trace.c revision 98ff309cdc98857eb30992f108439cb7d7673598
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2007,2011,2012,2013 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2010 Joe Damato
5 * Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
6 * Copyright (C) 2006 Ian Wienand
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21 * 02110-1301 USA
22 */
23
24#include "config.h"
25
26#include <asm/unistd.h>
27#include <sys/types.h>
28#include <sys/wait.h>
29#include <assert.h>
30#include <errno.h>
31#include <stdio.h>
32#include <stdlib.h>
33#include <string.h>
34#include <unistd.h>
35
36#ifdef HAVE_LIBSELINUX
37# include <selinux/selinux.h>
38#endif
39
40#include "linux-gnu/trace.h"
41#include "linux-gnu/trace-defs.h"
42#include "backend.h"
43#include "breakpoint.h"
44#include "debug.h"
45#include "events.h"
46#include "options.h"
47#include "proc.h"
48#include "ptrace.h"
49#include "type.h"
50
51void
52trace_fail_warning(pid_t pid)
53{
54	/* This was adapted from GDB.  */
55#ifdef HAVE_LIBSELINUX
56	static int checked = 0;
57	if (checked)
58		return;
59	checked = 1;
60
61	/* -1 is returned for errors, 0 if it has no effect, 1 if
62	 * PTRACE_ATTACH is forbidden.  */
63	if (security_get_boolean_active("deny_ptrace") == 1)
64		fprintf(stderr,
65"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
66"tracing other processes.  You can disable this process attach protection by\n"
67"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
68#endif /* HAVE_LIBSELINUX */
69}
70
71void
72trace_me(void)
73{
74	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
75	if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
76		perror("PTRACE_TRACEME");
77		trace_fail_warning(getpid());
78		exit(1);
79	}
80}
81
82/* There's a (hopefully) brief period of time after the child process
83 * forks when we can't trace it yet.  Here we wait for kernel to
84 * prepare the process.  */
85int
86wait_for_proc(pid_t pid)
87{
88	/* man ptrace: PTRACE_ATTACH attaches to the process specified
89	   in pid.  The child is sent a SIGSTOP, but will not
90	   necessarily have stopped by the completion of this call;
91	   use wait() to wait for the child to stop. */
92	if (waitpid(pid, NULL, __WALL) != pid) {
93		perror ("trace_pid: waitpid");
94		return -1;
95	}
96
97	return 0;
98}
99
100int
101trace_pid(pid_t pid)
102{
103	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
104	/* This shouldn't emit error messages, as there are legitimate
105	 * reasons that the PID can't be attached: like it may have
106	 * already ended.  */
107	if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
108		return -1;
109
110	return wait_for_proc(pid);
111}
112
113void
114trace_set_options(struct process *proc)
115{
116	if (proc->tracesysgood & 0x80)
117		return;
118
119	pid_t pid = proc->pid;
120	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
121
122	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
123		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
124		PTRACE_O_TRACEEXEC;
125	if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
126	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
127		perror("PTRACE_SETOPTIONS");
128		return;
129	}
130	proc->tracesysgood |= 0x80;
131}
132
133void
134untrace_pid(pid_t pid) {
135	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
136	ptrace(PTRACE_DETACH, pid, 0, 0);
137}
138
139void
140continue_after_signal(pid_t pid, int signum)
141{
142	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
143	      pid, signum);
144	ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
145}
146
147static enum ecb_status
148event_for_pid(Event *event, void *data)
149{
150	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
151		return ECB_YIELD;
152	return ECB_CONT;
153}
154
155static int
156have_events_for(pid_t pid)
157{
158	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
159}
160
161void
162continue_process(pid_t pid)
163{
164	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
165
166	/* Only really continue the process if there are no events in
167	   the queue for this process.  Otherwise just wait for the
168	   other events to arrive.  */
169	if (!have_events_for(pid))
170		/* We always trace syscalls to control fork(),
171		 * clone(), execve()... */
172		ptrace(PTRACE_SYSCALL, pid, 0, 0);
173	else
174		debug(DEBUG_PROCESS,
175		      "putting off the continue, events in que.");
176}
177
178static struct pid_task *
179get_task_info(struct pid_set *pids, pid_t pid)
180{
181	assert(pid != 0);
182	size_t i;
183	for (i = 0; i < pids->count; ++i)
184		if (pids->tasks[i].pid == pid)
185			return &pids->tasks[i];
186
187	return NULL;
188}
189
190static struct pid_task *
191add_task_info(struct pid_set *pids, pid_t pid)
192{
193	if (pids->count == pids->alloc) {
194		size_t ns = (2 * pids->alloc) ?: 4;
195		struct pid_task *n = realloc(pids->tasks,
196					     sizeof(*pids->tasks) * ns);
197		if (n == NULL)
198			return NULL;
199		pids->tasks = n;
200		pids->alloc = ns;
201	}
202	struct pid_task * task_info = &pids->tasks[pids->count++];
203	memset(task_info, 0, sizeof(*task_info));
204	task_info->pid = pid;
205	return task_info;
206}
207
208static enum callback_status
209task_stopped(struct process *task, void *data)
210{
211	enum process_status st = process_status(task->pid);
212	if (data != NULL)
213		*(enum process_status *)data = st;
214
215	/* If the task is already stopped, don't worry about it.
216	 * Likewise if it managed to become a zombie or terminate in
217	 * the meantime.  This can happen when the whole thread group
218	 * is terminating.  */
219	switch (st) {
220	case PS_INVALID:
221	case PS_TRACING_STOP:
222	case PS_ZOMBIE:
223		return CBS_CONT;
224	case PS_SLEEPING:
225	case PS_STOP:
226	case PS_OTHER:
227		return CBS_STOP;
228	}
229
230	abort ();
231}
232
233/* Task is blocked if it's stopped, or if it's a vfork parent.  */
234static enum callback_status
235task_blocked(struct process *task, void *data)
236{
237	struct pid_set *pids = data;
238	struct pid_task *task_info = get_task_info(pids, task->pid);
239	if (task_info != NULL
240	    && task_info->vforked)
241		return CBS_CONT;
242
243	return task_stopped(task, NULL);
244}
245
246static Event *process_vfork_on_event(struct event_handler *super, Event *event);
247
248static enum callback_status
249task_vforked(struct process *task, void *data)
250{
251	if (task->event_handler != NULL
252	    && task->event_handler->on_event == &process_vfork_on_event)
253		return CBS_STOP;
254	return CBS_CONT;
255}
256
257static int
258is_vfork_parent(struct process *task)
259{
260	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
261}
262
263static enum callback_status
264send_sigstop(struct process *task, void *data)
265{
266	struct process *leader = task->leader;
267	struct pid_set *pids = data;
268
269	/* Look for pre-existing task record, or add new.  */
270	struct pid_task *task_info = get_task_info(pids, task->pid);
271	if (task_info == NULL)
272		task_info = add_task_info(pids, task->pid);
273	if (task_info == NULL) {
274		perror("send_sigstop: add_task_info");
275		destroy_event_handler(leader);
276		/* Signal failure upwards.  */
277		return CBS_STOP;
278	}
279
280	/* This task still has not been attached to.  It should be
281	   stopped by the kernel.  */
282	if (task->state == STATE_BEING_CREATED)
283		return CBS_CONT;
284
285	/* Don't bother sending SIGSTOP if we are already stopped, or
286	 * if we sent the SIGSTOP already, which happens when we are
287	 * handling "onexit" and inherited the handler from breakpoint
288	 * re-enablement.  */
289	enum process_status st;
290	if (task_stopped(task, &st) == CBS_CONT)
291		return CBS_CONT;
292	if (task_info->sigstopped) {
293		if (!task_info->delivered)
294			return CBS_CONT;
295		task_info->delivered = 0;
296	}
297
298	/* Also don't attempt to stop the process if it's a parent of
299	 * vforked process.  We set up event handler specially to hint
300	 * us.  In that case parent is in D state, which we use to
301	 * weed out unnecessary looping.  */
302	if (st == PS_SLEEPING
303	    && is_vfork_parent(task)) {
304		task_info->vforked = 1;
305		return CBS_CONT;
306	}
307
308	if (task_kill(task->pid, SIGSTOP) >= 0) {
309		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
310		task_info->sigstopped = 1;
311	} else
312		fprintf(stderr,
313			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
314
315	return CBS_CONT;
316}
317
318/* On certain kernels, detaching right after a singlestep causes the
319   tracee to be killed with a SIGTRAP (that even though the singlestep
320   was properly caught by waitpid.  The ugly workaround is to put a
321   breakpoint where IP points and let the process continue.  After
322   this the breakpoint can be retracted and the process detached.  */
323static void
324ugly_workaround(struct process *proc)
325{
326	arch_addr_t ip = get_instruction_pointer(proc);
327	struct breakpoint *found;
328	if (DICT_FIND_VAL(proc->leader->breakpoints, &ip, &found) < 0) {
329		insert_breakpoint(proc, ip, NULL);
330	} else {
331		assert(found != NULL);
332		enable_breakpoint(proc, found);
333	}
334	ptrace(PTRACE_CONT, proc->pid, 0, 0);
335}
336
337static void
338process_stopping_done(struct process_stopping_handler *self,
339		      struct process *leader)
340{
341	debug(DEBUG_PROCESS, "process stopping done %d",
342	      self->task_enabling_breakpoint->pid);
343
344	if (!self->exiting) {
345		size_t i;
346		for (i = 0; i < self->pids.count; ++i)
347			if (self->pids.tasks[i].pid != 0
348			    && (self->pids.tasks[i].delivered
349				|| self->pids.tasks[i].sysret))
350				continue_process(self->pids.tasks[i].pid);
351		continue_process(self->task_enabling_breakpoint->pid);
352	}
353
354	if (self->exiting) {
355	ugly_workaround:
356		self->state = PSH_UGLY_WORKAROUND;
357		ugly_workaround(self->task_enabling_breakpoint);
358	} else {
359		switch ((self->ugly_workaround_p)(self)) {
360		case CBS_FAIL:
361			/* xxx handle me */
362		case CBS_STOP:
363			break;
364		case CBS_CONT:
365			goto ugly_workaround;
366		}
367		destroy_event_handler(leader);
368	}
369}
370
371/* Before we detach, we need to make sure that task's IP is on the
372 * edge of an instruction.  So for tasks that have a breakpoint event
373 * in the queue, we adjust the instruction pointer, just like
374 * continue_after_breakpoint does.  */
375static enum ecb_status
376undo_breakpoint(Event *event, void *data)
377{
378	if (event != NULL
379	    && event->proc->leader == data
380	    && event->type == EVENT_BREAKPOINT)
381		set_instruction_pointer(event->proc, event->e_un.brk_addr);
382	return ECB_CONT;
383}
384
385static enum callback_status
386untrace_task(struct process *task, void *data)
387{
388	if (task != data)
389		untrace_pid(task->pid);
390	return CBS_CONT;
391}
392
393static enum callback_status
394remove_task(struct process *task, void *data)
395{
396	/* Don't untrace leader just yet.  */
397	if (task != data)
398		remove_process(task);
399	return CBS_CONT;
400}
401
402static enum callback_status
403retract_breakpoint_cb(struct process *proc, struct breakpoint *bp, void *data)
404{
405	breakpoint_on_retract(bp, proc);
406	return CBS_CONT;
407}
408
409static void
410detach_process(struct process *leader)
411{
412	each_qd_event(&undo_breakpoint, leader);
413	disable_all_breakpoints(leader);
414	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
415
416	/* Now untrace the process, if it was attached to by -p.  */
417	struct opt_p_t *it;
418	for (it = opt_p; it != NULL; it = it->next) {
419		struct process *proc = pid2proc(it->pid);
420		if (proc == NULL)
421			continue;
422		if (proc->leader == leader) {
423			each_task(leader, NULL, &untrace_task, NULL);
424			break;
425		}
426	}
427	each_task(leader, NULL, &remove_task, leader);
428	destroy_event_handler(leader);
429	remove_task(leader, NULL);
430}
431
432static void
433handle_stopping_event(struct pid_task *task_info, Event **eventp)
434{
435	/* Mark all events, so that we know whom to SIGCONT later.  */
436	if (task_info != NULL)
437		task_info->got_event = 1;
438
439	Event *event = *eventp;
440
441	/* In every state, sink SIGSTOP events for tasks that it was
442	 * sent to.  */
443	if (task_info != NULL
444	    && event->type == EVENT_SIGNAL
445	    && event->e_un.signum == SIGSTOP) {
446		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
447		if (task_info->sigstopped
448		    && !task_info->delivered) {
449			task_info->delivered = 1;
450			*eventp = NULL; // sink the event
451		} else
452			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
453				"sigstopped=%d and delivered=%d\n",
454				task_info->pid, task_info->sigstopped,
455				task_info->delivered);
456	}
457}
458
459/* Some SIGSTOPs may have not been delivered to their respective tasks
460 * yet.  They are still in the queue.  If we have seen an event for
461 * that process, continue it, so that the SIGSTOP can be delivered and
462 * caught by ltrace.  We don't mind that the process is after
463 * breakpoint (and therefore potentially doesn't have aligned IP),
464 * because the signal will be delivered without the process actually
465 * starting.  */
466static void
467continue_for_sigstop_delivery(struct pid_set *pids)
468{
469	size_t i;
470	for (i = 0; i < pids->count; ++i) {
471		if (pids->tasks[i].pid != 0
472		    && pids->tasks[i].sigstopped
473		    && !pids->tasks[i].delivered
474		    && pids->tasks[i].got_event) {
475			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
476			      pids->tasks[i].pid);
477			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
478		}
479	}
480}
481
482static int
483event_exit_p(Event *event)
484{
485	return event != NULL && (event->type == EVENT_EXIT
486				 || event->type == EVENT_EXIT_SIGNAL);
487}
488
489static int
490event_exit_or_none_p(Event *event)
491{
492	return event == NULL || event_exit_p(event)
493		|| event->type == EVENT_NONE;
494}
495
496static int
497await_sigstop_delivery(struct pid_set *pids, struct pid_task *task_info,
498		       Event *event)
499{
500	/* If we still didn't get our SIGSTOP, continue the process
501	 * and carry on.  */
502	if (event != NULL && !event_exit_or_none_p(event)
503	    && task_info != NULL && task_info->sigstopped) {
504		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
505		      task_info->pid);
506		/* We should get the signal the first thing
507		 * after this, so it should be OK to continue
508		 * even if we are over a breakpoint.  */
509		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
510
511	} else {
512		/* If all SIGSTOPs were delivered, uninstall the
513		 * handler and continue everyone.  */
514		/* XXX I suspect that we should check tasks that are
515		 * still around.  Is things are now, there should be a
516		 * race between waiting for everyone to stop and one
517		 * of the tasks exiting.  */
518		int all_clear = 1;
519		size_t i;
520		for (i = 0; i < pids->count; ++i)
521			if (pids->tasks[i].pid != 0
522			    && pids->tasks[i].sigstopped
523			    && !pids->tasks[i].delivered) {
524				all_clear = 0;
525				break;
526			}
527		return all_clear;
528	}
529
530	return 0;
531}
532
533static int
534all_stops_accountable(struct pid_set *pids)
535{
536	size_t i;
537	for (i = 0; i < pids->count; ++i)
538		if (pids->tasks[i].pid != 0
539		    && !pids->tasks[i].got_event
540		    && !have_events_for(pids->tasks[i].pid))
541			return 0;
542	return 1;
543}
544
545#ifndef ARCH_HAVE_SW_SINGLESTEP
546enum sw_singlestep_status
547arch_sw_singlestep(struct process *proc, struct breakpoint *bp,
548		   int (*add_cb)(arch_addr_t, struct sw_singlestep_data *),
549		   struct sw_singlestep_data *data)
550{
551	return SWS_HW;
552}
553#endif
554
555static Event *process_stopping_on_event(struct event_handler *super,
556					Event *event);
557
558static void
559remove_sw_breakpoints(struct process *proc)
560{
561	struct process_stopping_handler *self
562		= (void *)proc->leader->event_handler;
563	assert(self != NULL);
564	assert(self->super.on_event == process_stopping_on_event);
565
566	int ct = sizeof(self->sws_bp_addrs) / sizeof(*self->sws_bp_addrs);
567	int i;
568	for (i = 0; i < ct; ++i)
569		if (self->sws_bp_addrs[i] != 0) {
570			delete_breakpoint(proc, self->sws_bp_addrs[i]);
571			self->sws_bp_addrs[i] = 0;
572		}
573}
574
575static void
576sw_singlestep_bp_on_hit(struct breakpoint *bp, struct process *proc)
577{
578	remove_sw_breakpoints(proc);
579}
580
581struct sw_singlestep_data {
582	struct process_stopping_handler *self;
583};
584
585static int
586sw_singlestep_add_bp(arch_addr_t addr, struct sw_singlestep_data *data)
587{
588	struct process_stopping_handler *self = data->self;
589	struct process *proc = self->task_enabling_breakpoint;
590
591	int ct = sizeof(self->sws_bp_addrs)
592		/ sizeof(*self->sws_bp_addrs);
593	int i;
594	for (i = 0; i < ct; ++i)
595		if (self->sws_bp_addrs[i] == 0) {
596			self->sws_bp_addrs[i] = addr;
597			static struct bp_callbacks cbs = {
598				.on_hit = sw_singlestep_bp_on_hit,
599			};
600			struct breakpoint *bp
601				= insert_breakpoint(proc, addr, NULL);
602			breakpoint_set_callbacks(bp, &cbs);
603			return 0;
604		}
605
606	assert(!"Too many sw singlestep breakpoints!");
607	abort();
608}
609
610static int
611singlestep(struct process_stopping_handler *self)
612{
613	struct process *proc = self->task_enabling_breakpoint;
614
615	struct sw_singlestep_data data = { self };
616	switch (arch_sw_singlestep(self->task_enabling_breakpoint,
617				   self->breakpoint_being_enabled,
618				   &sw_singlestep_add_bp, &data)) {
619	case SWS_HW:
620		/* Otherwise do the default action: singlestep.  */
621		debug(1, "PTRACE_SINGLESTEP");
622		if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) {
623			perror("PTRACE_SINGLESTEP");
624			return -1;
625		}
626		return 0;
627
628	case SWS_OK:
629		return 0;
630
631	case SWS_FAIL:
632		return -1;
633	}
634	abort();
635}
636
637static void
638post_singlestep(struct process_stopping_handler *self,
639		struct Event **eventp)
640{
641	continue_for_sigstop_delivery(&self->pids);
642
643	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
644		*eventp = NULL; // handled
645
646	struct process *proc = self->task_enabling_breakpoint;
647
648	remove_sw_breakpoints(proc);
649	self->breakpoint_being_enabled = NULL;
650}
651
652static void
653singlestep_error(struct process_stopping_handler *self)
654{
655	struct process *teb = self->task_enabling_breakpoint;
656	struct breakpoint *sbp = self->breakpoint_being_enabled;
657	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
658		teb->pid, breakpoint_name(sbp),	sbp->addr,
659		get_instruction_pointer(teb));
660	delete_breakpoint(teb->leader, sbp->addr);
661}
662
663static void
664pt_continue(struct process_stopping_handler *self)
665{
666	struct process *teb = self->task_enabling_breakpoint;
667	debug(1, "PTRACE_CONT");
668	ptrace(PTRACE_CONT, teb->pid, 0, 0);
669}
670
671static void
672pt_singlestep(struct process_stopping_handler *self)
673{
674	if (singlestep(self) < 0)
675		singlestep_error(self);
676}
677
678static void
679disable_and(struct process_stopping_handler *self,
680	    void (*do_this)(struct process_stopping_handler *self))
681{
682	struct process *teb = self->task_enabling_breakpoint;
683	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
684	if (self->breakpoint_being_enabled->enabled)
685		disable_breakpoint(teb, self->breakpoint_being_enabled);
686	(do_this)(self);
687	self->state = PSH_SINGLESTEP;
688}
689
690void
691linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
692{
693	disable_and(self, &pt_singlestep);
694}
695
696void
697linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
698{
699	disable_and(self, &pt_continue);
700}
701
702/* This event handler is installed when we are in the process of
703 * stopping the whole thread group to do the pointer re-enablement for
704 * one of the threads.  We pump all events to the queue for later
705 * processing while we wait for all the threads to stop.  When this
706 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
707 * re-enable, and continue everyone.  */
708static Event *
709process_stopping_on_event(struct event_handler *super, Event *event)
710{
711	struct process_stopping_handler *self = (void *)super;
712	struct process *task = event->proc;
713	struct process *leader = task->leader;
714	struct process *teb = self->task_enabling_breakpoint;
715
716	debug(DEBUG_PROCESS,
717	      "process_stopping_on_event: pid %d; event type %d; state %d",
718	      task->pid, event->type, self->state);
719
720	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
721	if (task_info == NULL)
722		fprintf(stderr, "new task??? %d\n", task->pid);
723	handle_stopping_event(task_info, &event);
724
725	int state = self->state;
726	int event_to_queue = !event_exit_or_none_p(event);
727
728	/* Deactivate the entry if the task exits.  */
729	if (event_exit_p(event) && task_info != NULL)
730		task_info->pid = 0;
731
732	/* Always handle sysrets.  Whether sysret occurred and what
733	 * sys it rets from may need to be determined based on process
734	 * stack, so we need to keep that in sync with reality.  Note
735	 * that we don't continue the process after the sysret is
736	 * handled.  See continue_after_syscall.  */
737	if (event != NULL && event->type == EVENT_SYSRET) {
738		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
739		event_to_queue = 0;
740		task_info->sysret = 1;
741	}
742
743	switch (state) {
744	case PSH_STOPPING:
745		/* If everyone is stopped, singlestep.  */
746		if (each_task(leader, NULL, &task_blocked,
747			      &self->pids) == NULL) {
748			(self->on_all_stopped)(self);
749			state = self->state;
750		}
751		break;
752
753	case PSH_SINGLESTEP:
754		/* In singlestep state, breakpoint signifies that we
755		 * have now stepped, and can re-enable the breakpoint.  */
756		if (event != NULL && task == teb) {
757
758			/* If this was caused by a real breakpoint, as
759			 * opposed to a singlestep, assume that it's
760			 * an artificial breakpoint installed for some
761			 * reason for the re-enablement.  In that case
762			 * handle it.  */
763			if (event->type == EVENT_BREAKPOINT) {
764				arch_addr_t ip
765					= get_instruction_pointer(task);
766				struct breakpoint *other
767					= address2bpstruct(leader, ip);
768				if (other != NULL)
769					breakpoint_on_hit(other, task);
770			}
771
772			/* If we got SIGNAL instead of BREAKPOINT,
773			 * then this is not singlestep at all.  */
774			if (event->type == EVENT_SIGNAL) {
775			do_singlestep:
776				if (singlestep(self) < 0) {
777					singlestep_error(self);
778					post_singlestep(self, &event);
779					goto psh_sinking;
780				}
781				break;
782			} else {
783				switch ((self->keep_stepping_p)(self)) {
784				case CBS_FAIL:
785					/* XXX handle me */
786				case CBS_STOP:
787					break;
788				case CBS_CONT:
789					/* Sink singlestep event.  */
790					if (event->type == EVENT_BREAKPOINT)
791						event = NULL;
792					goto do_singlestep;
793				}
794			}
795
796			/* Re-enable the breakpoint that we are
797			 * stepping over.  */
798			struct breakpoint *sbp = self->breakpoint_being_enabled;
799			if (sbp->enabled)
800				enable_breakpoint(teb, sbp);
801
802			post_singlestep(self, &event);
803			goto psh_sinking;
804		}
805		break;
806
807	psh_sinking:
808		state = self->state = PSH_SINKING;
809		/* Fall through.  */
810	case PSH_SINKING:
811		if (await_sigstop_delivery(&self->pids, task_info, event))
812			process_stopping_done(self, leader);
813		break;
814
815	case PSH_UGLY_WORKAROUND:
816		if (event == NULL)
817			break;
818		if (event->type == EVENT_BREAKPOINT) {
819			undo_breakpoint(event, leader);
820			if (task == teb)
821				self->task_enabling_breakpoint = NULL;
822		}
823		if (self->task_enabling_breakpoint == NULL
824		    && all_stops_accountable(&self->pids)) {
825			undo_breakpoint(event, leader);
826			detach_process(leader);
827			event = NULL; // handled
828		}
829	}
830
831	if (event != NULL && event_to_queue) {
832		enque_event(event);
833		event = NULL; // sink the event
834	}
835
836	return event;
837}
838
839static void
840process_stopping_destroy(struct event_handler *super)
841{
842	struct process_stopping_handler *self = (void *)super;
843	free(self->pids.tasks);
844}
845
846static enum callback_status
847no(struct process_stopping_handler *self)
848{
849	return CBS_STOP;
850}
851
852int
853process_install_stopping_handler(struct process *proc, struct breakpoint *sbp,
854				 void (*as)(struct process_stopping_handler *),
855				 enum callback_status (*ks)
856					 (struct process_stopping_handler *),
857				 enum callback_status (*uw)
858					(struct process_stopping_handler *))
859{
860	debug(DEBUG_FUNCTION,
861	      "process_install_stopping_handler: pid=%d", proc->pid);
862
863	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
864	if (handler == NULL)
865		return -1;
866
867	if (as == NULL)
868		as = &linux_ptrace_disable_and_singlestep;
869	if (ks == NULL)
870		ks = &no;
871	if (uw == NULL)
872		uw = &no;
873
874	handler->super.on_event = process_stopping_on_event;
875	handler->super.destroy = process_stopping_destroy;
876	handler->task_enabling_breakpoint = proc;
877	handler->breakpoint_being_enabled = sbp;
878	handler->on_all_stopped = as;
879	handler->keep_stepping_p = ks;
880	handler->ugly_workaround_p = uw;
881
882	install_event_handler(proc->leader, &handler->super);
883
884	if (each_task(proc->leader, NULL, &send_sigstop,
885		      &handler->pids) != NULL) {
886		destroy_event_handler(proc);
887		return -1;
888	}
889
890	/* And deliver the first fake event, in case all the
891	 * conditions are already fulfilled.  */
892	Event ev = {
893		.type = EVENT_NONE,
894		.proc = proc,
895	};
896	process_stopping_on_event(&handler->super, &ev);
897
898	return 0;
899}
900
901void
902continue_after_breakpoint(struct process *proc, struct breakpoint *sbp)
903{
904	debug(DEBUG_PROCESS,
905	      "continue_after_breakpoint: pid=%d, addr=%p",
906	      proc->pid, sbp->addr);
907
908	set_instruction_pointer(proc, sbp->addr);
909
910	if (sbp->enabled == 0) {
911		continue_process(proc->pid);
912	} else if (process_install_stopping_handler
913			(proc, sbp, NULL, NULL, NULL) < 0) {
914		perror("process_stopping_handler_create");
915		/* Carry on not bothering to re-enable.  */
916		continue_process(proc->pid);
917	}
918}
919
920/**
921 * Ltrace exit.  When we are about to exit, we have to go through all
922 * the processes, stop them all, remove all the breakpoints, and then
923 * detach the processes that we attached to using -p.  If we left the
924 * other tasks running, they might hit stray return breakpoints and
925 * produce artifacts, so we better stop everyone, even if it's a bit
926 * of extra work.
927 */
928struct ltrace_exiting_handler
929{
930	struct event_handler super;
931	struct pid_set pids;
932};
933
934static Event *
935ltrace_exiting_on_event(struct event_handler *super, Event *event)
936{
937	struct ltrace_exiting_handler *self = (void *)super;
938	struct process *task = event->proc;
939	struct process *leader = task->leader;
940
941	debug(DEBUG_PROCESS,
942	      "ltrace_exiting_on_event: pid %d; event type %d",
943	      task->pid, event->type);
944
945	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
946	handle_stopping_event(task_info, &event);
947
948	if (event != NULL && event->type == EVENT_BREAKPOINT)
949		undo_breakpoint(event, leader);
950
951	if (await_sigstop_delivery(&self->pids, task_info, event)
952	    && all_stops_accountable(&self->pids))
953		detach_process(leader);
954
955	/* Sink all non-exit events.  We are about to exit, so we
956	 * don't bother with queuing them. */
957	if (event_exit_or_none_p(event))
958		return event;
959
960	return NULL;
961}
962
963static void
964ltrace_exiting_destroy(struct event_handler *super)
965{
966	struct ltrace_exiting_handler *self = (void *)super;
967	free(self->pids.tasks);
968}
969
970static int
971ltrace_exiting_install_handler(struct process *proc)
972{
973	/* Only install to leader.  */
974	if (proc->leader != proc)
975		return 0;
976
977	/* Perhaps we are already installed, if the user passed
978	 * several -p options that are tasks of one process.  */
979	if (proc->event_handler != NULL
980	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
981		return 0;
982
983	/* If stopping handler is already present, let it do the
984	 * work.  */
985	if (proc->event_handler != NULL) {
986		assert(proc->event_handler->on_event
987		       == &process_stopping_on_event);
988		struct process_stopping_handler *other
989			= (void *)proc->event_handler;
990		other->exiting = 1;
991		return 0;
992	}
993
994	struct ltrace_exiting_handler *handler
995		= calloc(sizeof(*handler), 1);
996	if (handler == NULL) {
997		perror("malloc exiting handler");
998	fatal:
999		/* XXXXXXXXXXXXXXXXXXX fixme */
1000		return -1;
1001	}
1002
1003	handler->super.on_event = ltrace_exiting_on_event;
1004	handler->super.destroy = ltrace_exiting_destroy;
1005	install_event_handler(proc->leader, &handler->super);
1006
1007	if (each_task(proc->leader, NULL, &send_sigstop,
1008		      &handler->pids) != NULL)
1009		goto fatal;
1010
1011	return 0;
1012}
1013
1014/*
1015 * When the traced process vforks, it's suspended until the child
1016 * process calls _exit or exec*.  In the meantime, the two share the
1017 * address space.
1018 *
1019 * The child process should only ever call _exit or exec*, but we
1020 * can't count on that (it's not the role of ltrace to policy, but to
1021 * observe).  In any case, we will _at least_ have to deal with
1022 * removal of vfork return breakpoint (which we have to smuggle back
1023 * in, so that the parent can see it, too), and introduction of exec*
1024 * return breakpoint.  Since we already have both breakpoint actions
1025 * to deal with, we might as well support it all.
1026 *
1027 * The gist is that we pretend that the child is in a thread group
1028 * with its parent, and handle it as a multi-threaded case, with the
1029 * exception that we know that the parent is blocked, and don't
1030 * attempt to stop it.  When the child execs, we undo the setup.
1031 */
1032
1033struct process_vfork_handler
1034{
1035	struct event_handler super;
1036	arch_addr_t bp_addr;
1037};
1038
1039static Event *
1040process_vfork_on_event(struct event_handler *super, Event *event)
1041{
1042	debug(DEBUG_PROCESS,
1043	      "process_vfork_on_event: pid %d; event type %d",
1044	      event->proc->pid, event->type);
1045
1046	struct process_vfork_handler *self = (void *)super;
1047	assert(self != NULL);
1048
1049	switch (event->type) {
1050	case EVENT_BREAKPOINT:
1051		/* Remember the vfork return breakpoint.  */
1052		if (self->bp_addr == 0)
1053			self->bp_addr = event->e_un.brk_addr;
1054		break;
1055
1056	case EVENT_EXIT:
1057	case EVENT_EXIT_SIGNAL:
1058	case EVENT_EXEC:
1059		/* Smuggle back in the vfork return breakpoint, so
1060		 * that our parent can trip over it once again.  */
1061		if (self->bp_addr != 0) {
1062			struct breakpoint *found;
1063			if (DICT_FIND_VAL(event->proc->leader->breakpoints,
1064					  &self->bp_addr, &found) == 0)
1065				assert(found->libsym == NULL);
1066			/* We don't mind failing that, it's not a big
1067			 * deal to not display one extra vfork return.  */
1068			insert_breakpoint(event->proc->parent,
1069					  self->bp_addr, NULL);
1070		}
1071
1072		continue_process(event->proc->parent->pid);
1073
1074		/* Remove the leader that we artificially set up
1075		 * earlier.  */
1076		change_process_leader(event->proc, event->proc);
1077		destroy_event_handler(event->proc);
1078
1079	default:
1080		;
1081	}
1082
1083	return event;
1084}
1085
1086void
1087continue_after_vfork(struct process *proc)
1088{
1089	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1090	struct process_vfork_handler *handler = calloc(sizeof(*handler), 1);
1091	if (handler == NULL) {
1092		perror("malloc vfork handler");
1093		/* Carry on not bothering to treat the process as
1094		 * necessary.  */
1095		continue_process(proc->parent->pid);
1096		return;
1097	}
1098
1099	/* We must set up custom event handler, so that we see
1100	 * exec/exit events for the task itself.  */
1101	handler->super.on_event = process_vfork_on_event;
1102	install_event_handler(proc, &handler->super);
1103
1104	/* Make sure that the child is sole thread.  */
1105	assert(proc->leader == proc);
1106	assert(proc->next == NULL || proc->next->leader != proc);
1107
1108	/* Make sure that the child's parent is properly set up.  */
1109	assert(proc->parent != NULL);
1110	assert(proc->parent->leader != NULL);
1111
1112	change_process_leader(proc, proc->parent->leader);
1113}
1114
1115static int
1116is_mid_stopping(struct process *proc)
1117{
1118	return proc != NULL
1119		&& proc->event_handler != NULL
1120		&& proc->event_handler->on_event == &process_stopping_on_event;
1121}
1122
1123void
1124continue_after_syscall(struct process *proc, int sysnum, int ret_p)
1125{
1126	/* Don't continue if we are mid-stopping.  */
1127	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1128		debug(DEBUG_PROCESS,
1129		      "continue_after_syscall: don't continue %d",
1130		      proc->pid);
1131		return;
1132	}
1133	continue_process(proc->pid);
1134}
1135
1136void
1137continue_after_exec(struct process *proc)
1138{
1139	continue_process(proc->pid);
1140
1141	/* After the exec, we expect to hit the first executable
1142	 * instruction.
1143	 *
1144	 * XXX TODO It would be nice to have this removed, but then we
1145	 * need to do that also for initial call to wait_for_proc in
1146	 * execute_program.  In that case we could generate a
1147	 * EVENT_FIRST event or something, or maybe this could somehow
1148	 * be rolled into EVENT_NEW.  */
1149	wait_for_proc(proc->pid);
1150	continue_process(proc->pid);
1151}
1152
1153/* If ltrace gets SIGINT, the processes directly or indirectly run by
1154 * ltrace get it too.  We just have to wait long enough for the signal
1155 * to be delivered and the process terminated, which we notice and
1156 * exit ltrace, too.  So there's not much we need to do there.  We
1157 * want to keep tracing those processes as usual, in case they just
1158 * SIG_IGN the SIGINT to do their shutdown etc.
1159 *
1160 * For processes ran on the background, we want to install an exit
1161 * handler that stops all the threads, removes all breakpoints, and
1162 * detaches.
1163 */
1164void
1165os_ltrace_exiting(void)
1166{
1167	struct opt_p_t *it;
1168	for (it = opt_p; it != NULL; it = it->next) {
1169		struct process *proc = pid2proc(it->pid);
1170		if (proc == NULL || proc->leader == NULL)
1171			continue;
1172		if (ltrace_exiting_install_handler(proc->leader) < 0)
1173			fprintf(stderr,
1174				"Couldn't install exiting handler for %d.\n",
1175				proc->pid);
1176	}
1177}
1178
1179int
1180os_ltrace_exiting_sighandler(void)
1181{
1182	extern int linux_in_waitpid;
1183	if (linux_in_waitpid) {
1184		os_ltrace_exiting();
1185		return 1;
1186	}
1187	return 0;
1188}
1189
1190size_t
1191umovebytes(struct process *proc, void *addr, void *laddr, size_t len)
1192{
1193
1194	union {
1195		long a;
1196		char c[sizeof(long)];
1197	} a;
1198	int started = 0;
1199	size_t offset = 0, bytes_read = 0;
1200
1201	while (offset < len) {
1202		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1203		if (a.a == -1 && errno) {
1204			if (started && errno == EIO)
1205				return bytes_read;
1206			else
1207				return -1;
1208		}
1209		started = 1;
1210
1211		if (len - offset >= sizeof(long)) {
1212			memcpy(laddr + offset, &a.c[0], sizeof(long));
1213			bytes_read += sizeof(long);
1214		}
1215		else {
1216			memcpy(laddr + offset, &a.c[0], len - offset);
1217			bytes_read += (len - offset);
1218		}
1219		offset += sizeof(long);
1220	}
1221
1222	return bytes_read;
1223}
1224