trace.c revision 79e64bcb176442b0eef89764d5ea7f07972dd240
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2007,2011,2012,2013,2014 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2010 Joe Damato
5 * Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
6 * Copyright (C) 2006 Ian Wienand
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21 * 02110-1301 USA
22 */
23
24#include "config.h"
25
26#include <asm/unistd.h>
27#include <assert.h>
28#include <errno.h>
29#include <gelf.h>
30#include <inttypes.h>
31#include <stdbool.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <string.h>
35#include <sys/types.h>
36#include <sys/wait.h>
37#include <unistd.h>
38
39#ifdef HAVE_LIBSELINUX
40# include <selinux/selinux.h>
41#endif
42
43#include "linux-gnu/trace-defs.h"
44#include "linux-gnu/trace.h"
45#include "backend.h"
46#include "breakpoint.h"
47#include "debug.h"
48#include "events.h"
49#include "fetch.h"
50#include "ltrace-elf.h"
51#include "options.h"
52#include "proc.h"
53#include "prototype.h"
54#include "ptrace.h"
55#include "type.h"
56#include "value.h"
57
58void
59trace_fail_warning(pid_t pid)
60{
61	/* This was adapted from GDB.  */
62#ifdef HAVE_LIBSELINUX
63	static int checked = 0;
64	if (checked)
65		return;
66	checked = 1;
67
68	/* -1 is returned for errors, 0 if it has no effect, 1 if
69	 * PTRACE_ATTACH is forbidden.  */
70	if (security_get_boolean_active("deny_ptrace") == 1)
71		fprintf(stderr,
72"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
73"tracing other processes.  You can disable this process attach protection by\n"
74"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
75#endif /* HAVE_LIBSELINUX */
76}
77
78void
79trace_me(void)
80{
81	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
82	if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
83		perror("PTRACE_TRACEME");
84		trace_fail_warning(getpid());
85		exit(1);
86	}
87}
88
89/* There's a (hopefully) brief period of time after the child process
90 * forks when we can't trace it yet.  Here we wait for kernel to
91 * prepare the process.  */
92int
93wait_for_proc(pid_t pid)
94{
95	/* man ptrace: PTRACE_ATTACH attaches to the process specified
96	   in pid.  The child is sent a SIGSTOP, but will not
97	   necessarily have stopped by the completion of this call;
98	   use wait() to wait for the child to stop. */
99	if (waitpid(pid, NULL, __WALL) != pid) {
100		perror ("trace_pid: waitpid");
101		return -1;
102	}
103
104	return 0;
105}
106
107int
108trace_pid(pid_t pid)
109{
110	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
111	/* This shouldn't emit error messages, as there are legitimate
112	 * reasons that the PID can't be attached: like it may have
113	 * already ended.  */
114	if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
115		return -1;
116
117	return wait_for_proc(pid);
118}
119
120void
121trace_set_options(struct process *proc)
122{
123	if (proc->tracesysgood & 0x80)
124		return;
125
126	pid_t pid = proc->pid;
127	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
128
129	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
130		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
131		PTRACE_O_TRACEEXEC;
132	if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
133	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
134		perror("PTRACE_SETOPTIONS");
135		return;
136	}
137	proc->tracesysgood |= 0x80;
138}
139
140void
141untrace_pid(pid_t pid) {
142	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
143	ptrace(PTRACE_DETACH, pid, 0, 0);
144}
145
146void
147continue_after_signal(pid_t pid, int signum)
148{
149	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
150	      pid, signum);
151	ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
152}
153
154static enum ecb_status
155event_for_pid(Event *event, void *data)
156{
157	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
158		return ECB_YIELD;
159	return ECB_CONT;
160}
161
162static int
163have_events_for(pid_t pid)
164{
165	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
166}
167
168void
169continue_process(pid_t pid)
170{
171	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
172
173	/* Only really continue the process if there are no events in
174	   the queue for this process.  Otherwise just wait for the
175	   other events to arrive.  */
176	if (!have_events_for(pid))
177		/* We always trace syscalls to control fork(),
178		 * clone(), execve()... */
179		ptrace(PTRACE_SYSCALL, pid, 0, 0);
180	else
181		debug(DEBUG_PROCESS,
182		      "putting off the continue, events in que.");
183}
184
185static struct pid_task *
186get_task_info(struct pid_set *pids, pid_t pid)
187{
188	assert(pid != 0);
189	size_t i;
190	for (i = 0; i < pids->count; ++i)
191		if (pids->tasks[i].pid == pid)
192			return &pids->tasks[i];
193
194	return NULL;
195}
196
197static struct pid_task *
198add_task_info(struct pid_set *pids, pid_t pid)
199{
200	if (pids->count == pids->alloc) {
201		size_t ns = (2 * pids->alloc) ?: 4;
202		struct pid_task *n = realloc(pids->tasks,
203					     sizeof(*pids->tasks) * ns);
204		if (n == NULL)
205			return NULL;
206		pids->tasks = n;
207		pids->alloc = ns;
208	}
209	struct pid_task * task_info = &pids->tasks[pids->count++];
210	memset(task_info, 0, sizeof(*task_info));
211	task_info->pid = pid;
212	return task_info;
213}
214
215static enum callback_status
216task_stopped(struct process *task, void *data)
217{
218	enum process_status st = process_status(task->pid);
219	if (data != NULL)
220		*(enum process_status *)data = st;
221
222	/* If the task is already stopped, don't worry about it.
223	 * Likewise if it managed to become a zombie or terminate in
224	 * the meantime.  This can happen when the whole thread group
225	 * is terminating.  */
226	switch (st) {
227	case PS_INVALID:
228	case PS_TRACING_STOP:
229	case PS_ZOMBIE:
230		return CBS_CONT;
231	case PS_SLEEPING:
232	case PS_STOP:
233	case PS_OTHER:
234		return CBS_STOP;
235	}
236
237	abort ();
238}
239
240/* Task is blocked if it's stopped, or if it's a vfork parent.  */
241static enum callback_status
242task_blocked(struct process *task, void *data)
243{
244	struct pid_set *pids = data;
245	struct pid_task *task_info = get_task_info(pids, task->pid);
246	if (task_info != NULL
247	    && task_info->vforked)
248		return CBS_CONT;
249
250	return task_stopped(task, NULL);
251}
252
253static Event *process_vfork_on_event(struct event_handler *super, Event *event);
254
255static enum callback_status
256task_vforked(struct process *task, void *data)
257{
258	if (task->event_handler != NULL
259	    && task->event_handler->on_event == &process_vfork_on_event)
260		return CBS_STOP;
261	return CBS_CONT;
262}
263
264static int
265is_vfork_parent(struct process *task)
266{
267	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
268}
269
270static enum callback_status
271send_sigstop(struct process *task, void *data)
272{
273	struct process *leader = task->leader;
274	struct pid_set *pids = data;
275
276	/* Look for pre-existing task record, or add new.  */
277	struct pid_task *task_info = get_task_info(pids, task->pid);
278	if (task_info == NULL)
279		task_info = add_task_info(pids, task->pid);
280	if (task_info == NULL) {
281		perror("send_sigstop: add_task_info");
282		destroy_event_handler(leader);
283		/* Signal failure upwards.  */
284		return CBS_STOP;
285	}
286
287	/* This task still has not been attached to.  It should be
288	   stopped by the kernel.  */
289	if (task->state == STATE_BEING_CREATED)
290		return CBS_CONT;
291
292	/* Don't bother sending SIGSTOP if we are already stopped, or
293	 * if we sent the SIGSTOP already, which happens when we are
294	 * handling "onexit" and inherited the handler from breakpoint
295	 * re-enablement.  */
296	enum process_status st;
297	if (task_stopped(task, &st) == CBS_CONT)
298		return CBS_CONT;
299	if (task_info->sigstopped) {
300		if (!task_info->delivered)
301			return CBS_CONT;
302		task_info->delivered = 0;
303	}
304
305	/* Also don't attempt to stop the process if it's a parent of
306	 * vforked process.  We set up event handler specially to hint
307	 * us.  In that case parent is in D state, which we use to
308	 * weed out unnecessary looping.  */
309	if (st == PS_SLEEPING
310	    && is_vfork_parent(task)) {
311		task_info->vforked = 1;
312		return CBS_CONT;
313	}
314
315	if (task_kill(task->pid, SIGSTOP) >= 0) {
316		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
317		task_info->sigstopped = 1;
318	} else
319		fprintf(stderr,
320			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
321
322	return CBS_CONT;
323}
324
325/* On certain kernels, detaching right after a singlestep causes the
326   tracee to be killed with a SIGTRAP (that even though the singlestep
327   was properly caught by waitpid.  The ugly workaround is to put a
328   breakpoint where IP points and let the process continue.  After
329   this the breakpoint can be retracted and the process detached.  */
330static void
331ugly_workaround(struct process *proc)
332{
333	arch_addr_t ip = get_instruction_pointer(proc);
334	struct breakpoint *found;
335	if (DICT_FIND_VAL(proc->leader->breakpoints, &ip, &found) < 0) {
336		insert_breakpoint_at(proc, ip, NULL);
337	} else {
338		assert(found != NULL);
339		enable_breakpoint(proc, found);
340	}
341	ptrace(PTRACE_CONT, proc->pid, 0, 0);
342}
343
344static void
345process_stopping_done(struct process_stopping_handler *self,
346		      struct process *leader)
347{
348	debug(DEBUG_PROCESS, "process stopping done %d",
349	      self->task_enabling_breakpoint->pid);
350
351	if (!self->exiting) {
352		size_t i;
353		for (i = 0; i < self->pids.count; ++i)
354			if (self->pids.tasks[i].pid != 0
355			    && (self->pids.tasks[i].delivered
356				|| self->pids.tasks[i].sysret))
357				continue_process(self->pids.tasks[i].pid);
358		continue_process(self->task_enabling_breakpoint->pid);
359	}
360
361	if (self->exiting) {
362	ugly_workaround:
363		self->state = PSH_UGLY_WORKAROUND;
364		ugly_workaround(self->task_enabling_breakpoint);
365	} else {
366		switch ((self->ugly_workaround_p)(self)) {
367		case CBS_FAIL:
368			/* xxx handle me */
369		case CBS_STOP:
370			break;
371		case CBS_CONT:
372			goto ugly_workaround;
373		}
374		destroy_event_handler(leader);
375	}
376}
377
378/* Before we detach, we need to make sure that task's IP is on the
379 * edge of an instruction.  So for tasks that have a breakpoint event
380 * in the queue, we adjust the instruction pointer, just like
381 * continue_after_breakpoint does.  */
382static enum ecb_status
383undo_breakpoint(Event *event, void *data)
384{
385	if (event != NULL
386	    && event->proc->leader == data
387	    && event->type == EVENT_BREAKPOINT)
388		set_instruction_pointer(event->proc, event->e_un.brk_addr);
389	return ECB_CONT;
390}
391
392static enum callback_status
393untrace_task(struct process *task, void *data)
394{
395	if (task != data)
396		untrace_pid(task->pid);
397	return CBS_CONT;
398}
399
400static enum callback_status
401remove_task(struct process *task, void *data)
402{
403	/* Don't untrace leader just yet.  */
404	if (task != data)
405		remove_process(task);
406	return CBS_CONT;
407}
408
409static enum callback_status
410retract_breakpoint_cb(struct process *proc, struct breakpoint *bp, void *data)
411{
412	breakpoint_on_retract(bp, proc);
413	return CBS_CONT;
414}
415
416static void
417detach_process(struct process *leader)
418{
419	each_qd_event(&undo_breakpoint, leader);
420	disable_all_breakpoints(leader);
421	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
422
423	/* Now untrace the process, if it was attached to by -p.  */
424	struct opt_p_t *it;
425	for (it = opt_p; it != NULL; it = it->next) {
426		struct process *proc = pid2proc(it->pid);
427		if (proc == NULL)
428			continue;
429		if (proc->leader == leader) {
430			each_task(leader, NULL, &untrace_task, NULL);
431			break;
432		}
433	}
434	each_task(leader, NULL, &remove_task, leader);
435	destroy_event_handler(leader);
436	remove_task(leader, NULL);
437}
438
439static void
440handle_stopping_event(struct pid_task *task_info, Event **eventp)
441{
442	/* Mark all events, so that we know whom to SIGCONT later.  */
443	if (task_info != NULL)
444		task_info->got_event = 1;
445
446	Event *event = *eventp;
447
448	/* In every state, sink SIGSTOP events for tasks that it was
449	 * sent to.  */
450	if (task_info != NULL
451	    && event->type == EVENT_SIGNAL
452	    && event->e_un.signum == SIGSTOP) {
453		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
454		if (task_info->sigstopped
455		    && !task_info->delivered) {
456			task_info->delivered = 1;
457			*eventp = NULL; // sink the event
458		} else
459			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
460				"sigstopped=%d and delivered=%d\n",
461				task_info->pid, task_info->sigstopped,
462				task_info->delivered);
463	}
464}
465
466/* Some SIGSTOPs may have not been delivered to their respective tasks
467 * yet.  They are still in the queue.  If we have seen an event for
468 * that process, continue it, so that the SIGSTOP can be delivered and
469 * caught by ltrace.  We don't mind that the process is after
470 * breakpoint (and therefore potentially doesn't have aligned IP),
471 * because the signal will be delivered without the process actually
472 * starting.  */
473static void
474continue_for_sigstop_delivery(struct pid_set *pids)
475{
476	size_t i;
477	for (i = 0; i < pids->count; ++i) {
478		if (pids->tasks[i].pid != 0
479		    && pids->tasks[i].sigstopped
480		    && !pids->tasks[i].delivered
481		    && pids->tasks[i].got_event) {
482			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
483			      pids->tasks[i].pid);
484			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
485		}
486	}
487}
488
489static int
490event_exit_p(Event *event)
491{
492	return event != NULL && (event->type == EVENT_EXIT
493				 || event->type == EVENT_EXIT_SIGNAL);
494}
495
496static int
497event_exit_or_none_p(Event *event)
498{
499	return event == NULL || event_exit_p(event)
500		|| event->type == EVENT_NONE;
501}
502
503static int
504await_sigstop_delivery(struct pid_set *pids, struct pid_task *task_info,
505		       Event *event)
506{
507	/* If we still didn't get our SIGSTOP, continue the process
508	 * and carry on.  */
509	if (event != NULL && !event_exit_or_none_p(event)
510	    && task_info != NULL && task_info->sigstopped) {
511		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
512		      task_info->pid);
513		/* We should get the signal the first thing
514		 * after this, so it should be OK to continue
515		 * even if we are over a breakpoint.  */
516		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
517
518	} else {
519		/* If all SIGSTOPs were delivered, uninstall the
520		 * handler and continue everyone.  */
521		/* XXX I suspect that we should check tasks that are
522		 * still around.  Is things are now, there should be a
523		 * race between waiting for everyone to stop and one
524		 * of the tasks exiting.  */
525		int all_clear = 1;
526		size_t i;
527		for (i = 0; i < pids->count; ++i)
528			if (pids->tasks[i].pid != 0
529			    && pids->tasks[i].sigstopped
530			    && !pids->tasks[i].delivered) {
531				all_clear = 0;
532				break;
533			}
534		return all_clear;
535	}
536
537	return 0;
538}
539
540static int
541all_stops_accountable(struct pid_set *pids)
542{
543	size_t i;
544	for (i = 0; i < pids->count; ++i)
545		if (pids->tasks[i].pid != 0
546		    && !pids->tasks[i].got_event
547		    && !have_events_for(pids->tasks[i].pid))
548			return 0;
549	return 1;
550}
551
552#ifndef ARCH_HAVE_SW_SINGLESTEP
553enum sw_singlestep_status
554arch_sw_singlestep(struct process *proc, struct breakpoint *bp,
555		   int (*add_cb)(arch_addr_t, struct sw_singlestep_data *),
556		   struct sw_singlestep_data *data)
557{
558	return SWS_HW;
559}
560#endif
561
562static Event *process_stopping_on_event(struct event_handler *super,
563					Event *event);
564
565static void
566remove_sw_breakpoints(struct process *proc)
567{
568	struct process_stopping_handler *self
569		= (void *)proc->leader->event_handler;
570	assert(self != NULL);
571	assert(self->super.on_event == process_stopping_on_event);
572
573	int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
574	int i;
575	for (i = 0; i < ct; ++i)
576		if (self->sws_bps[i] != NULL) {
577			delete_breakpoint_at(proc, self->sws_bps[i]->addr);
578			self->sws_bps[i] = NULL;
579		}
580}
581
582static void
583sw_singlestep_bp_on_hit(struct breakpoint *bp, struct process *proc)
584{
585	remove_sw_breakpoints(proc);
586}
587
588struct sw_singlestep_data {
589	struct process_stopping_handler *self;
590};
591
592static int
593sw_singlestep_add_bp(arch_addr_t addr, struct sw_singlestep_data *data)
594{
595	struct process_stopping_handler *self = data->self;
596	struct process *proc = self->task_enabling_breakpoint;
597
598	int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
599	int i;
600	for (i = 0; i < ct; ++i)
601		if (self->sws_bps[i] == NULL) {
602			static struct bp_callbacks cbs = {
603				.on_hit = sw_singlestep_bp_on_hit,
604			};
605			struct breakpoint *bp
606				= insert_breakpoint_at(proc, addr, NULL);
607			breakpoint_set_callbacks(bp, &cbs);
608			self->sws_bps[i] = bp;
609			return 0;
610		}
611
612	assert(!"Too many sw singlestep breakpoints!");
613	abort();
614}
615
616static int
617singlestep(struct process_stopping_handler *self)
618{
619	size_t i;
620	for (i = 0; i < sizeof(self->sws_bps) / sizeof(*self->sws_bps); ++i)
621		self->sws_bps[i] = NULL;
622
623	struct sw_singlestep_data data = { self };
624	switch (arch_sw_singlestep(self->task_enabling_breakpoint,
625				   self->breakpoint_being_enabled,
626				   &sw_singlestep_add_bp, &data)) {
627	case SWS_HW:
628		/* Otherwise do the default action: singlestep.  */
629		debug(1, "PTRACE_SINGLESTEP");
630		if (ptrace(PTRACE_SINGLESTEP,
631			   self->task_enabling_breakpoint->pid, 0, 0)) {
632			perror("PTRACE_SINGLESTEP");
633			return -1;
634		}
635		return 0;
636
637	case SWS_OK:
638		return 0;
639
640	case SWS_FAIL:
641		return -1;
642	}
643	abort();
644}
645
646static void
647post_singlestep(struct process_stopping_handler *self,
648		struct Event **eventp)
649{
650	continue_for_sigstop_delivery(&self->pids);
651
652	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
653		*eventp = NULL; // handled
654
655	struct process *proc = self->task_enabling_breakpoint;
656
657	remove_sw_breakpoints(proc);
658	self->breakpoint_being_enabled = NULL;
659}
660
661static void
662singlestep_error(struct process_stopping_handler *self)
663{
664	struct process *teb = self->task_enabling_breakpoint;
665	struct breakpoint *sbp = self->breakpoint_being_enabled;
666	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
667		teb->pid, breakpoint_name(sbp),	sbp->addr,
668		get_instruction_pointer(teb));
669	delete_breakpoint_at(teb->leader, sbp->addr);
670}
671
672static void
673pt_continue(struct process_stopping_handler *self)
674{
675	struct process *teb = self->task_enabling_breakpoint;
676	debug(1, "PTRACE_CONT");
677	ptrace(PTRACE_CONT, teb->pid, 0, 0);
678}
679
680static void
681pt_singlestep(struct process_stopping_handler *self)
682{
683	if (singlestep(self) < 0)
684		singlestep_error(self);
685}
686
687static void
688disable_and(struct process_stopping_handler *self,
689	    void (*do_this)(struct process_stopping_handler *self))
690{
691	struct process *teb = self->task_enabling_breakpoint;
692	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
693	if (self->breakpoint_being_enabled->enabled)
694		disable_breakpoint(teb, self->breakpoint_being_enabled);
695	(do_this)(self);
696	self->state = PSH_SINGLESTEP;
697}
698
699void
700linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
701{
702	disable_and(self, &pt_singlestep);
703}
704
705void
706linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
707{
708	disable_and(self, &pt_continue);
709}
710
711/* This event handler is installed when we are in the process of
712 * stopping the whole thread group to do the pointer re-enablement for
713 * one of the threads.  We pump all events to the queue for later
714 * processing while we wait for all the threads to stop.  When this
715 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
716 * re-enable, and continue everyone.  */
717static Event *
718process_stopping_on_event(struct event_handler *super, Event *event)
719{
720	struct process_stopping_handler *self = (void *)super;
721	struct process *task = event->proc;
722	struct process *leader = task->leader;
723	struct process *teb = self->task_enabling_breakpoint;
724
725	debug(DEBUG_PROCESS,
726	      "process_stopping_on_event: pid %d; event type %d; state %d",
727	      task->pid, event->type, self->state);
728
729	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
730	if (task_info == NULL)
731		fprintf(stderr, "new task??? %d\n", task->pid);
732	handle_stopping_event(task_info, &event);
733
734	int state = self->state;
735	int event_to_queue = !event_exit_or_none_p(event);
736
737	/* Deactivate the entry if the task exits.  */
738	if (event_exit_p(event) && task_info != NULL)
739		task_info->pid = 0;
740
741	/* Always handle sysrets.  Whether sysret occurred and what
742	 * sys it rets from may need to be determined based on process
743	 * stack, so we need to keep that in sync with reality.  Note
744	 * that we don't continue the process after the sysret is
745	 * handled.  See continue_after_syscall.  */
746	if (event != NULL && event->type == EVENT_SYSRET) {
747		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
748		event_to_queue = 0;
749		if (task_info != NULL)
750			task_info->sysret = 1;
751	}
752
753	switch (state) {
754	case PSH_STOPPING:
755		/* If everyone is stopped, singlestep.  */
756		if (each_task(leader, NULL, &task_blocked,
757			      &self->pids) == NULL) {
758			(self->on_all_stopped)(self);
759			state = self->state;
760		}
761		break;
762
763	case PSH_SINGLESTEP:
764		/* In singlestep state, breakpoint signifies that we
765		 * have now stepped, and can re-enable the breakpoint.  */
766		if (event != NULL && task == teb) {
767
768			/* If this was caused by a real breakpoint, as
769			 * opposed to a singlestep, assume that it's
770			 * an artificial breakpoint installed for some
771			 * reason for the re-enablement.  In that case
772			 * handle it.  */
773			if (event->type == EVENT_BREAKPOINT) {
774				arch_addr_t ip
775					= get_instruction_pointer(task);
776				struct breakpoint *other
777					= address2bpstruct(leader, ip);
778				if (other != NULL)
779					breakpoint_on_hit(other, task);
780			}
781
782			/* If we got SIGNAL instead of BREAKPOINT,
783			 * then this is not singlestep at all.  */
784			if (event->type == EVENT_SIGNAL) {
785			do_singlestep:
786				if (singlestep(self) < 0) {
787					singlestep_error(self);
788					post_singlestep(self, &event);
789					goto psh_sinking;
790				}
791				break;
792			} else {
793				switch ((self->keep_stepping_p)(self)) {
794				case CBS_FAIL:
795					/* XXX handle me */
796				case CBS_STOP:
797					break;
798				case CBS_CONT:
799					/* Sink singlestep event.  */
800					if (event->type == EVENT_BREAKPOINT)
801						event = NULL;
802					goto do_singlestep;
803				}
804			}
805
806			/* Re-enable the breakpoint that we are
807			 * stepping over.  */
808			struct breakpoint *sbp = self->breakpoint_being_enabled;
809			if (sbp->enabled)
810				enable_breakpoint(teb, sbp);
811
812			post_singlestep(self, &event);
813			goto psh_sinking;
814		}
815		break;
816
817	psh_sinking:
818		state = self->state = PSH_SINKING;
819		/* Fall through.  */
820	case PSH_SINKING:
821		if (await_sigstop_delivery(&self->pids, task_info, event))
822			process_stopping_done(self, leader);
823		break;
824
825	case PSH_UGLY_WORKAROUND:
826		if (event == NULL)
827			break;
828		if (event->type == EVENT_BREAKPOINT) {
829			undo_breakpoint(event, leader);
830			if (task == teb)
831				self->task_enabling_breakpoint = NULL;
832		}
833		if (self->task_enabling_breakpoint == NULL
834		    && all_stops_accountable(&self->pids)) {
835			undo_breakpoint(event, leader);
836			detach_process(leader);
837			event = NULL; // handled
838		}
839	}
840
841	if (event != NULL && event_to_queue) {
842		enque_event(event);
843		event = NULL; // sink the event
844	}
845
846	return event;
847}
848
849static void
850process_stopping_destroy(struct event_handler *super)
851{
852	struct process_stopping_handler *self = (void *)super;
853	free(self->pids.tasks);
854}
855
856static enum callback_status
857no(struct process_stopping_handler *self)
858{
859	return CBS_STOP;
860}
861
862int
863process_install_stopping_handler(struct process *proc, struct breakpoint *sbp,
864				 void (*as)(struct process_stopping_handler *),
865				 enum callback_status (*ks)
866					 (struct process_stopping_handler *),
867				 enum callback_status (*uw)
868					(struct process_stopping_handler *))
869{
870	debug(DEBUG_FUNCTION,
871	      "process_install_stopping_handler: pid=%d", proc->pid);
872
873	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
874	if (handler == NULL)
875		return -1;
876
877	if (as == NULL)
878		as = &linux_ptrace_disable_and_singlestep;
879	if (ks == NULL)
880		ks = &no;
881	if (uw == NULL)
882		uw = &no;
883
884	handler->super.on_event = process_stopping_on_event;
885	handler->super.destroy = process_stopping_destroy;
886	handler->task_enabling_breakpoint = proc;
887	handler->breakpoint_being_enabled = sbp;
888	handler->on_all_stopped = as;
889	handler->keep_stepping_p = ks;
890	handler->ugly_workaround_p = uw;
891
892	install_event_handler(proc->leader, &handler->super);
893
894	if (each_task(proc->leader, NULL, &send_sigstop,
895		      &handler->pids) != NULL) {
896		destroy_event_handler(proc);
897		return -1;
898	}
899
900	/* And deliver the first fake event, in case all the
901	 * conditions are already fulfilled.  */
902	Event ev = {
903		.type = EVENT_NONE,
904		.proc = proc,
905	};
906	process_stopping_on_event(&handler->super, &ev);
907
908	return 0;
909}
910
911void
912continue_after_breakpoint(struct process *proc, struct breakpoint *sbp)
913{
914	debug(DEBUG_PROCESS,
915	      "continue_after_breakpoint: pid=%d, addr=%p",
916	      proc->pid, sbp->addr);
917
918	set_instruction_pointer(proc, sbp->addr);
919
920	if (sbp->enabled == 0) {
921		continue_process(proc->pid);
922	} else if (process_install_stopping_handler
923			(proc, sbp, NULL, NULL, NULL) < 0) {
924		perror("process_stopping_handler_create");
925		/* Carry on not bothering to re-enable.  */
926		continue_process(proc->pid);
927	}
928}
929
930/**
931 * Ltrace exit.  When we are about to exit, we have to go through all
932 * the processes, stop them all, remove all the breakpoints, and then
933 * detach the processes that we attached to using -p.  If we left the
934 * other tasks running, they might hit stray return breakpoints and
935 * produce artifacts, so we better stop everyone, even if it's a bit
936 * of extra work.
937 */
938struct ltrace_exiting_handler
939{
940	struct event_handler super;
941	struct pid_set pids;
942};
943
944static Event *
945ltrace_exiting_on_event(struct event_handler *super, Event *event)
946{
947	struct ltrace_exiting_handler *self = (void *)super;
948	struct process *task = event->proc;
949	struct process *leader = task->leader;
950
951	debug(DEBUG_PROCESS,
952	      "ltrace_exiting_on_event: pid %d; event type %d",
953	      task->pid, event->type);
954
955	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
956	handle_stopping_event(task_info, &event);
957
958	if (event != NULL && event->type == EVENT_BREAKPOINT)
959		undo_breakpoint(event, leader);
960
961	if (await_sigstop_delivery(&self->pids, task_info, event)
962	    && all_stops_accountable(&self->pids))
963		detach_process(leader);
964
965	/* Sink all non-exit events.  We are about to exit, so we
966	 * don't bother with queuing them. */
967	if (event_exit_or_none_p(event))
968		return event;
969
970	return NULL;
971}
972
973static void
974ltrace_exiting_destroy(struct event_handler *super)
975{
976	struct ltrace_exiting_handler *self = (void *)super;
977	free(self->pids.tasks);
978}
979
980static int
981ltrace_exiting_install_handler(struct process *proc)
982{
983	/* Only install to leader.  */
984	if (proc->leader != proc)
985		return 0;
986
987	/* Perhaps we are already installed, if the user passed
988	 * several -p options that are tasks of one process.  */
989	if (proc->event_handler != NULL
990	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
991		return 0;
992
993	/* If stopping handler is already present, let it do the
994	 * work.  */
995	if (proc->event_handler != NULL) {
996		assert(proc->event_handler->on_event
997		       == &process_stopping_on_event);
998		struct process_stopping_handler *other
999			= (void *)proc->event_handler;
1000		other->exiting = 1;
1001		return 0;
1002	}
1003
1004	struct ltrace_exiting_handler *handler
1005		= calloc(sizeof(*handler), 1);
1006	if (handler == NULL) {
1007		perror("malloc exiting handler");
1008	fatal:
1009		/* XXXXXXXXXXXXXXXXXXX fixme */
1010		return -1;
1011	}
1012
1013	handler->super.on_event = ltrace_exiting_on_event;
1014	handler->super.destroy = ltrace_exiting_destroy;
1015	install_event_handler(proc->leader, &handler->super);
1016
1017	if (each_task(proc->leader, NULL, &send_sigstop,
1018		      &handler->pids) != NULL)
1019		goto fatal;
1020
1021	return 0;
1022}
1023
1024/*
1025 * When the traced process vforks, it's suspended until the child
1026 * process calls _exit or exec*.  In the meantime, the two share the
1027 * address space.
1028 *
1029 * The child process should only ever call _exit or exec*, but we
1030 * can't count on that (it's not the role of ltrace to policy, but to
1031 * observe).  In any case, we will _at least_ have to deal with
1032 * removal of vfork return breakpoint (which we have to smuggle back
1033 * in, so that the parent can see it, too), and introduction of exec*
1034 * return breakpoint.  Since we already have both breakpoint actions
1035 * to deal with, we might as well support it all.
1036 *
1037 * The gist is that we pretend that the child is in a thread group
1038 * with its parent, and handle it as a multi-threaded case, with the
1039 * exception that we know that the parent is blocked, and don't
1040 * attempt to stop it.  When the child execs, we undo the setup.
1041 */
1042
1043struct process_vfork_handler
1044{
1045	struct event_handler super;
1046	int vfork_bp_refd:1;
1047};
1048
1049static Event *
1050process_vfork_on_event(struct event_handler *super, Event *event)
1051{
1052	debug(DEBUG_PROCESS,
1053	      "process_vfork_on_event: pid %d; event type %d",
1054	      event->proc->pid, event->type);
1055
1056	struct process_vfork_handler *self = (void *)super;
1057	struct process *proc = event->proc;
1058	assert(self != NULL);
1059
1060	switch (event->type) {
1061	case EVENT_BREAKPOINT:
1062		/* We turn on the vfork return breakpoint (which
1063		 * should be the one that we have tripped over just
1064		 * now) one extra time, so that the vfork parent hits
1065		 * it as well.  */
1066		if (!self->vfork_bp_refd) {
1067			struct breakpoint *sbp = NULL;
1068			DICT_FIND_VAL(proc->leader->breakpoints,
1069				      &event->e_un.brk_addr, &sbp);
1070			assert(sbp != NULL);
1071			breakpoint_turn_on(sbp, proc->leader);
1072			self->vfork_bp_refd = 1;
1073		}
1074		break;
1075
1076	case EVENT_EXIT:
1077	case EVENT_EXIT_SIGNAL:
1078	case EVENT_EXEC:
1079		/* Remove the leader that we artificially set up
1080		 * earlier.  */
1081		change_process_leader(proc, proc);
1082		destroy_event_handler(proc);
1083		continue_process(proc->parent->pid);
1084
1085	default:
1086		;
1087	}
1088
1089	return event;
1090}
1091
1092void
1093continue_after_vfork(struct process *proc)
1094{
1095	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1096	struct process_vfork_handler *handler = calloc(sizeof(*handler), 1);
1097	if (handler == NULL) {
1098		perror("malloc vfork handler");
1099		/* Carry on not bothering to treat the process as
1100		 * necessary.  */
1101		continue_process(proc->parent->pid);
1102		return;
1103	}
1104
1105	/* We must set up custom event handler, so that we see
1106	 * exec/exit events for the task itself.  */
1107	handler->super.on_event = process_vfork_on_event;
1108	install_event_handler(proc, &handler->super);
1109
1110	/* Make sure that the child is sole thread.  */
1111	assert(proc->leader == proc);
1112	assert(proc->next == NULL || proc->next->leader != proc);
1113
1114	/* Make sure that the child's parent is properly set up.  */
1115	assert(proc->parent != NULL);
1116	assert(proc->parent->leader != NULL);
1117
1118	change_process_leader(proc, proc->parent->leader);
1119}
1120
1121static int
1122is_mid_stopping(struct process *proc)
1123{
1124	return proc != NULL
1125		&& proc->event_handler != NULL
1126		&& proc->event_handler->on_event == &process_stopping_on_event;
1127}
1128
1129void
1130continue_after_syscall(struct process *proc, int sysnum, int ret_p)
1131{
1132	/* Don't continue if we are mid-stopping.  */
1133	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1134		debug(DEBUG_PROCESS,
1135		      "continue_after_syscall: don't continue %d",
1136		      proc->pid);
1137		return;
1138	}
1139	continue_process(proc->pid);
1140}
1141
1142void
1143continue_after_exec(struct process *proc)
1144{
1145	continue_process(proc->pid);
1146
1147	/* After the exec, we expect to hit the first executable
1148	 * instruction.
1149	 *
1150	 * XXX TODO It would be nice to have this removed, but then we
1151	 * need to do that also for initial call to wait_for_proc in
1152	 * execute_program.  In that case we could generate a
1153	 * EVENT_FIRST event or something, or maybe this could somehow
1154	 * be rolled into EVENT_NEW.  */
1155	wait_for_proc(proc->pid);
1156	continue_process(proc->pid);
1157}
1158
1159/* If ltrace gets SIGINT, the processes directly or indirectly run by
1160 * ltrace get it too.  We just have to wait long enough for the signal
1161 * to be delivered and the process terminated, which we notice and
1162 * exit ltrace, too.  So there's not much we need to do there.  We
1163 * want to keep tracing those processes as usual, in case they just
1164 * SIG_IGN the SIGINT to do their shutdown etc.
1165 *
1166 * For processes ran on the background, we want to install an exit
1167 * handler that stops all the threads, removes all breakpoints, and
1168 * detaches.
1169 */
1170void
1171os_ltrace_exiting(void)
1172{
1173	struct opt_p_t *it;
1174	for (it = opt_p; it != NULL; it = it->next) {
1175		struct process *proc = pid2proc(it->pid);
1176		if (proc == NULL || proc->leader == NULL)
1177			continue;
1178		if (ltrace_exiting_install_handler(proc->leader) < 0)
1179			fprintf(stderr,
1180				"Couldn't install exiting handler for %d.\n",
1181				proc->pid);
1182	}
1183}
1184
1185int
1186os_ltrace_exiting_sighandler(void)
1187{
1188	extern int linux_in_waitpid;
1189	if (linux_in_waitpid) {
1190		os_ltrace_exiting();
1191		return 1;
1192	}
1193	return 0;
1194}
1195
1196size_t
1197umovebytes(struct process *proc, arch_addr_t addr, void *buf, size_t len)
1198{
1199
1200	union {
1201		long a;
1202		char c[sizeof(long)];
1203	} a;
1204	int started = 0;
1205	size_t offset = 0, bytes_read = 0;
1206
1207	while (offset < len) {
1208		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1209		if (a.a == -1 && errno) {
1210			if (started && errno == EIO)
1211				return bytes_read;
1212			else
1213				return -1;
1214		}
1215		started = 1;
1216
1217		if (len - offset >= sizeof(long)) {
1218			memcpy(buf + offset, &a.c[0], sizeof(long));
1219			bytes_read += sizeof(long);
1220		}
1221		else {
1222			memcpy(buf + offset, &a.c[0], len - offset);
1223			bytes_read += (len - offset);
1224		}
1225		offset += sizeof(long);
1226	}
1227
1228	return bytes_read;
1229}
1230
1231struct irelative_name_data_t {
1232	GElf_Addr addr;
1233	const char *found_name;
1234};
1235
1236static enum callback_status
1237irelative_name_cb(GElf_Sym *symbol, const char *name, void *d)
1238{
1239	struct irelative_name_data_t *data = d;
1240
1241	if (symbol->st_value == data->addr) {
1242		bool is_ifunc = false;
1243#ifdef STT_GNU_IFUNC
1244		is_ifunc = GELF_ST_TYPE(symbol->st_info) == STT_GNU_IFUNC;
1245#endif
1246		data->found_name = name;
1247
1248		/* Keep looking, unless we found the actual IFUNC
1249		 * symbol.  What we matched may have been a symbol
1250		 * denoting the resolver function, which would have
1251		 * the same address.  */
1252		return CBS_STOP_IF(is_ifunc);
1253	}
1254
1255	return CBS_CONT;
1256}
1257
1258char *
1259linux_elf_find_irelative_name(struct ltelf *lte, GElf_Addr addr)
1260{
1261	struct irelative_name_data_t data = { addr, NULL };
1262	if (addr != 0
1263	    && elf_each_symbol(lte, 0,
1264			       irelative_name_cb, &data).status < 0)
1265		return NULL;
1266
1267	const char *name;
1268	if (data.found_name != NULL) {
1269		name = data.found_name;
1270	} else {
1271#define NAME "IREL."
1272		/* NAME\0 + 0x + digits.  */
1273		char *tmp_name = alloca(sizeof NAME + 2 + 16);
1274		sprintf(tmp_name, NAME "%#" PRIx64, (uint64_t) addr);
1275		name = tmp_name;
1276#undef NAME
1277	}
1278
1279	return strdup(name);
1280}
1281
1282enum plt_status
1283linux_elf_add_plt_entry_irelative(struct process *proc, struct ltelf *lte,
1284				  GElf_Rela *rela, size_t ndx,
1285				  struct library_symbol **ret)
1286
1287{
1288	char *name = linux_elf_find_irelative_name(lte, rela->r_addend);
1289	int i = default_elf_add_plt_entry(proc, lte, name, rela, ndx, ret);
1290	free(name);
1291	return i < 0 ? PLT_FAIL : PLT_OK;
1292}
1293
1294struct prototype *
1295linux_IFUNC_prototype(void)
1296{
1297	static struct prototype ret;
1298	if (ret.return_info == NULL) {
1299		prototype_init(&ret);
1300		ret.return_info = type_get_voidptr();
1301		ret.own_return_info = 0;
1302	}
1303	return &ret;
1304}
1305
1306int
1307os_library_symbol_init(struct library_symbol *libsym)
1308{
1309	libsym->os = (struct os_library_symbol_data){};
1310	return 0;
1311}
1312
1313void
1314os_library_symbol_destroy(struct library_symbol *libsym)
1315{
1316}
1317
1318int
1319os_library_symbol_clone(struct library_symbol *retp,
1320			struct library_symbol *libsym)
1321{
1322	retp->os = libsym->os;
1323	return 0;
1324}
1325
1326char *
1327linux_append_IFUNC_to_name(const char *name)
1328{
1329#define S ".IFUNC"
1330	char *tmp_name = malloc(strlen(name) + sizeof S);
1331	if (tmp_name == NULL)
1332		return NULL;
1333	sprintf(tmp_name, "%s%s", name, S);
1334#undef S
1335	return tmp_name;
1336}
1337
1338enum plt_status
1339os_elf_add_func_entry(struct process *proc, struct ltelf *lte,
1340		      const GElf_Sym *sym,
1341		      arch_addr_t addr, const char *name,
1342		      struct library_symbol **ret)
1343{
1344	if (GELF_ST_TYPE(sym->st_info) == STT_FUNC)
1345		return PLT_DEFAULT;
1346
1347	bool ifunc = false;
1348#ifdef STT_GNU_IFUNC
1349	ifunc = GELF_ST_TYPE(sym->st_info) == STT_GNU_IFUNC;
1350#endif
1351
1352	if (ifunc) {
1353		char *tmp_name = linux_append_IFUNC_to_name(name);
1354		struct library_symbol *tmp = malloc(sizeof *tmp);
1355		if (tmp_name == NULL || tmp == NULL) {
1356		fail:
1357			free(tmp_name);
1358			free(tmp);
1359			return PLT_FAIL;
1360		}
1361
1362		if (library_symbol_init(tmp, addr, tmp_name, 1,
1363					LS_TOPLT_NONE) < 0)
1364			goto fail;
1365		tmp->proto = linux_IFUNC_prototype();
1366		tmp->os.is_ifunc = 1;
1367
1368		*ret = tmp;
1369		return PLT_OK;
1370	}
1371
1372	*ret = NULL;
1373	return PLT_OK;
1374}
1375
1376static enum callback_status
1377libsym_at_address(struct library_symbol *libsym, void *addrp)
1378{
1379	arch_addr_t addr = *(arch_addr_t *)addrp;
1380	return CBS_STOP_IF(addr == libsym->enter_addr);
1381}
1382
1383static void
1384ifunc_ret_hit(struct breakpoint *bp, struct process *proc)
1385{
1386	struct fetch_context *fetch = fetch_arg_init(LT_TOF_FUNCTION, proc,
1387						     type_get_voidptr());
1388	if (fetch == NULL)
1389		return;
1390
1391	struct breakpoint *nbp = NULL;
1392	int own_libsym = 0;
1393	struct library_symbol *libsym = NULL;
1394
1395	struct value value;
1396	value_init(&value, proc, NULL, type_get_voidptr(), 0);
1397	size_t sz = value_size(&value, NULL);
1398	union {
1399		uint64_t u64;
1400		uint32_t u32;
1401		arch_addr_t a;
1402	} u;
1403
1404	if (fetch_retval(fetch, LT_TOF_FUNCTIONR, proc,
1405			 value.type, &value) < 0
1406	    || sz > 8 /* Captures failure as well.  */
1407	    || value_extract_buf(&value, (void *) &u, NULL) < 0) {
1408	fail:
1409		fprintf(stderr,
1410			"Couldn't trace the function "
1411			"indicated by IFUNC resolver.\n");
1412		goto done;
1413	}
1414
1415	assert(sz == 4 || sz == 8);
1416	/* XXX double casts below:  */
1417	if (sz == 4)
1418		u.a = (arch_addr_t)(uintptr_t)u.u32;
1419	else
1420		u.a = (arch_addr_t)(uintptr_t)u.u64;
1421	if (arch_translate_address_dyn(proc, u.a, &u.a) < 0) {
1422		fprintf(stderr, "Couldn't OPD-translate the address returned"
1423			" by the IFUNC resolver.\n");
1424		goto done;
1425	}
1426
1427	assert(bp->os.ret_libsym != NULL);
1428
1429	struct library *lib = bp->os.ret_libsym->lib;
1430	assert(lib != NULL);
1431
1432	/* Look if we already have a symbol with this address.
1433	 * Otherwise create a new one.  */
1434	libsym = library_each_symbol(lib, NULL, libsym_at_address, &u.a);
1435	if (libsym == NULL) {
1436		libsym = malloc(sizeof *libsym);
1437		char *name = strdup(bp->os.ret_libsym->name);
1438
1439		if (libsym == NULL
1440		    || name == NULL
1441		    || library_symbol_init(libsym, u.a, name, 1,
1442					   LS_TOPLT_NONE) < 0) {
1443			free(libsym);
1444			free(name);
1445			goto fail;
1446		}
1447
1448		/* Snip the .IFUNC token.  */
1449		*strrchr(name, '.') = 0;
1450
1451		own_libsym = 1;
1452		library_add_symbol(lib, libsym);
1453	}
1454
1455	nbp = malloc(sizeof *bp);
1456	if (nbp == NULL || breakpoint_init(nbp, proc, u.a, libsym) < 0)
1457		goto fail;
1458
1459	/* If there already is a breakpoint at that address, that is
1460	 * suspicious, but whatever.  */
1461	struct breakpoint *pre_bp = insert_breakpoint(proc, nbp);
1462	if (pre_bp == NULL)
1463		goto fail;
1464	if (pre_bp == nbp) {
1465		/* PROC took our breakpoint, so these resources are
1466		 * not ours anymore.  */
1467		nbp = NULL;
1468		own_libsym = 0;
1469	}
1470
1471done:
1472	free(nbp);
1473	if (own_libsym) {
1474		library_symbol_destroy(libsym);
1475		free(libsym);
1476	}
1477	fetch_arg_done(fetch);
1478}
1479
1480static int
1481create_ifunc_ret_bp(struct breakpoint **ret,
1482		    struct breakpoint *bp, struct process *proc)
1483{
1484	*ret = create_default_return_bp(proc);
1485	if (*ret == NULL)
1486		return -1;
1487	static struct bp_callbacks cbs = {
1488		.on_hit = ifunc_ret_hit,
1489	};
1490	breakpoint_set_callbacks(*ret, &cbs);
1491
1492	(*ret)->os.ret_libsym = bp->libsym;
1493
1494	return 0;
1495}
1496
1497int
1498os_breakpoint_init(struct process *proc, struct breakpoint *bp)
1499{
1500	if (bp->libsym != NULL && bp->libsym->os.is_ifunc) {
1501		static struct bp_callbacks cbs = {
1502			.get_return_bp = create_ifunc_ret_bp,
1503		};
1504		breakpoint_set_callbacks(bp, &cbs);
1505	}
1506	return 0;
1507}
1508
1509void
1510os_breakpoint_destroy(struct breakpoint *bp)
1511{
1512}
1513
1514int
1515os_breakpoint_clone(struct breakpoint *retp, struct breakpoint *bp)
1516{
1517	return 0;
1518}
1519