dict.c revision d7e4ca82e1cf20bb2605befb1da74dd1688c706e
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2012 Petr Machata, Red Hat Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of the
8 * License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
18 * 02110-1301 USA
19 */
20
21#include <string.h>
22#include <stdlib.h>
23#include <stdio.h>
24#include "dict.h"
25
26struct status_bits {
27	unsigned char taken : 1;
28	unsigned char erased : 1;
29};
30
31static struct status_bits *
32bitp(struct dict *dict, size_t n)
33{
34	return VECT_ELEMENT(&dict->status, struct status_bits, n);
35}
36
37void
38dict_init(struct dict *dict,
39	  size_t key_size, size_t value_size,
40	  size_t (*hash1)(const void *),
41	  int (*eq)(const void *, const void *),
42	  size_t (*hash2)(size_t))
43{
44	assert(hash1 != NULL);
45	assert(eq != NULL);
46
47	vect_init(&dict->keys, key_size);
48	vect_init(&dict->values, value_size);
49	VECT_INIT(&dict->status, struct status_bits);
50	dict->size = 0;
51
52	dict->hash1 = hash1;
53	dict->hash2 = hash2;
54	dict->eq = eq;
55}
56
57struct clone_data {
58	struct dict *target;
59	int (*clone_key)(void *tgt, const void *src, void *data);
60	int (*clone_value)(void *tgt, const void *src, void *data);
61	void (*dtor_key)(void *tgt, void *data);
62	void (*dtor_value)(void *tgt, void *data);
63	void *data;
64};
65
66enum callback_status
67clone_cb(void *key, void *value, void *data)
68{
69	struct clone_data *clone_data = data;
70
71	char nkey[clone_data->target->keys.elt_size];
72	if (clone_data->clone_key == NULL)
73		memmove(nkey, key, sizeof(nkey));
74	else if (clone_data->clone_key(&nkey, key, clone_data->data) < 0)
75		return CBS_STOP;
76
77	char nvalue[clone_data->target->values.elt_size];
78	if (clone_data->clone_value == NULL) {
79		memmove(nvalue, value, sizeof(nvalue));
80	} else if (clone_data->clone_value(&nvalue, value,
81					 clone_data->data) < 0) {
82	fail:
83		if (clone_data->clone_key != NULL)
84			clone_data->dtor_key(&nkey, clone_data->data);
85		return CBS_STOP;
86	}
87
88	if (dict_insert(clone_data->target, nkey, nvalue) < 0) {
89		if (clone_data->clone_value != NULL)
90			clone_data->dtor_value(&nvalue, clone_data->data);
91		goto fail;
92	}
93
94	return CBS_CONT;
95}
96
97int
98dict_clone(struct dict *target, const struct dict *source,
99	   int (*clone_key)(void *tgt, const void *src, void *data),
100	   void (*dtor_key)(void *tgt, void *data),
101	   int (*clone_value)(void *tgt, const void *src, void *data),
102	   void (*dtor_value)(void *tgt, void *data),
103	   void *data)
104{
105	assert((clone_key != NULL) == (dtor_key != NULL));
106	assert((clone_value != NULL) == (dtor_value != NULL));
107
108	dict_init(target, source->keys.elt_size, source->values.elt_size,
109		  source->hash1, source->eq, source->hash2);
110	struct clone_data clone_data = {
111		target, clone_key, clone_value, dtor_key, dtor_value, data
112	};
113	if (dict_each((struct dict *)source, NULL,
114		      clone_cb, &clone_data) != NULL) {
115		dict_destroy(target, dtor_key, dtor_value, data);
116		return -1;
117	}
118	return 0;
119}
120
121size_t
122dict_size(const struct dict *dict)
123{
124	return dict->size;
125}
126
127int
128dict_empty(const struct dict *dict)
129{
130	return dict->size == 0;
131}
132
133struct destroy_data {
134	void (*dtor_key)(void *tgt, void *data);
135	void (*dtor_value)(void *tgt, void *data);
136	void *data;
137};
138
139enum callback_status
140destroy_cb(void *key, void *value, void *data)
141{
142	struct destroy_data *destroy_data = data;
143	if (destroy_data->dtor_key)
144		destroy_data->dtor_key(key, destroy_data->data);
145	if (destroy_data->dtor_value)
146		destroy_data->dtor_value(value, destroy_data->data);
147	return CBS_CONT;
148}
149
150void
151dict_destroy(struct dict *dict,
152	     void (*dtor_key)(void *tgt, void *data),
153	     void (*dtor_value)(void *tgt, void *data),
154	     void *data)
155{
156	/* Some keys and values are not initialized, so we can't call
157	 * dtors for them.  Iterate DICT instead.  */
158	if (dtor_key != NULL || dtor_value != NULL) {
159		struct destroy_data destroy_data = {
160			dtor_key, dtor_value, data
161		};
162		dict_each(dict, NULL, destroy_cb, &destroy_data);
163	}
164
165	vect_destroy(&dict->keys, NULL, NULL);
166	vect_destroy(&dict->values, NULL, NULL);
167	vect_destroy(&dict->status, NULL, NULL);
168}
169
170static size_t
171default_secondary_hash(size_t pos)
172{
173	return pos % 97 + 1;
174}
175
176static inline size_t
177n(struct dict *dict)
178{
179	return vect_size(&dict->keys);
180}
181
182static inline size_t (*
183hash2(struct dict *dict))(size_t)
184{
185	if (dict->hash2 != NULL)
186		return dict->hash2;
187	else
188		return default_secondary_hash;
189}
190
191static void *
192getkey(struct dict *dict, size_t pos)
193{
194	return ((unsigned char *)dict->keys.data)
195		+ dict->keys.elt_size * pos;
196}
197
198static void *
199getvalue(struct dict *dict, size_t pos)
200{
201	return ((unsigned char *)dict->values.data)
202		+ dict->values.elt_size * pos;
203}
204
205static size_t
206find_slot(struct dict *dict, const void *key,
207	  int *foundp, int *should_rehash, size_t *pi)
208{
209	size_t pos = dict->hash1(key) % n(dict);
210	size_t pos0 = -1;
211	size_t d = hash2(dict)(pos);
212	size_t i = 0;
213	*foundp = 0;
214
215	/* We skip over any taken or erased slots.  But we remember
216	 * the first erased that we find, and if we don't find the key
217	 * later, we return that position.  */
218	for (; bitp(dict, pos)->taken || bitp(dict, pos)->erased;
219	     pos = (pos + d) % n(dict)) {
220
221		if (pos0 == (size_t)-1 && bitp(dict, pos)->erased)
222			pos0 = pos;
223
224		if (++i > dict->size)
225			break;
226
227		if (bitp(dict, pos)->taken
228		    && dict->eq(getkey(dict, pos), key)) {
229			*foundp = 1;
230			break;
231		}
232	}
233
234	if (!*foundp && pos0 != (size_t)-1)
235		pos = pos0;
236
237	/* If the hash table degraded into a linked list, request a
238	 * rehash.  */
239	if (should_rehash != NULL)
240		*should_rehash = i > 10 && i > n(dict) / 10;
241
242	if (pi != NULL)
243		*pi = i;
244	return pos;
245}
246
247enum callback_status
248rehash_move(void *key, void *value, void *data)
249{
250	if (dict_insert(data, key, value) < 0)
251		return CBS_STOP;
252	else
253		return CBS_CONT;
254}
255
256int
257rehash(struct dict *dict, size_t nn)
258{
259	int ret = -1;
260
261	struct dict tmp;
262	dict_init(&tmp, dict->keys.elt_size, dict->values.elt_size,
263		  dict->hash1, dict->eq, dict->hash2);
264
265	/* To honor all invariants (so that we can safely call
266	 * dict_destroy), we first make a request to _reserve_ enough
267	 * room in all vectors.  This has no observable effect on
268	 * contents of vectors.  */
269	if (vect_reserve(&tmp.keys, nn) < 0
270	    || vect_reserve(&tmp.values, nn) < 0
271	    || vect_reserve(&tmp.status, nn) < 0)
272		goto done;
273
274	/* Now that we know that there is enough size in vectors, we
275	 * simply bump the size.  */
276	tmp.keys.size = nn;
277	tmp.values.size = nn;
278	size_t old_size = tmp.status.size;
279	tmp.status.size = nn;
280	memset(VECT_ELEMENT(&tmp.status, struct status_bits, old_size),
281	       0, (tmp.status.size - old_size) * tmp.status.elt_size);
282
283	/* At this point, TMP is once more an empty dictionary with NN
284	 * slots.  Now move stuff from DICT to TMP.  */
285	if (dict_each(dict, NULL, rehash_move, &tmp) != NULL)
286		goto done;
287
288	/* And now swap contents of DICT and TMP, and we are done.  */
289	{
290		struct dict tmp2 = *dict;
291		*dict = tmp;
292		tmp = tmp2;
293	}
294
295	ret = 0;
296
297done:
298	/* We only want to release the containers, not the actual data
299	 * that they hold, so it's fine if we don't pass any dtor.  */
300	dict_destroy(&tmp, NULL, NULL, NULL);
301	return ret;
302
303}
304
305static const size_t primes[] = {
306	13, 31, 61, 127, 251, 509, 1021, 2039, 4093,
307	8191, 16381, 32749, 65521, 130981, 0
308};
309
310static size_t
311larger_size(size_t current)
312{
313	if (current == 0)
314		return primes[0];
315
316	if (current < primes[sizeof(primes)/sizeof(*primes) - 2]) {
317		size_t i;
318		for (i = 0; primes[i] != 0; ++i)
319			if (primes[i] > current)
320				return primes[i];
321		abort();
322	}
323
324	/* We ran out of primes, so invent a new one.  The following
325	 * gives primes until about 17M elements (and then some more
326	 * later).  */
327	return 2 * current + 6585;
328}
329
330static size_t
331smaller_size(size_t current)
332{
333	if (current <= primes[0])
334		return primes[0];
335
336	if (current <= primes[sizeof(primes)/sizeof(*primes) - 2]) {
337		size_t i;
338		size_t prev = 0;
339		for (i = 0; primes[i] != 0; ++i) {
340			if (primes[i] >= current)
341				return prev;
342			prev = primes[i];
343		}
344		abort();
345	}
346
347	return (current - 6585) / 2;
348}
349
350int
351dict_insert(struct dict *dict, void *key, void *value)
352{
353	if (n(dict) == 0 || dict->size > 0.7 * n(dict))
354	rehash:
355		if (rehash(dict, larger_size(n(dict))) < 0)
356			return -1;
357
358	int found;
359	int should_rehash;
360	size_t slot_n = find_slot(dict, key, &found, &should_rehash, NULL);
361
362	if (found)
363		return 1;
364
365	/* If rehash was requested, do that, and retry.  But just live
366	 * with it for apparently sparse tables.  No resizing can fix
367	 * a rubbish hash.  */
368	if (should_rehash && dict->size > 0.3 * n(dict))
369		goto rehash;
370
371	memmove(getkey(dict, slot_n), key, dict->keys.elt_size);
372	memmove(getvalue(dict, slot_n), value, dict->values.elt_size);
373
374	bitp(dict, slot_n)->taken = 1;
375	bitp(dict, slot_n)->erased = 0;
376	++dict->size;
377
378	return 0;
379}
380
381void *
382dict_find(struct dict *dict, const void *key)
383{
384	if (dict->size == 0)
385		return NULL;
386
387	int found;
388	size_t slot_n = find_slot(dict, key, &found, NULL, NULL);
389	if (found)
390		return getvalue(dict, slot_n);
391	else
392		return NULL;
393}
394
395int
396dict_erase(struct dict *dict, const void *key,
397	   void (*dtor_key)(void *tgt, void *data),
398	   void (*dtor_value)(void *tgt, void *data),
399	   void *data)
400{
401	int found;
402	size_t i;
403	size_t slot_n = find_slot(dict, key, &found, NULL, &i);
404	if (!found)
405		return -1;
406
407	if (dtor_key != NULL)
408		dtor_key(getkey(dict, slot_n), data);
409	if (dtor_value != NULL)
410		dtor_value(getvalue(dict, slot_n), data);
411
412	bitp(dict, slot_n)->taken = 0;
413	bitp(dict, slot_n)->erased = 1;
414	--dict->size;
415
416	if (dict->size < 0.3 * n(dict)) {
417		/* Don't mind if it fails when shrinking.  */
418		rehash(dict, smaller_size(n(dict)));
419	}
420
421	return 0;
422}
423
424void *
425dict_each(struct dict *dict, void *start_after,
426	  enum callback_status (*cb)(void *, void *, void *), void *data)
427{
428	size_t i;
429	if (start_after != NULL)
430		i = ((start_after - dict->keys.data) / dict->keys.elt_size) + 1;
431	else
432		i = 0;
433
434	for (; i < dict->keys.size; ++i)
435		if (bitp(dict, i)->taken && !bitp(dict, i)->erased) {
436			void *key = getkey(dict, i);
437			if (cb(key, getvalue(dict, i), data) != CBS_CONT)
438				return key;
439		}
440
441	return NULL;
442}
443
444size_t
445dict_hash_int(const int *key)
446{
447	return (size_t)(*key * 2654435761);
448}
449
450int
451dict_eq_int(const int *key1, const int *key2)
452{
453	return *key1 == *key2;
454}
455
456size_t
457dict_hash_string(const char **key)
458{
459	size_t h = 5381;
460	const char *str = *key;
461	while (*str != 0)
462		h = h * 33 ^ *str++;
463	return h;
464}
465
466int
467dict_eq_string(const char **key1, const char **key2)
468{
469	return strcmp(*key1, *key2) == 0;
470}
471
472#ifdef TEST
473static enum callback_status
474dump(int *key, int *value, void *data)
475{
476	char *seen = data;
477	assert(seen[*key] == 0);
478	seen[*key] = 1;
479	assert(*value == *key * 2 + 1);
480	return CBS_STOP;
481}
482
483static size_t
484dict_hash_int_silly(const int *key)
485{
486	return *key % 10;
487}
488
489static void
490verify(struct dict *di, size_t len, char *seen)
491{
492	size_t ct = 0;
493	int *it;
494	for (it = NULL; (it = DICT_EACH(di, int, int, it, dump, seen)) != NULL;)
495		ct++;
496	assert(ct == len);
497	memset(seen, 0, len);
498}
499
500static enum callback_status
501fill_keys(int *key, int *value, void *data)
502{
503	int *array = data;
504	array[++array[0]] = *key;
505	return CBS_CONT;
506}
507
508static void
509test1(void)
510{
511	struct dict di;
512	DICT_INIT(&di, int, int, dict_hash_int, dict_eq_int, NULL);
513
514	char seen[100000] = {};
515	size_t i;
516	for (i = 0; i < sizeof(seen); ++i) {
517		int key = i;
518		int value = 2 * i + 1;
519		DICT_INSERT(&di, &key, &value);
520		int *valp = DICT_FIND(&di, &key, int);
521		assert(valp != NULL);
522		assert(*valp == value);
523		assert(dict_size(&di) == i + 1);
524	}
525
526	verify(&di, sizeof(seen), seen);
527
528	struct dict d2;
529	DICT_CLONE(&d2, &di, int, int, NULL, NULL, NULL, NULL, NULL);
530	DICT_DESTROY(&di, int, int, NULL, NULL, NULL);
531	verify(&d2, sizeof(seen), seen);
532
533	/* Now we try to gradually erase all elements.  We can't erase
534	 * inside a DICT_EACH call, so copy first keys to a separate
535	 * memory area first.  */
536	int keys[d2.size + 1];
537	size_t ct = 0;
538	keys[0] = 0;
539	DICT_EACH(&d2, int, int, NULL, fill_keys, keys);
540	for (i = 0; i < (size_t)keys[0]; ++i) {
541		assert(DICT_ERASE(&d2, &keys[i + 1], int,
542				  NULL, NULL, NULL) == 0);
543		++ct;
544	}
545	assert(ct == sizeof(seen));
546	DICT_DESTROY(&d2, int, int, NULL, NULL, NULL);
547}
548
549static void
550test_erase(void)
551{
552	int i;
553
554	/* To test erase, we need a relatively bad hash function, so
555	 * that there are some overlapping chains in the table.  */
556	struct dict d2;
557	DICT_INIT(&d2, int, int, dict_hash_int_silly, dict_eq_int, NULL);
558	const int limit = 500;
559	for (i = 0; i < limit; ++i) {
560		int key = 2 * i + 1;
561		int value = 2 * key + 1;
562		DICT_INSERT(&d2, &key, &value);
563	}
564
565	/* Now we try to delete each of the keys, and verify that none
566	 * of the chains was broken.  */
567	for (i = 0; i < limit; ++i) {
568		struct dict copy;
569		DICT_CLONE(&copy, &d2, int, int, NULL, NULL, NULL, NULL, NULL);
570		int key = 2 * i + 1;
571		DICT_ERASE(&copy, &key, int, NULL, NULL, NULL);
572		assert(dict_size(&copy) == dict_size(&d2) - 1);
573
574		int j;
575		for (j = 0; j < limit; ++j) {
576			key = 2 * j + 1;
577			int *valp = DICT_FIND(&copy, &key, int);
578			if (i != j) {
579				assert(valp != NULL);
580				assert(*valp == 2 * key + 1);
581			} else {
582				assert(valp == NULL);
583			}
584		}
585
586		DICT_DESTROY(&copy, int, int, NULL, NULL, NULL);
587	}
588	DICT_DESTROY(&d2, int, int, NULL, NULL, NULL);
589}
590
591int main(int argc, char *argv[])
592{
593	test1();
594	test_erase();
595	return 0;
596}
597
598#endif
599