
897  if (unpackStoreToAggregate(*this, SI))
898    return EraseInstFromFunction(SI);
899
900  // Replace GEP indices if possible.
901  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
902      Worklist.Add(NewGEPI);
903      return &SI;
904  }
905
906  // Don't hack volatile/atomic stores.
907  // FIXME: Some bits are legal for atomic stores; needs refactoring.
908  if (!SI.isSimple()) return nullptr;
909
910  // If the RHS is an alloca with a single use, zapify the store, making the
911  // alloca dead.
912  if (Ptr->hasOneUse()) {
913    if (isa<AllocaInst>(Ptr))
914      return EraseInstFromFunction(SI);
915    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
916      if (isa<AllocaInst>(GEP->getOperand(0))) {
917        if (GEP->getOperand(0)->hasOneUse())
918          return EraseInstFromFunction(SI);
919      }
920    }
921  }
922
923  // Do really simple DSE, to catch cases where there are several consecutive
924  // stores to the same location, separated by a few arithmetic operations. This
925  // situation often occurs with bitfield accesses.
926  BasicBlock::iterator BBI = &SI;
927  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
928       --ScanInsts) {
929    --BBI;
930    // Don't count debug info directives, lest they affect codegen,
931    // and we skip pointer-to-pointer bitcasts, which are NOPs.
932    if (isa<DbgInfoIntrinsic>(BBI) ||
933        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
934      ScanInsts++;
935      continue;
936    }
937
938    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
939      // Prev store isn't volatile, and stores to the same location?
940      if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
941                                                        SI.getOperand(1))) {
942        ++NumDeadStore;
943        ++BBI;
944        EraseInstFromFunction(*PrevSI);
945        continue;
946      }
947      break;
948    }
949
950    // If this is a load, we have to stop.  However, if the loaded value is from
951    // the pointer we're loading and is producing the pointer we're storing,
952    // then *this* store is dead (X = load P; store X -> P).
953    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
954      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
955          LI->isSimple())
956        return EraseInstFromFunction(SI);
957
958      // Otherwise, this is a load from some other location.  Stores before it
959      // may not be dead.
960      break;
961    }
962
963    // Don't skip over loads or things that can modify memory.
964    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
965      break;
966  }
967
968  // store X, null    -> turns into 'unreachable' in SimplifyCFG
969  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
970    if (!isa<UndefValue>(Val)) {
971      SI.setOperand(0, UndefValue::get(Val->getType()));
972      if (Instruction *U = dyn_cast<Instruction>(Val))
973        Worklist.Add(U);  // Dropped a use.
974    }
975    return nullptr;  // Do not modify these!
976  }
977
978  // store undef, Ptr -> noop
979  if (isa<UndefValue>(Val))
980    return EraseInstFromFunction(SI);
981
982  // If this store is the last instruction in the basic block (possibly
983  // excepting debug info instructions), and if the block ends with an
984  // unconditional branch, try to move it to the successor block.
985  BBI = &SI;
986  do {
987    ++BBI;
988  } while (isa<DbgInfoIntrinsic>(BBI) ||
989           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
990  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
991    if (BI->isUnconditional())
992      if (SimplifyStoreAtEndOfBlock(SI))
993        return nullptr;  // xform done!
994
995  return nullptr;
996}
997
998/// SimplifyStoreAtEndOfBlock - Turn things like:
999///   if () { *P = v1; } else { *P = v2 }
1000/// into a phi node with a store in the successor.
1001///
1002/// Simplify things like:
1003///   *P = v1; if () { *P = v2; }
1004/// into a phi node with a store in the successor.
1005///
1006bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1007  BasicBlock *StoreBB = SI.getParent();
1008
1009  // Check to see if the successor block has exactly two incoming edges.  If
1010  // so, see if the other predecessor contains a store to the same location.
1011  // if so, insert a PHI node (if needed) and move the stores down.
1012  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1013
1014  // Determine whether Dest has exactly two predecessors and, if so, compute
1015  // the other predecessor.
1016  pred_iterator PI = pred_begin(DestBB);
1017  BasicBlock *P = *PI;
1018  BasicBlock *OtherBB = nullptr;
1019
1020  if (P != StoreBB)
1021    OtherBB = P;
1022
1023  if (++PI == pred_end(DestBB))
1024    return false;
1025
1026  P = *PI;
1027  if (P != StoreBB) {
1028    if (OtherBB)
1029      return false;
1030    OtherBB = P;
1031  }
1032  if (++PI != pred_end(DestBB))
1033    return false;
1034
1035  // Bail out if all the relevant blocks aren't distinct (this can happen,
1036  // for example, if SI is in an infinite loop)
1037  if (StoreBB == DestBB || OtherBB == DestBB)
1038    return false;
1039
1040  // Verify that the other block ends in a branch and is not otherwise empty.
1041  BasicBlock::iterator BBI = OtherBB->getTerminator();
1042  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1043  if (!OtherBr || BBI == OtherBB->begin())
1044    return false;
1045
1046  // If the other block ends in an unconditional branch, check for the 'if then
1047  // else' case.  there is an instruction before the branch.
1048  StoreInst *OtherStore = nullptr;
1049  if (OtherBr->isUnconditional()) {
1050    --BBI;
1051    // Skip over debugging info.
1052    while (isa<DbgInfoIntrinsic>(BBI) ||
1053           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1054      if (BBI==OtherBB->begin())
1055        return false;
1056      --BBI;
1057    }
1058    // If this isn't a store, isn't a store to the same location, or is not the
1059    // right kind of store, bail out.
1060    OtherStore = dyn_cast<StoreInst>(BBI);
1061    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1062        !SI.isSameOperationAs(OtherStore))
1063      return false;
1064  } else {
1065    // Otherwise, the other block ended with a conditional branch. If one of the
1066    // destinations is StoreBB, then we have the if/then case.
1067    if (OtherBr->getSuccessor(0) != StoreBB &&
1068        OtherBr->getSuccessor(1) != StoreBB)
1069      return false;
1070
1071    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1072    // if/then triangle.  See if there is a store to the same ptr as SI that
1073    // lives in OtherBB.
1074    for (;; --BBI) {
1075      // Check to see if we find the matching store.
1076      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1077        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1078            !SI.isSameOperationAs(OtherStore))
1079          return false;
1080        break;
1081      }
1082      // If we find something that may be using or overwriting the stored
1083      // value, or if we run out of instructions, we can't do the xform.
1084      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1085          BBI == OtherBB->begin())
1086        return false;
1087    }
1088
1089    // In order to eliminate the store in OtherBr, we have to
1090    // make sure nothing reads or overwrites the stored value in
1091    // StoreBB.
1092    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1093      // FIXME: This should really be AA driven.
1094      if (I->mayReadFromMemory() || I->mayWriteToMemory())
1095        return false;
1096    }
1097  }
1098
1099  // Insert a PHI node now if we need it.
1100  Value *MergedVal = OtherStore->getOperand(0);
1101  if (MergedVal != SI.getOperand(0)) {
1102    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1103    PN->addIncoming(SI.getOperand(0), SI.getParent());
1104    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1105    MergedVal = InsertNewInstBefore(PN, DestBB->front());
1106  }
1107
1108  // Advance to a place where it is safe to insert the new store and
1109  // insert it.
1110  BBI = DestBB->getFirstInsertionPt();
1111  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1112                                   SI.isVolatile(),
1113                                   SI.getAlignment(),
1114                                   SI.getOrdering(),
1115                                   SI.getSynchScope());
1116  InsertNewInstBefore(NewSI, *BBI);
1117  NewSI->setDebugLoc(OtherStore->getDebugLoc());
1118
1119  // If the two stores had AA tags, merge them.
1120  AAMDNodes AATags;
1121  SI.getAAMetadata(AATags);
1122  if (AATags) {
1123    OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1124    NewSI->setAAMetadata(AATags);
1125  }
1126
1127  // Nuke the old stores.
1128  EraseInstFromFunction(SI);
1129  EraseInstFromFunction(*OtherStore);
1130  return true;
1131}
1132