trace.c revision 98f0992f9c3fd5da41a4928407251d9f5a837702
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4#include <errno.h>
5#include <unistd.h>
6#include <sys/types.h>
7#include <sys/wait.h>
8#include "ptrace.h"
9#include <asm/unistd.h>
10#include <assert.h>
11
12#include "common.h"
13
14/* If the system headers did not provide the constants, hard-code the normal
15   values.  */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS    21
19#define PTRACE_SETOPTIONS       0x4200
20#define PTRACE_GETEVENTMSG      0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD   0x00000001
24#define PTRACE_O_TRACEFORK      0x00000002
25#define PTRACE_O_TRACEVFORK     0x00000004
26#define PTRACE_O_TRACECLONE     0x00000008
27#define PTRACE_O_TRACEEXEC      0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT      0x00000040
30
31/* Wait extended result codes for the above trace options.  */
32#define PTRACE_EVENT_FORK       1
33#define PTRACE_EVENT_VFORK      2
34#define PTRACE_EVENT_CLONE      3
35#define PTRACE_EVENT_EXEC       4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT       6
38
39#endif /* PTRACE_EVENT_FORK */
40
41#ifdef ARCH_HAVE_UMOVELONG
42extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
43int
44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
45	return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
49int
50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
51	long pointed_to;
52
53	errno = 0;
54	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55	if (pointed_to == -1 && errno)
56		return -errno;
57
58	*result = pointed_to;
59	if (info) {
60		switch(info->type) {
61			case ARGTYPE_INT:
62				*result &= 0x00000000ffffffffUL;
63			default:
64				break;
65		};
66	}
67	return 0;
68}
69#endif
70
71void
72trace_me(void) {
73	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
74	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
75		perror("PTRACE_TRACEME");
76		exit(1);
77	}
78}
79
80int
81trace_pid(pid_t pid) {
82	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
83	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
84		return -1;
85	}
86
87	/* man ptrace: PTRACE_ATTACH attaches to the process specified
88	   in pid.  The child is sent a SIGSTOP, but will not
89	   necessarily have stopped by the completion of this call;
90	   use wait() to wait for the child to stop. */
91	if (waitpid (pid, NULL, __WALL) != pid) {
92		perror ("trace_pid: waitpid");
93		return -1;
94	}
95
96	return 0;
97}
98
99void
100trace_set_options(Process *proc, pid_t pid) {
101	if (proc->tracesysgood & 0x80)
102		return;
103
104	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
105
106	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108		PTRACE_O_TRACEEXEC;
109	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
111		perror("PTRACE_SETOPTIONS");
112		return;
113	}
114	proc->tracesysgood |= 0x80;
115}
116
117void
118untrace_pid(pid_t pid) {
119	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
120	ptrace(PTRACE_DETACH, pid, 1, 0);
121}
122
123void
124continue_after_signal(pid_t pid, int signum) {
125	Process *proc;
126
127	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
128
129	proc = pid2proc(pid);
130	ptrace(PTRACE_SYSCALL, pid, 0, signum);
131}
132
133static enum ecb_status
134event_for_pid(Event * event, void * data)
135{
136	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
137		return ecb_yield;
138	return ecb_cont;
139}
140
141static int
142have_events_for(pid_t pid)
143{
144	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
145}
146
147void
148continue_process(pid_t pid)
149{
150	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
151	//printf("continue_process %d\n", pid);
152
153	/* Only really continue the process if there are no events in
154	   the queue for this process.  Otherwise just for the other
155	   events to arrive.  */
156	if (!have_events_for(pid))
157		/* We always trace syscalls to control fork(),
158		 * clone(), execve()... */
159		ptrace(PTRACE_SYSCALL, pid, 0, 0);
160	else
161		debug(DEBUG_PROCESS,
162		      "putting off the continue, events in que.");
163}
164
165/**
166 * This is used for bookkeeping related to PIDs that the event
167 * handlers work with.  */
168struct pid_task {
169	pid_t pid;
170	int sigstopped;
171	int got_event;
172	int delivered;
173} * pids;
174
175struct pid_set {
176	struct pid_task * tasks;
177	size_t count;
178	size_t alloc;
179};
180
181/**
182 * Breakpoint re-enablement.  When we hit a breakpoint, we must
183 * disable it, single-step, and re-enable it.  That single-step can be
184 * done only by one task in a task group, while others are stopped,
185 * otherwise the processes would race for who sees the breakpoint
186 * disabled and who doesn't.  The following is to keep track of it
187 * all.
188 */
189struct process_stopping_handler
190{
191	Event_Handler super;
192
193	/* The task that is doing the re-enablement.  */
194	Process * task_enabling_breakpoint;
195
196	/* The pointer being re-enabled.  */
197	Breakpoint * breakpoint_being_enabled;
198
199	enum {
200		/* We are waiting for everyone to land in t/T.  */
201		psh_stopping = 0,
202
203		/* We are doing the PTRACE_SINGLESTEP.  */
204		psh_singlestep,
205
206		/* We are waiting for all the SIGSTOPs to arrive so
207		 * that we can sink them.  */
208		psh_sinking,
209	} state;
210
211	struct pid_set pids;
212};
213
214static enum pcb_status
215task_stopped(Process * task, void * data)
216{
217	int status;
218
219	/* If the task is already stopped, don't worry about it.
220	 * Likewise if it managed to become a zombie or terminate in
221	 * the meantime.  This can happen when the whole thread group
222	 * is terminating.  */
223	switch (status = process_status(task->pid))
224	case -1:
225	case 't':
226	case 'Z':
227		return pcb_cont;
228
229	return pcb_stop;
230}
231
232static struct pid_task *
233get_task_info(struct pid_set * pids, pid_t pid)
234{
235	size_t i;
236	for (i = 0; i < pids->count; ++i)
237		if (pids->tasks[i].pid == pid)
238			return &pids->tasks[i];
239
240	return NULL;
241}
242
243static struct pid_task *
244add_task_info(struct pid_set * pids, pid_t pid)
245{
246	if (pids->count == pids->alloc) {
247		size_t ns = (2 * pids->alloc) ?: 4;
248		struct pid_task * n = realloc(pids->tasks,
249					      sizeof(*pids->tasks) * ns);
250		if (n == NULL)
251			return NULL;
252		pids->tasks = n;
253		pids->alloc = ns;
254	}
255	struct pid_task * task_info = &pids->tasks[pids->count++];
256	memset(task_info, 0, sizeof(*task_info));
257	task_info->pid = pid;
258	return task_info;
259}
260
261static enum pcb_status
262send_sigstop(Process * task, void * data)
263{
264	Process * leader = task->leader;
265	struct pid_set * pids = data;
266
267	/* Look for pre-existing task record, or add new.  */
268	struct pid_task * task_info = get_task_info(pids, task->pid);
269	if (task_info == NULL)
270		task_info = add_task_info(pids, task->pid);
271	if (task_info == NULL) {
272		perror("send_sigstop: add_task_info");
273		destroy_event_handler(leader);
274		/* Signal failure upwards.  */
275		return pcb_stop;
276	}
277
278	/* This task still has not been attached to.  It should be
279	   stopped by the kernel.  */
280	if (task->state == STATE_BEING_CREATED)
281		return pcb_cont;
282
283	/* Don't bother sending SIGSTOP if we are already stopped, or
284	 * if we sent the SIGSTOP already, which happens when we
285	 * inherit the handler from breakpoint re-enablement.  */
286	if (task_stopped(task, NULL) == pcb_cont)
287		return pcb_cont;
288	if (task_info->sigstopped) {
289		if (!task_info->delivered)
290			return pcb_cont;
291		task_info->delivered = 0;
292	}
293
294	if (task_kill(task->pid, SIGSTOP) >= 0) {
295		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
296		task_info->sigstopped = 1;
297	} else
298		fprintf(stderr,
299			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
300
301	return pcb_cont;
302}
303
304static void
305process_stopping_done(struct process_stopping_handler * self, Process * leader)
306{
307	debug(DEBUG_PROCESS, "process stopping done %d",
308	      self->task_enabling_breakpoint->pid);
309	size_t i;
310	for (i = 0; i < self->pids.count; ++i)
311		if (self->pids.tasks[i].delivered)
312			continue_process(self->pids.tasks[i].pid);
313	continue_process(self->task_enabling_breakpoint->pid);
314	destroy_event_handler(leader);
315}
316
317static void
318handle_stopping_event(struct pid_task * task_info, Event ** eventp)
319{
320	/* Mark all events, so that we know whom to SIGCONT later.  */
321	if (task_info != NULL && task_info->sigstopped)
322		task_info->got_event = 1;
323
324	Event * event = *eventp;
325
326	/* In every state, sink SIGSTOP events for tasks that it was
327	 * sent to.  */
328	if (task_info != NULL
329	    && event->type == EVENT_SIGNAL
330	    && event->e_un.signum == SIGSTOP) {
331		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
332		if (task_info->sigstopped
333		    && !task_info->delivered) {
334			task_info->delivered = 1;
335			*eventp = NULL; // sink the event
336		} else
337			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
338				"sigstopped=%d and delivered=%d\n",
339				task_info->pid, task_info->sigstopped,
340				task_info->delivered);
341	}
342}
343
344/* Some SIGSTOPs may have not been delivered to their respective tasks
345 * yet.  They are still in the queue.  If we have seen an event for
346 * that process, continue it, so that the SIGSTOP can be delivered and
347 * caught by ltrace.  */
348static void
349continue_for_sigstop_delivery(struct pid_set * pids)
350{
351	size_t i;
352	for (i = 0; i < pids->count; ++i) {
353		if (pids->tasks[i].sigstopped
354		    && !pids->tasks[i].delivered
355		    && pids->tasks[i].got_event) {
356			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
357			      pids->tasks[i].pid);
358			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
359		}
360	}
361}
362
363static int
364event_exit_or_none_p(Event * event)
365{
366	return event == NULL
367		|| event->type == EVENT_EXIT
368		|| event->type == EVENT_EXIT_SIGNAL
369		|| event->type == EVENT_NONE;
370}
371
372static int
373await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
374		       Event * event)
375{
376	/* If we still didn't get our SIGSTOP, continue the process
377	 * and carry on.  */
378	if (event != NULL && !event_exit_or_none_p(event)
379	    && task_info != NULL && task_info->sigstopped) {
380		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
381		      task_info->pid);
382		/* We should get the signal the first thing
383		 * after this, so it should be OK to continue
384		 * even if we are over a breakpoint.  */
385		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
386
387	} else {
388		/* If all SIGSTOPs were delivered, uninstall the
389		 * handler and continue everyone.  */
390		/* XXX I suspect that we should check tasks that are
391		 * still around.  Is things are now, there should be a
392		 * race between waiting for everyone to stop and one
393		 * of the tasks exiting.  */
394		int all_clear = 1;
395		size_t i;
396		for (i = 0; i < pids->count; ++i)
397			if (pids->tasks[i].sigstopped
398			    && !pids->tasks[i].delivered) {
399				all_clear = 0;
400				break;
401			}
402		return all_clear;
403	}
404
405	return 0;
406}
407
408/* This event handler is installed when we are in the process of
409 * stopping the whole thread group to do the pointer re-enablement for
410 * one of the threads.  We pump all events to the queue for later
411 * processing while we wait for all the threads to stop.  When this
412 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
413 * re-enable, and continue everyone.  */
414static Event *
415process_stopping_on_event(Event_Handler * super, Event * event)
416{
417	struct process_stopping_handler * self = (void *)super;
418	Process * task = event->proc;
419	Process * leader = task->leader;
420
421	debug(DEBUG_PROCESS,
422	      "pid %d; event type %d; state %d",
423	      task->pid, event->type, self->state);
424
425	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
426	if (task_info == NULL)
427		fprintf(stderr, "new task??? %d\n", task->pid);
428	handle_stopping_event(task_info, &event);
429
430	int state = self->state;
431	int event_to_queue = !event_exit_or_none_p(event);
432
433	switch (state) {
434	case psh_stopping:
435		/* If everyone is stopped, singlestep.  */
436		if (each_task(leader, &task_stopped, NULL) == NULL) {
437			debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
438			      self->task_enabling_breakpoint->pid);
439			ptrace(PTRACE_SINGLESTEP,
440			       self->task_enabling_breakpoint->pid, 0, 0);
441			self->state = state = psh_singlestep;
442		}
443		break;
444
445	case psh_singlestep: {
446		/* In singlestep state, breakpoint signifies that we
447		 * have now stepped, and can re-enable the breakpoint.  */
448		if (event != NULL
449		    && task == self->task_enabling_breakpoint) {
450			/* Essentially we don't care what event caused
451			 * the thread to stop.  We can do the
452			 * re-enablement now.  */
453			enable_breakpoint(self->task_enabling_breakpoint,
454					  self->breakpoint_being_enabled);
455
456			continue_for_sigstop_delivery(&self->pids);
457
458			self->breakpoint_being_enabled = NULL;
459			self->state = state = psh_sinking;
460
461			if (event->type == EVENT_BREAKPOINT)
462				event = NULL; // handled
463		} else
464			break;
465	}
466
467		/* fall-through */
468
469	case psh_sinking:
470		if (await_sigstop_delivery(&self->pids, task_info, event))
471			process_stopping_done(self, leader);
472	}
473
474	if (event != NULL && event_to_queue) {
475		enque_event(event);
476		event = NULL; // sink the event
477	}
478
479	return event;
480}
481
482static void
483process_stopping_destroy(Event_Handler * super)
484{
485	struct process_stopping_handler * self = (void *)super;
486	if (self->breakpoint_being_enabled != NULL)
487		enable_breakpoint(self->task_enabling_breakpoint,
488				  self->breakpoint_being_enabled);
489	free(self->pids.tasks);
490}
491
492void
493continue_after_breakpoint(Process *proc, Breakpoint *sbp)
494{
495	if (sbp->enabled)
496		disable_breakpoint(proc, sbp);
497
498	set_instruction_pointer(proc, sbp->addr);
499	if (sbp->enabled == 0) {
500		continue_process(proc->pid);
501	} else {
502		debug(DEBUG_PROCESS,
503		      "continue_after_breakpoint: pid=%d, addr=%p",
504		      proc->pid, sbp->addr);
505#if defined __sparc__  || defined __ia64___ || defined __mips__
506		/* we don't want to singlestep here */
507		continue_process(proc->pid);
508#else
509		struct process_stopping_handler * handler
510			= calloc(sizeof(*handler), 1);
511		if (handler == NULL) {
512			perror("malloc breakpoint disable handler");
513		fatal:
514			/* Carry on not bothering to re-enable.  */
515			continue_process(proc->pid);
516			return;
517		}
518
519		handler->super.on_event = process_stopping_on_event;
520		handler->super.destroy = process_stopping_destroy;
521		handler->task_enabling_breakpoint = proc;
522		handler->breakpoint_being_enabled = sbp;
523		install_event_handler(proc->leader, &handler->super);
524
525		if (each_task(proc->leader, &send_sigstop,
526			      &handler->pids) != NULL)
527			goto fatal;
528
529		/* And deliver the first fake event, in case all the
530		 * conditions are already fulfilled.  */
531		Event ev;
532		ev.type = EVENT_NONE;
533		ev.proc = proc;
534		process_stopping_on_event(&handler->super, &ev);
535#endif
536	}
537}
538
539size_t
540umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
541
542	union {
543		long a;
544		char c[sizeof(long)];
545	} a;
546	int started = 0;
547	size_t offset = 0, bytes_read = 0;
548
549	while (offset < len) {
550		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
551		if (a.a == -1 && errno) {
552			if (started && errno == EIO)
553				return bytes_read;
554			else
555				return -1;
556		}
557		started = 1;
558
559		if (len - offset >= sizeof(long)) {
560			memcpy(laddr + offset, &a.c[0], sizeof(long));
561			bytes_read += sizeof(long);
562		}
563		else {
564			memcpy(laddr + offset, &a.c[0], len - offset);
565			bytes_read += (len - offset);
566		}
567		offset += sizeof(long);
568	}
569
570	return bytes_read;
571}
572
573/* Read a series of bytes starting at the process's memory address
574   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
575   have been read.
576*/
577int
578umovestr(Process *proc, void *addr, int len, void *laddr) {
579	union {
580		long a;
581		char c[sizeof(long)];
582	} a;
583	unsigned i;
584	int offset = 0;
585
586	while (offset < len) {
587		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
588		for (i = 0; i < sizeof(long); i++) {
589			if (a.c[i] && offset + (signed)i < len) {
590				*(char *)(laddr + offset + i) = a.c[i];
591			} else {
592				*(char *)(laddr + offset + i) = '\0';
593				return 0;
594			}
595		}
596		offset += sizeof(long);
597	}
598	*(char *)(laddr + offset) = '\0';
599	return 0;
600}
601