plt.c revision 6ca19a3c08bc75fb451df30f4c6e6c1a128731fe
1#include <gelf.h>
2#include <sys/ptrace.h>
3#include <errno.h>
4#include <error.h>
5#include <inttypes.h>
6#include <assert.h>
7#include <string.h>
8
9#include "proc.h"
10#include "common.h"
11#include "library.h"
12#include "breakpoint.h"
13#include "linux-gnu/trace.h"
14
15/* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
16 * new-style "secure" PLT.  We can tell one from the other by the
17 * flags on the .plt section.  If it's +X (executable), it's BSS PLT,
18 * otherwise it's secure.
19 *
20 * BSS PLT works the same way as most architectures: the .plt section
21 * contains trampolines and we put breakpoints to those.  If not
22 * prelinked, .plt contains zeroes, and dynamic linker fills in the
23 * initial set of trampolines, which means that we need to delay
24 * enabling breakpoints until after binary entry point is hit.
25 * Additionally, after first call, dynamic linker updates .plt with
26 * branch to resolved address.  That means that on first hit, we must
27 * do something similar to the PPC64 gambit described below.
28 *
29 * With secure PLT, the .plt section doesn't contain instructions but
30 * addresses.  The real PLT table is stored in .text.  Addresses of
31 * those PLT entries can be computed, and apart from the fact that
32 * they are in .text, they are ordinary PLT entries.
33 *
34 * 64-bit PPC is more involved.  Program linker creates for each
35 * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
36 * (where xxxxxxxx is a hexadecimal number).  That stub does the call
37 * dispatch: it loads an address of a function to call from the
38 * section .plt, and branches.  PLT entries themselves are essentially
39 * a curried call to the resolver.  When the symbol is resolved, the
40 * resolver updates the value stored in .plt, and the next time
41 * around, the stub calls the library function directly.  So we make
42 * at most one trip (none if the binary is prelinked) through each PLT
43 * entry, and correspondingly that is useless as a breakpoint site.
44 *
45 * Note the three confusing terms: stubs (that play the role of PLT
46 * entries), PLT entries, .plt section.
47 *
48 * We first check symbol tables and see if we happen to have stub
49 * symbols available.  If yes we just put breakpoints to those, and
50 * treat them as usual breakpoints.  The only tricky part is realizing
51 * that there can be more than one breakpoint per symbol.
52 *
53 * The case that we don't have the stub symbols available is harder.
54 * The following scheme uses two kinds of PLT breakpoints: unresolved
55 * and resolved (to some address).  When the process starts (or when
56 * we attach), we distribute unresolved PLT breakpoints to the PLT
57 * entries (not stubs).  Then we look in .plt, and for each entry
58 * whose value is different than the corresponding PLT entry address,
59 * we assume it was already resolved, and convert the breakpoint to
60 * resolved.  We also rewrite the resolved value in .plt back to the
61 * PLT address.
62 *
63 * When a PLT entry hits a resolved breakpoint (which happens because
64 * we rewrite .plt with the original unresolved addresses), we move
65 * the instruction pointer to the corresponding address and continue
66 * the process as if nothing happened.
67 *
68 * When unresolved PLT entry is called for the first time, we need to
69 * catch the new value that the resolver will write to a .plt slot.
70 * We also need to prevent another thread from racing through and
71 * taking the branch without ltrace noticing.  So when unresolved PLT
72 * entry hits, we have to stop all threads.  We then single-step
73 * through the resolver, until the .plt slot changes.  When it does,
74 * we treat it the same way as above: convert the PLT breakpoint to
75 * resolved, and rewrite the .plt value back to PLT address.  We then
76 * start all threads again.
77 *
78 * As an optimization, we remember the address where the address was
79 * resolved, and put a breakpoint there.  The next time around (when
80 * the next PLT entry is to be resolved), instead of single-stepping
81 * through half the dynamic linker, we just let the thread run and hit
82 * this breakpoint.  When it hits, we know the PLT entry was resolved.
83 *
84 * XXX TODO If we have hardware watch point, we might put a read watch
85 * on .plt slot, and discover the offenders this way.  I don't know
86 * the details, but I assume at most a handful (like, one or two, if
87 * available at all) addresses may be watched at a time, and thus this
88 * would be used as an amendment of the above rather than full-on
89 * solution to PLT tracing on PPC.
90 */
91
92#define PPC_PLT_STUB_SIZE 16
93#define PPC64_PLT_STUB_SIZE 8 //xxx
94
95static inline int
96host_powerpc64()
97{
98#ifdef __powerpc64__
99	return 1;
100#else
101	return 0;
102#endif
103}
104
105int
106read_target_4(struct Process *proc, target_address_t addr, uint32_t *lp)
107{
108	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
109	if (l == -1UL && errno)
110		return -1;
111#ifdef __powerpc64__
112	l >>= 32;
113#endif
114	*lp = l;
115	return 0;
116}
117
118static int
119read_target_8(struct Process *proc, target_address_t addr, uint64_t *lp)
120{
121	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
122	if (l == -1UL && errno)
123		return -1;
124	if (host_powerpc64()) {
125		*lp = l;
126	} else {
127		unsigned long l2 = ptrace(PTRACE_PEEKTEXT, proc->pid,
128					  addr + 4, 0);
129		if (l2 == -1UL && errno)
130			return -1;
131		*lp = ((uint64_t)l << 32) | l2;
132	}
133	return 0;
134}
135
136int
137read_target_long(struct Process *proc, target_address_t addr, uint64_t *lp)
138{
139	if (proc->e_machine == EM_PPC) {
140		uint32_t w;
141		int ret = read_target_4(proc, addr, &w);
142		if (ret >= 0)
143			*lp = (uint64_t)w;
144		return ret;
145	} else {
146		return read_target_8(proc, addr, lp);
147	}
148}
149
150static enum callback_status
151reenable_breakpoint(struct Process *proc, struct breakpoint *bp, void *data)
152{
153	/* We don't need to re-enable non-PLT breakpoints and
154	 * breakpoints that are not PPC32 BSS unprelinked.  */
155	if (bp->libsym == NULL
156	    || bp->libsym->plt_type == LS_TOPLT_NONE
157	    || bp->libsym->lib->arch.bss_plt_prelinked != 0)
158		return CBS_CONT;
159
160	debug(DEBUG_PROCESS, "pid=%d reenable_breakpoint %s",
161	      proc->pid, breakpoint_name(bp));
162
163	assert(proc->e_machine == EM_PPC);
164	uint64_t l;
165	if (read_target_8(proc, bp->addr, &l) < 0) {
166		error(0, errno, "couldn't read PLT value for %s(%p)",
167		      breakpoint_name(bp), bp->addr);
168		return CBS_CONT;
169	}
170
171	/* XXX double cast  */
172	bp->libsym->arch.plt_slot_addr = (GElf_Addr)(uintptr_t)bp->addr;
173
174	/* If necessary, re-enable the breakpoint if it was
175	 * overwritten by the dynamic linker.  */
176	union {
177		uint32_t insn;
178		char buf[4];
179	} u = { .buf = BREAKPOINT_VALUE };
180	if (l >> 32 == u.insn)
181		debug(DEBUG_PROCESS, "pid=%d, breakpoint still present"
182		      " at %p, avoiding reenable", proc->pid, bp->addr);
183	else
184		enable_breakpoint(proc, bp);
185
186	bp->libsym->arch.resolved_value = l;
187
188	return CBS_CONT;
189}
190
191void
192arch_dynlink_done(struct Process *proc)
193{
194	/* On PPC32, .plt of objects that use BSS PLT are overwritten
195	 * by the dynamic linker (unless that object was prelinked).
196	 * We need to re-enable breakpoints in those objects.  */
197	proc_each_breakpoint(proc, NULL, reenable_breakpoint, NULL);
198}
199
200GElf_Addr
201arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
202{
203	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
204		assert(lte->arch.plt_stub_vma != 0);
205		return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
206
207	} else if (lte->ehdr.e_machine == EM_PPC) {
208		return rela->r_offset;
209
210	} else {
211		/* If we get here, we don't have stub symbols.  In
212		 * that case we put brakpoints to PLT entries the same
213		 * as the PPC32 secure PLT case does.  */
214		assert(lte->arch.plt_stub_vma != 0);
215		return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
216	}
217}
218
219/* This entry point is called when ltelf is not available
220 * anymore--during runtime.  At that point we don't have to concern
221 * ourselves with bias, as the values in OPD have been resolved
222 * already.  */
223int
224arch_translate_address_dyn(struct Process *proc,
225			   target_address_t addr, target_address_t *ret)
226{
227	if (proc->e_machine == EM_PPC64) {
228		uint64_t value;
229		if (read_target_8(proc, addr, &value) < 0) {
230			error(0, errno, "dynamic .opd translation of %p", addr);
231			return -1;
232		}
233		*ret = (target_address_t)value;
234		return 0;
235	}
236
237	*ret = addr;
238	return 0;
239}
240
241int
242arch_translate_address(struct ltelf *lte,
243		       target_address_t addr, target_address_t *ret)
244{
245	if (lte->ehdr.e_machine == EM_PPC64) {
246		GElf_Xword offset = (GElf_Addr)addr - lte->arch.opd_base;
247		uint64_t value;
248		if (elf_read_u64(lte->arch.opd_data, offset, &value) < 0) {
249			error(0, 0, "static .opd translation of %p: %s", addr,
250			      elf_errmsg(-1));
251			return -1;
252		}
253		*ret = (target_address_t)(value + lte->bias);
254		return 0;
255	}
256
257	*ret = addr;
258	return 0;
259}
260
261static int
262load_opd_data(struct ltelf *lte, struct library *lib)
263{
264	Elf_Scn *sec;
265	GElf_Shdr shdr;
266	if (elf_get_section_named(lte, ".opd", &sec, &shdr) < 0) {
267	fail:
268		fprintf(stderr, "couldn't find .opd data\n");
269		return -1;
270	}
271
272	lte->arch.opd_data = elf_rawdata(sec, NULL);
273	if (lte->arch.opd_data == NULL)
274		goto fail;
275
276	lte->arch.opd_base = shdr.sh_addr + lte->bias;
277	lte->arch.opd_size = shdr.sh_size;
278
279	return 0;
280}
281
282void *
283sym2addr(struct Process *proc, struct library_symbol *sym)
284{
285	return sym->enter_addr;
286}
287
288static GElf_Addr
289get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
290{
291	Elf_Scn *ppcgot_sec = NULL;
292	GElf_Shdr ppcgot_shdr;
293	if (ppcgot != 0
294	    && elf_get_section_covering(lte, ppcgot,
295					&ppcgot_sec, &ppcgot_shdr) < 0)
296		error(0, 0, "DT_PPC_GOT=%#"PRIx64", but no such section found",
297		      ppcgot);
298
299	if (ppcgot_sec != NULL) {
300		Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
301		if (data == NULL || data->d_size < 8 ) {
302			error(0, 0, "couldn't read GOT data");
303		} else {
304			// where PPCGOT begins in .got
305			size_t offset = ppcgot - ppcgot_shdr.sh_addr;
306			assert(offset % 4 == 0);
307			uint32_t glink_vma;
308			if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
309				error(0, 0, "couldn't read glink VMA address"
310				      " at %zd@GOT", offset);
311				return 0;
312			}
313			if (glink_vma != 0) {
314				debug(1, "PPC GOT glink_vma address: %#" PRIx32,
315				      glink_vma);
316				return (GElf_Addr)glink_vma;
317			}
318		}
319	}
320
321	if (plt_data != NULL) {
322		uint32_t glink_vma;
323		if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
324			error(0, 0, "couldn't read glink VMA address");
325			return 0;
326		}
327		debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
328		return (GElf_Addr)glink_vma;
329	}
330
331	return 0;
332}
333
334static int
335load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep)
336{
337	Elf_Scn *scn;
338	GElf_Shdr shdr;
339	if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0
340	    || scn == NULL) {
341	fail:
342		error(0, 0, "Couldn't get SHT_DYNAMIC: %s",
343		      elf_errmsg(-1));
344		return -1;
345	}
346
347	Elf_Data *data = elf_loaddata(scn, &shdr);
348	if (data == NULL)
349		goto fail;
350
351	size_t j;
352	for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
353		GElf_Dyn dyn;
354		if (gelf_getdyn(data, j, &dyn) == NULL)
355			goto fail;
356
357		if(dyn.d_tag == tag) {
358			*valuep = dyn.d_un.d_ptr;
359			return 0;
360		}
361	}
362
363	return -1;
364}
365
366static int
367load_ppcgot(struct ltelf *lte, GElf_Addr *ppcgotp)
368{
369	return load_dynamic_entry(lte, DT_PPC_GOT, ppcgotp);
370}
371
372static int
373load_ppc64_glink(struct ltelf *lte, GElf_Addr *glinkp)
374{
375	return load_dynamic_entry(lte, DT_PPC64_GLINK, glinkp);
376}
377
378static int
379nonzero_data(Elf_Data *data)
380{
381	/* We are not supposed to get here if there's no PLT.  */
382	assert(data != NULL);
383
384	unsigned char *buf = data->d_buf;
385	if (buf == NULL)
386		return 0;
387
388	size_t i;
389	for (i = 0; i < data->d_size; ++i)
390		if (buf[i] != 0)
391			return 1;
392	return 0;
393}
394
395int
396arch_elf_init(struct ltelf *lte, struct library *lib)
397{
398	if (lte->ehdr.e_machine == EM_PPC64
399	    && load_opd_data(lte, lib) < 0)
400		return -1;
401
402	lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
403
404	/* For PPC32 BSS, it is important whether the binary was
405	 * prelinked.  If .plt section is NODATA, or if it contains
406	 * zeroes, then this library is not prelinked, and we need to
407	 * delay breakpoints.  */
408	if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
409		lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
410	else
411		/* For cases where it's irrelevant, initialize the
412		 * value to something conspicuous.  */
413		lib->arch.bss_plt_prelinked = -1;
414
415	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
416		GElf_Addr ppcgot;
417		if (load_ppcgot(lte, &ppcgot) < 0) {
418			error(0, 0, "couldn't find DT_PPC_GOT");
419			return -1;
420		}
421		GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
422
423		assert (lte->relplt_size % 12 == 0);
424		size_t count = lte->relplt_size / 12; // size of RELA entry
425		lte->arch.plt_stub_vma = glink_vma
426			- (GElf_Addr)count * PPC_PLT_STUB_SIZE;
427		debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
428
429	} else if (lte->ehdr.e_machine == EM_PPC64) {
430		GElf_Addr glink_vma;
431		if (load_ppc64_glink(lte, &glink_vma) < 0) {
432			error(0, 0, "couldn't find DT_PPC64_GLINK");
433			return -1;
434		}
435
436		/* The first glink stub starts at offset 32.  */
437		lte->arch.plt_stub_vma = glink_vma + 32;
438	}
439
440	/* On PPC64, look for stub symbols in symbol table.  These are
441	 * called: xxxxxxxx.plt_call.callee_name@version+addend.  */
442	if (lte->ehdr.e_machine == EM_PPC64
443	    && lte->symtab != NULL && lte->strtab != NULL) {
444
445		/* N.B. We can't simply skip the symbols that we fail
446		 * to read or malloc.  There may be more than one stub
447		 * per symbol name, and if we failed in one but
448		 * succeeded in another, the PLT enabling code would
449		 * have no way to tell that something is missing.  We
450		 * could work around that, of course, but it doesn't
451		 * seem worth the trouble.  So if anything fails, we
452		 * just pretend that we don't have stub symbols at
453		 * all, as if the binary is stripped.  */
454
455		size_t i;
456		for (i = 0; i < lte->symtab_count; ++i) {
457			GElf_Sym sym;
458			if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
459				struct library_symbol *sym, *next;
460			fail:
461				for (sym = lte->arch.stubs; sym != NULL; ) {
462					next = sym->next;
463					library_symbol_destroy(sym);
464					free(sym);
465					sym = next;
466				}
467				lte->arch.stubs = NULL;
468				break;
469			}
470
471			const char *name = lte->strtab + sym.st_name;
472
473#define STUBN ".plt_call."
474			if ((name = strstr(name, STUBN)) == NULL)
475				continue;
476			name += sizeof(STUBN) - 1;
477#undef STUBN
478
479			size_t len;
480			const char *ver = strchr(name, '@');
481			if (ver != NULL) {
482				len = ver - name;
483
484			} else {
485				/* If there is "+" at all, check that
486				 * the symbol name ends in "+0".  */
487				const char *add = strrchr(name, '+');
488				if (add != NULL) {
489					assert(strcmp(add, "+0") == 0);
490					len = add - name;
491				} else {
492					len = strlen(name);
493				}
494			}
495
496			char *sym_name = strndup(name, len);
497			struct library_symbol *libsym = malloc(sizeof(*libsym));
498			if (sym_name == NULL || libsym == NULL) {
499			fail2:
500				free(sym_name);
501				free(libsym);
502				goto fail;
503			}
504
505			/* XXX The double cast should be removed when
506			 * target_address_t becomes integral type.  */
507			target_address_t addr = (target_address_t)
508				(uintptr_t)sym.st_value + lte->bias;
509			if (library_symbol_init(libsym, addr, sym_name, 1,
510						LS_TOPLT_EXEC) < 0)
511				goto fail2;
512			libsym->arch.type = PPC64_PLT_STUB;
513			libsym->next = lte->arch.stubs;
514			lte->arch.stubs = libsym;
515		}
516	}
517
518	return 0;
519}
520
521static int
522read_plt_slot_value(struct Process *proc, GElf_Addr addr, GElf_Addr *valp)
523{
524	/* On PPC64, we read from .plt, which contains 8 byte
525	 * addresses.  On PPC32 we read from .plt, which contains 4
526	 * byte instructions, but the PLT is two instructions, and
527	 * either can change.  */
528	uint64_t l;
529	/* XXX double cast.  */
530	if (read_target_8(proc, (target_address_t)(uintptr_t)addr, &l) < 0) {
531		error(0, errno, "ptrace .plt slot value @%#" PRIx64, addr);
532		return -1;
533	}
534
535	*valp = (GElf_Addr)l;
536	return 0;
537}
538
539static int
540unresolve_plt_slot(struct Process *proc, GElf_Addr addr, GElf_Addr value)
541{
542	/* We only modify plt_entry[0], which holds the resolved
543	 * address of the routine.  We keep the TOC and environment
544	 * pointers intact.  Hence the only adjustment that we need to
545	 * do is to IP.  */
546	if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
547		error(0, errno, "unresolve .plt slot");
548		return -1;
549	}
550	return 0;
551}
552
553static void
554mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
555{
556	libsym->arch.type = PPC_PLT_RESOLVED;
557	libsym->arch.resolved_value = value;
558}
559
560enum plt_status
561arch_elf_add_plt_entry(struct Process *proc, struct ltelf *lte,
562		       const char *a_name, GElf_Rela *rela, size_t ndx,
563		       struct library_symbol **ret)
564{
565	if (lte->ehdr.e_machine == EM_PPC)
566		return plt_default;
567
568	/* PPC64.  If we have stubs, we return a chain of breakpoint
569	 * sites, one for each stub that corresponds to this PLT
570	 * entry.  */
571	struct library_symbol *chain = NULL;
572	struct library_symbol **symp;
573	for (symp = &lte->arch.stubs; *symp != NULL; ) {
574		struct library_symbol *sym = *symp;
575		if (strcmp(sym->name, a_name) != 0) {
576			symp = &(*symp)->next;
577			continue;
578		}
579
580		/* Re-chain the symbol from stubs to CHAIN.  */
581		*symp = sym->next;
582		sym->next = chain;
583		chain = sym;
584	}
585
586	if (chain != NULL) {
587		*ret = chain;
588		return plt_ok;
589	}
590
591	/* We don't have stub symbols.  Find corresponding .plt slot,
592	 * and check whether it contains the corresponding PLT address
593	 * (or 0 if the dynamic linker hasn't run yet).  N.B. we don't
594	 * want read this from ELF file, but from process image.  That
595	 * makes a difference if we are attaching to a running
596	 * process.  */
597
598	GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
599	GElf_Addr plt_slot_addr = rela->r_offset;
600	assert(plt_slot_addr >= lte->plt_addr
601	       || plt_slot_addr < lte->plt_addr + lte->plt_size);
602
603	GElf_Addr plt_slot_value;
604	if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0)
605		return plt_fail;
606
607	char *name = strdup(a_name);
608	struct library_symbol *libsym = malloc(sizeof(*libsym));
609	if (name == NULL || libsym == NULL) {
610		error(0, errno, "allocation for .plt slot");
611	fail:
612		free(name);
613		free(libsym);
614		return plt_fail;
615	}
616
617	/* XXX The double cast should be removed when
618	 * target_address_t becomes integral type.  */
619	if (library_symbol_init(libsym,
620				(target_address_t)(uintptr_t)plt_entry_addr,
621				name, 1, LS_TOPLT_EXEC) < 0)
622		goto fail;
623	libsym->arch.plt_slot_addr = plt_slot_addr;
624
625	if (plt_slot_value == plt_entry_addr || plt_slot_value == 0) {
626		libsym->arch.type = PPC_PLT_UNRESOLVED;
627		libsym->arch.resolved_value = plt_entry_addr;
628
629	} else {
630		/* Unresolve the .plt slot.  If the binary was
631		 * prelinked, this makes the code invalid, because in
632		 * case of prelinked binary, the dynamic linker
633		 * doesn't update .plt[0] and .plt[1] with addresses
634		 * of the resover.  But we don't care, we will never
635		 * need to enter the resolver.  That just means that
636		 * we have to un-un-resolve this back before we
637		 * detach.  */
638
639		if (unresolve_plt_slot(proc, plt_slot_addr, plt_entry_addr) < 0) {
640			library_symbol_destroy(libsym);
641			goto fail;
642		}
643		mark_as_resolved(libsym, plt_slot_value);
644	}
645
646	*ret = libsym;
647	return plt_ok;
648}
649
650void
651arch_elf_destroy(struct ltelf *lte)
652{
653	struct library_symbol *sym;
654	for (sym = lte->arch.stubs; sym != NULL; ) {
655		struct library_symbol *next = sym->next;
656		library_symbol_destroy(sym);
657		free(sym);
658		sym = next;
659	}
660}
661
662static void
663dl_plt_update_bp_on_hit(struct breakpoint *bp, struct Process *proc)
664{
665	debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
666	      proc->pid, breakpoint_name(bp), bp->addr);
667	struct process_stopping_handler *self = proc->arch.handler;
668	assert(self != NULL);
669
670	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
671	GElf_Addr value;
672	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
673		return;
674
675	/* On PPC64, we rewrite the slot value.  */
676	if (proc->e_machine == EM_PPC64)
677		unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
678				   libsym->arch.resolved_value);
679	/* We mark the breakpoint as resolved on both arches.  */
680	mark_as_resolved(libsym, value);
681
682	/* cb_on_all_stopped looks if HANDLER is set to NULL as a way
683	 * to check that this was run.  It's an error if it
684	 * wasn't.  */
685	proc->arch.handler = NULL;
686
687	breakpoint_turn_off(bp, proc);
688}
689
690static void
691cb_on_all_stopped(struct process_stopping_handler *self)
692{
693	/* Put that in for dl_plt_update_bp_on_hit to see.  */
694	assert(self->task_enabling_breakpoint->arch.handler == NULL);
695	self->task_enabling_breakpoint->arch.handler = self;
696
697	linux_ptrace_disable_and_continue(self);
698}
699
700static enum callback_status
701cb_keep_stepping_p(struct process_stopping_handler *self)
702{
703	struct Process *proc = self->task_enabling_breakpoint;
704	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
705
706	GElf_Addr value;
707	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
708		return CBS_FAIL;
709
710	/* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
711	 * the PLT entry value.  */
712	if (value == libsym->arch.resolved_value)
713		return CBS_CONT;
714
715	debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
716	      proc->pid, value);
717
718	/* The .plt slot got resolved!  We can migrate the breakpoint
719	 * to RESOLVED and stop single-stepping.  */
720	if (proc->e_machine == EM_PPC64
721	    && unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
722				  libsym->arch.resolved_value) < 0)
723		return CBS_FAIL;
724
725	/* Resolving on PPC64 consists of overwriting a doubleword in
726	 * .plt.  That doubleword is than read back by a stub, and
727	 * jumped on.  Hopefully we can assume that double word update
728	 * is done on a single place only, as it contains a final
729	 * address.  We still need to look around for any sync
730	 * instruction, but essentially it is safe to optimize away
731	 * the single stepping next time and install a post-update
732	 * breakpoint.
733	 *
734	 * The situation on PPC32 BSS is more complicated.  The
735	 * dynamic linker here updates potentially several
736	 * instructions (XXX currently we assume two) and the rules
737	 * are more complicated.  Sometimes it's enough to adjust just
738	 * one of the addresses--the logic for generating optimal
739	 * dispatch depends on relative addresses of the .plt entry
740	 * and the jump destination.  We can't assume that the some
741	 * instruction block does the update every time.  So on PPC32,
742	 * we turn the optimization off and just step through it each
743	 * time.  */
744	if (proc->e_machine == EM_PPC)
745		goto done;
746
747	/* Install breakpoint to the address where the change takes
748	 * place.  If we fail, then that just means that we'll have to
749	 * singlestep the next time around as well.  */
750	struct Process *leader = proc->leader;
751	if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
752		goto done;
753
754	/* We need to install to the next instruction.  ADDR points to
755	 * a store instruction, so moving the breakpoint one
756	 * instruction forward is safe.  */
757	target_address_t addr = get_instruction_pointer(proc) + 4;
758	leader->arch.dl_plt_update_bp = insert_breakpoint(proc, addr, NULL);
759	if (leader->arch.dl_plt_update_bp == NULL)
760		goto done;
761
762	static struct bp_callbacks dl_plt_update_cbs = {
763		.on_hit = dl_plt_update_bp_on_hit,
764	};
765	leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
766
767	/* Turn it off for now.  We will turn it on again when we hit
768	 * the PLT entry that needs this.  */
769	breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
770
771done:
772	mark_as_resolved(libsym, value);
773
774	return CBS_STOP;
775}
776
777static void
778jump_to_entry_point(struct Process *proc, struct breakpoint *bp)
779{
780	/* XXX The double cast should be removed when
781	 * target_address_t becomes integral type.  */
782	target_address_t rv = (target_address_t)
783		(uintptr_t)bp->libsym->arch.resolved_value;
784	set_instruction_pointer(proc, rv);
785}
786
787static void
788ppc_plt_bp_continue(struct breakpoint *bp, struct Process *proc)
789{
790	switch (bp->libsym->arch.type) {
791		struct Process *leader;
792		void (*on_all_stopped)(struct process_stopping_handler *);
793		enum callback_status (*keep_stepping_p)
794			(struct process_stopping_handler *);
795
796	case PPC_DEFAULT:
797		assert(proc->e_machine == EM_PPC);
798		assert(bp->libsym != NULL);
799		assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
800		/* fall-through */
801
802	case PPC_PLT_UNRESOLVED:
803		on_all_stopped = NULL;
804		keep_stepping_p = NULL;
805		leader = proc->leader;
806
807		if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
808		    && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
809					  proc) >= 0)
810			on_all_stopped = cb_on_all_stopped;
811		else
812			keep_stepping_p = cb_keep_stepping_p;
813
814		if (process_install_stopping_handler
815		    (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
816			error(0, 0, "ppc_plt_bp_continue: couldn't install"
817			      " event handler");
818			continue_after_breakpoint(proc, bp);
819		}
820		return;
821
822	case PPC_PLT_RESOLVED:
823		if (proc->e_machine == EM_PPC) {
824			continue_after_breakpoint(proc, bp);
825			return;
826		}
827
828		jump_to_entry_point(proc, bp);
829		continue_process(proc->pid);
830		return;
831
832	case PPC64_PLT_STUB:
833		/* These should never hit here.  */
834		break;
835	}
836
837	assert(bp->libsym->arch.type != bp->libsym->arch.type);
838	abort();
839}
840
841/* When a process is in a PLT stub, it may have already read the data
842 * in .plt that we changed.  If we detach now, it will jump to PLT
843 * entry and continue to the dynamic linker, where it will SIGSEGV,
844 * because zeroth .plt slot is not filled in prelinked binaries, and
845 * the dynamic linker needs that data.  Moreover, the process may
846 * actually have hit the breakpoint already.  This functions tries to
847 * detect both cases and do any fix-ups necessary to mend this
848 * situation.  */
849static enum callback_status
850detach_task_cb(struct Process *task, void *data)
851{
852	struct breakpoint *bp = data;
853
854	if (get_instruction_pointer(task) == bp->addr) {
855		debug(DEBUG_PROCESS, "%d at %p, which is PLT slot",
856		      task->pid, bp->addr);
857		jump_to_entry_point(task, bp);
858		return CBS_CONT;
859	}
860
861	/* XXX There's still a window of several instructions where we
862	 * might catch the task inside a stub such that it has already
863	 * read destination address from .plt, but hasn't jumped yet,
864	 * thus avoiding the breakpoint.  */
865
866	return CBS_CONT;
867}
868
869static void
870ppc_plt_bp_retract(struct breakpoint *bp, struct Process *proc)
871{
872	/* On PPC64, we rewrite .plt with PLT entry addresses.  This
873	 * needs to be undone.  Unfortunately, the program may have
874	 * made decisions based on that value */
875	if (proc->e_machine == EM_PPC64
876	    && bp->libsym != NULL
877	    && bp->libsym->arch.type == PPC_PLT_RESOLVED) {
878		each_task(proc->leader, NULL, detach_task_cb, bp);
879		unresolve_plt_slot(proc, bp->libsym->arch.plt_slot_addr,
880				   bp->libsym->arch.resolved_value);
881	}
882}
883
884void
885arch_library_init(struct library *lib)
886{
887}
888
889void
890arch_library_destroy(struct library *lib)
891{
892}
893
894void
895arch_library_clone(struct library *retp, struct library *lib)
896{
897}
898
899int
900arch_library_symbol_init(struct library_symbol *libsym)
901{
902	/* We set type explicitly in the code above, where we have the
903	 * necessary context.  This is for calls from ltrace-elf.c and
904	 * such.  */
905	libsym->arch.type = PPC_DEFAULT;
906	return 0;
907}
908
909void
910arch_library_symbol_destroy(struct library_symbol *libsym)
911{
912}
913
914int
915arch_library_symbol_clone(struct library_symbol *retp,
916			  struct library_symbol *libsym)
917{
918	retp->arch = libsym->arch;
919	return 0;
920}
921
922/* For some symbol types, we need to set up custom callbacks.  XXX we
923 * don't need PROC here, we can store the data in BP if it is of
924 * interest to us.  */
925int
926arch_breakpoint_init(struct Process *proc, struct breakpoint *bp)
927{
928	/* Artificial and entry-point breakpoints are plain.  */
929	if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
930		return 0;
931
932	/* On PPC, secure PLT and prelinked BSS PLT are plain.  */
933	if (proc->e_machine == EM_PPC
934	    && bp->libsym->lib->arch.bss_plt_prelinked != 0)
935		return 0;
936
937	/* On PPC64, stub PLT breakpoints are plain.  */
938	if (proc->e_machine == EM_PPC64
939	    && bp->libsym->arch.type == PPC64_PLT_STUB)
940		return 0;
941
942	static struct bp_callbacks cbs = {
943		.on_continue = ppc_plt_bp_continue,
944		.on_retract = ppc_plt_bp_retract,
945	};
946	breakpoint_set_callbacks(bp, &cbs);
947	return 0;
948}
949
950void
951arch_breakpoint_destroy(struct breakpoint *bp)
952{
953}
954
955int
956arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
957{
958	retp->arch = sbp->arch;
959	return 0;
960}
961
962int
963arch_process_init(struct Process *proc)
964{
965	proc->arch.dl_plt_update_bp = NULL;
966	proc->arch.handler = NULL;
967	return 0;
968}
969
970void
971arch_process_destroy(struct Process *proc)
972{
973}
974
975int
976arch_process_clone(struct Process *retp, struct Process *proc)
977{
978	retp->arch = proc->arch;
979	return 0;
980}
981
982int
983arch_process_exec(struct Process *proc)
984{
985	return arch_process_init(proc);
986}
987