trace.c revision 06986d5432c92337dc2fc0bd81fa43640b48d1e2
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4#include <errno.h>
5#include <unistd.h>
6#include <sys/types.h>
7#include <sys/wait.h>
8#include "ptrace.h"
9#include <asm/unistd.h>
10#include <assert.h>
11
12#include "common.h"
13
14/* If the system headers did not provide the constants, hard-code the normal
15   values.  */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS    21
19#define PTRACE_SETOPTIONS       0x4200
20#define PTRACE_GETEVENTMSG      0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD   0x00000001
24#define PTRACE_O_TRACEFORK      0x00000002
25#define PTRACE_O_TRACEVFORK     0x00000004
26#define PTRACE_O_TRACECLONE     0x00000008
27#define PTRACE_O_TRACEEXEC      0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT      0x00000040
30
31/* Wait extended result codes for the above trace options.  */
32#define PTRACE_EVENT_FORK       1
33#define PTRACE_EVENT_VFORK      2
34#define PTRACE_EVENT_CLONE      3
35#define PTRACE_EVENT_EXEC       4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT       6
38
39#endif /* PTRACE_EVENT_FORK */
40
41#ifdef ARCH_HAVE_UMOVELONG
42extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
43int
44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
45	return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
49int
50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
51	long pointed_to;
52
53	errno = 0;
54	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55	if (pointed_to == -1 && errno)
56		return -errno;
57
58	*result = pointed_to;
59	if (info) {
60		switch(info->type) {
61			case ARGTYPE_INT:
62				*result &= 0x00000000ffffffffUL;
63			default:
64				break;
65		};
66	}
67	return 0;
68}
69#endif
70
71void
72trace_me(void) {
73	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
74	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
75		perror("PTRACE_TRACEME");
76		exit(1);
77	}
78}
79
80int
81trace_pid(pid_t pid) {
82	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
83	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
84		return -1;
85	}
86
87	/* man ptrace: PTRACE_ATTACH attaches to the process specified
88	   in pid.  The child is sent a SIGSTOP, but will not
89	   necessarily have stopped by the completion of this call;
90	   use wait() to wait for the child to stop. */
91	if (waitpid (pid, NULL, __WALL) != pid) {
92		perror ("trace_pid: waitpid");
93		return -1;
94	}
95
96	return 0;
97}
98
99void
100trace_set_options(Process *proc, pid_t pid) {
101	if (proc->tracesysgood & 0x80)
102		return;
103
104	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
105
106	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108		PTRACE_O_TRACEEXEC;
109	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
111		perror("PTRACE_SETOPTIONS");
112		return;
113	}
114	proc->tracesysgood |= 0x80;
115}
116
117void
118untrace_pid(pid_t pid) {
119	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
120	ptrace(PTRACE_DETACH, pid, 1, 0);
121}
122
123void
124continue_after_signal(pid_t pid, int signum) {
125	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
126	ptrace(PTRACE_SYSCALL, pid, 0, signum);
127}
128
129static enum ecb_status
130event_for_pid(Event * event, void * data)
131{
132	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
133		return ecb_yield;
134	return ecb_cont;
135}
136
137static int
138have_events_for(pid_t pid)
139{
140	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
141}
142
143void
144continue_process(pid_t pid)
145{
146	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
147
148	/* Only really continue the process if there are no events in
149	   the queue for this process.  Otherwise just wait for the
150	   other events to arrive.  */
151	if (!have_events_for(pid))
152		/* We always trace syscalls to control fork(),
153		 * clone(), execve()... */
154		ptrace(PTRACE_SYSCALL, pid, 0, 0);
155	else
156		debug(DEBUG_PROCESS,
157		      "putting off the continue, events in que.");
158}
159
160/**
161 * This is used for bookkeeping related to PIDs that the event
162 * handlers work with.
163 */
164struct pid_task {
165	pid_t pid;	/* This may be 0 for tasks that exited
166			 * mid-handling.  */
167	int sigstopped : 1;
168	int got_event : 1;
169	int delivered : 1;
170	int vforked : 1;
171} * pids;
172
173struct pid_set {
174	struct pid_task * tasks;
175	size_t count;
176	size_t alloc;
177};
178
179/**
180 * Breakpoint re-enablement.  When we hit a breakpoint, we must
181 * disable it, single-step, and re-enable it.  That single-step can be
182 * done only by one task in a task group, while others are stopped,
183 * otherwise the processes would race for who sees the breakpoint
184 * disabled and who doesn't.  The following is to keep track of it
185 * all.
186 */
187struct process_stopping_handler
188{
189	Event_Handler super;
190
191	/* The task that is doing the re-enablement.  */
192	Process * task_enabling_breakpoint;
193
194	/* The pointer being re-enabled.  */
195	Breakpoint * breakpoint_being_enabled;
196
197	enum {
198		/* We are waiting for everyone to land in t/T.  */
199		psh_stopping = 0,
200
201		/* We are doing the PTRACE_SINGLESTEP.  */
202		psh_singlestep,
203
204		/* We are waiting for all the SIGSTOPs to arrive so
205		 * that we can sink them.  */
206		psh_sinking,
207
208		/* This is for tracking the ugly workaround.  */
209		psh_ugly_workaround,
210	} state;
211
212	int exiting;
213
214	struct pid_set pids;
215};
216
217static struct pid_task *
218get_task_info(struct pid_set * pids, pid_t pid)
219{
220	assert(pid != 0);
221	size_t i;
222	for (i = 0; i < pids->count; ++i)
223		if (pids->tasks[i].pid == pid)
224			return &pids->tasks[i];
225
226	return NULL;
227}
228
229static struct pid_task *
230add_task_info(struct pid_set * pids, pid_t pid)
231{
232	if (pids->count == pids->alloc) {
233		size_t ns = (2 * pids->alloc) ?: 4;
234		struct pid_task * n = realloc(pids->tasks,
235					      sizeof(*pids->tasks) * ns);
236		if (n == NULL)
237			return NULL;
238		pids->tasks = n;
239		pids->alloc = ns;
240	}
241	struct pid_task * task_info = &pids->tasks[pids->count++];
242	memset(task_info, 0, sizeof(*task_info));
243	task_info->pid = pid;
244	return task_info;
245}
246
247static enum pcb_status
248task_stopped(Process * task, void * data)
249{
250	enum process_status st = process_status(task->pid);
251	if (data != NULL)
252		*(enum process_status *)data = st;
253
254	/* If the task is already stopped, don't worry about it.
255	 * Likewise if it managed to become a zombie or terminate in
256	 * the meantime.  This can happen when the whole thread group
257	 * is terminating.  */
258	switch (st) {
259	case ps_invalid:
260	case ps_tracing_stop:
261	case ps_zombie:
262	case ps_sleeping:
263		return pcb_cont;
264	case ps_stop:
265	case ps_other:
266		return pcb_stop;
267	}
268
269	abort ();
270}
271
272/* Task is blocked if it's stopped, or if it's a vfork parent.  */
273static enum pcb_status
274task_blocked(Process * task, void * data)
275{
276	struct pid_set * pids = data;
277	struct pid_task * task_info = get_task_info(pids, task->pid);
278	if (task_info != NULL
279	    && task_info->vforked)
280		return pcb_cont;
281
282	return task_stopped(task, NULL);
283}
284
285static Event * process_vfork_on_event(Event_Handler * super, Event * event);
286
287static enum pcb_status
288task_vforked(Process * task, void * data)
289{
290	if (task->event_handler != NULL
291	    && task->event_handler->on_event == &process_vfork_on_event)
292		return pcb_stop;
293	return pcb_cont;
294}
295
296static int
297is_vfork_parent(Process * task)
298{
299	return each_task(task->leader, &task_vforked, NULL) != NULL;
300}
301
302static enum pcb_status
303send_sigstop(Process * task, void * data)
304{
305	Process * leader = task->leader;
306	struct pid_set * pids = data;
307
308	/* Look for pre-existing task record, or add new.  */
309	struct pid_task * task_info = get_task_info(pids, task->pid);
310	if (task_info == NULL)
311		task_info = add_task_info(pids, task->pid);
312	if (task_info == NULL) {
313		perror("send_sigstop: add_task_info");
314		destroy_event_handler(leader);
315		/* Signal failure upwards.  */
316		return pcb_stop;
317	}
318
319	/* This task still has not been attached to.  It should be
320	   stopped by the kernel.  */
321	if (task->state == STATE_BEING_CREATED)
322		return pcb_cont;
323
324	/* Don't bother sending SIGSTOP if we are already stopped, or
325	 * if we sent the SIGSTOP already, which happens when we are
326	 * handling "onexit" and inherited the handler from breakpoint
327	 * re-enablement.  */
328	enum process_status st;
329	if (task_stopped(task, &st) == pcb_cont)
330		return pcb_cont;
331	if (task_info->sigstopped) {
332		if (!task_info->delivered)
333			return pcb_cont;
334		task_info->delivered = 0;
335	}
336
337	/* Also don't attempt to stop the process if it's a parent of
338	 * vforked process.  We set up event handler specially to hint
339	 * us.  In that case parent is in D state, which we use to
340	 * weed out unnecessary looping.  */
341	if (st == ps_sleeping
342	    && is_vfork_parent (task)) {
343		task_info->vforked = 1;
344		return pcb_cont;
345	}
346
347	if (task_kill(task->pid, SIGSTOP) >= 0) {
348		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
349		task_info->sigstopped = 1;
350	} else
351		fprintf(stderr,
352			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
353
354	return pcb_cont;
355}
356
357/* On certain kernels, detaching right after a singlestep causes the
358   tracee to be killed with a SIGTRAP (that even though the singlestep
359   was properly caught by waitpid.  The ugly workaround is to put a
360   breakpoint where IP points and let the process continue.  After
361   this the breakpoint can be retracted and the process detached.  */
362static void
363ugly_workaround(Process * proc)
364{
365	void * ip = get_instruction_pointer(proc);
366	Breakpoint * sbp = dict_find_entry(proc->leader->breakpoints, ip);
367	if (sbp != NULL)
368		enable_breakpoint(proc, sbp);
369	else
370		insert_breakpoint(proc, ip, NULL, 1);
371	ptrace(PTRACE_CONT, proc->pid, 0, 0);
372}
373
374static void
375process_stopping_done(struct process_stopping_handler * self, Process * leader)
376{
377	debug(DEBUG_PROCESS, "process stopping done %d",
378	      self->task_enabling_breakpoint->pid);
379	size_t i;
380	if (!self->exiting) {
381		for (i = 0; i < self->pids.count; ++i)
382			if (self->pids.tasks[i].pid != 0
383			    && self->pids.tasks[i].delivered)
384				continue_process(self->pids.tasks[i].pid);
385		continue_process(self->task_enabling_breakpoint->pid);
386		destroy_event_handler(leader);
387	} else {
388		self->state = psh_ugly_workaround;
389		ugly_workaround(self->task_enabling_breakpoint);
390	}
391}
392
393/* Before we detach, we need to make sure that task's IP is on the
394 * edge of an instruction.  So for tasks that have a breakpoint event
395 * in the queue, we adjust the instruction pointer, just like
396 * continue_after_breakpoint does.  */
397static enum ecb_status
398undo_breakpoint(Event * event, void * data)
399{
400	if (event != NULL
401	    && event->proc->leader == data
402	    && event->type == EVENT_BREAKPOINT)
403		set_instruction_pointer(event->proc, event->e_un.brk_addr);
404	return ecb_cont;
405}
406
407static enum pcb_status
408untrace_task(Process * task, void * data)
409{
410	if (task != data)
411		untrace_pid(task->pid);
412	return pcb_cont;
413}
414
415static enum pcb_status
416remove_task(Process * task, void * data)
417{
418	/* Don't untrace leader just yet.  */
419	if (task != data)
420		remove_process(task);
421	return pcb_cont;
422}
423
424static void
425detach_process(Process * leader)
426{
427	each_qd_event(&undo_breakpoint, leader);
428	disable_all_breakpoints(leader);
429
430	/* Now untrace the process, if it was attached to by -p.  */
431	struct opt_p_t * it;
432	for (it = opt_p; it != NULL; it = it->next) {
433		Process * proc = pid2proc(it->pid);
434		if (proc == NULL)
435			continue;
436		if (proc->leader == leader) {
437			each_task(leader, &untrace_task, NULL);
438			break;
439		}
440	}
441	each_task(leader, &remove_task, leader);
442	destroy_event_handler(leader);
443	remove_task(leader, NULL);
444}
445
446static void
447handle_stopping_event(struct pid_task * task_info, Event ** eventp)
448{
449	/* Mark all events, so that we know whom to SIGCONT later.  */
450	if (task_info != NULL)
451		task_info->got_event = 1;
452
453	Event * event = *eventp;
454
455	/* In every state, sink SIGSTOP events for tasks that it was
456	 * sent to.  */
457	if (task_info != NULL
458	    && event->type == EVENT_SIGNAL
459	    && event->e_un.signum == SIGSTOP) {
460		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
461		if (task_info->sigstopped
462		    && !task_info->delivered) {
463			task_info->delivered = 1;
464			*eventp = NULL; // sink the event
465		} else
466			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
467				"sigstopped=%d and delivered=%d\n",
468				task_info->pid, task_info->sigstopped,
469				task_info->delivered);
470	}
471}
472
473/* Some SIGSTOPs may have not been delivered to their respective tasks
474 * yet.  They are still in the queue.  If we have seen an event for
475 * that process, continue it, so that the SIGSTOP can be delivered and
476 * caught by ltrace.  We don't mind that the process is after
477 * breakpoint (and therefore potentially doesn't have aligned IP),
478 * because the signal will be delivered without the process actually
479 * starting.  */
480static void
481continue_for_sigstop_delivery(struct pid_set * pids)
482{
483	size_t i;
484	for (i = 0; i < pids->count; ++i) {
485		if (pids->tasks[i].pid != 0
486		    && pids->tasks[i].sigstopped
487		    && !pids->tasks[i].delivered
488		    && pids->tasks[i].got_event) {
489			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
490			      pids->tasks[i].pid);
491			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
492		}
493	}
494}
495
496static int
497event_exit_p(Event * event)
498{
499	return event != NULL && (event->type == EVENT_EXIT
500				 || event->type == EVENT_EXIT_SIGNAL);
501}
502
503static int
504event_exit_or_none_p(Event * event)
505{
506	return event == NULL || event_exit_p(event)
507		|| event->type == EVENT_NONE;
508}
509
510static int
511await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
512		       Event * event)
513{
514	/* If we still didn't get our SIGSTOP, continue the process
515	 * and carry on.  */
516	if (event != NULL && !event_exit_or_none_p(event)
517	    && task_info != NULL && task_info->sigstopped) {
518		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
519		      task_info->pid);
520		/* We should get the signal the first thing
521		 * after this, so it should be OK to continue
522		 * even if we are over a breakpoint.  */
523		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
524
525	} else {
526		/* If all SIGSTOPs were delivered, uninstall the
527		 * handler and continue everyone.  */
528		/* XXX I suspect that we should check tasks that are
529		 * still around.  Is things are now, there should be a
530		 * race between waiting for everyone to stop and one
531		 * of the tasks exiting.  */
532		int all_clear = 1;
533		size_t i;
534		for (i = 0; i < pids->count; ++i)
535			if (pids->tasks[i].pid != 0
536			    && pids->tasks[i].sigstopped
537			    && !pids->tasks[i].delivered) {
538				all_clear = 0;
539				break;
540			}
541		return all_clear;
542	}
543
544	return 0;
545}
546
547static int
548all_stops_accountable(struct pid_set * pids)
549{
550	size_t i;
551	for (i = 0; i < pids->count; ++i)
552		if (pids->tasks[i].pid != 0
553		    && !pids->tasks[i].got_event
554		    && !have_events_for(pids->tasks[i].pid))
555			return 0;
556	return 1;
557}
558
559static void
560singlestep(Process * proc)
561{
562	debug(1, "PTRACE_SINGLESTEP");
563	if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0))
564		perror("PTRACE_SINGLESTEP");
565}
566
567/* This event handler is installed when we are in the process of
568 * stopping the whole thread group to do the pointer re-enablement for
569 * one of the threads.  We pump all events to the queue for later
570 * processing while we wait for all the threads to stop.  When this
571 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
572 * re-enable, and continue everyone.  */
573static Event *
574process_stopping_on_event(Event_Handler * super, Event * event)
575{
576	struct process_stopping_handler * self = (void *)super;
577	Process * task = event->proc;
578	Process * leader = task->leader;
579	Breakpoint * sbp = self->breakpoint_being_enabled;
580	Process * teb = self->task_enabling_breakpoint;
581
582	debug(DEBUG_PROCESS,
583	      "pid %d; event type %d; state %d",
584	      task->pid, event->type, self->state);
585
586	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
587	if (task_info == NULL)
588		fprintf(stderr, "new task??? %d\n", task->pid);
589	handle_stopping_event(task_info, &event);
590
591	int state = self->state;
592	int event_to_queue = !event_exit_or_none_p(event);
593
594	/* Deactivate the entry if the task exits.  */
595	if (event_exit_p(event) && task_info != NULL)
596		task_info->pid = 0;
597
598	switch (state) {
599	case psh_stopping:
600		/* If everyone is stopped, singlestep.  */
601		if (each_task(leader, &task_blocked, &self->pids) == NULL) {
602			debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
603			      teb->pid);
604			if (sbp->enabled)
605				disable_breakpoint(teb, sbp);
606			singlestep(teb);
607			self->state = state = psh_singlestep;
608		}
609		break;
610
611	case psh_singlestep:
612		/* In singlestep state, breakpoint signifies that we
613		 * have now stepped, and can re-enable the breakpoint.  */
614		if (event != NULL && task == teb) {
615
616			/* This is not the singlestep that we are waiting for.  */
617			if (event->type == EVENT_SIGNAL) {
618				singlestep(task);
619				break;
620			}
621
622			/* Essentially we don't care what event caused
623			 * the thread to stop.  We can do the
624			 * re-enablement now.  */
625			if (sbp->enabled)
626				enable_breakpoint(teb, sbp);
627
628			continue_for_sigstop_delivery(&self->pids);
629
630			self->breakpoint_being_enabled = NULL;
631			self->state = state = psh_sinking;
632
633			if (event->type == EVENT_BREAKPOINT)
634				event = NULL; // handled
635		} else
636			break;
637
638		/* fall-through */
639
640	case psh_sinking:
641		if (await_sigstop_delivery(&self->pids, task_info, event))
642			process_stopping_done(self, leader);
643		break;
644
645	case psh_ugly_workaround:
646		if (event == NULL)
647			break;
648		if (event->type == EVENT_BREAKPOINT) {
649			undo_breakpoint(event, leader);
650			if (task == teb)
651				self->task_enabling_breakpoint = NULL;
652		}
653		if (self->task_enabling_breakpoint == NULL
654		    && all_stops_accountable(&self->pids)) {
655			undo_breakpoint(event, leader);
656			detach_process(leader);
657			event = NULL; // handled
658		}
659	}
660
661	if (event != NULL && event_to_queue) {
662		enque_event(event);
663		event = NULL; // sink the event
664	}
665
666	return event;
667}
668
669static void
670process_stopping_destroy(Event_Handler * super)
671{
672	struct process_stopping_handler * self = (void *)super;
673	free(self->pids.tasks);
674}
675
676void
677continue_after_breakpoint(Process *proc, Breakpoint *sbp)
678{
679	set_instruction_pointer(proc, sbp->addr);
680	if (sbp->enabled == 0) {
681		continue_process(proc->pid);
682	} else {
683		debug(DEBUG_PROCESS,
684		      "continue_after_breakpoint: pid=%d, addr=%p",
685		      proc->pid, sbp->addr);
686#if defined __sparc__  || defined __ia64___ || defined __mips__
687		/* we don't want to singlestep here */
688		continue_process(proc->pid);
689#else
690		struct process_stopping_handler * handler
691			= calloc(sizeof(*handler), 1);
692		if (handler == NULL) {
693			perror("malloc breakpoint disable handler");
694		fatal:
695			/* Carry on not bothering to re-enable.  */
696			continue_process(proc->pid);
697			return;
698		}
699
700		handler->super.on_event = process_stopping_on_event;
701		handler->super.destroy = process_stopping_destroy;
702		handler->task_enabling_breakpoint = proc;
703		handler->breakpoint_being_enabled = sbp;
704		install_event_handler(proc->leader, &handler->super);
705
706		if (each_task(proc->leader, &send_sigstop,
707			      &handler->pids) != NULL)
708			goto fatal;
709
710		/* And deliver the first fake event, in case all the
711		 * conditions are already fulfilled.  */
712		Event ev;
713		ev.type = EVENT_NONE;
714		ev.proc = proc;
715		process_stopping_on_event(&handler->super, &ev);
716#endif
717	}
718}
719
720/**
721 * Ltrace exit.  When we are about to exit, we have to go through all
722 * the processes, stop them all, remove all the breakpoints, and then
723 * detach the processes that we attached to using -p.  If we left the
724 * other tasks running, they might hit stray return breakpoints and
725 * produce artifacts, so we better stop everyone, even if it's a bit
726 * of extra work.
727 */
728struct ltrace_exiting_handler
729{
730	Event_Handler super;
731	struct pid_set pids;
732};
733
734static Event *
735ltrace_exiting_on_event(Event_Handler * super, Event * event)
736{
737	struct ltrace_exiting_handler * self = (void *)super;
738	Process * task = event->proc;
739	Process * leader = task->leader;
740
741	debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
742
743	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
744	handle_stopping_event(task_info, &event);
745
746	if (event != NULL && event->type == EVENT_BREAKPOINT)
747		undo_breakpoint(event, leader);
748
749	if (await_sigstop_delivery(&self->pids, task_info, event)
750	    && all_stops_accountable(&self->pids))
751		detach_process(leader);
752
753	/* Sink all non-exit events.  We are about to exit, so we
754	 * don't bother with queuing them. */
755	if (event_exit_or_none_p(event))
756		return event;
757
758	return NULL;
759}
760
761static void
762ltrace_exiting_destroy(Event_Handler * super)
763{
764	struct ltrace_exiting_handler * self = (void *)super;
765	free(self->pids.tasks);
766}
767
768static int
769ltrace_exiting_install_handler(Process * proc)
770{
771	/* Only install to leader.  */
772	if (proc->leader != proc)
773		return 0;
774
775	/* Perhaps we are already installed, if the user passed
776	 * several -p options that are tasks of one process.  */
777	if (proc->event_handler != NULL
778	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
779		return 0;
780
781	/* If stopping handler is already present, let it do the
782	 * work.  */
783	if (proc->event_handler != NULL) {
784		assert(proc->event_handler->on_event
785		       == &process_stopping_on_event);
786		struct process_stopping_handler * other
787			= (void *)proc->event_handler;
788		other->exiting = 1;
789		return 0;
790	}
791
792	struct ltrace_exiting_handler * handler
793		= calloc(sizeof(*handler), 1);
794	if (handler == NULL) {
795		perror("malloc exiting handler");
796	fatal:
797		/* XXXXXXXXXXXXXXXXXXX fixme */
798		return -1;
799	}
800
801	handler->super.on_event = ltrace_exiting_on_event;
802	handler->super.destroy = ltrace_exiting_destroy;
803	install_event_handler(proc->leader, &handler->super);
804
805	if (each_task(proc->leader, &send_sigstop,
806		      &handler->pids) != NULL)
807		goto fatal;
808
809	return 0;
810}
811
812/*
813 * When the traced process vforks, it's suspended until the child
814 * process calls _exit or exec*.  In the meantime, the two share the
815 * address space.
816 *
817 * The child process should only ever call _exit or exec*, but we
818 * can't count on that (it's not the role of ltrace to policy, but to
819 * observe).  In any case, we will _at least_ have to deal with
820 * removal of vfork return breakpoint (which we have to smuggle back
821 * in, so that the parent can see it, too), and introduction of exec*
822 * return breakpoint.  Since we already have both breakpoint actions
823 * to deal with, we might as well support it all.
824 *
825 * The gist is that we pretend that the child is in a thread group
826 * with its parent, and handle it as a multi-threaded case, with the
827 * exception that we know that the parent is blocked, and don't
828 * attempt to stop it.  When the child execs, we undo the setup.
829 */
830
831struct process_vfork_handler
832{
833	Event_Handler super;
834	void * bp_addr;
835};
836
837static Event *
838process_vfork_on_event(Event_Handler * super, Event * event)
839{
840	struct process_vfork_handler * self = (void *)super;
841	Breakpoint * sbp;
842	assert(self != NULL);
843
844	switch (event->type) {
845	case EVENT_BREAKPOINT:
846		/* Remember the vfork return breakpoint.  */
847		if (self->bp_addr == NULL)
848			self->bp_addr = event->e_un.brk_addr;
849		break;
850
851	case EVENT_EXIT:
852	case EVENT_EXIT_SIGNAL:
853	case EVENT_EXEC:
854		/* Smuggle back in the vfork return breakpoint, so
855		 * that our parent can trip over it once again.  */
856		if (self->bp_addr != NULL) {
857			sbp = dict_find_entry(event->proc->leader->breakpoints,
858					      self->bp_addr);
859			if (sbp != NULL)
860				insert_breakpoint(event->proc->parent,
861						  self->bp_addr,
862						  sbp->libsym, 1);
863		}
864
865		continue_process(event->proc->parent->pid);
866
867		/* Remove the leader that we artificially set up
868		 * earlier.  */
869		change_process_leader(event->proc, event->proc);
870		destroy_event_handler(event->proc);
871
872	default:
873		;
874	}
875
876	return event;
877}
878
879void
880continue_after_vfork(Process * proc)
881{
882	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
883	struct process_vfork_handler * handler = calloc(sizeof(*handler), 1);
884	if (handler == NULL) {
885		perror("malloc vfork handler");
886		/* Carry on not bothering to treat the process as
887		 * necessary.  */
888		continue_process(proc->parent->pid);
889		return;
890	}
891
892	/* We must set up custom event handler, so that we see
893	 * exec/exit events for the task itself.  */
894	handler->super.on_event = process_vfork_on_event;
895	install_event_handler(proc, &handler->super);
896
897	/* Make sure that the child is sole thread.  */
898	assert(proc->leader == proc);
899	assert(proc->next == NULL || proc->next->leader != proc);
900
901	/* Make sure that the child's parent is properly set up.  */
902	assert(proc->parent != NULL);
903	assert(proc->parent->leader != NULL);
904
905	change_process_leader(proc, proc->parent->leader);
906}
907
908/* If ltrace gets SIGINT, the processes directly or indirectly run by
909 * ltrace get it too.  We just have to wait long enough for the signal
910 * to be delivered and the process terminated, which we notice and
911 * exit ltrace, too.  So there's not much we need to do there.  We
912 * want to keep tracing those processes as usual, in case they just
913 * SIG_IGN the SIGINT to do their shutdown etc.
914 *
915 * For processes ran on the background, we want to install an exit
916 * handler that stops all the threads, removes all breakpoints, and
917 * detaches.
918 */
919void
920ltrace_exiting(void)
921{
922	struct opt_p_t * it;
923	for (it = opt_p; it != NULL; it = it->next) {
924		Process * proc = pid2proc(it->pid);
925		if (proc == NULL || proc->leader == NULL)
926			continue;
927		if (ltrace_exiting_install_handler(proc->leader) < 0)
928			fprintf(stderr,
929				"Couldn't install exiting handler for %d.\n",
930				proc->pid);
931	}
932}
933
934size_t
935umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
936
937	union {
938		long a;
939		char c[sizeof(long)];
940	} a;
941	int started = 0;
942	size_t offset = 0, bytes_read = 0;
943
944	while (offset < len) {
945		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
946		if (a.a == -1 && errno) {
947			if (started && errno == EIO)
948				return bytes_read;
949			else
950				return -1;
951		}
952		started = 1;
953
954		if (len - offset >= sizeof(long)) {
955			memcpy(laddr + offset, &a.c[0], sizeof(long));
956			bytes_read += sizeof(long);
957		}
958		else {
959			memcpy(laddr + offset, &a.c[0], len - offset);
960			bytes_read += (len - offset);
961		}
962		offset += sizeof(long);
963	}
964
965	return bytes_read;
966}
967
968/* Read a series of bytes starting at the process's memory address
969   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
970   have been read.
971*/
972int
973umovestr(Process *proc, void *addr, int len, void *laddr) {
974	union {
975		long a;
976		char c[sizeof(long)];
977	} a;
978	unsigned i;
979	int offset = 0;
980
981	while (offset < len) {
982		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
983		for (i = 0; i < sizeof(long); i++) {
984			if (a.c[i] && offset + (signed)i < len) {
985				*(char *)(laddr + offset + i) = a.c[i];
986			} else {
987				*(char *)(laddr + offset + i) = '\0';
988				return 0;
989			}
990		}
991		offset += sizeof(long);
992	}
993	*(char *)(laddr + offset) = '\0';
994	return 0;
995}
996