plt.c revision b04b64b7285183ad5fbc011ee381613359c35a2b
1#include <gelf.h>
2#include <sys/ptrace.h>
3#include <errno.h>
4#include <error.h>
5#include <inttypes.h>
6#include <assert.h>
7#include <string.h>
8
9#include "proc.h"
10#include "common.h"
11#include "library.h"
12#include "breakpoint.h"
13#include "linux-gnu/trace.h"
14
15/* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
16 * new-style "secure" PLT.  We can tell one from the other by the
17 * flags on the .plt section.  If it's +X (executable), it's BSS PLT,
18 * otherwise it's secure.
19 *
20 * BSS PLT works the same way as most architectures: the .plt section
21 * contains trampolines and we put breakpoints to those.  If not
22 * prelinked, .plt contains zeroes, and dynamic linker fills in the
23 * initial set of trampolines, which means that we need to delay
24 * enabling breakpoints until after binary entry point is hit.
25 * Additionally, after first call, dynamic linker updates .plt with
26 * branch to resolved address.  That means that on first hit, we must
27 * do something similar to the PPC64 gambit described below.
28 *
29 * With secure PLT, the .plt section doesn't contain instructions but
30 * addresses.  The real PLT table is stored in .text.  Addresses of
31 * those PLT entries can be computed, and apart from the fact that
32 * they are in .text, they are ordinary PLT entries.
33 *
34 * 64-bit PPC is more involved.  Program linker creates for each
35 * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
36 * (where xxxxxxxx is a hexadecimal number).  That stub does the call
37 * dispatch: it loads an address of a function to call from the
38 * section .plt, and branches.  PLT entries themselves are essentially
39 * a curried call to the resolver.  When the symbol is resolved, the
40 * resolver updates the value stored in .plt, and the next time
41 * around, the stub calls the library function directly.  So we make
42 * at most one trip (none if the binary is prelinked) through each PLT
43 * entry, and correspondingly that is useless as a breakpoint site.
44 *
45 * Note the three confusing terms: stubs (that play the role of PLT
46 * entries), PLT entries, .plt section.
47 *
48 * We first check symbol tables and see if we happen to have stub
49 * symbols available.  If yes we just put breakpoints to those, and
50 * treat them as usual breakpoints.  The only tricky part is realizing
51 * that there can be more than one breakpoint per symbol.
52 *
53 * The case that we don't have the stub symbols available is harder.
54 * The following scheme uses two kinds of PLT breakpoints: unresolved
55 * and resolved (to some address).  When the process starts (or when
56 * we attach), we distribute unresolved PLT breakpoints to the PLT
57 * entries (not stubs).  Then we look in .plt, and for each entry
58 * whose value is different than the corresponding PLT entry address,
59 * we assume it was already resolved, and convert the breakpoint to
60 * resolved.  We also rewrite the resolved value in .plt back to the
61 * PLT address.
62 *
63 * When a PLT entry hits a resolved breakpoint (which happens because
64 * we rewrite .plt with the original unresolved addresses), we move
65 * the instruction pointer to the corresponding address and continue
66 * the process as if nothing happened.
67 *
68 * When unresolved PLT entry is called for the first time, we need to
69 * catch the new value that the resolver will write to a .plt slot.
70 * We also need to prevent another thread from racing through and
71 * taking the branch without ltrace noticing.  So when unresolved PLT
72 * entry hits, we have to stop all threads.  We then single-step
73 * through the resolver, until the .plt slot changes.  When it does,
74 * we treat it the same way as above: convert the PLT breakpoint to
75 * resolved, and rewrite the .plt value back to PLT address.  We then
76 * start all threads again.
77 *
78 * As an optimization, we remember the address where the address was
79 * resolved, and put a breakpoint there.  The next time around (when
80 * the next PLT entry is to be resolved), instead of single-stepping
81 * through half the dynamic linker, we just let the thread run and hit
82 * this breakpoint.  When it hits, we know the PLT entry was resolved.
83 *
84 * N.B. It's tempting to try to emulate the instruction that updates
85 * .plt.  We would compute the resolved address, and instead of
86 * letting the dynamic linker put it in .plt, we would resolve the
87 * breakpoint to that address.  This way we wouldn't need to stop
88 * other threads.  However that instruction may turn out to be a sync,
89 * and in general, may be any instruction between the actual write and
90 * the following sync.  XXX TODO that means that we need to put the
91 * post-enable breakpoint at the following sync, not to the
92 * instruction itself (unless it's a sync already).
93 *
94 * XXX TODO If we have hardware watch point, we might put a read watch
95 * on .plt slot, and discover the offenders this way.  I don't know
96 * the details, but I assume at most a handful (like, one or two, if
97 * available at all) addresses may be watched at a time, and thus this
98 * would be used as an amendment of the above rather than full-on
99 * solution to PLT tracing on PPC.
100 */
101
102#define PPC_PLT_STUB_SIZE 16
103#define PPC64_PLT_STUB_SIZE 8 //xxx
104
105static inline int
106host_powerpc64()
107{
108#ifdef __powerpc64__
109	return 1;
110#else
111	return 0;
112#endif
113}
114
115static int
116read_target_4(struct Process *proc, target_address_t addr, uint32_t *lp)
117{
118	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
119	if (l == -1UL && errno)
120		return -1;
121	if (host_powerpc64())
122		l >>= 32;
123	*lp = l;
124	return 0;
125}
126
127static int
128read_target_8(struct Process *proc, target_address_t addr, uint64_t *lp)
129{
130	assert(host_powerpc64());
131	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
132	if (l == -1UL && errno)
133		return -1;
134	*lp = l;
135	return 0;
136}
137
138static int
139read_target_long(struct Process *proc, target_address_t addr, uint64_t *lp)
140{
141	if (proc->e_machine == EM_PPC) {
142		uint32_t w;
143		int ret = read_target_4(proc, addr, &w);
144		if (ret >= 0)
145			*lp = (uint64_t)w;
146		return ret;
147	} else {
148		return read_target_8(proc, addr, lp);
149	}
150}
151
152static enum callback_status
153reenable_breakpoint(struct Process *proc, struct breakpoint *bp, void *data)
154{
155	/* We don't need to re-enable non-PLT breakpoints and
156	 * breakpoints that are not PPC32 BSS unprelinked.  */
157	if (bp->libsym == NULL
158	    || bp->libsym->plt_type == LS_TOPLT_NONE
159	    || bp->libsym->lib->arch.bss_plt_prelinked != 0)
160		return CBS_CONT;
161
162	debug(DEBUG_PROCESS, "pid=%d reenable_breakpoint %s",
163	      proc->pid, breakpoint_name(bp));
164
165	assert(proc->e_machine == EM_PPC);
166	uint32_t l;
167	if (read_target_4(proc, bp->addr, &l) < 0) {
168		error(0, errno, "couldn't read PLT value for %s(%p)",
169		      breakpoint_name(bp), bp->addr);
170		return CBS_CONT;
171	}
172	bp->libsym->arch.plt_slot_addr = (GElf_Addr)bp->addr;
173	bp->libsym->arch.resolved_value = l;
174
175	/* Re-enable the breakpoint that was overwritten by the
176	 * dynamic linker.  XXX unfortunately it's overwritten
177	 * again after the first call :-/  */
178	enable_breakpoint(proc, bp);
179
180	return CBS_CONT;
181}
182
183void
184arch_dynlink_done(struct Process *proc)
185{
186	/* On PPC32, .plt of objects that use BSS PLT are overwritten
187	 * by the dynamic linker (unless that object was prelinked).
188	 * We need to re-enable breakpoints in those objects.  */
189	proc_each_breakpoint(proc, NULL, reenable_breakpoint, NULL);
190}
191
192GElf_Addr
193arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
194{
195	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
196		assert(lte->arch.plt_stub_vma != 0);
197		return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
198
199	} else if (lte->ehdr.e_machine == EM_PPC) {
200		return rela->r_offset;
201
202	} else {
203		/* If we get here, we don't have stub symbols.  In
204		 * that case we put brakpoints to PLT entries the same
205		 * as the PPC32 secure PLT case does.  */
206		assert(lte->arch.plt_stub_vma != 0);
207		return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
208	}
209}
210
211int
212arch_translate_address(struct Process *proc,
213		       target_address_t addr, target_address_t *ret)
214{
215	if (proc->e_machine == EM_PPC64) {
216		assert(host_powerpc64());
217		long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
218		if (l == -1 && errno) {
219			error(0, errno, ".opd translation of %p", addr);
220			return -1;
221		}
222		*ret = (target_address_t)l;
223		return 0;
224	}
225
226	*ret = addr;
227	return 0;
228}
229
230void *
231sym2addr(struct Process *proc, struct library_symbol *sym)
232{
233	return sym->enter_addr;
234}
235
236static GElf_Addr
237get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
238{
239	Elf_Scn *ppcgot_sec = NULL;
240	GElf_Shdr ppcgot_shdr;
241	if (ppcgot != 0
242	    && elf_get_section_covering(lte, ppcgot,
243					&ppcgot_sec, &ppcgot_shdr) < 0)
244		error(0, 0, "DT_PPC_GOT=%#"PRIx64", but no such section found",
245		      ppcgot);
246
247	if (ppcgot_sec != NULL) {
248		Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
249		if (data == NULL || data->d_size < 8 ) {
250			error(0, 0, "couldn't read GOT data");
251		} else {
252			// where PPCGOT begins in .got
253			size_t offset = ppcgot - ppcgot_shdr.sh_addr;
254			assert(offset % 4 == 0);
255			uint32_t glink_vma;
256			if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
257				error(0, 0, "couldn't read glink VMA address"
258				      " at %zd@GOT", offset);
259				return 0;
260			}
261			if (glink_vma != 0) {
262				debug(1, "PPC GOT glink_vma address: %#" PRIx32,
263				      glink_vma);
264				return (GElf_Addr)glink_vma;
265			}
266		}
267	}
268
269	if (plt_data != NULL) {
270		uint32_t glink_vma;
271		if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
272			error(0, 0, "couldn't read glink VMA address");
273			return 0;
274		}
275		debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
276		return (GElf_Addr)glink_vma;
277	}
278
279	return 0;
280}
281
282static int
283load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep)
284{
285	Elf_Scn *scn;
286	GElf_Shdr shdr;
287	if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0
288	    || scn == NULL) {
289	fail:
290		error(0, 0, "Couldn't get SHT_DYNAMIC: %s",
291		      elf_errmsg(-1));
292		return -1;
293	}
294
295	Elf_Data *data = elf_loaddata(scn, &shdr);
296	if (data == NULL)
297		goto fail;
298
299	size_t j;
300	for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
301		GElf_Dyn dyn;
302		if (gelf_getdyn(data, j, &dyn) == NULL)
303			goto fail;
304
305		if(dyn.d_tag == tag) {
306			*valuep = dyn.d_un.d_ptr;
307			return 0;
308		}
309	}
310
311	return -1;
312}
313
314static int
315load_ppcgot(struct ltelf *lte, GElf_Addr *ppcgotp)
316{
317	return load_dynamic_entry(lte, DT_PPC_GOT, ppcgotp);
318}
319
320static int
321load_ppc64_glink(struct ltelf *lte, GElf_Addr *glinkp)
322{
323	return load_dynamic_entry(lte, DT_PPC64_GLINK, glinkp);
324}
325
326static int
327nonzero_data(Elf_Data *data)
328{
329	/* We are not supposed to get here if there's no PLT.  */
330	assert(data != NULL);
331
332	unsigned char *buf = data->d_buf;
333	if (buf == NULL)
334		return 0;
335
336	size_t i;
337	for (i = 0; i < data->d_size; ++i)
338		if (buf[i] != 0)
339			return 1;
340	return 0;
341}
342
343int
344arch_elf_init(struct ltelf *lte, struct library *lib)
345{
346	lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
347
348	/* For PPC32 BSS, it is important whether the binary was
349	 * prelinked.  If .plt section is NODATA, or if it contains
350	 * zeroes, then this library is not prelinked, and we need to
351	 * delay breakpoints.  */
352	if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
353		lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
354	else
355		/* For cases where it's irrelevant, initialize the
356		 * value to something conspicuous.  */
357		lib->arch.bss_plt_prelinked = -1;
358
359	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
360		GElf_Addr ppcgot;
361		if (load_ppcgot(lte, &ppcgot) < 0) {
362			error(0, 0, "couldn't find DT_PPC_GOT");
363			return -1;
364		}
365		GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
366
367		assert (lte->relplt_size % 12 == 0);
368		size_t count = lte->relplt_size / 12; // size of RELA entry
369		lte->arch.plt_stub_vma = glink_vma
370			- (GElf_Addr)count * PPC_PLT_STUB_SIZE;
371		debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
372
373	} else if (lte->ehdr.e_machine == EM_PPC64) {
374		GElf_Addr glink_vma;
375		if (load_ppc64_glink(lte, &glink_vma) < 0) {
376			error(0, 0, "couldn't find DT_PPC64_GLINK");
377			return -1;
378		}
379
380		/* The first glink stub starts at offset 32.  */
381		lte->arch.plt_stub_vma = glink_vma + 32;
382	}
383
384	/* On PPC64, look for stub symbols in symbol table.  These are
385	 * called: xxxxxxxx.plt_call.callee_name@version+addend.  */
386	if (lte->ehdr.e_machine == EM_PPC64
387	    && lte->symtab != NULL && lte->strtab != NULL) {
388
389		/* N.B. We can't simply skip the symbols that we fail
390		 * to read or malloc.  There may be more than one stub
391		 * per symbol name, and if we failed in one but
392		 * succeeded in another, the PLT enabling code would
393		 * have no way to tell that something is missing.  We
394		 * could work around that, of course, but it doesn't
395		 * seem worth the trouble.  So if anything fails, we
396		 * just pretend that we don't have stub symbols at
397		 * all, as if the binary is stripped.  */
398
399		size_t i;
400		for (i = 0; i < lte->symtab_count; ++i) {
401			GElf_Sym sym;
402			if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
403				struct library_symbol *sym, *next;
404			fail:
405				for (sym = lte->arch.stubs; sym != NULL; ) {
406					next = sym->next;
407					library_symbol_destroy(sym);
408					free(sym);
409					sym = next;
410				}
411				lte->arch.stubs = NULL;
412				break;
413			}
414
415			const char *name = lte->strtab + sym.st_name;
416
417#define STUBN ".plt_call."
418			if ((name = strstr(name, STUBN)) == NULL)
419				continue;
420			name += sizeof(STUBN) - 1;
421#undef STUBN
422
423			size_t len;
424			const char *ver = strchr(name, '@');
425			if (ver != NULL) {
426				len = ver - name;
427
428			} else {
429				/* If there is "+" at all, check that
430				 * the symbol name ends in "+0".  */
431				const char *add = strrchr(name, '+');
432				if (add != NULL) {
433					assert(strcmp(add, "+0") == 0);
434					len = add - name;
435				} else {
436					len = strlen(name);
437				}
438			}
439
440			char *sym_name = strndup(name, len);
441			struct library_symbol *libsym = malloc(sizeof(*libsym));
442			if (sym_name == NULL || libsym == NULL) {
443			fail2:
444				free(sym_name);
445				free(libsym);
446				goto fail;
447			}
448
449			/* XXX The double cast should be removed when
450			 * target_address_t becomes integral type.  */
451			target_address_t addr = (target_address_t)
452				(uintptr_t)sym.st_value + lte->bias;
453			if (library_symbol_init(libsym, addr, sym_name, 1,
454						LS_TOPLT_EXEC) < 0)
455				goto fail2;
456			libsym->arch.type = PPC64_PLT_STUB;
457			libsym->next = lte->arch.stubs;
458			lte->arch.stubs = libsym;
459		}
460	}
461
462	return 0;
463}
464
465static int
466read_plt_slot_value(struct Process *proc, GElf_Addr addr, GElf_Addr *valp)
467{
468	/* On PPC64, we read from .plt, which contains 8 byte
469	 * addresses.  On PPC32 we read from .plt, which contains 4
470	 * byte instructions.  So read_target_long is appropriate.  */
471	uint64_t l;
472	if (read_target_long(proc, (target_address_t)addr, &l) < 0) {
473		error(0, errno, "ptrace .plt slot value @%#" PRIx64, addr);
474		return -1;
475	}
476
477	*valp = (GElf_Addr)l;
478	return 0;
479}
480
481static int
482unresolve_plt_slot(struct Process *proc, GElf_Addr addr, GElf_Addr value)
483{
484	/* We only modify plt_entry[0], which holds the resolved
485	 * address of the routine.  We keep the TOC and environment
486	 * pointers intact.  Hence the only adjustment that we need to
487	 * do is to IP.  */
488	if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
489		error(0, errno, "unresolve .plt slot");
490		return -1;
491	}
492	return 0;
493}
494
495static void
496mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
497{
498	libsym->arch.type = PPC_PLT_RESOLVED;
499	libsym->arch.resolved_value = value;
500}
501
502enum plt_status
503arch_elf_add_plt_entry(struct Process *proc, struct ltelf *lte,
504		       const char *a_name, GElf_Rela *rela, size_t ndx,
505		       struct library_symbol **ret)
506{
507	if (lte->ehdr.e_machine == EM_PPC)
508		return plt_default;
509
510	/* PPC64.  If we have stubs, we return a chain of breakpoint
511	 * sites, one for each stub that corresponds to this PLT
512	 * entry.  */
513	struct library_symbol *chain = NULL;
514	struct library_symbol **symp;
515	for (symp = &lte->arch.stubs; *symp != NULL; ) {
516		struct library_symbol *sym = *symp;
517		if (strcmp(sym->name, a_name) != 0) {
518			symp = &(*symp)->next;
519			continue;
520		}
521
522		/* Re-chain the symbol from stubs to CHAIN.  */
523		*symp = sym->next;
524		sym->next = chain;
525		chain = sym;
526	}
527
528	if (chain != NULL) {
529		*ret = chain;
530		return plt_ok;
531	}
532
533	/* We don't have stub symbols.  Find corresponding .plt slot,
534	 * and check whether it contains the corresponding PLT address
535	 * (or 0 if the dynamic linker hasn't run yet).  N.B. we don't
536	 * want read this from ELF file, but from process image.  That
537	 * makes a difference if we are attaching to a running
538	 * process.  */
539
540	GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
541	GElf_Addr plt_slot_addr = rela->r_offset;
542	assert(plt_slot_addr >= lte->plt_addr
543	       || plt_slot_addr < lte->plt_addr + lte->plt_size);
544
545	GElf_Addr plt_slot_value;
546	if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0)
547		return plt_fail;
548
549	char *name = strdup(a_name);
550	struct library_symbol *libsym = malloc(sizeof(*libsym));
551	if (name == NULL || libsym == NULL) {
552		error(0, errno, "allocation for .plt slot");
553	fail:
554		free(name);
555		free(libsym);
556		return plt_fail;
557	}
558
559	/* XXX The double cast should be removed when
560	 * target_address_t becomes integral type.  */
561	if (library_symbol_init(libsym,
562				(target_address_t)(uintptr_t)plt_entry_addr,
563				name, 1, LS_TOPLT_EXEC) < 0)
564		goto fail;
565	libsym->arch.plt_slot_addr = plt_slot_addr;
566
567	if (plt_slot_value == plt_entry_addr || plt_slot_value == 0) {
568		libsym->arch.type = PPC_PLT_UNRESOLVED;
569		libsym->arch.resolved_value = plt_entry_addr;
570
571	} else {
572		/* Unresolve the .plt slot.  If the binary was
573		 * prelinked, this makes the code invalid, because in
574		 * case of prelinked binary, the dynamic linker
575		 * doesn't update .plt[0] and .plt[1] with addresses
576		 * of the resover.  But we don't care, we will never
577		 * need to enter the resolver.  That just means that
578		 * we have to un-un-resolve this back before we
579		 * detach.  */
580
581		if (unresolve_plt_slot(proc, plt_slot_addr, plt_entry_addr) < 0) {
582			library_symbol_destroy(libsym);
583			goto fail;
584		}
585		mark_as_resolved(libsym, plt_slot_value);
586	}
587
588	*ret = libsym;
589	return plt_ok;
590}
591
592void
593arch_elf_destroy(struct ltelf *lte)
594{
595	struct library_symbol *sym;
596	for (sym = lte->arch.stubs; sym != NULL; ) {
597		struct library_symbol *next = sym->next;
598		library_symbol_destroy(sym);
599		free(sym);
600		sym = next;
601	}
602}
603
604static void
605dl_plt_update_bp_on_hit(struct breakpoint *bp, struct Process *proc)
606{
607	debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
608	      proc->pid, breakpoint_name(bp), bp->addr);
609	struct process_stopping_handler *self = proc->arch.handler;
610	assert(self != NULL);
611
612	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
613	GElf_Addr value;
614	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
615		return;
616
617	unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
618			   libsym->arch.resolved_value);
619	mark_as_resolved(libsym, value);
620
621	/* cb_on_all_stopped looks if HANDLER is set to NULL as a way
622	 * to check that this was run.  It's an error if it
623	 * wasn't.  */
624	breakpoint_turn_off(bp, proc);
625	proc->arch.handler = NULL;
626}
627
628static void
629cb_on_all_stopped(struct process_stopping_handler *self)
630{
631	/* Put that in for dl_plt_update_bp_on_hit to see.  */
632	assert(self->task_enabling_breakpoint->arch.handler == NULL);
633	self->task_enabling_breakpoint->arch.handler = self;
634
635	linux_ptrace_disable_and_continue(self);
636}
637
638static enum callback_status
639cb_keep_stepping_p(struct process_stopping_handler *self)
640{
641	struct Process *proc = self->task_enabling_breakpoint;
642	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
643	GElf_Addr value;
644	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
645		return CBS_FAIL;
646
647	/* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
648	 * the PLT entry value.  */
649	if (value == libsym->arch.resolved_value)
650		return CBS_CONT;
651
652	debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
653	      proc->pid, value);
654
655	/* The .plt slot got resolved!  We can migrate the breakpoint
656	 * to RESOLVED and stop single-stepping.  */
657	if (unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
658			       libsym->arch.resolved_value) < 0)
659		return CBS_FAIL;
660
661	/* Install breakpoint to the address where the change takes
662	 * place.  If we fail, then that just means that we'll have to
663	 * singlestep the next time around as well.  */
664	struct Process *leader = proc->leader;
665	if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
666		goto done;
667
668	/* We need to install to the next instruction.  ADDR points to
669	 * a store instruction, so moving the breakpoint one
670	 * instruction forward is safe.  */
671	target_address_t addr = get_instruction_pointer(proc) + 4;
672	leader->arch.dl_plt_update_bp = insert_breakpoint(proc, addr, NULL);
673	if (leader->arch.dl_plt_update_bp == NULL)
674		goto done;
675
676	/* Turn it off for now.  We will turn it on again when we hit
677	 * the PLT entry that needs this.  */
678	breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
679
680	if (leader->arch.dl_plt_update_bp != NULL) {
681		static struct bp_callbacks dl_plt_update_cbs = {
682			.on_hit = dl_plt_update_bp_on_hit,
683		};
684		leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
685	}
686
687done:
688	mark_as_resolved(libsym, value);
689
690	return CBS_STOP;
691}
692
693static void
694ppc_plt_bp_continue(struct breakpoint *bp, struct Process *proc)
695{
696	switch (bp->libsym->arch.type) {
697		target_address_t rv;
698		struct Process *leader;
699		void (*on_all_stopped)(struct process_stopping_handler *);
700		enum callback_status (*keep_stepping_p)
701			(struct process_stopping_handler *);
702
703	case PPC_DEFAULT:
704		assert(proc->e_machine == EM_PPC);
705		assert(bp->libsym != NULL);
706		assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
707		/* fall-through */
708
709	case PPC_PLT_UNRESOLVED:
710		on_all_stopped = NULL;
711		keep_stepping_p = NULL;
712		leader = proc->leader;
713
714		if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
715		    && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
716					  proc) >= 0)
717			on_all_stopped = cb_on_all_stopped;
718		else
719			keep_stepping_p = cb_keep_stepping_p;
720
721		if (process_install_stopping_handler
722		    (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
723			error(0, 0, "ppc_plt_bp_continue: couldn't install"
724			      " event handler");
725			continue_after_breakpoint(proc, bp);
726		}
727		return;
728
729	case PPC_PLT_RESOLVED:
730		/* XXX The double cast should be removed when
731		 * target_address_t becomes integral type.  */
732		rv = (target_address_t)
733			(uintptr_t)bp->libsym->arch.resolved_value;
734		set_instruction_pointer(proc, rv);
735		continue_process(proc->pid);
736		return;
737
738	case PPC64_PLT_STUB:
739		/* These should never hit here.  */
740		break;
741	}
742
743	assert(bp->libsym->arch.type != bp->libsym->arch.type);
744	abort();
745}
746
747void
748arch_library_init(struct library *lib)
749{
750}
751
752void
753arch_library_destroy(struct library *lib)
754{
755}
756
757void
758arch_library_clone(struct library *retp, struct library *lib)
759{
760}
761
762int
763arch_library_symbol_init(struct library_symbol *libsym)
764{
765	/* We set type explicitly in the code above, where we have the
766	 * necessary context.  This is for calls from ltrace-elf.c and
767	 * such.  */
768	libsym->arch.type = PPC_DEFAULT;
769	return 0;
770}
771
772void
773arch_library_symbol_destroy(struct library_symbol *libsym)
774{
775}
776
777int
778arch_library_symbol_clone(struct library_symbol *retp,
779			  struct library_symbol *libsym)
780{
781	retp->arch = libsym->arch;
782	return 0;
783}
784
785/* For some symbol types, we need to set up custom callbacks.  XXX we
786 * don't need PROC here, we can store the data in BP if it is of
787 * interest to us.  */
788int
789arch_breakpoint_init(struct Process *proc, struct breakpoint *bp)
790{
791	/* Artificial and entry-point breakpoints are plain.  */
792	if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
793		return 0;
794
795	/* On PPC, secure PLT and prelinked BSS PLT are plain.  */
796	if (proc->e_machine == EM_PPC
797	    && bp->libsym->lib->arch.bss_plt_prelinked != 0)
798		return 0;
799
800	/* On PPC64, stub PLT breakpoints are plain.  */
801	if (proc->e_machine == EM_PPC64
802	    && bp->libsym->arch.type == PPC64_PLT_STUB)
803		return 0;
804
805	static struct bp_callbacks cbs = {
806		.on_continue = ppc_plt_bp_continue,
807	};
808	breakpoint_set_callbacks(bp, &cbs);
809	return 0;
810}
811
812void
813arch_breakpoint_destroy(struct breakpoint *bp)
814{
815}
816
817int
818arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
819{
820	retp->arch = sbp->arch;
821	return 0;
822}
823
824int
825arch_process_init(struct Process *proc)
826{
827	proc->arch.dl_plt_update_bp = NULL;
828	proc->arch.handler = NULL;
829	return 0;
830}
831
832void
833arch_process_destroy(struct Process *proc)
834{
835}
836
837int
838arch_process_clone(struct Process *retp, struct Process *proc)
839{
840	retp->arch = proc->arch;
841	return 0;
842}
843
844int
845arch_process_exec(struct Process *proc)
846{
847	return arch_process_init(proc);
848}
849