trace.c revision 642626096a694c6af279d25d2b1b2fba5b10ddfb
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2007,2011,2012 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2010 Joe Damato
5 * Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
6 * Copyright (C) 2006 Ian Wienand
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21 * 02110-1301 USA
22 */
23
24#include "config.h"
25
26#include <asm/unistd.h>
27#include <sys/types.h>
28#include <sys/wait.h>
29#include <assert.h>
30#include <errno.h>
31#include <stdio.h>
32#include <stdlib.h>
33#include <string.h>
34#include <unistd.h>
35
36#ifdef HAVE_LIBSELINUX
37# include <selinux/selinux.h>
38#endif
39
40#include "ptrace.h"
41#include "breakpoint.h"
42#include "proc.h"
43#include "linux-gnu/trace.h"
44#include "backend.h"
45#include "type.h"
46#include "events.h"
47
48/* If the system headers did not provide the constants, hard-code the normal
49   values.  */
50#ifndef PTRACE_EVENT_FORK
51
52#define PTRACE_OLDSETOPTIONS    21
53#define PTRACE_SETOPTIONS       0x4200
54#define PTRACE_GETEVENTMSG      0x4201
55
56/* options set using PTRACE_SETOPTIONS */
57#define PTRACE_O_TRACESYSGOOD   0x00000001
58#define PTRACE_O_TRACEFORK      0x00000002
59#define PTRACE_O_TRACEVFORK     0x00000004
60#define PTRACE_O_TRACECLONE     0x00000008
61#define PTRACE_O_TRACEEXEC      0x00000010
62#define PTRACE_O_TRACEVFORKDONE 0x00000020
63#define PTRACE_O_TRACEEXIT      0x00000040
64
65/* Wait extended result codes for the above trace options.  */
66#define PTRACE_EVENT_FORK       1
67#define PTRACE_EVENT_VFORK      2
68#define PTRACE_EVENT_CLONE      3
69#define PTRACE_EVENT_EXEC       4
70#define PTRACE_EVENT_VFORK_DONE 5
71#define PTRACE_EVENT_EXIT       6
72
73#endif /* PTRACE_EVENT_FORK */
74
75void
76trace_fail_warning(pid_t pid)
77{
78	/* This was adapted from GDB.  */
79#ifdef HAVE_LIBSELINUX
80	static int checked = 0;
81	if (checked)
82		return;
83	checked = 1;
84
85	/* -1 is returned for errors, 0 if it has no effect, 1 if
86	 * PTRACE_ATTACH is forbidden.  */
87	if (security_get_boolean_active("deny_ptrace") == 1)
88		fprintf(stderr,
89"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
90"tracing other processes.  You can disable this process attach protection by\n"
91"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
92#endif /* HAVE_LIBSELINUX */
93}
94
95void
96trace_me(void)
97{
98	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
99	if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
100		perror("PTRACE_TRACEME");
101		trace_fail_warning(getpid());
102		exit(1);
103	}
104}
105
106/* There's a (hopefully) brief period of time after the child process
107 * forks when we can't trace it yet.  Here we wait for kernel to
108 * prepare the process.  */
109int
110wait_for_proc(pid_t pid)
111{
112	/* man ptrace: PTRACE_ATTACH attaches to the process specified
113	   in pid.  The child is sent a SIGSTOP, but will not
114	   necessarily have stopped by the completion of this call;
115	   use wait() to wait for the child to stop. */
116	if (waitpid(pid, NULL, __WALL) != pid) {
117		perror ("trace_pid: waitpid");
118		return -1;
119	}
120
121	return 0;
122}
123
124int
125trace_pid(pid_t pid)
126{
127	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
128	/* This shouldn't emit error messages, as there are legitimate
129	 * reasons that the PID can't be attached: like it may have
130	 * already ended.  */
131	if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
132		return -1;
133
134	return wait_for_proc(pid);
135}
136
137void
138trace_set_options(struct Process *proc)
139{
140	if (proc->tracesysgood & 0x80)
141		return;
142
143	pid_t pid = proc->pid;
144	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
145
146	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
147		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
148		PTRACE_O_TRACEEXEC;
149	if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
150	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
151		perror("PTRACE_SETOPTIONS");
152		return;
153	}
154	proc->tracesysgood |= 0x80;
155}
156
157void
158untrace_pid(pid_t pid) {
159	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
160	ptrace(PTRACE_DETACH, pid, 0, 0);
161}
162
163void
164continue_after_signal(pid_t pid, int signum)
165{
166	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
167	      pid, signum);
168	ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
169}
170
171static enum ecb_status
172event_for_pid(Event * event, void * data)
173{
174	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
175		return ecb_yield;
176	return ecb_cont;
177}
178
179static int
180have_events_for(pid_t pid)
181{
182	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
183}
184
185void
186continue_process(pid_t pid)
187{
188	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
189
190	/* Only really continue the process if there are no events in
191	   the queue for this process.  Otherwise just wait for the
192	   other events to arrive.  */
193	if (!have_events_for(pid))
194		/* We always trace syscalls to control fork(),
195		 * clone(), execve()... */
196		ptrace(PTRACE_SYSCALL, pid, 0, 0);
197	else
198		debug(DEBUG_PROCESS,
199		      "putting off the continue, events in que.");
200}
201
202static struct pid_task *
203get_task_info(struct pid_set * pids, pid_t pid)
204{
205	assert(pid != 0);
206	size_t i;
207	for (i = 0; i < pids->count; ++i)
208		if (pids->tasks[i].pid == pid)
209			return &pids->tasks[i];
210
211	return NULL;
212}
213
214static struct pid_task *
215add_task_info(struct pid_set * pids, pid_t pid)
216{
217	if (pids->count == pids->alloc) {
218		size_t ns = (2 * pids->alloc) ?: 4;
219		struct pid_task * n = realloc(pids->tasks,
220					      sizeof(*pids->tasks) * ns);
221		if (n == NULL)
222			return NULL;
223		pids->tasks = n;
224		pids->alloc = ns;
225	}
226	struct pid_task * task_info = &pids->tasks[pids->count++];
227	memset(task_info, 0, sizeof(*task_info));
228	task_info->pid = pid;
229	return task_info;
230}
231
232static enum callback_status
233task_stopped(struct Process *task, void *data)
234{
235	enum process_status st = process_status(task->pid);
236	if (data != NULL)
237		*(enum process_status *)data = st;
238
239	/* If the task is already stopped, don't worry about it.
240	 * Likewise if it managed to become a zombie or terminate in
241	 * the meantime.  This can happen when the whole thread group
242	 * is terminating.  */
243	switch (st) {
244	case ps_invalid:
245	case ps_tracing_stop:
246	case ps_zombie:
247		return CBS_CONT;
248	case ps_sleeping:
249	case ps_stop:
250	case ps_other:
251		return CBS_STOP;
252	}
253
254	abort ();
255}
256
257/* Task is blocked if it's stopped, or if it's a vfork parent.  */
258static enum callback_status
259task_blocked(struct Process *task, void *data)
260{
261	struct pid_set * pids = data;
262	struct pid_task * task_info = get_task_info(pids, task->pid);
263	if (task_info != NULL
264	    && task_info->vforked)
265		return CBS_CONT;
266
267	return task_stopped(task, NULL);
268}
269
270static Event *process_vfork_on_event(struct event_handler *super, Event *event);
271
272static enum callback_status
273task_vforked(struct Process *task, void *data)
274{
275	if (task->event_handler != NULL
276	    && task->event_handler->on_event == &process_vfork_on_event)
277		return CBS_STOP;
278	return CBS_CONT;
279}
280
281static int
282is_vfork_parent(struct Process *task)
283{
284	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
285}
286
287static enum callback_status
288send_sigstop(struct Process *task, void *data)
289{
290	Process * leader = task->leader;
291	struct pid_set * pids = data;
292
293	/* Look for pre-existing task record, or add new.  */
294	struct pid_task * task_info = get_task_info(pids, task->pid);
295	if (task_info == NULL)
296		task_info = add_task_info(pids, task->pid);
297	if (task_info == NULL) {
298		perror("send_sigstop: add_task_info");
299		destroy_event_handler(leader);
300		/* Signal failure upwards.  */
301		return CBS_STOP;
302	}
303
304	/* This task still has not been attached to.  It should be
305	   stopped by the kernel.  */
306	if (task->state == STATE_BEING_CREATED)
307		return CBS_CONT;
308
309	/* Don't bother sending SIGSTOP if we are already stopped, or
310	 * if we sent the SIGSTOP already, which happens when we are
311	 * handling "onexit" and inherited the handler from breakpoint
312	 * re-enablement.  */
313	enum process_status st;
314	if (task_stopped(task, &st) == CBS_CONT)
315		return CBS_CONT;
316	if (task_info->sigstopped) {
317		if (!task_info->delivered)
318			return CBS_CONT;
319		task_info->delivered = 0;
320	}
321
322	/* Also don't attempt to stop the process if it's a parent of
323	 * vforked process.  We set up event handler specially to hint
324	 * us.  In that case parent is in D state, which we use to
325	 * weed out unnecessary looping.  */
326	if (st == ps_sleeping
327	    && is_vfork_parent (task)) {
328		task_info->vforked = 1;
329		return CBS_CONT;
330	}
331
332	if (task_kill(task->pid, SIGSTOP) >= 0) {
333		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
334		task_info->sigstopped = 1;
335	} else
336		fprintf(stderr,
337			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
338
339	return CBS_CONT;
340}
341
342/* On certain kernels, detaching right after a singlestep causes the
343   tracee to be killed with a SIGTRAP (that even though the singlestep
344   was properly caught by waitpid.  The ugly workaround is to put a
345   breakpoint where IP points and let the process continue.  After
346   this the breakpoint can be retracted and the process detached.  */
347static void
348ugly_workaround(Process * proc)
349{
350	void * ip = get_instruction_pointer(proc);
351	struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip);
352	if (sbp != NULL)
353		enable_breakpoint(proc, sbp);
354	else
355		insert_breakpoint(proc, ip, NULL);
356	ptrace(PTRACE_CONT, proc->pid, 0, 0);
357}
358
359static void
360process_stopping_done(struct process_stopping_handler * self, Process * leader)
361{
362	debug(DEBUG_PROCESS, "process stopping done %d",
363	      self->task_enabling_breakpoint->pid);
364	size_t i;
365	if (!self->exiting) {
366		for (i = 0; i < self->pids.count; ++i)
367			if (self->pids.tasks[i].pid != 0
368			    && (self->pids.tasks[i].delivered
369				|| self->pids.tasks[i].sysret))
370				continue_process(self->pids.tasks[i].pid);
371		continue_process(self->task_enabling_breakpoint->pid);
372		destroy_event_handler(leader);
373	}
374
375	if (self->exiting) {
376	ugly_workaround:
377		self->state = psh_ugly_workaround;
378		ugly_workaround(self->task_enabling_breakpoint);
379	} else {
380		switch ((self->ugly_workaround_p)(self)) {
381		case CBS_FAIL:
382			/* xxx handle me */
383		case CBS_STOP:
384			break;
385		case CBS_CONT:
386			goto ugly_workaround;
387		}
388	}
389}
390
391/* Before we detach, we need to make sure that task's IP is on the
392 * edge of an instruction.  So for tasks that have a breakpoint event
393 * in the queue, we adjust the instruction pointer, just like
394 * continue_after_breakpoint does.  */
395static enum ecb_status
396undo_breakpoint(Event * event, void * data)
397{
398	if (event != NULL
399	    && event->proc->leader == data
400	    && event->type == EVENT_BREAKPOINT)
401		set_instruction_pointer(event->proc, event->e_un.brk_addr);
402	return ecb_cont;
403}
404
405static enum callback_status
406untrace_task(struct Process *task, void *data)
407{
408	if (task != data)
409		untrace_pid(task->pid);
410	return CBS_CONT;
411}
412
413static enum callback_status
414remove_task(struct Process *task, void *data)
415{
416	/* Don't untrace leader just yet.  */
417	if (task != data)
418		remove_process(task);
419	return CBS_CONT;
420}
421
422static enum callback_status
423retract_breakpoint_cb(struct Process *proc, struct breakpoint *bp, void *data)
424{
425	breakpoint_on_retract(bp, proc);
426	return CBS_CONT;
427}
428
429static void
430detach_process(Process * leader)
431{
432	each_qd_event(&undo_breakpoint, leader);
433	disable_all_breakpoints(leader);
434	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
435
436	/* Now untrace the process, if it was attached to by -p.  */
437	struct opt_p_t * it;
438	for (it = opt_p; it != NULL; it = it->next) {
439		Process * proc = pid2proc(it->pid);
440		if (proc == NULL)
441			continue;
442		if (proc->leader == leader) {
443			each_task(leader, NULL, &untrace_task, NULL);
444			break;
445		}
446	}
447	each_task(leader, NULL, &remove_task, leader);
448	destroy_event_handler(leader);
449	remove_task(leader, NULL);
450}
451
452static void
453handle_stopping_event(struct pid_task * task_info, Event ** eventp)
454{
455	/* Mark all events, so that we know whom to SIGCONT later.  */
456	if (task_info != NULL)
457		task_info->got_event = 1;
458
459	Event * event = *eventp;
460
461	/* In every state, sink SIGSTOP events for tasks that it was
462	 * sent to.  */
463	if (task_info != NULL
464	    && event->type == EVENT_SIGNAL
465	    && event->e_un.signum == SIGSTOP) {
466		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
467		if (task_info->sigstopped
468		    && !task_info->delivered) {
469			task_info->delivered = 1;
470			*eventp = NULL; // sink the event
471		} else
472			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
473				"sigstopped=%d and delivered=%d\n",
474				task_info->pid, task_info->sigstopped,
475				task_info->delivered);
476	}
477}
478
479/* Some SIGSTOPs may have not been delivered to their respective tasks
480 * yet.  They are still in the queue.  If we have seen an event for
481 * that process, continue it, so that the SIGSTOP can be delivered and
482 * caught by ltrace.  We don't mind that the process is after
483 * breakpoint (and therefore potentially doesn't have aligned IP),
484 * because the signal will be delivered without the process actually
485 * starting.  */
486static void
487continue_for_sigstop_delivery(struct pid_set * pids)
488{
489	size_t i;
490	for (i = 0; i < pids->count; ++i) {
491		if (pids->tasks[i].pid != 0
492		    && pids->tasks[i].sigstopped
493		    && !pids->tasks[i].delivered
494		    && pids->tasks[i].got_event) {
495			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
496			      pids->tasks[i].pid);
497			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
498		}
499	}
500}
501
502static int
503event_exit_p(Event * event)
504{
505	return event != NULL && (event->type == EVENT_EXIT
506				 || event->type == EVENT_EXIT_SIGNAL);
507}
508
509static int
510event_exit_or_none_p(Event * event)
511{
512	return event == NULL || event_exit_p(event)
513		|| event->type == EVENT_NONE;
514}
515
516static int
517await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
518		       Event * event)
519{
520	/* If we still didn't get our SIGSTOP, continue the process
521	 * and carry on.  */
522	if (event != NULL && !event_exit_or_none_p(event)
523	    && task_info != NULL && task_info->sigstopped) {
524		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
525		      task_info->pid);
526		/* We should get the signal the first thing
527		 * after this, so it should be OK to continue
528		 * even if we are over a breakpoint.  */
529		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
530
531	} else {
532		/* If all SIGSTOPs were delivered, uninstall the
533		 * handler and continue everyone.  */
534		/* XXX I suspect that we should check tasks that are
535		 * still around.  Is things are now, there should be a
536		 * race between waiting for everyone to stop and one
537		 * of the tasks exiting.  */
538		int all_clear = 1;
539		size_t i;
540		for (i = 0; i < pids->count; ++i)
541			if (pids->tasks[i].pid != 0
542			    && pids->tasks[i].sigstopped
543			    && !pids->tasks[i].delivered) {
544				all_clear = 0;
545				break;
546			}
547		return all_clear;
548	}
549
550	return 0;
551}
552
553static int
554all_stops_accountable(struct pid_set * pids)
555{
556	size_t i;
557	for (i = 0; i < pids->count; ++i)
558		if (pids->tasks[i].pid != 0
559		    && !pids->tasks[i].got_event
560		    && !have_events_for(pids->tasks[i].pid))
561			return 0;
562	return 1;
563}
564
565/* The protocol is: 0 for success, negative for failure, positive if
566 * default singlestep is to be used.  */
567int arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
568			   int (*add_cb)(void *addr, void *data),
569			   void *add_cb_data);
570
571#ifndef ARCH_HAVE_ATOMIC_SINGLESTEP
572int
573arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
574		       int (*add_cb)(void *addr, void *data),
575		       void *add_cb_data)
576{
577	return 1;
578}
579#endif
580
581static Event *process_stopping_on_event(struct event_handler *super,
582					Event *event);
583
584static void
585remove_atomic_breakpoints(struct Process *proc)
586{
587	struct process_stopping_handler *self
588		= (void *)proc->leader->event_handler;
589	assert(self != NULL);
590	assert(self->super.on_event == process_stopping_on_event);
591
592	int ct = sizeof(self->atomic_skip_bp_addrs)
593		/ sizeof(*self->atomic_skip_bp_addrs);
594	int i;
595	for (i = 0; i < ct; ++i)
596		if (self->atomic_skip_bp_addrs[i] != 0) {
597			delete_breakpoint(proc, self->atomic_skip_bp_addrs[i]);
598			self->atomic_skip_bp_addrs[i] = 0;
599		}
600}
601
602static void
603atomic_singlestep_bp_on_hit(struct breakpoint *bp, struct Process *proc)
604{
605	remove_atomic_breakpoints(proc);
606}
607
608static int
609atomic_singlestep_add_bp(void *addr, void *data)
610{
611	struct process_stopping_handler *self = data;
612	struct Process *proc = self->task_enabling_breakpoint;
613
614	int ct = sizeof(self->atomic_skip_bp_addrs)
615		/ sizeof(*self->atomic_skip_bp_addrs);
616	int i;
617	for (i = 0; i < ct; ++i)
618		if (self->atomic_skip_bp_addrs[i] == 0) {
619			self->atomic_skip_bp_addrs[i] = addr;
620			static struct bp_callbacks cbs = {
621				.on_hit = atomic_singlestep_bp_on_hit,
622			};
623			struct breakpoint *bp
624				= insert_breakpoint(proc, addr, NULL);
625			breakpoint_set_callbacks(bp, &cbs);
626			return 0;
627		}
628
629	assert(!"Too many atomic singlestep breakpoints!");
630	abort();
631}
632
633static int
634singlestep(struct process_stopping_handler *self)
635{
636	struct Process *proc = self->task_enabling_breakpoint;
637
638	int status = arch_atomic_singlestep(self->task_enabling_breakpoint,
639					    self->breakpoint_being_enabled,
640					    &atomic_singlestep_add_bp, self);
641
642	/* Propagate failure and success.  */
643	if (status <= 0)
644		return status;
645
646	/* Otherwise do the default action: singlestep.  */
647	debug(1, "PTRACE_SINGLESTEP");
648	if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) {
649		perror("PTRACE_SINGLESTEP");
650		return -1;
651	}
652	return 0;
653}
654
655static void
656post_singlestep(struct process_stopping_handler *self,
657		struct Event **eventp)
658{
659	continue_for_sigstop_delivery(&self->pids);
660
661	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
662		*eventp = NULL; // handled
663
664	struct Process *proc = self->task_enabling_breakpoint;
665
666	remove_atomic_breakpoints(proc);
667	self->breakpoint_being_enabled = NULL;
668}
669
670static void
671singlestep_error(struct process_stopping_handler *self)
672{
673	struct Process *teb = self->task_enabling_breakpoint;
674	struct breakpoint *sbp = self->breakpoint_being_enabled;
675	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
676		teb->pid, sbp->libsym != NULL ? sbp->libsym->name : NULL,
677		sbp->addr, get_instruction_pointer(teb));
678	delete_breakpoint(teb->leader, sbp->addr);
679}
680
681static void
682pt_continue(struct process_stopping_handler *self)
683{
684	struct Process *teb = self->task_enabling_breakpoint;
685	debug(1, "PTRACE_CONT");
686	ptrace(PTRACE_CONT, teb->pid, 0, 0);
687}
688
689static void
690pt_singlestep(struct process_stopping_handler *self)
691{
692	if (singlestep(self) < 0)
693		singlestep_error(self);
694}
695
696static void
697disable_and(struct process_stopping_handler *self,
698	    void (*do_this)(struct process_stopping_handler *self))
699{
700	struct Process *teb = self->task_enabling_breakpoint;
701	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
702	if (self->breakpoint_being_enabled->enabled)
703		disable_breakpoint(teb, self->breakpoint_being_enabled);
704	(do_this)(self);
705	self->state = psh_singlestep;
706}
707
708void
709linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
710{
711	disable_and(self, &pt_singlestep);
712}
713
714void
715linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
716{
717	disable_and(self, &pt_continue);
718}
719
720/* This event handler is installed when we are in the process of
721 * stopping the whole thread group to do the pointer re-enablement for
722 * one of the threads.  We pump all events to the queue for later
723 * processing while we wait for all the threads to stop.  When this
724 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
725 * re-enable, and continue everyone.  */
726static Event *
727process_stopping_on_event(struct event_handler *super, Event *event)
728{
729	struct process_stopping_handler * self = (void *)super;
730	Process * task = event->proc;
731	Process * leader = task->leader;
732	Process * teb = self->task_enabling_breakpoint;
733
734	debug(DEBUG_PROCESS,
735	      "process_stopping_on_event: pid %d; event type %d; state %d",
736	      task->pid, event->type, self->state);
737
738	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
739	if (task_info == NULL)
740		fprintf(stderr, "new task??? %d\n", task->pid);
741	handle_stopping_event(task_info, &event);
742
743	int state = self->state;
744	int event_to_queue = !event_exit_or_none_p(event);
745
746	/* Deactivate the entry if the task exits.  */
747	if (event_exit_p(event) && task_info != NULL)
748		task_info->pid = 0;
749
750	/* Always handle sysrets.  Whether sysret occurred and what
751	 * sys it rets from may need to be determined based on process
752	 * stack, so we need to keep that in sync with reality.  Note
753	 * that we don't continue the process after the sysret is
754	 * handled.  See continue_after_syscall.  */
755	if (event != NULL && event->type == EVENT_SYSRET) {
756		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
757		event_to_queue = 0;
758		task_info->sysret = 1;
759	}
760
761	switch (state) {
762	case psh_stopping:
763		/* If everyone is stopped, singlestep.  */
764		if (each_task(leader, NULL, &task_blocked,
765			      &self->pids) == NULL) {
766			(self->on_all_stopped)(self);
767			state = self->state;
768		}
769		break;
770
771	case psh_singlestep:
772		/* In singlestep state, breakpoint signifies that we
773		 * have now stepped, and can re-enable the breakpoint.  */
774		if (event != NULL && task == teb) {
775
776			/* If this was caused by a real breakpoint, as
777			 * opposed to a singlestep, assume that it's
778			 * an artificial breakpoint installed for some
779			 * reason for the re-enablement.  In that case
780			 * handle it.  */
781			if (event->type == EVENT_BREAKPOINT) {
782				target_address_t ip
783					= get_instruction_pointer(task);
784				struct breakpoint *other
785					= address2bpstruct(leader, ip);
786				if (other != NULL)
787					breakpoint_on_hit(other, task);
788			}
789
790			/* If we got SIGNAL instead of BREAKPOINT,
791			 * then this is not singlestep at all.  */
792			if (event->type == EVENT_SIGNAL) {
793			do_singlestep:
794				if (singlestep(self) < 0) {
795					singlestep_error(self);
796					post_singlestep(self, &event);
797					goto psh_sinking;
798				}
799				break;
800			} else {
801				switch ((self->keep_stepping_p)(self)) {
802				case CBS_FAIL:
803					/* XXX handle me */
804				case CBS_STOP:
805					break;
806				case CBS_CONT:
807					/* Sink singlestep event.  */
808					if (event->type == EVENT_BREAKPOINT)
809						event = NULL;
810					goto do_singlestep;
811				}
812			}
813
814			/* Re-enable the breakpoint that we are
815			 * stepping over.  */
816			struct breakpoint *sbp = self->breakpoint_being_enabled;
817			if (sbp->enabled)
818				enable_breakpoint(teb, sbp);
819
820			post_singlestep(self, &event);
821			goto psh_sinking;
822		}
823		break;
824
825	psh_sinking:
826		state = self->state = psh_sinking;
827	case psh_sinking:
828		if (await_sigstop_delivery(&self->pids, task_info, event))
829			process_stopping_done(self, leader);
830		break;
831
832	case psh_ugly_workaround:
833		if (event == NULL)
834			break;
835		if (event->type == EVENT_BREAKPOINT) {
836			undo_breakpoint(event, leader);
837			if (task == teb)
838				self->task_enabling_breakpoint = NULL;
839		}
840		if (self->task_enabling_breakpoint == NULL
841		    && all_stops_accountable(&self->pids)) {
842			undo_breakpoint(event, leader);
843			detach_process(leader);
844			event = NULL; // handled
845		}
846	}
847
848	if (event != NULL && event_to_queue) {
849		enque_event(event);
850		event = NULL; // sink the event
851	}
852
853	return event;
854}
855
856static void
857process_stopping_destroy(struct event_handler *super)
858{
859	struct process_stopping_handler * self = (void *)super;
860	free(self->pids.tasks);
861}
862
863static enum callback_status
864no(struct process_stopping_handler *self)
865{
866	return CBS_STOP;
867}
868
869int
870process_install_stopping_handler(struct Process *proc, struct breakpoint *sbp,
871				 void (*as)(struct process_stopping_handler *),
872				 enum callback_status (*ks)
873					 (struct process_stopping_handler *),
874				 enum callback_status (*uw)
875					(struct process_stopping_handler *))
876{
877	debug(DEBUG_FUNCTION,
878	      "process_install_stopping_handler: pid=%d", proc->pid);
879
880	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
881	if (handler == NULL)
882		return -1;
883
884	if (as == NULL)
885		as = &linux_ptrace_disable_and_singlestep;
886	if (ks == NULL)
887		ks = &no;
888	if (uw == NULL)
889		uw = &no;
890
891	handler->super.on_event = process_stopping_on_event;
892	handler->super.destroy = process_stopping_destroy;
893	handler->task_enabling_breakpoint = proc;
894	handler->breakpoint_being_enabled = sbp;
895	handler->on_all_stopped = as;
896	handler->keep_stepping_p = ks;
897	handler->ugly_workaround_p = uw;
898
899	install_event_handler(proc->leader, &handler->super);
900
901	if (each_task(proc->leader, NULL, &send_sigstop,
902		      &handler->pids) != NULL) {
903		destroy_event_handler(proc);
904		return -1;
905	}
906
907	/* And deliver the first fake event, in case all the
908	 * conditions are already fulfilled.  */
909	Event ev = {
910		.type = EVENT_NONE,
911		.proc = proc,
912	};
913	process_stopping_on_event(&handler->super, &ev);
914
915	return 0;
916}
917
918void
919continue_after_breakpoint(Process *proc, struct breakpoint *sbp)
920{
921	debug(DEBUG_PROCESS,
922	      "continue_after_breakpoint: pid=%d, addr=%p",
923	      proc->pid, sbp->addr);
924
925	set_instruction_pointer(proc, sbp->addr);
926
927	if (sbp->enabled == 0) {
928		continue_process(proc->pid);
929	} else {
930#if defined __sparc__  || defined __ia64___ || defined __mips__
931		/* we don't want to singlestep here */
932		continue_process(proc->pid);
933#else
934		if (process_install_stopping_handler
935		    (proc, sbp, NULL, NULL, NULL) < 0) {
936			perror("process_stopping_handler_create");
937			/* Carry on not bothering to re-enable.  */
938			continue_process(proc->pid);
939		}
940#endif
941	}
942}
943
944/**
945 * Ltrace exit.  When we are about to exit, we have to go through all
946 * the processes, stop them all, remove all the breakpoints, and then
947 * detach the processes that we attached to using -p.  If we left the
948 * other tasks running, they might hit stray return breakpoints and
949 * produce artifacts, so we better stop everyone, even if it's a bit
950 * of extra work.
951 */
952struct ltrace_exiting_handler
953{
954	struct event_handler super;
955	struct pid_set pids;
956};
957
958static Event *
959ltrace_exiting_on_event(struct event_handler *super, Event *event)
960{
961	struct ltrace_exiting_handler * self = (void *)super;
962	Process * task = event->proc;
963	Process * leader = task->leader;
964
965	debug(DEBUG_PROCESS,
966	      "ltrace_exiting_on_event: pid %d; event type %d",
967	      task->pid, event->type);
968
969	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
970	handle_stopping_event(task_info, &event);
971
972	if (event != NULL && event->type == EVENT_BREAKPOINT)
973		undo_breakpoint(event, leader);
974
975	if (await_sigstop_delivery(&self->pids, task_info, event)
976	    && all_stops_accountable(&self->pids))
977		detach_process(leader);
978
979	/* Sink all non-exit events.  We are about to exit, so we
980	 * don't bother with queuing them. */
981	if (event_exit_or_none_p(event))
982		return event;
983
984	return NULL;
985}
986
987static void
988ltrace_exiting_destroy(struct event_handler *super)
989{
990	struct ltrace_exiting_handler * self = (void *)super;
991	free(self->pids.tasks);
992}
993
994static int
995ltrace_exiting_install_handler(Process * proc)
996{
997	/* Only install to leader.  */
998	if (proc->leader != proc)
999		return 0;
1000
1001	/* Perhaps we are already installed, if the user passed
1002	 * several -p options that are tasks of one process.  */
1003	if (proc->event_handler != NULL
1004	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
1005		return 0;
1006
1007	/* If stopping handler is already present, let it do the
1008	 * work.  */
1009	if (proc->event_handler != NULL) {
1010		assert(proc->event_handler->on_event
1011		       == &process_stopping_on_event);
1012		struct process_stopping_handler * other
1013			= (void *)proc->event_handler;
1014		other->exiting = 1;
1015		return 0;
1016	}
1017
1018	struct ltrace_exiting_handler * handler
1019		= calloc(sizeof(*handler), 1);
1020	if (handler == NULL) {
1021		perror("malloc exiting handler");
1022	fatal:
1023		/* XXXXXXXXXXXXXXXXXXX fixme */
1024		return -1;
1025	}
1026
1027	handler->super.on_event = ltrace_exiting_on_event;
1028	handler->super.destroy = ltrace_exiting_destroy;
1029	install_event_handler(proc->leader, &handler->super);
1030
1031	if (each_task(proc->leader, NULL, &send_sigstop,
1032		      &handler->pids) != NULL)
1033		goto fatal;
1034
1035	return 0;
1036}
1037
1038/*
1039 * When the traced process vforks, it's suspended until the child
1040 * process calls _exit or exec*.  In the meantime, the two share the
1041 * address space.
1042 *
1043 * The child process should only ever call _exit or exec*, but we
1044 * can't count on that (it's not the role of ltrace to policy, but to
1045 * observe).  In any case, we will _at least_ have to deal with
1046 * removal of vfork return breakpoint (which we have to smuggle back
1047 * in, so that the parent can see it, too), and introduction of exec*
1048 * return breakpoint.  Since we already have both breakpoint actions
1049 * to deal with, we might as well support it all.
1050 *
1051 * The gist is that we pretend that the child is in a thread group
1052 * with its parent, and handle it as a multi-threaded case, with the
1053 * exception that we know that the parent is blocked, and don't
1054 * attempt to stop it.  When the child execs, we undo the setup.
1055 */
1056
1057struct process_vfork_handler
1058{
1059	struct event_handler super;
1060	void * bp_addr;
1061};
1062
1063static Event *
1064process_vfork_on_event(struct event_handler *super, Event *event)
1065{
1066	debug(DEBUG_PROCESS,
1067	      "process_vfork_on_event: pid %d; event type %d",
1068	      event->proc->pid, event->type);
1069
1070	struct process_vfork_handler * self = (void *)super;
1071	struct breakpoint *sbp;
1072	assert(self != NULL);
1073
1074	switch (event->type) {
1075	case EVENT_BREAKPOINT:
1076		/* Remember the vfork return breakpoint.  */
1077		if (self->bp_addr == 0)
1078			self->bp_addr = event->e_un.brk_addr;
1079		break;
1080
1081	case EVENT_EXIT:
1082	case EVENT_EXIT_SIGNAL:
1083	case EVENT_EXEC:
1084		/* Smuggle back in the vfork return breakpoint, so
1085		 * that our parent can trip over it once again.  */
1086		if (self->bp_addr != 0) {
1087			sbp = dict_find_entry(event->proc->leader->breakpoints,
1088					      self->bp_addr);
1089			if (sbp != NULL)
1090				assert(sbp->libsym == NULL);
1091			/* We don't mind failing that, it's not a big
1092			 * deal to not display one extra vfork return.  */
1093			insert_breakpoint(event->proc->parent,
1094					  self->bp_addr, NULL);
1095		}
1096
1097		continue_process(event->proc->parent->pid);
1098
1099		/* Remove the leader that we artificially set up
1100		 * earlier.  */
1101		change_process_leader(event->proc, event->proc);
1102		destroy_event_handler(event->proc);
1103
1104	default:
1105		;
1106	}
1107
1108	return event;
1109}
1110
1111void
1112continue_after_vfork(Process * proc)
1113{
1114	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1115	struct process_vfork_handler * handler = calloc(sizeof(*handler), 1);
1116	if (handler == NULL) {
1117		perror("malloc vfork handler");
1118		/* Carry on not bothering to treat the process as
1119		 * necessary.  */
1120		continue_process(proc->parent->pid);
1121		return;
1122	}
1123
1124	/* We must set up custom event handler, so that we see
1125	 * exec/exit events for the task itself.  */
1126	handler->super.on_event = process_vfork_on_event;
1127	install_event_handler(proc, &handler->super);
1128
1129	/* Make sure that the child is sole thread.  */
1130	assert(proc->leader == proc);
1131	assert(proc->next == NULL || proc->next->leader != proc);
1132
1133	/* Make sure that the child's parent is properly set up.  */
1134	assert(proc->parent != NULL);
1135	assert(proc->parent->leader != NULL);
1136
1137	change_process_leader(proc, proc->parent->leader);
1138}
1139
1140static int
1141is_mid_stopping(Process *proc)
1142{
1143	return proc != NULL
1144		&& proc->event_handler != NULL
1145		&& proc->event_handler->on_event == &process_stopping_on_event;
1146}
1147
1148void
1149continue_after_syscall(Process * proc, int sysnum, int ret_p)
1150{
1151	/* Don't continue if we are mid-stopping.  */
1152	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1153		debug(DEBUG_PROCESS,
1154		      "continue_after_syscall: don't continue %d",
1155		      proc->pid);
1156		return;
1157	}
1158	continue_process(proc->pid);
1159}
1160
1161/* If ltrace gets SIGINT, the processes directly or indirectly run by
1162 * ltrace get it too.  We just have to wait long enough for the signal
1163 * to be delivered and the process terminated, which we notice and
1164 * exit ltrace, too.  So there's not much we need to do there.  We
1165 * want to keep tracing those processes as usual, in case they just
1166 * SIG_IGN the SIGINT to do their shutdown etc.
1167 *
1168 * For processes ran on the background, we want to install an exit
1169 * handler that stops all the threads, removes all breakpoints, and
1170 * detaches.
1171 */
1172void
1173os_ltrace_exiting(void)
1174{
1175	struct opt_p_t * it;
1176	for (it = opt_p; it != NULL; it = it->next) {
1177		Process * proc = pid2proc(it->pid);
1178		if (proc == NULL || proc->leader == NULL)
1179			continue;
1180		if (ltrace_exiting_install_handler(proc->leader) < 0)
1181			fprintf(stderr,
1182				"Couldn't install exiting handler for %d.\n",
1183				proc->pid);
1184	}
1185}
1186
1187int
1188os_ltrace_exiting_sighandler(void)
1189{
1190	extern int linux_in_waitpid;
1191	if (linux_in_waitpid) {
1192		os_ltrace_exiting();
1193		return 1;
1194	}
1195	return 0;
1196}
1197
1198size_t
1199umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
1200
1201	union {
1202		long a;
1203		char c[sizeof(long)];
1204	} a;
1205	int started = 0;
1206	size_t offset = 0, bytes_read = 0;
1207
1208	while (offset < len) {
1209		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1210		if (a.a == -1 && errno) {
1211			if (started && errno == EIO)
1212				return bytes_read;
1213			else
1214				return -1;
1215		}
1216		started = 1;
1217
1218		if (len - offset >= sizeof(long)) {
1219			memcpy(laddr + offset, &a.c[0], sizeof(long));
1220			bytes_read += sizeof(long);
1221		}
1222		else {
1223			memcpy(laddr + offset, &a.c[0], len - offset);
1224			bytes_read += (len - offset);
1225		}
1226		offset += sizeof(long);
1227	}
1228
1229	return bytes_read;
1230}
1231