trace.c revision 54bb64cf2eae7a0daa4d17e980b743b8ae69413b
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2007,2011,2012,2013 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2010 Joe Damato
5 * Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
6 * Copyright (C) 2006 Ian Wienand
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21 * 02110-1301 USA
22 */
23
24#include "config.h"
25
26#include <asm/unistd.h>
27#include <assert.h>
28#include <errno.h>
29#include <gelf.h>
30#include <inttypes.h>
31#include <stdbool.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <string.h>
35#include <sys/types.h>
36#include <sys/wait.h>
37#include <unistd.h>
38
39#ifdef HAVE_LIBSELINUX
40# include <selinux/selinux.h>
41#endif
42
43#include "linux-gnu/trace-defs.h"
44#include "linux-gnu/trace.h"
45#include "backend.h"
46#include "breakpoint.h"
47#include "debug.h"
48#include "events.h"
49#include "ltrace-elf.h"
50#include "options.h"
51#include "proc.h"
52#include "ptrace.h"
53#include "type.h"
54
55void
56trace_fail_warning(pid_t pid)
57{
58	/* This was adapted from GDB.  */
59#ifdef HAVE_LIBSELINUX
60	static int checked = 0;
61	if (checked)
62		return;
63	checked = 1;
64
65	/* -1 is returned for errors, 0 if it has no effect, 1 if
66	 * PTRACE_ATTACH is forbidden.  */
67	if (security_get_boolean_active("deny_ptrace") == 1)
68		fprintf(stderr,
69"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
70"tracing other processes.  You can disable this process attach protection by\n"
71"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
72#endif /* HAVE_LIBSELINUX */
73}
74
75void
76trace_me(void)
77{
78	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
79	if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
80		perror("PTRACE_TRACEME");
81		trace_fail_warning(getpid());
82		exit(1);
83	}
84}
85
86/* There's a (hopefully) brief period of time after the child process
87 * forks when we can't trace it yet.  Here we wait for kernel to
88 * prepare the process.  */
89int
90wait_for_proc(pid_t pid)
91{
92	/* man ptrace: PTRACE_ATTACH attaches to the process specified
93	   in pid.  The child is sent a SIGSTOP, but will not
94	   necessarily have stopped by the completion of this call;
95	   use wait() to wait for the child to stop. */
96	if (waitpid(pid, NULL, __WALL) != pid) {
97		perror ("trace_pid: waitpid");
98		return -1;
99	}
100
101	return 0;
102}
103
104int
105trace_pid(pid_t pid)
106{
107	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
108	/* This shouldn't emit error messages, as there are legitimate
109	 * reasons that the PID can't be attached: like it may have
110	 * already ended.  */
111	if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
112		return -1;
113
114	return wait_for_proc(pid);
115}
116
117void
118trace_set_options(struct process *proc)
119{
120	if (proc->tracesysgood & 0x80)
121		return;
122
123	pid_t pid = proc->pid;
124	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
125
126	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
127		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
128		PTRACE_O_TRACEEXEC;
129	if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
130	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
131		perror("PTRACE_SETOPTIONS");
132		return;
133	}
134	proc->tracesysgood |= 0x80;
135}
136
137void
138untrace_pid(pid_t pid) {
139	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
140	ptrace(PTRACE_DETACH, pid, 0, 0);
141}
142
143void
144continue_after_signal(pid_t pid, int signum)
145{
146	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
147	      pid, signum);
148	ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
149}
150
151static enum ecb_status
152event_for_pid(Event *event, void *data)
153{
154	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
155		return ECB_YIELD;
156	return ECB_CONT;
157}
158
159static int
160have_events_for(pid_t pid)
161{
162	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
163}
164
165void
166continue_process(pid_t pid)
167{
168	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
169
170	/* Only really continue the process if there are no events in
171	   the queue for this process.  Otherwise just wait for the
172	   other events to arrive.  */
173	if (!have_events_for(pid))
174		/* We always trace syscalls to control fork(),
175		 * clone(), execve()... */
176		ptrace(PTRACE_SYSCALL, pid, 0, 0);
177	else
178		debug(DEBUG_PROCESS,
179		      "putting off the continue, events in que.");
180}
181
182static struct pid_task *
183get_task_info(struct pid_set *pids, pid_t pid)
184{
185	assert(pid != 0);
186	size_t i;
187	for (i = 0; i < pids->count; ++i)
188		if (pids->tasks[i].pid == pid)
189			return &pids->tasks[i];
190
191	return NULL;
192}
193
194static struct pid_task *
195add_task_info(struct pid_set *pids, pid_t pid)
196{
197	if (pids->count == pids->alloc) {
198		size_t ns = (2 * pids->alloc) ?: 4;
199		struct pid_task *n = realloc(pids->tasks,
200					     sizeof(*pids->tasks) * ns);
201		if (n == NULL)
202			return NULL;
203		pids->tasks = n;
204		pids->alloc = ns;
205	}
206	struct pid_task * task_info = &pids->tasks[pids->count++];
207	memset(task_info, 0, sizeof(*task_info));
208	task_info->pid = pid;
209	return task_info;
210}
211
212static enum callback_status
213task_stopped(struct process *task, void *data)
214{
215	enum process_status st = process_status(task->pid);
216	if (data != NULL)
217		*(enum process_status *)data = st;
218
219	/* If the task is already stopped, don't worry about it.
220	 * Likewise if it managed to become a zombie or terminate in
221	 * the meantime.  This can happen when the whole thread group
222	 * is terminating.  */
223	switch (st) {
224	case PS_INVALID:
225	case PS_TRACING_STOP:
226	case PS_ZOMBIE:
227		return CBS_CONT;
228	case PS_SLEEPING:
229	case PS_STOP:
230	case PS_OTHER:
231		return CBS_STOP;
232	}
233
234	abort ();
235}
236
237/* Task is blocked if it's stopped, or if it's a vfork parent.  */
238static enum callback_status
239task_blocked(struct process *task, void *data)
240{
241	struct pid_set *pids = data;
242	struct pid_task *task_info = get_task_info(pids, task->pid);
243	if (task_info != NULL
244	    && task_info->vforked)
245		return CBS_CONT;
246
247	return task_stopped(task, NULL);
248}
249
250static Event *process_vfork_on_event(struct event_handler *super, Event *event);
251
252static enum callback_status
253task_vforked(struct process *task, void *data)
254{
255	if (task->event_handler != NULL
256	    && task->event_handler->on_event == &process_vfork_on_event)
257		return CBS_STOP;
258	return CBS_CONT;
259}
260
261static int
262is_vfork_parent(struct process *task)
263{
264	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
265}
266
267static enum callback_status
268send_sigstop(struct process *task, void *data)
269{
270	struct process *leader = task->leader;
271	struct pid_set *pids = data;
272
273	/* Look for pre-existing task record, or add new.  */
274	struct pid_task *task_info = get_task_info(pids, task->pid);
275	if (task_info == NULL)
276		task_info = add_task_info(pids, task->pid);
277	if (task_info == NULL) {
278		perror("send_sigstop: add_task_info");
279		destroy_event_handler(leader);
280		/* Signal failure upwards.  */
281		return CBS_STOP;
282	}
283
284	/* This task still has not been attached to.  It should be
285	   stopped by the kernel.  */
286	if (task->state == STATE_BEING_CREATED)
287		return CBS_CONT;
288
289	/* Don't bother sending SIGSTOP if we are already stopped, or
290	 * if we sent the SIGSTOP already, which happens when we are
291	 * handling "onexit" and inherited the handler from breakpoint
292	 * re-enablement.  */
293	enum process_status st;
294	if (task_stopped(task, &st) == CBS_CONT)
295		return CBS_CONT;
296	if (task_info->sigstopped) {
297		if (!task_info->delivered)
298			return CBS_CONT;
299		task_info->delivered = 0;
300	}
301
302	/* Also don't attempt to stop the process if it's a parent of
303	 * vforked process.  We set up event handler specially to hint
304	 * us.  In that case parent is in D state, which we use to
305	 * weed out unnecessary looping.  */
306	if (st == PS_SLEEPING
307	    && is_vfork_parent(task)) {
308		task_info->vforked = 1;
309		return CBS_CONT;
310	}
311
312	if (task_kill(task->pid, SIGSTOP) >= 0) {
313		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
314		task_info->sigstopped = 1;
315	} else
316		fprintf(stderr,
317			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
318
319	return CBS_CONT;
320}
321
322/* On certain kernels, detaching right after a singlestep causes the
323   tracee to be killed with a SIGTRAP (that even though the singlestep
324   was properly caught by waitpid.  The ugly workaround is to put a
325   breakpoint where IP points and let the process continue.  After
326   this the breakpoint can be retracted and the process detached.  */
327static void
328ugly_workaround(struct process *proc)
329{
330	arch_addr_t ip = get_instruction_pointer(proc);
331	struct breakpoint *found;
332	if (DICT_FIND_VAL(proc->leader->breakpoints, &ip, &found) < 0) {
333		insert_breakpoint_at(proc, ip, NULL);
334	} else {
335		assert(found != NULL);
336		enable_breakpoint(proc, found);
337	}
338	ptrace(PTRACE_CONT, proc->pid, 0, 0);
339}
340
341static void
342process_stopping_done(struct process_stopping_handler *self,
343		      struct process *leader)
344{
345	debug(DEBUG_PROCESS, "process stopping done %d",
346	      self->task_enabling_breakpoint->pid);
347
348	if (!self->exiting) {
349		size_t i;
350		for (i = 0; i < self->pids.count; ++i)
351			if (self->pids.tasks[i].pid != 0
352			    && (self->pids.tasks[i].delivered
353				|| self->pids.tasks[i].sysret))
354				continue_process(self->pids.tasks[i].pid);
355		continue_process(self->task_enabling_breakpoint->pid);
356	}
357
358	if (self->exiting) {
359	ugly_workaround:
360		self->state = PSH_UGLY_WORKAROUND;
361		ugly_workaround(self->task_enabling_breakpoint);
362	} else {
363		switch ((self->ugly_workaround_p)(self)) {
364		case CBS_FAIL:
365			/* xxx handle me */
366		case CBS_STOP:
367			break;
368		case CBS_CONT:
369			goto ugly_workaround;
370		}
371		destroy_event_handler(leader);
372	}
373}
374
375/* Before we detach, we need to make sure that task's IP is on the
376 * edge of an instruction.  So for tasks that have a breakpoint event
377 * in the queue, we adjust the instruction pointer, just like
378 * continue_after_breakpoint does.  */
379static enum ecb_status
380undo_breakpoint(Event *event, void *data)
381{
382	if (event != NULL
383	    && event->proc->leader == data
384	    && event->type == EVENT_BREAKPOINT)
385		set_instruction_pointer(event->proc, event->e_un.brk_addr);
386	return ECB_CONT;
387}
388
389static enum callback_status
390untrace_task(struct process *task, void *data)
391{
392	if (task != data)
393		untrace_pid(task->pid);
394	return CBS_CONT;
395}
396
397static enum callback_status
398remove_task(struct process *task, void *data)
399{
400	/* Don't untrace leader just yet.  */
401	if (task != data)
402		remove_process(task);
403	return CBS_CONT;
404}
405
406static enum callback_status
407retract_breakpoint_cb(struct process *proc, struct breakpoint *bp, void *data)
408{
409	breakpoint_on_retract(bp, proc);
410	return CBS_CONT;
411}
412
413static void
414detach_process(struct process *leader)
415{
416	each_qd_event(&undo_breakpoint, leader);
417	disable_all_breakpoints(leader);
418	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
419
420	/* Now untrace the process, if it was attached to by -p.  */
421	struct opt_p_t *it;
422	for (it = opt_p; it != NULL; it = it->next) {
423		struct process *proc = pid2proc(it->pid);
424		if (proc == NULL)
425			continue;
426		if (proc->leader == leader) {
427			each_task(leader, NULL, &untrace_task, NULL);
428			break;
429		}
430	}
431	each_task(leader, NULL, &remove_task, leader);
432	destroy_event_handler(leader);
433	remove_task(leader, NULL);
434}
435
436static void
437handle_stopping_event(struct pid_task *task_info, Event **eventp)
438{
439	/* Mark all events, so that we know whom to SIGCONT later.  */
440	if (task_info != NULL)
441		task_info->got_event = 1;
442
443	Event *event = *eventp;
444
445	/* In every state, sink SIGSTOP events for tasks that it was
446	 * sent to.  */
447	if (task_info != NULL
448	    && event->type == EVENT_SIGNAL
449	    && event->e_un.signum == SIGSTOP) {
450		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
451		if (task_info->sigstopped
452		    && !task_info->delivered) {
453			task_info->delivered = 1;
454			*eventp = NULL; // sink the event
455		} else
456			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
457				"sigstopped=%d and delivered=%d\n",
458				task_info->pid, task_info->sigstopped,
459				task_info->delivered);
460	}
461}
462
463/* Some SIGSTOPs may have not been delivered to their respective tasks
464 * yet.  They are still in the queue.  If we have seen an event for
465 * that process, continue it, so that the SIGSTOP can be delivered and
466 * caught by ltrace.  We don't mind that the process is after
467 * breakpoint (and therefore potentially doesn't have aligned IP),
468 * because the signal will be delivered without the process actually
469 * starting.  */
470static void
471continue_for_sigstop_delivery(struct pid_set *pids)
472{
473	size_t i;
474	for (i = 0; i < pids->count; ++i) {
475		if (pids->tasks[i].pid != 0
476		    && pids->tasks[i].sigstopped
477		    && !pids->tasks[i].delivered
478		    && pids->tasks[i].got_event) {
479			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
480			      pids->tasks[i].pid);
481			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
482		}
483	}
484}
485
486static int
487event_exit_p(Event *event)
488{
489	return event != NULL && (event->type == EVENT_EXIT
490				 || event->type == EVENT_EXIT_SIGNAL);
491}
492
493static int
494event_exit_or_none_p(Event *event)
495{
496	return event == NULL || event_exit_p(event)
497		|| event->type == EVENT_NONE;
498}
499
500static int
501await_sigstop_delivery(struct pid_set *pids, struct pid_task *task_info,
502		       Event *event)
503{
504	/* If we still didn't get our SIGSTOP, continue the process
505	 * and carry on.  */
506	if (event != NULL && !event_exit_or_none_p(event)
507	    && task_info != NULL && task_info->sigstopped) {
508		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
509		      task_info->pid);
510		/* We should get the signal the first thing
511		 * after this, so it should be OK to continue
512		 * even if we are over a breakpoint.  */
513		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
514
515	} else {
516		/* If all SIGSTOPs were delivered, uninstall the
517		 * handler and continue everyone.  */
518		/* XXX I suspect that we should check tasks that are
519		 * still around.  Is things are now, there should be a
520		 * race between waiting for everyone to stop and one
521		 * of the tasks exiting.  */
522		int all_clear = 1;
523		size_t i;
524		for (i = 0; i < pids->count; ++i)
525			if (pids->tasks[i].pid != 0
526			    && pids->tasks[i].sigstopped
527			    && !pids->tasks[i].delivered) {
528				all_clear = 0;
529				break;
530			}
531		return all_clear;
532	}
533
534	return 0;
535}
536
537static int
538all_stops_accountable(struct pid_set *pids)
539{
540	size_t i;
541	for (i = 0; i < pids->count; ++i)
542		if (pids->tasks[i].pid != 0
543		    && !pids->tasks[i].got_event
544		    && !have_events_for(pids->tasks[i].pid))
545			return 0;
546	return 1;
547}
548
549#ifndef ARCH_HAVE_SW_SINGLESTEP
550enum sw_singlestep_status
551arch_sw_singlestep(struct process *proc, struct breakpoint *bp,
552		   int (*add_cb)(arch_addr_t, struct sw_singlestep_data *),
553		   struct sw_singlestep_data *data)
554{
555	return SWS_HW;
556}
557#endif
558
559static Event *process_stopping_on_event(struct event_handler *super,
560					Event *event);
561
562static void
563remove_sw_breakpoints(struct process *proc)
564{
565	struct process_stopping_handler *self
566		= (void *)proc->leader->event_handler;
567	assert(self != NULL);
568	assert(self->super.on_event == process_stopping_on_event);
569
570	int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
571	int i;
572	for (i = 0; i < ct; ++i)
573		if (self->sws_bps[i] != NULL) {
574			delete_breakpoint_at(proc, self->sws_bps[i]->addr);
575			self->sws_bps[i] = NULL;
576		}
577}
578
579static void
580sw_singlestep_bp_on_hit(struct breakpoint *bp, struct process *proc)
581{
582	remove_sw_breakpoints(proc);
583}
584
585struct sw_singlestep_data {
586	struct process_stopping_handler *self;
587};
588
589static int
590sw_singlestep_add_bp(arch_addr_t addr, struct sw_singlestep_data *data)
591{
592	struct process_stopping_handler *self = data->self;
593	struct process *proc = self->task_enabling_breakpoint;
594
595	int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
596	int i;
597	for (i = 0; i < ct; ++i)
598		if (self->sws_bps[i] == NULL) {
599			static struct bp_callbacks cbs = {
600				.on_hit = sw_singlestep_bp_on_hit,
601			};
602			struct breakpoint *bp
603				= insert_breakpoint_at(proc, addr, NULL);
604			breakpoint_set_callbacks(bp, &cbs);
605			self->sws_bps[i] = bp;
606			return 0;
607		}
608
609	assert(!"Too many sw singlestep breakpoints!");
610	abort();
611}
612
613static int
614singlestep(struct process_stopping_handler *self)
615{
616	size_t i;
617	for (i = 0; i < sizeof(self->sws_bps) / sizeof(*self->sws_bps); ++i)
618		self->sws_bps[i] = NULL;
619
620	struct sw_singlestep_data data = { self };
621	switch (arch_sw_singlestep(self->task_enabling_breakpoint,
622				   self->breakpoint_being_enabled,
623				   &sw_singlestep_add_bp, &data)) {
624	case SWS_HW:
625		/* Otherwise do the default action: singlestep.  */
626		debug(1, "PTRACE_SINGLESTEP");
627		if (ptrace(PTRACE_SINGLESTEP,
628			   self->task_enabling_breakpoint->pid, 0, 0)) {
629			perror("PTRACE_SINGLESTEP");
630			return -1;
631		}
632		return 0;
633
634	case SWS_OK:
635		return 0;
636
637	case SWS_FAIL:
638		return -1;
639	}
640	abort();
641}
642
643static void
644post_singlestep(struct process_stopping_handler *self,
645		struct Event **eventp)
646{
647	continue_for_sigstop_delivery(&self->pids);
648
649	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
650		*eventp = NULL; // handled
651
652	struct process *proc = self->task_enabling_breakpoint;
653
654	remove_sw_breakpoints(proc);
655	self->breakpoint_being_enabled = NULL;
656}
657
658static void
659singlestep_error(struct process_stopping_handler *self)
660{
661	struct process *teb = self->task_enabling_breakpoint;
662	struct breakpoint *sbp = self->breakpoint_being_enabled;
663	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
664		teb->pid, breakpoint_name(sbp),	sbp->addr,
665		get_instruction_pointer(teb));
666	delete_breakpoint_at(teb->leader, sbp->addr);
667}
668
669static void
670pt_continue(struct process_stopping_handler *self)
671{
672	struct process *teb = self->task_enabling_breakpoint;
673	debug(1, "PTRACE_CONT");
674	ptrace(PTRACE_CONT, teb->pid, 0, 0);
675}
676
677static void
678pt_singlestep(struct process_stopping_handler *self)
679{
680	if (singlestep(self) < 0)
681		singlestep_error(self);
682}
683
684static void
685disable_and(struct process_stopping_handler *self,
686	    void (*do_this)(struct process_stopping_handler *self))
687{
688	struct process *teb = self->task_enabling_breakpoint;
689	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
690	if (self->breakpoint_being_enabled->enabled)
691		disable_breakpoint(teb, self->breakpoint_being_enabled);
692	(do_this)(self);
693	self->state = PSH_SINGLESTEP;
694}
695
696void
697linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
698{
699	disable_and(self, &pt_singlestep);
700}
701
702void
703linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
704{
705	disable_and(self, &pt_continue);
706}
707
708/* This event handler is installed when we are in the process of
709 * stopping the whole thread group to do the pointer re-enablement for
710 * one of the threads.  We pump all events to the queue for later
711 * processing while we wait for all the threads to stop.  When this
712 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
713 * re-enable, and continue everyone.  */
714static Event *
715process_stopping_on_event(struct event_handler *super, Event *event)
716{
717	struct process_stopping_handler *self = (void *)super;
718	struct process *task = event->proc;
719	struct process *leader = task->leader;
720	struct process *teb = self->task_enabling_breakpoint;
721
722	debug(DEBUG_PROCESS,
723	      "process_stopping_on_event: pid %d; event type %d; state %d",
724	      task->pid, event->type, self->state);
725
726	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
727	if (task_info == NULL)
728		fprintf(stderr, "new task??? %d\n", task->pid);
729	handle_stopping_event(task_info, &event);
730
731	int state = self->state;
732	int event_to_queue = !event_exit_or_none_p(event);
733
734	/* Deactivate the entry if the task exits.  */
735	if (event_exit_p(event) && task_info != NULL)
736		task_info->pid = 0;
737
738	/* Always handle sysrets.  Whether sysret occurred and what
739	 * sys it rets from may need to be determined based on process
740	 * stack, so we need to keep that in sync with reality.  Note
741	 * that we don't continue the process after the sysret is
742	 * handled.  See continue_after_syscall.  */
743	if (event != NULL && event->type == EVENT_SYSRET) {
744		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
745		event_to_queue = 0;
746		if (task_info != NULL)
747			task_info->sysret = 1;
748	}
749
750	switch (state) {
751	case PSH_STOPPING:
752		/* If everyone is stopped, singlestep.  */
753		if (each_task(leader, NULL, &task_blocked,
754			      &self->pids) == NULL) {
755			(self->on_all_stopped)(self);
756			state = self->state;
757		}
758		break;
759
760	case PSH_SINGLESTEP:
761		/* In singlestep state, breakpoint signifies that we
762		 * have now stepped, and can re-enable the breakpoint.  */
763		if (event != NULL && task == teb) {
764
765			/* If this was caused by a real breakpoint, as
766			 * opposed to a singlestep, assume that it's
767			 * an artificial breakpoint installed for some
768			 * reason for the re-enablement.  In that case
769			 * handle it.  */
770			if (event->type == EVENT_BREAKPOINT) {
771				arch_addr_t ip
772					= get_instruction_pointer(task);
773				struct breakpoint *other
774					= address2bpstruct(leader, ip);
775				if (other != NULL)
776					breakpoint_on_hit(other, task);
777			}
778
779			/* If we got SIGNAL instead of BREAKPOINT,
780			 * then this is not singlestep at all.  */
781			if (event->type == EVENT_SIGNAL) {
782			do_singlestep:
783				if (singlestep(self) < 0) {
784					singlestep_error(self);
785					post_singlestep(self, &event);
786					goto psh_sinking;
787				}
788				break;
789			} else {
790				switch ((self->keep_stepping_p)(self)) {
791				case CBS_FAIL:
792					/* XXX handle me */
793				case CBS_STOP:
794					break;
795				case CBS_CONT:
796					/* Sink singlestep event.  */
797					if (event->type == EVENT_BREAKPOINT)
798						event = NULL;
799					goto do_singlestep;
800				}
801			}
802
803			/* Re-enable the breakpoint that we are
804			 * stepping over.  */
805			struct breakpoint *sbp = self->breakpoint_being_enabled;
806			if (sbp->enabled)
807				enable_breakpoint(teb, sbp);
808
809			post_singlestep(self, &event);
810			goto psh_sinking;
811		}
812		break;
813
814	psh_sinking:
815		state = self->state = PSH_SINKING;
816		/* Fall through.  */
817	case PSH_SINKING:
818		if (await_sigstop_delivery(&self->pids, task_info, event))
819			process_stopping_done(self, leader);
820		break;
821
822	case PSH_UGLY_WORKAROUND:
823		if (event == NULL)
824			break;
825		if (event->type == EVENT_BREAKPOINT) {
826			undo_breakpoint(event, leader);
827			if (task == teb)
828				self->task_enabling_breakpoint = NULL;
829		}
830		if (self->task_enabling_breakpoint == NULL
831		    && all_stops_accountable(&self->pids)) {
832			undo_breakpoint(event, leader);
833			detach_process(leader);
834			event = NULL; // handled
835		}
836	}
837
838	if (event != NULL && event_to_queue) {
839		enque_event(event);
840		event = NULL; // sink the event
841	}
842
843	return event;
844}
845
846static void
847process_stopping_destroy(struct event_handler *super)
848{
849	struct process_stopping_handler *self = (void *)super;
850	free(self->pids.tasks);
851}
852
853static enum callback_status
854no(struct process_stopping_handler *self)
855{
856	return CBS_STOP;
857}
858
859int
860process_install_stopping_handler(struct process *proc, struct breakpoint *sbp,
861				 void (*as)(struct process_stopping_handler *),
862				 enum callback_status (*ks)
863					 (struct process_stopping_handler *),
864				 enum callback_status (*uw)
865					(struct process_stopping_handler *))
866{
867	debug(DEBUG_FUNCTION,
868	      "process_install_stopping_handler: pid=%d", proc->pid);
869
870	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
871	if (handler == NULL)
872		return -1;
873
874	if (as == NULL)
875		as = &linux_ptrace_disable_and_singlestep;
876	if (ks == NULL)
877		ks = &no;
878	if (uw == NULL)
879		uw = &no;
880
881	handler->super.on_event = process_stopping_on_event;
882	handler->super.destroy = process_stopping_destroy;
883	handler->task_enabling_breakpoint = proc;
884	handler->breakpoint_being_enabled = sbp;
885	handler->on_all_stopped = as;
886	handler->keep_stepping_p = ks;
887	handler->ugly_workaround_p = uw;
888
889	install_event_handler(proc->leader, &handler->super);
890
891	if (each_task(proc->leader, NULL, &send_sigstop,
892		      &handler->pids) != NULL) {
893		destroy_event_handler(proc);
894		return -1;
895	}
896
897	/* And deliver the first fake event, in case all the
898	 * conditions are already fulfilled.  */
899	Event ev = {
900		.type = EVENT_NONE,
901		.proc = proc,
902	};
903	process_stopping_on_event(&handler->super, &ev);
904
905	return 0;
906}
907
908void
909continue_after_breakpoint(struct process *proc, struct breakpoint *sbp)
910{
911	debug(DEBUG_PROCESS,
912	      "continue_after_breakpoint: pid=%d, addr=%p",
913	      proc->pid, sbp->addr);
914
915	set_instruction_pointer(proc, sbp->addr);
916
917	if (sbp->enabled == 0) {
918		continue_process(proc->pid);
919	} else if (process_install_stopping_handler
920			(proc, sbp, NULL, NULL, NULL) < 0) {
921		perror("process_stopping_handler_create");
922		/* Carry on not bothering to re-enable.  */
923		continue_process(proc->pid);
924	}
925}
926
927/**
928 * Ltrace exit.  When we are about to exit, we have to go through all
929 * the processes, stop them all, remove all the breakpoints, and then
930 * detach the processes that we attached to using -p.  If we left the
931 * other tasks running, they might hit stray return breakpoints and
932 * produce artifacts, so we better stop everyone, even if it's a bit
933 * of extra work.
934 */
935struct ltrace_exiting_handler
936{
937	struct event_handler super;
938	struct pid_set pids;
939};
940
941static Event *
942ltrace_exiting_on_event(struct event_handler *super, Event *event)
943{
944	struct ltrace_exiting_handler *self = (void *)super;
945	struct process *task = event->proc;
946	struct process *leader = task->leader;
947
948	debug(DEBUG_PROCESS,
949	      "ltrace_exiting_on_event: pid %d; event type %d",
950	      task->pid, event->type);
951
952	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
953	handle_stopping_event(task_info, &event);
954
955	if (event != NULL && event->type == EVENT_BREAKPOINT)
956		undo_breakpoint(event, leader);
957
958	if (await_sigstop_delivery(&self->pids, task_info, event)
959	    && all_stops_accountable(&self->pids))
960		detach_process(leader);
961
962	/* Sink all non-exit events.  We are about to exit, so we
963	 * don't bother with queuing them. */
964	if (event_exit_or_none_p(event))
965		return event;
966
967	return NULL;
968}
969
970static void
971ltrace_exiting_destroy(struct event_handler *super)
972{
973	struct ltrace_exiting_handler *self = (void *)super;
974	free(self->pids.tasks);
975}
976
977static int
978ltrace_exiting_install_handler(struct process *proc)
979{
980	/* Only install to leader.  */
981	if (proc->leader != proc)
982		return 0;
983
984	/* Perhaps we are already installed, if the user passed
985	 * several -p options that are tasks of one process.  */
986	if (proc->event_handler != NULL
987	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
988		return 0;
989
990	/* If stopping handler is already present, let it do the
991	 * work.  */
992	if (proc->event_handler != NULL) {
993		assert(proc->event_handler->on_event
994		       == &process_stopping_on_event);
995		struct process_stopping_handler *other
996			= (void *)proc->event_handler;
997		other->exiting = 1;
998		return 0;
999	}
1000
1001	struct ltrace_exiting_handler *handler
1002		= calloc(sizeof(*handler), 1);
1003	if (handler == NULL) {
1004		perror("malloc exiting handler");
1005	fatal:
1006		/* XXXXXXXXXXXXXXXXXXX fixme */
1007		return -1;
1008	}
1009
1010	handler->super.on_event = ltrace_exiting_on_event;
1011	handler->super.destroy = ltrace_exiting_destroy;
1012	install_event_handler(proc->leader, &handler->super);
1013
1014	if (each_task(proc->leader, NULL, &send_sigstop,
1015		      &handler->pids) != NULL)
1016		goto fatal;
1017
1018	return 0;
1019}
1020
1021/*
1022 * When the traced process vforks, it's suspended until the child
1023 * process calls _exit or exec*.  In the meantime, the two share the
1024 * address space.
1025 *
1026 * The child process should only ever call _exit or exec*, but we
1027 * can't count on that (it's not the role of ltrace to policy, but to
1028 * observe).  In any case, we will _at least_ have to deal with
1029 * removal of vfork return breakpoint (which we have to smuggle back
1030 * in, so that the parent can see it, too), and introduction of exec*
1031 * return breakpoint.  Since we already have both breakpoint actions
1032 * to deal with, we might as well support it all.
1033 *
1034 * The gist is that we pretend that the child is in a thread group
1035 * with its parent, and handle it as a multi-threaded case, with the
1036 * exception that we know that the parent is blocked, and don't
1037 * attempt to stop it.  When the child execs, we undo the setup.
1038 */
1039
1040struct process_vfork_handler
1041{
1042	struct event_handler super;
1043	int vfork_bp_refd:1;
1044};
1045
1046static Event *
1047process_vfork_on_event(struct event_handler *super, Event *event)
1048{
1049	debug(DEBUG_PROCESS,
1050	      "process_vfork_on_event: pid %d; event type %d",
1051	      event->proc->pid, event->type);
1052
1053	struct process_vfork_handler *self = (void *)super;
1054	struct process *proc = event->proc;
1055	assert(self != NULL);
1056
1057	switch (event->type) {
1058	case EVENT_BREAKPOINT:
1059		/* We turn on the vfork return breakpoint (which
1060		 * should be the one that we have tripped over just
1061		 * now) one extra time, so that the vfork parent hits
1062		 * it as well.  */
1063		if (!self->vfork_bp_refd) {
1064			struct breakpoint *sbp = NULL;
1065			DICT_FIND_VAL(proc->leader->breakpoints,
1066				      &event->e_un.brk_addr, &sbp);
1067			assert(sbp != NULL);
1068			breakpoint_turn_on(sbp, proc->leader);
1069			self->vfork_bp_refd = 1;
1070		}
1071		break;
1072
1073	case EVENT_EXIT:
1074	case EVENT_EXIT_SIGNAL:
1075	case EVENT_EXEC:
1076		/* Remove the leader that we artificially set up
1077		 * earlier.  */
1078		change_process_leader(proc, proc);
1079		destroy_event_handler(proc);
1080		continue_process(proc->parent->pid);
1081
1082	default:
1083		;
1084	}
1085
1086	return event;
1087}
1088
1089void
1090continue_after_vfork(struct process *proc)
1091{
1092	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1093	struct process_vfork_handler *handler = calloc(sizeof(*handler), 1);
1094	if (handler == NULL) {
1095		perror("malloc vfork handler");
1096		/* Carry on not bothering to treat the process as
1097		 * necessary.  */
1098		continue_process(proc->parent->pid);
1099		return;
1100	}
1101
1102	/* We must set up custom event handler, so that we see
1103	 * exec/exit events for the task itself.  */
1104	handler->super.on_event = process_vfork_on_event;
1105	install_event_handler(proc, &handler->super);
1106
1107	/* Make sure that the child is sole thread.  */
1108	assert(proc->leader == proc);
1109	assert(proc->next == NULL || proc->next->leader != proc);
1110
1111	/* Make sure that the child's parent is properly set up.  */
1112	assert(proc->parent != NULL);
1113	assert(proc->parent->leader != NULL);
1114
1115	change_process_leader(proc, proc->parent->leader);
1116}
1117
1118static int
1119is_mid_stopping(struct process *proc)
1120{
1121	return proc != NULL
1122		&& proc->event_handler != NULL
1123		&& proc->event_handler->on_event == &process_stopping_on_event;
1124}
1125
1126void
1127continue_after_syscall(struct process *proc, int sysnum, int ret_p)
1128{
1129	/* Don't continue if we are mid-stopping.  */
1130	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1131		debug(DEBUG_PROCESS,
1132		      "continue_after_syscall: don't continue %d",
1133		      proc->pid);
1134		return;
1135	}
1136	continue_process(proc->pid);
1137}
1138
1139void
1140continue_after_exec(struct process *proc)
1141{
1142	continue_process(proc->pid);
1143
1144	/* After the exec, we expect to hit the first executable
1145	 * instruction.
1146	 *
1147	 * XXX TODO It would be nice to have this removed, but then we
1148	 * need to do that also for initial call to wait_for_proc in
1149	 * execute_program.  In that case we could generate a
1150	 * EVENT_FIRST event or something, or maybe this could somehow
1151	 * be rolled into EVENT_NEW.  */
1152	wait_for_proc(proc->pid);
1153	continue_process(proc->pid);
1154}
1155
1156/* If ltrace gets SIGINT, the processes directly or indirectly run by
1157 * ltrace get it too.  We just have to wait long enough for the signal
1158 * to be delivered and the process terminated, which we notice and
1159 * exit ltrace, too.  So there's not much we need to do there.  We
1160 * want to keep tracing those processes as usual, in case they just
1161 * SIG_IGN the SIGINT to do their shutdown etc.
1162 *
1163 * For processes ran on the background, we want to install an exit
1164 * handler that stops all the threads, removes all breakpoints, and
1165 * detaches.
1166 */
1167void
1168os_ltrace_exiting(void)
1169{
1170	struct opt_p_t *it;
1171	for (it = opt_p; it != NULL; it = it->next) {
1172		struct process *proc = pid2proc(it->pid);
1173		if (proc == NULL || proc->leader == NULL)
1174			continue;
1175		if (ltrace_exiting_install_handler(proc->leader) < 0)
1176			fprintf(stderr,
1177				"Couldn't install exiting handler for %d.\n",
1178				proc->pid);
1179	}
1180}
1181
1182int
1183os_ltrace_exiting_sighandler(void)
1184{
1185	extern int linux_in_waitpid;
1186	if (linux_in_waitpid) {
1187		os_ltrace_exiting();
1188		return 1;
1189	}
1190	return 0;
1191}
1192
1193size_t
1194umovebytes(struct process *proc, void *addr, void *laddr, size_t len)
1195{
1196
1197	union {
1198		long a;
1199		char c[sizeof(long)];
1200	} a;
1201	int started = 0;
1202	size_t offset = 0, bytes_read = 0;
1203
1204	while (offset < len) {
1205		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1206		if (a.a == -1 && errno) {
1207			if (started && errno == EIO)
1208				return bytes_read;
1209			else
1210				return -1;
1211		}
1212		started = 1;
1213
1214		if (len - offset >= sizeof(long)) {
1215			memcpy(laddr + offset, &a.c[0], sizeof(long));
1216			bytes_read += sizeof(long);
1217		}
1218		else {
1219			memcpy(laddr + offset, &a.c[0], len - offset);
1220			bytes_read += (len - offset);
1221		}
1222		offset += sizeof(long);
1223	}
1224
1225	return bytes_read;
1226}
1227
1228struct irelative_name_data_t {
1229	GElf_Addr addr;
1230	const char *found_name;
1231};
1232
1233static enum callback_status
1234irelative_name_cb(GElf_Sym *symbol, const char *name, void *d)
1235{
1236	struct irelative_name_data_t *data = d;
1237
1238	if (symbol->st_value == data->addr) {
1239		bool is_ifunc = false;
1240#ifdef STT_GNU_IFUNC
1241		is_ifunc = GELF_ST_TYPE(symbol->st_info) == STT_GNU_IFUNC;
1242#endif
1243		data->found_name = name;
1244
1245		/* Keep looking, unless we found the actual IFUNC
1246		 * symbol.  What we matched may have been a symbol
1247		 * denoting the resolver function, which would have
1248		 * the same address.  */
1249		return CBS_STOP_IF(is_ifunc);
1250	}
1251
1252	return CBS_CONT;
1253}
1254
1255char *
1256linux_elf_find_irelative_name(struct ltelf *lte, GElf_Addr addr)
1257{
1258	struct irelative_name_data_t data = { addr, NULL };
1259	if (addr != 0
1260	    && elf_each_symbol(lte, 0,
1261			       irelative_name_cb, &data).status < 0)
1262		return NULL;
1263
1264	const char *name;
1265	if (data.found_name != NULL) {
1266		name = data.found_name;
1267	} else {
1268#define NAME "IREL."
1269		/* NAME\0 + 0x + digits.  */
1270		char *tmp_name = alloca(sizeof NAME + 2 + 16);
1271		sprintf(tmp_name, NAME "%#" PRIx64, (uint64_t) addr);
1272		name = tmp_name;
1273#undef NAME
1274	}
1275
1276	return strdup(name);
1277}
1278
1279enum plt_status
1280linux_elf_add_plt_entry_irelative(struct process *proc, struct ltelf *lte,
1281				  GElf_Rela *rela, size_t ndx,
1282				  struct library_symbol **ret)
1283
1284{
1285	char *name = linux_elf_find_irelative_name(lte, rela->r_addend);
1286	int i = default_elf_add_plt_entry(proc, lte, name, rela, ndx, ret);
1287	free(name);
1288	return i < 0 ? PLT_FAIL : PLT_OK;
1289}
1290