plt.c revision 929bd57ca202fd2f2e8485ebf65d683e664f67b5
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2012 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2004,2008,2009 Juan Cespedes
5 * Copyright (C) 2006 Paul Gilliam
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23#include <gelf.h>
24#include <sys/ptrace.h>
25#include <errno.h>
26#include <inttypes.h>
27#include <assert.h>
28#include <string.h>
29
30#include "proc.h"
31#include "common.h"
32#include "insn.h"
33#include "library.h"
34#include "breakpoint.h"
35#include "linux-gnu/trace.h"
36#include "backend.h"
37
38/* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
39 * new-style "secure" PLT.  We can tell one from the other by the
40 * flags on the .plt section.  If it's +X (executable), it's BSS PLT,
41 * otherwise it's secure.
42 *
43 * BSS PLT works the same way as most architectures: the .plt section
44 * contains trampolines and we put breakpoints to those.  If not
45 * prelinked, .plt contains zeroes, and dynamic linker fills in the
46 * initial set of trampolines, which means that we need to delay
47 * enabling breakpoints until after binary entry point is hit.
48 * Additionally, after first call, dynamic linker updates .plt with
49 * branch to resolved address.  That means that on first hit, we must
50 * do something similar to the PPC64 gambit described below.
51 *
52 * With secure PLT, the .plt section doesn't contain instructions but
53 * addresses.  The real PLT table is stored in .text.  Addresses of
54 * those PLT entries can be computed, and apart from the fact that
55 * they are in .text, they are ordinary PLT entries.
56 *
57 * 64-bit PPC is more involved.  Program linker creates for each
58 * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
59 * (where xxxxxxxx is a hexadecimal number).  That stub does the call
60 * dispatch: it loads an address of a function to call from the
61 * section .plt, and branches.  PLT entries themselves are essentially
62 * a curried call to the resolver.  When the symbol is resolved, the
63 * resolver updates the value stored in .plt, and the next time
64 * around, the stub calls the library function directly.  So we make
65 * at most one trip (none if the binary is prelinked) through each PLT
66 * entry, and correspondingly that is useless as a breakpoint site.
67 *
68 * Note the three confusing terms: stubs (that play the role of PLT
69 * entries), PLT entries, .plt section.
70 *
71 * We first check symbol tables and see if we happen to have stub
72 * symbols available.  If yes we just put breakpoints to those, and
73 * treat them as usual breakpoints.  The only tricky part is realizing
74 * that there can be more than one breakpoint per symbol.
75 *
76 * The case that we don't have the stub symbols available is harder.
77 * The following scheme uses two kinds of PLT breakpoints: unresolved
78 * and resolved (to some address).  When the process starts (or when
79 * we attach), we distribute unresolved PLT breakpoints to the PLT
80 * entries (not stubs).  Then we look in .plt, and for each entry
81 * whose value is different than the corresponding PLT entry address,
82 * we assume it was already resolved, and convert the breakpoint to
83 * resolved.  We also rewrite the resolved value in .plt back to the
84 * PLT address.
85 *
86 * When a PLT entry hits a resolved breakpoint (which happens because
87 * we rewrite .plt with the original unresolved addresses), we move
88 * the instruction pointer to the corresponding address and continue
89 * the process as if nothing happened.
90 *
91 * When unresolved PLT entry is called for the first time, we need to
92 * catch the new value that the resolver will write to a .plt slot.
93 * We also need to prevent another thread from racing through and
94 * taking the branch without ltrace noticing.  So when unresolved PLT
95 * entry hits, we have to stop all threads.  We then single-step
96 * through the resolver, until the .plt slot changes.  When it does,
97 * we treat it the same way as above: convert the PLT breakpoint to
98 * resolved, and rewrite the .plt value back to PLT address.  We then
99 * start all threads again.
100 *
101 * As an optimization, we remember the address where the address was
102 * resolved, and put a breakpoint there.  The next time around (when
103 * the next PLT entry is to be resolved), instead of single-stepping
104 * through half the dynamic linker, we just let the thread run and hit
105 * this breakpoint.  When it hits, we know the PLT entry was resolved.
106 *
107 * XXX TODO If we have hardware watch point, we might put a read watch
108 * on .plt slot, and discover the offenders this way.  I don't know
109 * the details, but I assume at most a handful (like, one or two, if
110 * available at all) addresses may be watched at a time, and thus this
111 * would be used as an amendment of the above rather than full-on
112 * solution to PLT tracing on PPC.
113 */
114
115#define PPC_PLT_STUB_SIZE 16
116#define PPC64_PLT_STUB_SIZE 8 //xxx
117
118static inline int
119host_powerpc64()
120{
121#ifdef __powerpc64__
122	return 1;
123#else
124	return 0;
125#endif
126}
127
128int
129read_target_4(struct process *proc, arch_addr_t addr, uint32_t *lp)
130{
131	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
132	if (l == -1UL && errno)
133		return -1;
134#ifdef __powerpc64__
135	l >>= 32;
136#endif
137	*lp = l;
138	return 0;
139}
140
141static int
142read_target_8(struct process *proc, arch_addr_t addr, uint64_t *lp)
143{
144	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
145	if (l == -1UL && errno)
146		return -1;
147	if (host_powerpc64()) {
148		*lp = l;
149	} else {
150		unsigned long l2 = ptrace(PTRACE_PEEKTEXT, proc->pid,
151					  addr + 4, 0);
152		if (l2 == -1UL && errno)
153			return -1;
154		*lp = ((uint64_t)l << 32) | l2;
155	}
156	return 0;
157}
158
159int
160read_target_long(struct process *proc, arch_addr_t addr, uint64_t *lp)
161{
162	if (proc->e_machine == EM_PPC) {
163		uint32_t w;
164		int ret = read_target_4(proc, addr, &w);
165		if (ret >= 0)
166			*lp = (uint64_t)w;
167		return ret;
168	} else {
169		return read_target_8(proc, addr, lp);
170	}
171}
172
173static void
174mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
175{
176	libsym->arch.type = PPC_PLT_RESOLVED;
177	libsym->arch.resolved_value = value;
178}
179
180void
181arch_dynlink_done(struct process *proc)
182{
183	/* On PPC32 with BSS PLT, we need to enable delayed symbols.  */
184	struct library_symbol *libsym = NULL;
185	while ((libsym = proc_each_symbol(proc, libsym,
186					  library_symbol_delayed_cb, NULL))) {
187		if (read_target_8(proc, libsym->enter_addr,
188				  &libsym->arch.resolved_value) < 0) {
189			fprintf(stderr,
190				"couldn't read PLT value for %s(%p): %s\n",
191				libsym->name, libsym->enter_addr,
192				strerror(errno));
193			return;
194		}
195
196		/* arch_dynlink_done is called on attach as well.  In
197		 * that case some slots will have been resolved
198		 * already.  Unresolved PLT looks like this:
199		 *
200		 *    <sleep@plt>:	li      r11,0
201		 *    <sleep@plt+4>:	b       "resolve"
202		 *
203		 * "resolve" is another address in PLTGOT (the same
204		 * block that all the PLT slots are it).  When
205		 * resolved, it looks either this way:
206		 *
207		 *    <sleep@plt>:	b       0xfea88d0 <sleep>
208		 *
209		 * Which is easy to detect.  It can also look this
210		 * way:
211		 *
212		 *    <sleep@plt>:	li      r11,0
213		 *    <sleep@plt+4>:	b       "dispatch"
214		 *
215		 * The "dispatch" address lies in PLTGOT as well.  In
216		 * current GNU toolchain, "dispatch" address is the
217		 * same as PLTGOT address.  We rely on this to figure
218		 * out whether the address is resolved or not.  */
219		uint32_t insn1 = libsym->arch.resolved_value >> 32;
220		uint32_t insn2 = (uint32_t)libsym->arch.resolved_value;
221		if ((insn1 & BRANCH_MASK) == B_INSN
222		    || ((insn2 & BRANCH_MASK) == B_INSN
223			/* XXX double cast  */
224			&& (ppc_branch_dest(libsym->enter_addr + 4, insn2)
225			    == (void*)(long)libsym->lib->arch.pltgot_addr)))
226			mark_as_resolved(libsym, libsym->arch.resolved_value);
227
228		if (proc_activate_delayed_symbol(proc, libsym) < 0)
229			return;
230
231		/* XXX double cast  */
232		libsym->arch.plt_slot_addr
233			= (GElf_Addr)(uintptr_t)libsym->enter_addr;
234	}
235}
236
237GElf_Addr
238arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
239{
240	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
241		assert(lte->arch.plt_stub_vma != 0);
242		return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
243
244	} else if (lte->ehdr.e_machine == EM_PPC) {
245		return rela->r_offset;
246
247	} else {
248		/* If we get here, we don't have stub symbols.  In
249		 * that case we put brakpoints to PLT entries the same
250		 * as the PPC32 secure PLT case does.  */
251		assert(lte->arch.plt_stub_vma != 0);
252		return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
253	}
254}
255
256/* This entry point is called when ltelf is not available
257 * anymore--during runtime.  At that point we don't have to concern
258 * ourselves with bias, as the values in OPD have been resolved
259 * already.  */
260int
261arch_translate_address_dyn(struct process *proc,
262			   arch_addr_t addr, arch_addr_t *ret)
263{
264	if (proc->e_machine == EM_PPC64) {
265		uint64_t value;
266		if (read_target_8(proc, addr, &value) < 0) {
267			fprintf(stderr,
268				"dynamic .opd translation of %p: %s\n",
269				addr, strerror(errno));
270			return -1;
271		}
272		/* XXX The double cast should be removed when
273		 * arch_addr_t becomes integral type.  */
274		*ret = (arch_addr_t)(uintptr_t)value;
275		return 0;
276	}
277
278	*ret = addr;
279	return 0;
280}
281
282int
283arch_translate_address(struct ltelf *lte,
284		       arch_addr_t addr, arch_addr_t *ret)
285{
286	if (lte->ehdr.e_machine == EM_PPC64) {
287		/* XXX The double cast should be removed when
288		 * arch_addr_t becomes integral type.  */
289		GElf_Xword offset
290			= (GElf_Addr)(uintptr_t)addr - lte->arch.opd_base;
291		uint64_t value;
292		if (elf_read_u64(lte->arch.opd_data, offset, &value) < 0) {
293			fprintf(stderr, "static .opd translation of %p: %s\n",
294				addr, elf_errmsg(-1));
295			return -1;
296		}
297		*ret = (arch_addr_t)(uintptr_t)(value + lte->bias);
298		return 0;
299	}
300
301	*ret = addr;
302	return 0;
303}
304
305static int
306load_opd_data(struct ltelf *lte, struct library *lib)
307{
308	Elf_Scn *sec;
309	GElf_Shdr shdr;
310	if (elf_get_section_named(lte, ".opd", &sec, &shdr) < 0) {
311	fail:
312		fprintf(stderr, "couldn't find .opd data\n");
313		return -1;
314	}
315
316	lte->arch.opd_data = elf_rawdata(sec, NULL);
317	if (lte->arch.opd_data == NULL)
318		goto fail;
319
320	lte->arch.opd_base = shdr.sh_addr + lte->bias;
321	lte->arch.opd_size = shdr.sh_size;
322
323	return 0;
324}
325
326void *
327sym2addr(struct process *proc, struct library_symbol *sym)
328{
329	return sym->enter_addr;
330}
331
332static GElf_Addr
333get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
334{
335	Elf_Scn *ppcgot_sec = NULL;
336	GElf_Shdr ppcgot_shdr;
337	if (ppcgot != 0
338	    && elf_get_section_covering(lte, ppcgot,
339					&ppcgot_sec, &ppcgot_shdr) < 0)
340		fprintf(stderr,
341			"DT_PPC_GOT=%#"PRIx64", but no such section found\n",
342			ppcgot);
343
344	if (ppcgot_sec != NULL) {
345		Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
346		if (data == NULL || data->d_size < 8 ) {
347			fprintf(stderr, "couldn't read GOT data\n");
348		} else {
349			// where PPCGOT begins in .got
350			size_t offset = ppcgot - ppcgot_shdr.sh_addr;
351			assert(offset % 4 == 0);
352			uint32_t glink_vma;
353			if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
354				fprintf(stderr, "couldn't read glink VMA"
355					" address at %zd@GOT\n", offset);
356				return 0;
357			}
358			if (glink_vma != 0) {
359				debug(1, "PPC GOT glink_vma address: %#" PRIx32,
360				      glink_vma);
361				return (GElf_Addr)glink_vma;
362			}
363		}
364	}
365
366	if (plt_data != NULL) {
367		uint32_t glink_vma;
368		if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
369			fprintf(stderr, "couldn't read glink VMA address\n");
370			return 0;
371		}
372		debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
373		return (GElf_Addr)glink_vma;
374	}
375
376	return 0;
377}
378
379static int
380load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep)
381{
382	Elf_Scn *scn;
383	GElf_Shdr shdr;
384	if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0
385	    || scn == NULL) {
386	fail:
387		fprintf(stderr, "Couldn't get SHT_DYNAMIC: %s\n",
388			elf_errmsg(-1));
389		return -1;
390	}
391
392	Elf_Data *data = elf_loaddata(scn, &shdr);
393	if (data == NULL)
394		goto fail;
395
396	size_t j;
397	for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
398		GElf_Dyn dyn;
399		if (gelf_getdyn(data, j, &dyn) == NULL)
400			goto fail;
401
402		if(dyn.d_tag == tag) {
403			*valuep = dyn.d_un.d_ptr;
404			return 0;
405		}
406	}
407
408	return -1;
409}
410
411static int
412nonzero_data(Elf_Data *data)
413{
414	/* We are not supposed to get here if there's no PLT.  */
415	assert(data != NULL);
416
417	unsigned char *buf = data->d_buf;
418	if (buf == NULL)
419		return 0;
420
421	size_t i;
422	for (i = 0; i < data->d_size; ++i)
423		if (buf[i] != 0)
424			return 1;
425	return 0;
426}
427
428int
429arch_elf_init(struct ltelf *lte, struct library *lib)
430{
431	if (lte->ehdr.e_machine == EM_PPC64
432	    && load_opd_data(lte, lib) < 0)
433		return -1;
434
435	lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
436
437	/* For PPC32 BSS, it is important whether the binary was
438	 * prelinked.  If .plt section is NODATA, or if it contains
439	 * zeroes, then this library is not prelinked, and we need to
440	 * delay breakpoints.  */
441	if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
442		lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
443	else
444		/* For cases where it's irrelevant, initialize the
445		 * value to something conspicuous.  */
446		lib->arch.bss_plt_prelinked = -1;
447
448	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
449		GElf_Addr ppcgot;
450		if (load_dynamic_entry(lte, DT_PPC_GOT, &ppcgot) < 0) {
451			fprintf(stderr, "couldn't find DT_PPC_GOT\n");
452			return -1;
453		}
454		GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
455
456		assert(lte->relplt_size % 12 == 0);
457		size_t count = lte->relplt_size / 12; // size of RELA entry
458		lte->arch.plt_stub_vma = glink_vma
459			- (GElf_Addr)count * PPC_PLT_STUB_SIZE;
460		debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
461
462	} else if (lte->ehdr.e_machine == EM_PPC64) {
463		GElf_Addr glink_vma;
464		if (load_dynamic_entry(lte, DT_PPC64_GLINK, &glink_vma) < 0) {
465			fprintf(stderr, "couldn't find DT_PPC64_GLINK\n");
466			return -1;
467		}
468
469		/* The first glink stub starts at offset 32.  */
470		lte->arch.plt_stub_vma = glink_vma + 32;
471
472	} else {
473		/* By exhaustion--PPC32 BSS.  */
474		if (load_dynamic_entry(lte, DT_PLTGOT,
475				       &lib->arch.pltgot_addr) < 0) {
476			fprintf(stderr, "couldn't find DT_PLTGOT\n");
477			return -1;
478		}
479	}
480
481	/* On PPC64, look for stub symbols in symbol table.  These are
482	 * called: xxxxxxxx.plt_call.callee_name@version+addend.  */
483	if (lte->ehdr.e_machine == EM_PPC64
484	    && lte->symtab != NULL && lte->strtab != NULL) {
485
486		/* N.B. We can't simply skip the symbols that we fail
487		 * to read or malloc.  There may be more than one stub
488		 * per symbol name, and if we failed in one but
489		 * succeeded in another, the PLT enabling code would
490		 * have no way to tell that something is missing.  We
491		 * could work around that, of course, but it doesn't
492		 * seem worth the trouble.  So if anything fails, we
493		 * just pretend that we don't have stub symbols at
494		 * all, as if the binary is stripped.  */
495
496		size_t i;
497		for (i = 0; i < lte->symtab_count; ++i) {
498			GElf_Sym sym;
499			if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
500				struct library_symbol *sym, *next;
501			fail:
502				for (sym = lte->arch.stubs; sym != NULL; ) {
503					next = sym->next;
504					library_symbol_destroy(sym);
505					free(sym);
506					sym = next;
507				}
508				lte->arch.stubs = NULL;
509				break;
510			}
511
512			const char *name = lte->strtab + sym.st_name;
513
514#define STUBN ".plt_call."
515			if ((name = strstr(name, STUBN)) == NULL)
516				continue;
517			name += sizeof(STUBN) - 1;
518#undef STUBN
519
520			size_t len;
521			const char *ver = strchr(name, '@');
522			if (ver != NULL) {
523				len = ver - name;
524
525			} else {
526				/* If there is "+" at all, check that
527				 * the symbol name ends in "+0".  */
528				const char *add = strrchr(name, '+');
529				if (add != NULL) {
530					assert(strcmp(add, "+0") == 0);
531					len = add - name;
532				} else {
533					len = strlen(name);
534				}
535			}
536
537			char *sym_name = strndup(name, len);
538			struct library_symbol *libsym = malloc(sizeof(*libsym));
539			if (sym_name == NULL || libsym == NULL) {
540			fail2:
541				free(sym_name);
542				free(libsym);
543				goto fail;
544			}
545
546			/* XXX The double cast should be removed when
547			 * arch_addr_t becomes integral type.  */
548			arch_addr_t addr = (arch_addr_t)
549				(uintptr_t)sym.st_value + lte->bias;
550			if (library_symbol_init(libsym, addr, sym_name, 1,
551						LS_TOPLT_EXEC) < 0)
552				goto fail2;
553			libsym->arch.type = PPC64_PLT_STUB;
554			libsym->next = lte->arch.stubs;
555			lte->arch.stubs = libsym;
556		}
557	}
558
559	return 0;
560}
561
562static int
563read_plt_slot_value(struct process *proc, GElf_Addr addr, GElf_Addr *valp)
564{
565	/* On PPC64, we read from .plt, which contains 8 byte
566	 * addresses.  On PPC32 we read from .plt, which contains 4
567	 * byte instructions, but the PLT is two instructions, and
568	 * either can change.  */
569	uint64_t l;
570	/* XXX double cast.  */
571	if (read_target_8(proc, (arch_addr_t)(uintptr_t)addr, &l) < 0) {
572		fprintf(stderr, "ptrace .plt slot value @%#" PRIx64": %s\n",
573			addr, strerror(errno));
574		return -1;
575	}
576
577	*valp = (GElf_Addr)l;
578	return 0;
579}
580
581static int
582unresolve_plt_slot(struct process *proc, GElf_Addr addr, GElf_Addr value)
583{
584	/* We only modify plt_entry[0], which holds the resolved
585	 * address of the routine.  We keep the TOC and environment
586	 * pointers intact.  Hence the only adjustment that we need to
587	 * do is to IP.  */
588	if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
589		fprintf(stderr, "failed to unresolve .plt slot: %s\n",
590			strerror(errno));
591		return -1;
592	}
593	return 0;
594}
595
596enum plt_status
597arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte,
598		       const char *a_name, GElf_Rela *rela, size_t ndx,
599		       struct library_symbol **ret)
600{
601	if (lte->ehdr.e_machine == EM_PPC) {
602		if (lte->arch.secure_plt)
603			return plt_default;
604
605		struct library_symbol *libsym = NULL;
606		if (default_elf_add_plt_entry(proc, lte, a_name, rela, ndx,
607					      &libsym) < 0)
608			return plt_fail;
609
610		/* On PPC32 with BSS PLT, delay the symbol until
611		 * dynamic linker is done.  */
612		assert(!libsym->delayed);
613		libsym->delayed = 1;
614
615		*ret = libsym;
616		return plt_ok;
617	}
618
619	/* PPC64.  If we have stubs, we return a chain of breakpoint
620	 * sites, one for each stub that corresponds to this PLT
621	 * entry.  */
622	struct library_symbol *chain = NULL;
623	struct library_symbol **symp;
624	for (symp = &lte->arch.stubs; *symp != NULL; ) {
625		struct library_symbol *sym = *symp;
626		if (strcmp(sym->name, a_name) != 0) {
627			symp = &(*symp)->next;
628			continue;
629		}
630
631		/* Re-chain the symbol from stubs to CHAIN.  */
632		*symp = sym->next;
633		sym->next = chain;
634		chain = sym;
635	}
636
637	if (chain != NULL) {
638		*ret = chain;
639		return plt_ok;
640	}
641
642	/* We don't have stub symbols.  Find corresponding .plt slot,
643	 * and check whether it contains the corresponding PLT address
644	 * (or 0 if the dynamic linker hasn't run yet).  N.B. we don't
645	 * want read this from ELF file, but from process image.  That
646	 * makes a difference if we are attaching to a running
647	 * process.  */
648
649	GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
650	GElf_Addr plt_slot_addr = rela->r_offset;
651	assert(plt_slot_addr >= lte->plt_addr
652	       || plt_slot_addr < lte->plt_addr + lte->plt_size);
653
654	GElf_Addr plt_slot_value;
655	if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0)
656		return plt_fail;
657
658	char *name = strdup(a_name);
659	struct library_symbol *libsym = malloc(sizeof(*libsym));
660	if (name == NULL || libsym == NULL) {
661		fprintf(stderr, "allocation for .plt slot: %s\n",
662			strerror(errno));
663	fail:
664		free(name);
665		free(libsym);
666		return plt_fail;
667	}
668
669	/* XXX The double cast should be removed when
670	 * arch_addr_t becomes integral type.  */
671	if (library_symbol_init(libsym,
672				(arch_addr_t)(uintptr_t)plt_entry_addr,
673				name, 1, LS_TOPLT_EXEC) < 0)
674		goto fail;
675	libsym->arch.plt_slot_addr = plt_slot_addr;
676
677	if (plt_slot_value == plt_entry_addr || plt_slot_value == 0) {
678		libsym->arch.type = PPC_PLT_UNRESOLVED;
679		libsym->arch.resolved_value = plt_entry_addr;
680
681	} else {
682		/* Unresolve the .plt slot.  If the binary was
683		 * prelinked, this makes the code invalid, because in
684		 * case of prelinked binary, the dynamic linker
685		 * doesn't update .plt[0] and .plt[1] with addresses
686		 * of the resover.  But we don't care, we will never
687		 * need to enter the resolver.  That just means that
688		 * we have to un-un-resolve this back before we
689		 * detach.  */
690
691		if (unresolve_plt_slot(proc, plt_slot_addr, plt_entry_addr) < 0) {
692			library_symbol_destroy(libsym);
693			goto fail;
694		}
695		mark_as_resolved(libsym, plt_slot_value);
696	}
697
698	*ret = libsym;
699	return plt_ok;
700}
701
702void
703arch_elf_destroy(struct ltelf *lte)
704{
705	struct library_symbol *sym;
706	for (sym = lte->arch.stubs; sym != NULL; ) {
707		struct library_symbol *next = sym->next;
708		library_symbol_destroy(sym);
709		free(sym);
710		sym = next;
711	}
712}
713
714static void
715dl_plt_update_bp_on_hit(struct breakpoint *bp, struct process *proc)
716{
717	debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
718	      proc->pid, breakpoint_name(bp), bp->addr);
719	struct process_stopping_handler *self = proc->arch.handler;
720	assert(self != NULL);
721
722	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
723	GElf_Addr value;
724	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
725		return;
726
727	/* On PPC64, we rewrite the slot value.  */
728	if (proc->e_machine == EM_PPC64)
729		unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
730				   libsym->arch.resolved_value);
731	/* We mark the breakpoint as resolved on both arches.  */
732	mark_as_resolved(libsym, value);
733
734	/* cb_on_all_stopped looks if HANDLER is set to NULL as a way
735	 * to check that this was run.  It's an error if it
736	 * wasn't.  */
737	proc->arch.handler = NULL;
738
739	breakpoint_turn_off(bp, proc);
740}
741
742static void
743cb_on_all_stopped(struct process_stopping_handler *self)
744{
745	/* Put that in for dl_plt_update_bp_on_hit to see.  */
746	assert(self->task_enabling_breakpoint->arch.handler == NULL);
747	self->task_enabling_breakpoint->arch.handler = self;
748
749	linux_ptrace_disable_and_continue(self);
750}
751
752static enum callback_status
753cb_keep_stepping_p(struct process_stopping_handler *self)
754{
755	struct process *proc = self->task_enabling_breakpoint;
756	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
757
758	GElf_Addr value;
759	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
760		return CBS_FAIL;
761
762	/* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
763	 * the PLT entry value.  */
764	if (value == libsym->arch.resolved_value)
765		return CBS_CONT;
766
767	debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
768	      proc->pid, value);
769
770	/* The .plt slot got resolved!  We can migrate the breakpoint
771	 * to RESOLVED and stop single-stepping.  */
772	if (proc->e_machine == EM_PPC64
773	    && unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
774				  libsym->arch.resolved_value) < 0)
775		return CBS_FAIL;
776
777	/* Resolving on PPC64 consists of overwriting a doubleword in
778	 * .plt.  That doubleword is than read back by a stub, and
779	 * jumped on.  Hopefully we can assume that double word update
780	 * is done on a single place only, as it contains a final
781	 * address.  We still need to look around for any sync
782	 * instruction, but essentially it is safe to optimize away
783	 * the single stepping next time and install a post-update
784	 * breakpoint.
785	 *
786	 * The situation on PPC32 BSS is more complicated.  The
787	 * dynamic linker here updates potentially several
788	 * instructions (XXX currently we assume two) and the rules
789	 * are more complicated.  Sometimes it's enough to adjust just
790	 * one of the addresses--the logic for generating optimal
791	 * dispatch depends on relative addresses of the .plt entry
792	 * and the jump destination.  We can't assume that the some
793	 * instruction block does the update every time.  So on PPC32,
794	 * we turn the optimization off and just step through it each
795	 * time.  */
796	if (proc->e_machine == EM_PPC)
797		goto done;
798
799	/* Install breakpoint to the address where the change takes
800	 * place.  If we fail, then that just means that we'll have to
801	 * singlestep the next time around as well.  */
802	struct process *leader = proc->leader;
803	if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
804		goto done;
805
806	/* We need to install to the next instruction.  ADDR points to
807	 * a store instruction, so moving the breakpoint one
808	 * instruction forward is safe.  */
809	arch_addr_t addr = get_instruction_pointer(proc) + 4;
810	leader->arch.dl_plt_update_bp = insert_breakpoint(proc, addr, NULL);
811	if (leader->arch.dl_plt_update_bp == NULL)
812		goto done;
813
814	static struct bp_callbacks dl_plt_update_cbs = {
815		.on_hit = dl_plt_update_bp_on_hit,
816	};
817	leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
818
819	/* Turn it off for now.  We will turn it on again when we hit
820	 * the PLT entry that needs this.  */
821	breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
822
823done:
824	mark_as_resolved(libsym, value);
825
826	return CBS_STOP;
827}
828
829static void
830jump_to_entry_point(struct process *proc, struct breakpoint *bp)
831{
832	/* XXX The double cast should be removed when
833	 * arch_addr_t becomes integral type.  */
834	arch_addr_t rv = (arch_addr_t)
835		(uintptr_t)bp->libsym->arch.resolved_value;
836	set_instruction_pointer(proc, rv);
837}
838
839static void
840ppc_plt_bp_continue(struct breakpoint *bp, struct process *proc)
841{
842	switch (bp->libsym->arch.type) {
843		struct process *leader;
844		void (*on_all_stopped)(struct process_stopping_handler *);
845		enum callback_status (*keep_stepping_p)
846			(struct process_stopping_handler *);
847
848	case PPC_DEFAULT:
849		assert(proc->e_machine == EM_PPC);
850		assert(bp->libsym != NULL);
851		assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
852		/* Fall through.  */
853
854	case PPC_PLT_UNRESOLVED:
855		on_all_stopped = NULL;
856		keep_stepping_p = NULL;
857		leader = proc->leader;
858
859		if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
860		    && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
861					  proc) >= 0)
862			on_all_stopped = cb_on_all_stopped;
863		else
864			keep_stepping_p = cb_keep_stepping_p;
865
866		if (process_install_stopping_handler
867		    (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
868			fprintf(stderr,	"ppc_plt_bp_continue: "
869				"couldn't install event handler\n");
870			continue_after_breakpoint(proc, bp);
871		}
872		return;
873
874	case PPC_PLT_RESOLVED:
875		if (proc->e_machine == EM_PPC) {
876			continue_after_breakpoint(proc, bp);
877			return;
878		}
879
880		jump_to_entry_point(proc, bp);
881		continue_process(proc->pid);
882		return;
883
884	case PPC64_PLT_STUB:
885		/* These should never hit here.  */
886		break;
887	}
888
889	assert(bp->libsym->arch.type != bp->libsym->arch.type);
890	abort();
891}
892
893/* When a process is in a PLT stub, it may have already read the data
894 * in .plt that we changed.  If we detach now, it will jump to PLT
895 * entry and continue to the dynamic linker, where it will SIGSEGV,
896 * because zeroth .plt slot is not filled in prelinked binaries, and
897 * the dynamic linker needs that data.  Moreover, the process may
898 * actually have hit the breakpoint already.  This functions tries to
899 * detect both cases and do any fix-ups necessary to mend this
900 * situation.  */
901static enum callback_status
902detach_task_cb(struct process *task, void *data)
903{
904	struct breakpoint *bp = data;
905
906	if (get_instruction_pointer(task) == bp->addr) {
907		debug(DEBUG_PROCESS, "%d at %p, which is PLT slot",
908		      task->pid, bp->addr);
909		jump_to_entry_point(task, bp);
910		return CBS_CONT;
911	}
912
913	/* XXX There's still a window of several instructions where we
914	 * might catch the task inside a stub such that it has already
915	 * read destination address from .plt, but hasn't jumped yet,
916	 * thus avoiding the breakpoint.  */
917
918	return CBS_CONT;
919}
920
921static void
922ppc_plt_bp_retract(struct breakpoint *bp, struct process *proc)
923{
924	/* On PPC64, we rewrite .plt with PLT entry addresses.  This
925	 * needs to be undone.  Unfortunately, the program may have
926	 * made decisions based on that value */
927	if (proc->e_machine == EM_PPC64
928	    && bp->libsym != NULL
929	    && bp->libsym->arch.type == PPC_PLT_RESOLVED) {
930		each_task(proc->leader, NULL, detach_task_cb, bp);
931		unresolve_plt_slot(proc, bp->libsym->arch.plt_slot_addr,
932				   bp->libsym->arch.resolved_value);
933	}
934}
935
936void
937arch_library_init(struct library *lib)
938{
939}
940
941void
942arch_library_destroy(struct library *lib)
943{
944}
945
946void
947arch_library_clone(struct library *retp, struct library *lib)
948{
949}
950
951int
952arch_library_symbol_init(struct library_symbol *libsym)
953{
954	/* We set type explicitly in the code above, where we have the
955	 * necessary context.  This is for calls from ltrace-elf.c and
956	 * such.  */
957	libsym->arch.type = PPC_DEFAULT;
958	return 0;
959}
960
961void
962arch_library_symbol_destroy(struct library_symbol *libsym)
963{
964}
965
966int
967arch_library_symbol_clone(struct library_symbol *retp,
968			  struct library_symbol *libsym)
969{
970	retp->arch = libsym->arch;
971	return 0;
972}
973
974/* For some symbol types, we need to set up custom callbacks.  XXX we
975 * don't need PROC here, we can store the data in BP if it is of
976 * interest to us.  */
977int
978arch_breakpoint_init(struct process *proc, struct breakpoint *bp)
979{
980	/* Artificial and entry-point breakpoints are plain.  */
981	if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
982		return 0;
983
984	/* On PPC, secure PLT and prelinked BSS PLT are plain.  */
985	if (proc->e_machine == EM_PPC
986	    && bp->libsym->lib->arch.bss_plt_prelinked != 0)
987		return 0;
988
989	/* On PPC64, stub PLT breakpoints are plain.  */
990	if (proc->e_machine == EM_PPC64
991	    && bp->libsym->arch.type == PPC64_PLT_STUB)
992		return 0;
993
994	static struct bp_callbacks cbs = {
995		.on_continue = ppc_plt_bp_continue,
996		.on_retract = ppc_plt_bp_retract,
997	};
998	breakpoint_set_callbacks(bp, &cbs);
999	return 0;
1000}
1001
1002void
1003arch_breakpoint_destroy(struct breakpoint *bp)
1004{
1005}
1006
1007int
1008arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
1009{
1010	retp->arch = sbp->arch;
1011	return 0;
1012}
1013
1014int
1015arch_process_init(struct process *proc)
1016{
1017	proc->arch.dl_plt_update_bp = NULL;
1018	proc->arch.handler = NULL;
1019	return 0;
1020}
1021
1022void
1023arch_process_destroy(struct process *proc)
1024{
1025}
1026
1027int
1028arch_process_clone(struct process *retp, struct process *proc)
1029{
1030	retp->arch = proc->arch;
1031	return 0;
1032}
1033
1034int
1035arch_process_exec(struct process *proc)
1036{
1037	return arch_process_init(proc);
1038}
1039