trace.c revision 73894bdb7ef4ea81a44a7b8b3ab896f6b3cab344
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4#include <errno.h>
5#include <unistd.h>
6#include <sys/types.h>
7#include <sys/wait.h>
8#include "ptrace.h"
9#include <asm/unistd.h>
10#include <assert.h>
11
12#include "common.h"
13
14/* If the system headers did not provide the constants, hard-code the normal
15   values.  */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS    21
19#define PTRACE_SETOPTIONS       0x4200
20#define PTRACE_GETEVENTMSG      0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD   0x00000001
24#define PTRACE_O_TRACEFORK      0x00000002
25#define PTRACE_O_TRACEVFORK     0x00000004
26#define PTRACE_O_TRACECLONE     0x00000008
27#define PTRACE_O_TRACEEXEC      0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT      0x00000040
30
31/* Wait extended result codes for the above trace options.  */
32#define PTRACE_EVENT_FORK       1
33#define PTRACE_EVENT_VFORK      2
34#define PTRACE_EVENT_CLONE      3
35#define PTRACE_EVENT_EXEC       4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT       6
38
39#endif /* PTRACE_EVENT_FORK */
40
41#ifdef ARCH_HAVE_UMOVELONG
42extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
43int
44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
45	return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
49int
50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
51	long pointed_to;
52
53	errno = 0;
54	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55	if (pointed_to == -1 && errno)
56		return -errno;
57
58	*result = pointed_to;
59	if (info) {
60		switch(info->type) {
61			case ARGTYPE_INT:
62				*result &= 0x00000000ffffffffUL;
63			default:
64				break;
65		};
66	}
67	return 0;
68}
69#endif
70
71void
72trace_me(void) {
73	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
74	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
75		perror("PTRACE_TRACEME");
76		exit(1);
77	}
78}
79
80int
81trace_pid(pid_t pid) {
82	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
83	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
84		return -1;
85	}
86
87	/* man ptrace: PTRACE_ATTACH attaches to the process specified
88	   in pid.  The child is sent a SIGSTOP, but will not
89	   necessarily have stopped by the completion of this call;
90	   use wait() to wait for the child to stop. */
91	if (waitpid (pid, NULL, __WALL) != pid) {
92		perror ("trace_pid: waitpid");
93		return -1;
94	}
95
96	return 0;
97}
98
99void
100trace_set_options(Process *proc, pid_t pid) {
101	if (proc->tracesysgood & 0x80)
102		return;
103
104	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
105
106	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108		PTRACE_O_TRACEEXEC;
109	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
111		perror("PTRACE_SETOPTIONS");
112		return;
113	}
114	proc->tracesysgood |= 0x80;
115}
116
117void
118untrace_pid(pid_t pid) {
119	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
120	ptrace(PTRACE_DETACH, pid, 1, 0);
121}
122
123void
124continue_after_signal(pid_t pid, int signum) {
125	Process *proc;
126
127	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
128
129	proc = pid2proc(pid);
130	ptrace(PTRACE_SYSCALL, pid, 0, signum);
131}
132
133static enum ecb_status
134event_for_pid(Event * event, void * data)
135{
136	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
137		return ecb_yield;
138	return ecb_cont;
139}
140
141static int
142have_events_for(pid_t pid)
143{
144	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
145}
146
147void
148continue_process(pid_t pid)
149{
150	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
151
152	/* Only really continue the process if there are no events in
153	   the queue for this process.  Otherwise just for the other
154	   events to arrive.  */
155	if (!have_events_for(pid))
156		/* We always trace syscalls to control fork(),
157		 * clone(), execve()... */
158		ptrace(PTRACE_SYSCALL, pid, 0, 0);
159	else
160		debug(DEBUG_PROCESS,
161		      "putting off the continue, events in que.");
162}
163
164/**
165 * This is used for bookkeeping related to PIDs that the event
166 * handlers work with.
167 */
168struct pid_task {
169	pid_t pid;	/* This may be 0 for tasks that exited
170			 * mid-handling.  */
171	int sigstopped;
172	int got_event;
173	int delivered;
174} * pids;
175
176struct pid_set {
177	struct pid_task * tasks;
178	size_t count;
179	size_t alloc;
180};
181
182/**
183 * Breakpoint re-enablement.  When we hit a breakpoint, we must
184 * disable it, single-step, and re-enable it.  That single-step can be
185 * done only by one task in a task group, while others are stopped,
186 * otherwise the processes would race for who sees the breakpoint
187 * disabled and who doesn't.  The following is to keep track of it
188 * all.
189 */
190struct process_stopping_handler
191{
192	Event_Handler super;
193
194	/* The task that is doing the re-enablement.  */
195	Process * task_enabling_breakpoint;
196
197	/* The pointer being re-enabled.  */
198	Breakpoint * breakpoint_being_enabled;
199
200	enum {
201		/* We are waiting for everyone to land in t/T.  */
202		psh_stopping = 0,
203
204		/* We are doing the PTRACE_SINGLESTEP.  */
205		psh_singlestep,
206
207		/* We are waiting for all the SIGSTOPs to arrive so
208		 * that we can sink them.  */
209		psh_sinking,
210
211		/* This is for tracking the ugly workaround.  */
212		psh_ugly_workaround,
213	} state;
214
215	int exiting;
216
217	struct pid_set pids;
218};
219
220static enum pcb_status
221task_stopped(Process * task, void * data)
222{
223	/* If the task is already stopped, don't worry about it.
224	 * Likewise if it managed to become a zombie or terminate in
225	 * the meantime.  This can happen when the whole thread group
226	 * is terminating.  */
227	switch (process_status(task->pid)) {
228	case ps_invalid:
229	case ps_tracing_stop:
230	case ps_zombie:
231		return pcb_cont;
232	default:
233		return pcb_stop;
234	}
235}
236
237static struct pid_task *
238get_task_info(struct pid_set * pids, pid_t pid)
239{
240	assert(pid != 0);
241	size_t i;
242	for (i = 0; i < pids->count; ++i)
243		if (pids->tasks[i].pid == pid)
244			return &pids->tasks[i];
245
246	return NULL;
247}
248
249static struct pid_task *
250add_task_info(struct pid_set * pids, pid_t pid)
251{
252	if (pids->count == pids->alloc) {
253		size_t ns = (2 * pids->alloc) ?: 4;
254		struct pid_task * n = realloc(pids->tasks,
255					      sizeof(*pids->tasks) * ns);
256		if (n == NULL)
257			return NULL;
258		pids->tasks = n;
259		pids->alloc = ns;
260	}
261	struct pid_task * task_info = &pids->tasks[pids->count++];
262	memset(task_info, 0, sizeof(*task_info));
263	task_info->pid = pid;
264	return task_info;
265}
266
267static enum pcb_status
268send_sigstop(Process * task, void * data)
269{
270	Process * leader = task->leader;
271	struct pid_set * pids = data;
272
273	/* Look for pre-existing task record, or add new.  */
274	struct pid_task * task_info = get_task_info(pids, task->pid);
275	if (task_info == NULL)
276		task_info = add_task_info(pids, task->pid);
277	if (task_info == NULL) {
278		perror("send_sigstop: add_task_info");
279		destroy_event_handler(leader);
280		/* Signal failure upwards.  */
281		return pcb_stop;
282	}
283
284	/* This task still has not been attached to.  It should be
285	   stopped by the kernel.  */
286	if (task->state == STATE_BEING_CREATED)
287		return pcb_cont;
288
289	/* Don't bother sending SIGSTOP if we are already stopped, or
290	 * if we sent the SIGSTOP already, which happens when we
291	 * inherit the handler from breakpoint re-enablement.  */
292	if (task_stopped(task, NULL) == pcb_cont)
293		return pcb_cont;
294	if (task_info->sigstopped) {
295		if (!task_info->delivered)
296			return pcb_cont;
297		task_info->delivered = 0;
298	}
299
300	if (task_kill(task->pid, SIGSTOP) >= 0) {
301		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
302		task_info->sigstopped = 1;
303	} else
304		fprintf(stderr,
305			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
306
307	return pcb_cont;
308}
309
310/* On certain kernels, detaching right after a singlestep causes the
311   tracee to be killed with a SIGTRAP (that even though the singlestep
312   was properly caught by waitpid.  The ugly workaround is to put a
313   breakpoint where IP points and let the process continue.  After
314   this the breakpoint can be retracted and the process detached.  */
315static void
316ugly_workaround(Process * proc)
317{
318	void * ip = get_instruction_pointer(proc);
319	Breakpoint * sbp = dict_find_entry(proc->leader->breakpoints, ip);
320	if (sbp != NULL)
321		enable_breakpoint(proc, sbp);
322	else
323		insert_breakpoint(proc, ip, NULL, 1);
324	ptrace(PTRACE_CONT, proc->pid, 0, 0);
325}
326
327static void
328process_stopping_done(struct process_stopping_handler * self, Process * leader)
329{
330	debug(DEBUG_PROCESS, "process stopping done %d",
331	      self->task_enabling_breakpoint->pid);
332	size_t i;
333	if (!self->exiting) {
334		for (i = 0; i < self->pids.count; ++i)
335			if (self->pids.tasks[i].pid != 0
336			    && self->pids.tasks[i].delivered)
337				continue_process(self->pids.tasks[i].pid);
338		continue_process(self->task_enabling_breakpoint->pid);
339		destroy_event_handler(leader);
340	} else {
341		self->state = psh_ugly_workaround;
342		ugly_workaround(self->task_enabling_breakpoint);
343	}
344}
345
346/* Before we detach, we need to make sure that task's IP is on the
347 * edge of an instruction.  So for tasks that have a breakpoint event
348 * in the queue, we adjust the instruction pointer, just like
349 * continue_after_breakpoint does.  */
350static enum ecb_status
351undo_breakpoint(Event * event, void * data)
352{
353	if (event != NULL
354	    && event->proc->leader == data
355	    && event->type == EVENT_BREAKPOINT)
356		set_instruction_pointer(event->proc, event->e_un.brk_addr);
357	return ecb_cont;
358}
359
360static enum pcb_status
361untrace_task(Process * task, void * data)
362{
363	if (task != data)
364		untrace_pid(task->pid);
365	return pcb_cont;
366}
367
368static enum pcb_status
369remove_task(Process * task, void * data)
370{
371	/* Don't untrace leader just yet.  */
372	if (task != data)
373		remove_process(task);
374	return pcb_cont;
375}
376
377static void
378detach_process(Process * leader)
379{
380	each_qd_event(&undo_breakpoint, leader);
381	disable_all_breakpoints(leader);
382
383	/* Now untrace the process, if it was attached to by -p.  */
384	struct opt_p_t * it;
385	for (it = opt_p; it != NULL; it = it->next) {
386		Process * proc = pid2proc(it->pid);
387		if (proc == NULL)
388			continue;
389		if (proc->leader == leader) {
390			each_task(leader, &untrace_task, NULL);
391			break;
392		}
393	}
394	each_task(leader, &remove_task, leader);
395	destroy_event_handler(leader);
396	remove_task(leader, NULL);
397}
398
399static void
400handle_stopping_event(struct pid_task * task_info, Event ** eventp)
401{
402	/* Mark all events, so that we know whom to SIGCONT later.  */
403	if (task_info != NULL)
404		task_info->got_event = 1;
405
406	Event * event = *eventp;
407
408	/* In every state, sink SIGSTOP events for tasks that it was
409	 * sent to.  */
410	if (task_info != NULL
411	    && event->type == EVENT_SIGNAL
412	    && event->e_un.signum == SIGSTOP) {
413		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
414		if (task_info->sigstopped
415		    && !task_info->delivered) {
416			task_info->delivered = 1;
417			*eventp = NULL; // sink the event
418		} else
419			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
420				"sigstopped=%d and delivered=%d\n",
421				task_info->pid, task_info->sigstopped,
422				task_info->delivered);
423	}
424}
425
426/* Some SIGSTOPs may have not been delivered to their respective tasks
427 * yet.  They are still in the queue.  If we have seen an event for
428 * that process, continue it, so that the SIGSTOP can be delivered and
429 * caught by ltrace.  */
430static void
431continue_for_sigstop_delivery(struct pid_set * pids)
432{
433	size_t i;
434	for (i = 0; i < pids->count; ++i) {
435		if (pids->tasks[i].pid != 0
436		    && pids->tasks[i].sigstopped
437		    && !pids->tasks[i].delivered
438		    && pids->tasks[i].got_event) {
439			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
440			      pids->tasks[i].pid);
441			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
442		}
443	}
444}
445
446static int
447event_exit_p(Event * event)
448{
449	return event != NULL && (event->type == EVENT_EXIT
450				 || event->type == EVENT_EXIT_SIGNAL);
451}
452
453static int
454event_exit_or_none_p(Event * event)
455{
456	return event == NULL || event_exit_p(event)
457		|| event->type == EVENT_NONE;
458}
459
460static int
461await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
462		       Event * event)
463{
464	/* If we still didn't get our SIGSTOP, continue the process
465	 * and carry on.  */
466	if (event != NULL && !event_exit_or_none_p(event)
467	    && task_info != NULL && task_info->sigstopped) {
468		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
469		      task_info->pid);
470		/* We should get the signal the first thing
471		 * after this, so it should be OK to continue
472		 * even if we are over a breakpoint.  */
473		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
474
475	} else {
476		/* If all SIGSTOPs were delivered, uninstall the
477		 * handler and continue everyone.  */
478		/* XXX I suspect that we should check tasks that are
479		 * still around.  Is things are now, there should be a
480		 * race between waiting for everyone to stop and one
481		 * of the tasks exiting.  */
482		int all_clear = 1;
483		size_t i;
484		for (i = 0; i < pids->count; ++i)
485			if (pids->tasks[i].pid != 0
486			    && pids->tasks[i].sigstopped
487			    && !pids->tasks[i].delivered) {
488				all_clear = 0;
489				break;
490			}
491		return all_clear;
492	}
493
494	return 0;
495}
496
497static int
498all_stops_accountable(struct pid_set * pids)
499{
500	size_t i;
501	for (i = 0; i < pids->count; ++i)
502		if (pids->tasks[i].pid != 0
503		    && !pids->tasks[i].got_event
504		    && !have_events_for(pids->tasks[i].pid))
505			return 0;
506	return 1;
507}
508
509/* This event handler is installed when we are in the process of
510 * stopping the whole thread group to do the pointer re-enablement for
511 * one of the threads.  We pump all events to the queue for later
512 * processing while we wait for all the threads to stop.  When this
513 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
514 * re-enable, and continue everyone.  */
515static Event *
516process_stopping_on_event(Event_Handler * super, Event * event)
517{
518	struct process_stopping_handler * self = (void *)super;
519	Process * task = event->proc;
520	Process * leader = task->leader;
521	Breakpoint * sbp = self->breakpoint_being_enabled;
522	Process * teb = self->task_enabling_breakpoint;
523
524	debug(DEBUG_PROCESS,
525	      "pid %d; event type %d; state %d",
526	      task->pid, event->type, self->state);
527
528	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
529	if (task_info == NULL)
530		fprintf(stderr, "new task??? %d\n", task->pid);
531	handle_stopping_event(task_info, &event);
532
533	int state = self->state;
534	int event_to_queue = !event_exit_or_none_p(event);
535
536	/* Deactivate the entry if the task exits.  */
537	if (event_exit_p(event) && task_info != NULL)
538		task_info->pid = 0;
539
540	switch (state) {
541	case psh_stopping:
542		/* If everyone is stopped, singlestep.  */
543		if (each_task(leader, &task_stopped, NULL) == NULL) {
544			debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
545			      teb->pid);
546			if (sbp->enabled)
547				disable_breakpoint(teb, sbp);
548			if (ptrace(PTRACE_SINGLESTEP, teb->pid, 0, 0))
549				perror("PTRACE_SINGLESTEP");
550			self->state = state = psh_singlestep;
551		}
552		break;
553
554	case psh_singlestep: {
555		/* In singlestep state, breakpoint signifies that we
556		 * have now stepped, and can re-enable the breakpoint.  */
557		if (event != NULL && task == teb) {
558			/* Essentially we don't care what event caused
559			 * the thread to stop.  We can do the
560			 * re-enablement now.  */
561			if (sbp->enabled)
562				enable_breakpoint(teb, sbp);
563
564			continue_for_sigstop_delivery(&self->pids);
565
566			self->breakpoint_being_enabled = NULL;
567			self->state = state = psh_sinking;
568
569			if (event->type == EVENT_BREAKPOINT)
570				event = NULL; // handled
571		} else
572			break;
573	}
574
575		/* fall-through */
576
577	case psh_sinking:
578		if (await_sigstop_delivery(&self->pids, task_info, event))
579			process_stopping_done(self, leader);
580		break;
581
582	case psh_ugly_workaround:
583		if (event == NULL)
584			break;
585		if (event->type == EVENT_BREAKPOINT) {
586			undo_breakpoint(event, leader);
587			if (task == teb)
588				self->task_enabling_breakpoint = NULL;
589		}
590		if (self->task_enabling_breakpoint == NULL
591		    && all_stops_accountable(&self->pids)) {
592			undo_breakpoint(event, leader);
593			detach_process(leader);
594			event = NULL; // handled
595		}
596	}
597
598	if (event != NULL && event_to_queue) {
599		enque_event(event);
600		event = NULL; // sink the event
601	}
602
603	return event;
604}
605
606static void
607process_stopping_destroy(Event_Handler * super)
608{
609	struct process_stopping_handler * self = (void *)super;
610	free(self->pids.tasks);
611}
612
613void
614continue_after_breakpoint(Process *proc, Breakpoint *sbp)
615{
616	set_instruction_pointer(proc, sbp->addr);
617	if (sbp->enabled == 0) {
618		continue_process(proc->pid);
619	} else {
620		debug(DEBUG_PROCESS,
621		      "continue_after_breakpoint: pid=%d, addr=%p",
622		      proc->pid, sbp->addr);
623#if defined __sparc__  || defined __ia64___ || defined __mips__
624		/* we don't want to singlestep here */
625		continue_process(proc->pid);
626#else
627		struct process_stopping_handler * handler
628			= calloc(sizeof(*handler), 1);
629		if (handler == NULL) {
630			perror("malloc breakpoint disable handler");
631		fatal:
632			/* Carry on not bothering to re-enable.  */
633			continue_process(proc->pid);
634			return;
635		}
636
637		handler->super.on_event = process_stopping_on_event;
638		handler->super.destroy = process_stopping_destroy;
639		handler->task_enabling_breakpoint = proc;
640		handler->breakpoint_being_enabled = sbp;
641		install_event_handler(proc->leader, &handler->super);
642
643		if (each_task(proc->leader, &send_sigstop,
644			      &handler->pids) != NULL)
645			goto fatal;
646
647		/* And deliver the first fake event, in case all the
648		 * conditions are already fulfilled.  */
649		Event ev;
650		ev.type = EVENT_NONE;
651		ev.proc = proc;
652		process_stopping_on_event(&handler->super, &ev);
653#endif
654	}
655}
656
657/**
658 * Ltrace exit.  When we are about to exit, we have to go through all
659 * the processes, stop them all, remove all the breakpoints, and then
660 * detach the processes that we attached to using -p.  If we left the
661 * other tasks running, they might hit stray return breakpoints and
662 * produce artifacts, so we better stop everyone, even if it's a bit
663 * of extra work.
664 */
665struct ltrace_exiting_handler
666{
667	Event_Handler super;
668	struct pid_set pids;
669};
670
671static Event *
672ltrace_exiting_on_event(Event_Handler * super, Event * event)
673{
674	struct ltrace_exiting_handler * self = (void *)super;
675	Process * task = event->proc;
676	Process * leader = task->leader;
677
678	debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
679
680	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
681	handle_stopping_event(task_info, &event);
682
683	if (event != NULL && event->type == EVENT_BREAKPOINT)
684		undo_breakpoint(event, leader);
685
686	if (await_sigstop_delivery(&self->pids, task_info, event)
687	    && all_stops_accountable(&self->pids))
688		detach_process(leader);
689
690	/* Sink all non-exit events.  We are about to exit, so we
691	 * don't bother with queuing them. */
692	if (event_exit_or_none_p(event))
693		return event;
694
695	return NULL;
696}
697
698static void
699ltrace_exiting_destroy(Event_Handler * super)
700{
701	struct ltrace_exiting_handler * self = (void *)super;
702	free(self->pids.tasks);
703}
704
705static int
706ltrace_exiting_install_handler(Process * proc)
707{
708	/* Only install to leader.  */
709	if (proc->leader != proc)
710		return 0;
711
712	/* Perhaps we are already installed, if the user passed
713	 * several -p options that are tasks of one process.  */
714	if (proc->event_handler != NULL
715	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
716		return 0;
717
718	/* If stopping handler is already present, let it do the
719	 * work.  */
720	if (proc->event_handler != NULL) {
721		assert(proc->event_handler->on_event
722		       == &process_stopping_on_event);
723		struct process_stopping_handler * other
724			= (void *)proc->event_handler;
725		other->exiting = 1;
726		return 0;
727	}
728
729	struct ltrace_exiting_handler * handler
730		= calloc(sizeof(*handler), 1);
731	if (handler == NULL) {
732		perror("malloc exiting handler");
733	fatal:
734		/* XXXXXXXXXXXXXXXXXXX fixme */
735		return -1;
736	}
737
738	handler->super.on_event = ltrace_exiting_on_event;
739	handler->super.destroy = ltrace_exiting_destroy;
740	install_event_handler(proc->leader, &handler->super);
741
742	if (each_task(proc->leader, &send_sigstop,
743		      &handler->pids) != NULL)
744		goto fatal;
745
746	return 0;
747}
748
749/* If ltrace gets SIGINT, the processes directly or indirectly run by
750 * ltrace get it too.  We just have to wait long enough for the signal
751 * to be delivered and the process terminated, which we notice and
752 * exit ltrace, too.  So there's not much we need to do there.  We
753 * want to keep tracing those processes as usual, in case they just
754 * SIG_IGN the SIGINT to do their shutdown etc.
755 *
756 * For processes ran on the background, we want to install an exit
757 * handler that stops all the threads, removes all breakpoints, and
758 * detaches.
759 */
760void
761ltrace_exiting(void)
762{
763	struct opt_p_t * it;
764	for (it = opt_p; it != NULL; it = it->next) {
765		Process * proc = pid2proc(it->pid);
766		if (proc == NULL || proc->leader == NULL)
767			continue;
768		if (ltrace_exiting_install_handler(proc->leader) < 0)
769			fprintf(stderr,
770				"Couldn't install exiting handler for %d.\n",
771				proc->pid);
772	}
773}
774
775size_t
776umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
777
778	union {
779		long a;
780		char c[sizeof(long)];
781	} a;
782	int started = 0;
783	size_t offset = 0, bytes_read = 0;
784
785	while (offset < len) {
786		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
787		if (a.a == -1 && errno) {
788			if (started && errno == EIO)
789				return bytes_read;
790			else
791				return -1;
792		}
793		started = 1;
794
795		if (len - offset >= sizeof(long)) {
796			memcpy(laddr + offset, &a.c[0], sizeof(long));
797			bytes_read += sizeof(long);
798		}
799		else {
800			memcpy(laddr + offset, &a.c[0], len - offset);
801			bytes_read += (len - offset);
802		}
803		offset += sizeof(long);
804	}
805
806	return bytes_read;
807}
808
809/* Read a series of bytes starting at the process's memory address
810   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
811   have been read.
812*/
813int
814umovestr(Process *proc, void *addr, int len, void *laddr) {
815	union {
816		long a;
817		char c[sizeof(long)];
818	} a;
819	unsigned i;
820	int offset = 0;
821
822	while (offset < len) {
823		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
824		for (i = 0; i < sizeof(long); i++) {
825			if (a.c[i] && offset + (signed)i < len) {
826				*(char *)(laddr + offset + i) = a.c[i];
827			} else {
828				*(char *)(laddr + offset + i) = '\0';
829				return 0;
830			}
831		}
832		offset += sizeof(long);
833	}
834	*(char *)(laddr + offset) = '\0';
835	return 0;
836}
837