trace.c revision 9e1e969838d9cc520abb96038aa98520c08c80b9
1#include "config.h"
2
3#include <asm/unistd.h>
4#include <sys/types.h>
5#include <sys/wait.h>
6#include <assert.h>
7#include <errno.h>
8#include <error.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <string.h>
12#include <unistd.h>
13
14#ifdef HAVE_LIBSELINUX
15# include <selinux/selinux.h>
16#endif
17
18#include "ptrace.h"
19#include "common.h"
20#include "breakpoint.h"
21#include "proc.h"
22#include "linux-gnu/trace.h"
23
24/* If the system headers did not provide the constants, hard-code the normal
25   values.  */
26#ifndef PTRACE_EVENT_FORK
27
28#define PTRACE_OLDSETOPTIONS    21
29#define PTRACE_SETOPTIONS       0x4200
30#define PTRACE_GETEVENTMSG      0x4201
31
32/* options set using PTRACE_SETOPTIONS */
33#define PTRACE_O_TRACESYSGOOD   0x00000001
34#define PTRACE_O_TRACEFORK      0x00000002
35#define PTRACE_O_TRACEVFORK     0x00000004
36#define PTRACE_O_TRACECLONE     0x00000008
37#define PTRACE_O_TRACEEXEC      0x00000010
38#define PTRACE_O_TRACEVFORKDONE 0x00000020
39#define PTRACE_O_TRACEEXIT      0x00000040
40
41/* Wait extended result codes for the above trace options.  */
42#define PTRACE_EVENT_FORK       1
43#define PTRACE_EVENT_VFORK      2
44#define PTRACE_EVENT_CLONE      3
45#define PTRACE_EVENT_EXEC       4
46#define PTRACE_EVENT_VFORK_DONE 5
47#define PTRACE_EVENT_EXIT       6
48
49#endif /* PTRACE_EVENT_FORK */
50
51#ifdef ARCH_HAVE_UMOVELONG
52extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
53int
54umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
55	return arch_umovelong (proc, addr, result, info);
56}
57#else
58/* Read a single long from the process's memory address 'addr' */
59int
60umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
61	long pointed_to;
62
63	errno = 0;
64	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
65	if (pointed_to == -1 && errno)
66		return -errno;
67
68	*result = pointed_to;
69	if (info) {
70		switch(info->type) {
71			case ARGTYPE_INT:
72				*result &= 0x00000000ffffffffUL;
73			default:
74				break;
75		};
76	}
77	return 0;
78}
79#endif
80
81void
82trace_fail_warning(pid_t pid)
83{
84	/* This was adapted from GDB.  */
85#ifdef HAVE_LIBSELINUX
86	static int checked = 0;
87	if (checked)
88		return;
89	checked = 1;
90
91	/* -1 is returned for errors, 0 if it has no effect, 1 if
92	 * PTRACE_ATTACH is forbidden.  */
93	if (security_get_boolean_active("deny_ptrace") == 1)
94		fprintf(stderr,
95"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
96"tracing other processes.  You can disable this process attach protection by\n"
97"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
98#endif /* HAVE_LIBSELINUX */
99}
100
101void
102trace_me(void)
103{
104	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
105	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
106		perror("PTRACE_TRACEME");
107		trace_fail_warning(getpid());
108		exit(1);
109	}
110}
111
112/* There's a (hopefully) brief period of time after the child process
113 * forks when we can't trace it yet.  Here we wait for kernel to
114 * prepare the process.  */
115int
116wait_for_proc(pid_t pid)
117{
118	/* man ptrace: PTRACE_ATTACH attaches to the process specified
119	   in pid.  The child is sent a SIGSTOP, but will not
120	   necessarily have stopped by the completion of this call;
121	   use wait() to wait for the child to stop. */
122	if (waitpid(pid, NULL, __WALL) != pid) {
123		perror ("trace_pid: waitpid");
124		return -1;
125	}
126
127	return 0;
128}
129
130int
131trace_pid(pid_t pid)
132{
133	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
134	/* This shouldn't emit error messages, as there are legitimate
135	 * reasons that the PID can't be attached: like it may have
136	 * already ended.  */
137	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0)
138		return -1;
139
140	return wait_for_proc(pid);
141}
142
143void
144trace_set_options(struct Process *proc)
145{
146	if (proc->tracesysgood & 0x80)
147		return;
148
149	pid_t pid = proc->pid;
150	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
151
152	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
153		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
154		PTRACE_O_TRACEEXEC;
155	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
156	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
157		perror("PTRACE_SETOPTIONS");
158		return;
159	}
160	proc->tracesysgood |= 0x80;
161}
162
163void
164untrace_pid(pid_t pid) {
165	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
166	ptrace(PTRACE_DETACH, pid, 1, 0);
167}
168
169void
170continue_after_signal(pid_t pid, int signum) {
171	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
172	ptrace(PTRACE_SYSCALL, pid, 0, signum);
173}
174
175static enum ecb_status
176event_for_pid(Event * event, void * data)
177{
178	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
179		return ecb_yield;
180	return ecb_cont;
181}
182
183static int
184have_events_for(pid_t pid)
185{
186	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
187}
188
189void
190continue_process(pid_t pid)
191{
192	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
193
194	/* Only really continue the process if there are no events in
195	   the queue for this process.  Otherwise just wait for the
196	   other events to arrive.  */
197	if (!have_events_for(pid))
198		/* We always trace syscalls to control fork(),
199		 * clone(), execve()... */
200		ptrace(PTRACE_SYSCALL, pid, 0, 0);
201	else
202		debug(DEBUG_PROCESS,
203		      "putting off the continue, events in que.");
204}
205
206static struct pid_task *
207get_task_info(struct pid_set * pids, pid_t pid)
208{
209	assert(pid != 0);
210	size_t i;
211	for (i = 0; i < pids->count; ++i)
212		if (pids->tasks[i].pid == pid)
213			return &pids->tasks[i];
214
215	return NULL;
216}
217
218static struct pid_task *
219add_task_info(struct pid_set * pids, pid_t pid)
220{
221	if (pids->count == pids->alloc) {
222		size_t ns = (2 * pids->alloc) ?: 4;
223		struct pid_task * n = realloc(pids->tasks,
224					      sizeof(*pids->tasks) * ns);
225		if (n == NULL)
226			return NULL;
227		pids->tasks = n;
228		pids->alloc = ns;
229	}
230	struct pid_task * task_info = &pids->tasks[pids->count++];
231	memset(task_info, 0, sizeof(*task_info));
232	task_info->pid = pid;
233	return task_info;
234}
235
236static enum callback_status
237task_stopped(struct Process *task, void *data)
238{
239	enum process_status st = process_status(task->pid);
240	if (data != NULL)
241		*(enum process_status *)data = st;
242
243	/* If the task is already stopped, don't worry about it.
244	 * Likewise if it managed to become a zombie or terminate in
245	 * the meantime.  This can happen when the whole thread group
246	 * is terminating.  */
247	switch (st) {
248	case ps_invalid:
249	case ps_tracing_stop:
250	case ps_zombie:
251		return CBS_CONT;
252	case ps_sleeping:
253	case ps_stop:
254	case ps_other:
255		return CBS_STOP;
256	}
257
258	abort ();
259}
260
261/* Task is blocked if it's stopped, or if it's a vfork parent.  */
262static enum callback_status
263task_blocked(struct Process *task, void *data)
264{
265	struct pid_set * pids = data;
266	struct pid_task * task_info = get_task_info(pids, task->pid);
267	if (task_info != NULL
268	    && task_info->vforked)
269		return CBS_CONT;
270
271	return task_stopped(task, NULL);
272}
273
274static Event *process_vfork_on_event(struct event_handler *super, Event *event);
275
276static enum callback_status
277task_vforked(struct Process *task, void *data)
278{
279	if (task->event_handler != NULL
280	    && task->event_handler->on_event == &process_vfork_on_event)
281		return CBS_STOP;
282	return CBS_CONT;
283}
284
285static int
286is_vfork_parent(struct Process *task)
287{
288	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
289}
290
291static enum callback_status
292send_sigstop(struct Process *task, void *data)
293{
294	Process * leader = task->leader;
295	struct pid_set * pids = data;
296
297	/* Look for pre-existing task record, or add new.  */
298	struct pid_task * task_info = get_task_info(pids, task->pid);
299	if (task_info == NULL)
300		task_info = add_task_info(pids, task->pid);
301	if (task_info == NULL) {
302		perror("send_sigstop: add_task_info");
303		destroy_event_handler(leader);
304		/* Signal failure upwards.  */
305		return CBS_STOP;
306	}
307
308	/* This task still has not been attached to.  It should be
309	   stopped by the kernel.  */
310	if (task->state == STATE_BEING_CREATED)
311		return CBS_CONT;
312
313	/* Don't bother sending SIGSTOP if we are already stopped, or
314	 * if we sent the SIGSTOP already, which happens when we are
315	 * handling "onexit" and inherited the handler from breakpoint
316	 * re-enablement.  */
317	enum process_status st;
318	if (task_stopped(task, &st) == CBS_CONT)
319		return CBS_CONT;
320	if (task_info->sigstopped) {
321		if (!task_info->delivered)
322			return CBS_CONT;
323		task_info->delivered = 0;
324	}
325
326	/* Also don't attempt to stop the process if it's a parent of
327	 * vforked process.  We set up event handler specially to hint
328	 * us.  In that case parent is in D state, which we use to
329	 * weed out unnecessary looping.  */
330	if (st == ps_sleeping
331	    && is_vfork_parent (task)) {
332		task_info->vforked = 1;
333		return CBS_CONT;
334	}
335
336	if (task_kill(task->pid, SIGSTOP) >= 0) {
337		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
338		task_info->sigstopped = 1;
339	} else
340		fprintf(stderr,
341			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
342
343	return CBS_CONT;
344}
345
346/* On certain kernels, detaching right after a singlestep causes the
347   tracee to be killed with a SIGTRAP (that even though the singlestep
348   was properly caught by waitpid.  The ugly workaround is to put a
349   breakpoint where IP points and let the process continue.  After
350   this the breakpoint can be retracted and the process detached.  */
351static void
352ugly_workaround(Process * proc)
353{
354	void * ip = get_instruction_pointer(proc);
355	struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip);
356	if (sbp != NULL)
357		enable_breakpoint(proc, sbp);
358	else
359		insert_breakpoint(proc, ip, NULL);
360	ptrace(PTRACE_CONT, proc->pid, 0, 0);
361}
362
363static void
364process_stopping_done(struct process_stopping_handler * self, Process * leader)
365{
366	debug(DEBUG_PROCESS, "process stopping done %d",
367	      self->task_enabling_breakpoint->pid);
368	size_t i;
369	if (!self->exiting) {
370		for (i = 0; i < self->pids.count; ++i)
371			if (self->pids.tasks[i].pid != 0
372			    && (self->pids.tasks[i].delivered
373				|| self->pids.tasks[i].sysret))
374				continue_process(self->pids.tasks[i].pid);
375		continue_process(self->task_enabling_breakpoint->pid);
376		destroy_event_handler(leader);
377	}
378
379	if (self->exiting) {
380	ugly_workaround:
381		self->state = psh_ugly_workaround;
382		ugly_workaround(self->task_enabling_breakpoint);
383	} else {
384		switch ((self->ugly_workaround_p)(self)) {
385		case CBS_FAIL:
386			/* xxx handle me */
387		case CBS_STOP:
388			break;
389		case CBS_CONT:
390			goto ugly_workaround;
391		}
392	}
393}
394
395/* Before we detach, we need to make sure that task's IP is on the
396 * edge of an instruction.  So for tasks that have a breakpoint event
397 * in the queue, we adjust the instruction pointer, just like
398 * continue_after_breakpoint does.  */
399static enum ecb_status
400undo_breakpoint(Event * event, void * data)
401{
402	if (event != NULL
403	    && event->proc->leader == data
404	    && event->type == EVENT_BREAKPOINT)
405		set_instruction_pointer(event->proc, event->e_un.brk_addr);
406	return ecb_cont;
407}
408
409static enum callback_status
410untrace_task(struct Process *task, void *data)
411{
412	if (task != data)
413		untrace_pid(task->pid);
414	return CBS_CONT;
415}
416
417static enum callback_status
418remove_task(struct Process *task, void *data)
419{
420	/* Don't untrace leader just yet.  */
421	if (task != data)
422		remove_process(task);
423	return CBS_CONT;
424}
425
426static void
427detach_process(Process * leader)
428{
429	each_qd_event(&undo_breakpoint, leader);
430	disable_all_breakpoints(leader);
431
432	/* Now untrace the process, if it was attached to by -p.  */
433	struct opt_p_t * it;
434	for (it = opt_p; it != NULL; it = it->next) {
435		Process * proc = pid2proc(it->pid);
436		if (proc == NULL)
437			continue;
438		if (proc->leader == leader) {
439			each_task(leader, NULL, &untrace_task, NULL);
440			break;
441		}
442	}
443	each_task(leader, NULL, &remove_task, leader);
444	destroy_event_handler(leader);
445	remove_task(leader, NULL);
446}
447
448static void
449handle_stopping_event(struct pid_task * task_info, Event ** eventp)
450{
451	/* Mark all events, so that we know whom to SIGCONT later.  */
452	if (task_info != NULL)
453		task_info->got_event = 1;
454
455	Event * event = *eventp;
456
457	/* In every state, sink SIGSTOP events for tasks that it was
458	 * sent to.  */
459	if (task_info != NULL
460	    && event->type == EVENT_SIGNAL
461	    && event->e_un.signum == SIGSTOP) {
462		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
463		if (task_info->sigstopped
464		    && !task_info->delivered) {
465			task_info->delivered = 1;
466			*eventp = NULL; // sink the event
467		} else
468			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
469				"sigstopped=%d and delivered=%d\n",
470				task_info->pid, task_info->sigstopped,
471				task_info->delivered);
472	}
473}
474
475/* Some SIGSTOPs may have not been delivered to their respective tasks
476 * yet.  They are still in the queue.  If we have seen an event for
477 * that process, continue it, so that the SIGSTOP can be delivered and
478 * caught by ltrace.  We don't mind that the process is after
479 * breakpoint (and therefore potentially doesn't have aligned IP),
480 * because the signal will be delivered without the process actually
481 * starting.  */
482static void
483continue_for_sigstop_delivery(struct pid_set * pids)
484{
485	size_t i;
486	for (i = 0; i < pids->count; ++i) {
487		if (pids->tasks[i].pid != 0
488		    && pids->tasks[i].sigstopped
489		    && !pids->tasks[i].delivered
490		    && pids->tasks[i].got_event) {
491			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
492			      pids->tasks[i].pid);
493			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
494		}
495	}
496}
497
498static int
499event_exit_p(Event * event)
500{
501	return event != NULL && (event->type == EVENT_EXIT
502				 || event->type == EVENT_EXIT_SIGNAL);
503}
504
505static int
506event_exit_or_none_p(Event * event)
507{
508	return event == NULL || event_exit_p(event)
509		|| event->type == EVENT_NONE;
510}
511
512static int
513await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
514		       Event * event)
515{
516	/* If we still didn't get our SIGSTOP, continue the process
517	 * and carry on.  */
518	if (event != NULL && !event_exit_or_none_p(event)
519	    && task_info != NULL && task_info->sigstopped) {
520		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
521		      task_info->pid);
522		/* We should get the signal the first thing
523		 * after this, so it should be OK to continue
524		 * even if we are over a breakpoint.  */
525		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
526
527	} else {
528		/* If all SIGSTOPs were delivered, uninstall the
529		 * handler and continue everyone.  */
530		/* XXX I suspect that we should check tasks that are
531		 * still around.  Is things are now, there should be a
532		 * race between waiting for everyone to stop and one
533		 * of the tasks exiting.  */
534		int all_clear = 1;
535		size_t i;
536		for (i = 0; i < pids->count; ++i)
537			if (pids->tasks[i].pid != 0
538			    && pids->tasks[i].sigstopped
539			    && !pids->tasks[i].delivered) {
540				all_clear = 0;
541				break;
542			}
543		return all_clear;
544	}
545
546	return 0;
547}
548
549static int
550all_stops_accountable(struct pid_set * pids)
551{
552	size_t i;
553	for (i = 0; i < pids->count; ++i)
554		if (pids->tasks[i].pid != 0
555		    && !pids->tasks[i].got_event
556		    && !have_events_for(pids->tasks[i].pid))
557			return 0;
558	return 1;
559}
560
561/* The protocol is: 0 for success, negative for failure, positive if
562 * default singlestep is to be used.  */
563int arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
564			   int (*add_cb)(void *addr, void *data),
565			   void *add_cb_data);
566
567#ifndef ARCH_HAVE_ATOMIC_SINGLESTEP
568int
569arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
570		       int (*add_cb)(void *addr, void *data),
571		       void *add_cb_data)
572{
573	return 1;
574}
575#endif
576
577static int
578atomic_singlestep_add_bp(void *addr, void *data)
579{
580	struct process_stopping_handler *self = data;
581	struct Process *proc = self->task_enabling_breakpoint;
582
583	/* Only support single address as of now.  */
584	assert(self->atomic_skip_bp_addr == NULL);
585
586	self->atomic_skip_bp_addr = addr + 4;
587	insert_breakpoint(proc->leader, self->atomic_skip_bp_addr, NULL);
588
589	return 0;
590}
591
592static int
593singlestep(struct process_stopping_handler *self)
594{
595	struct Process *proc = self->task_enabling_breakpoint;
596
597	int status = arch_atomic_singlestep(self->task_enabling_breakpoint,
598					    self->breakpoint_being_enabled,
599					    &atomic_singlestep_add_bp, self);
600
601	/* Propagate failure and success.  */
602	if (status <= 0)
603		return status;
604
605	/* Otherwise do the default action: singlestep.  */
606	debug(1, "PTRACE_SINGLESTEP");
607	if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) {
608		perror("PTRACE_SINGLESTEP");
609		return -1;
610	}
611	return 0;
612}
613
614static void
615post_singlestep(struct process_stopping_handler *self,
616		struct Event **eventp)
617{
618	continue_for_sigstop_delivery(&self->pids);
619
620	if ((*eventp)->type == EVENT_BREAKPOINT)
621		*eventp = NULL; // handled
622
623	if (self->atomic_skip_bp_addr != 0)
624		delete_breakpoint(self->task_enabling_breakpoint->leader,
625				  self->atomic_skip_bp_addr);
626
627	self->breakpoint_being_enabled = NULL;
628}
629
630static void
631singlestep_error(struct process_stopping_handler *self)
632{
633	struct Process *teb = self->task_enabling_breakpoint;
634	struct breakpoint *sbp = self->breakpoint_being_enabled;
635	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
636		teb->pid, sbp->libsym != NULL ? sbp->libsym->name : NULL,
637		sbp->addr, get_instruction_pointer(teb));
638	delete_breakpoint(teb->leader, sbp->addr);
639}
640
641static void
642pt_continue(struct process_stopping_handler *self)
643{
644	struct Process *teb = self->task_enabling_breakpoint;
645	debug(1, "PTRACE_CONT");
646	ptrace(PTRACE_CONT, teb->pid, 0, 0);
647}
648
649static void
650pt_singlestep(struct process_stopping_handler *self)
651{
652	if (singlestep(self) < 0)
653		singlestep_error(self);
654}
655
656static void
657disable_and(struct process_stopping_handler *self,
658	    void (*do_this)(struct process_stopping_handler *self))
659{
660	struct Process *teb = self->task_enabling_breakpoint;
661	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
662	if (self->breakpoint_being_enabled->enabled)
663		disable_breakpoint(teb, self->breakpoint_being_enabled);
664	(do_this)(self);
665	self->state = psh_singlestep;
666}
667
668void
669linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
670{
671	disable_and(self, &pt_singlestep);
672}
673
674void
675linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
676{
677	disable_and(self, &pt_continue);
678}
679
680/* This event handler is installed when we are in the process of
681 * stopping the whole thread group to do the pointer re-enablement for
682 * one of the threads.  We pump all events to the queue for later
683 * processing while we wait for all the threads to stop.  When this
684 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
685 * re-enable, and continue everyone.  */
686static Event *
687process_stopping_on_event(struct event_handler *super, Event *event)
688{
689	struct process_stopping_handler * self = (void *)super;
690	Process * task = event->proc;
691	Process * leader = task->leader;
692	Process * teb = self->task_enabling_breakpoint;
693
694	debug(DEBUG_PROCESS,
695	      "process_stopping_on_event: pid %d; event type %d; state %d",
696	      task->pid, event->type, self->state);
697
698	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
699	if (task_info == NULL)
700		fprintf(stderr, "new task??? %d\n", task->pid);
701	handle_stopping_event(task_info, &event);
702
703	int state = self->state;
704	int event_to_queue = !event_exit_or_none_p(event);
705
706	/* Deactivate the entry if the task exits.  */
707	if (event_exit_p(event) && task_info != NULL)
708		task_info->pid = 0;
709
710	/* Always handle sysrets.  Whether sysret occurred and what
711	 * sys it rets from may need to be determined based on process
712	 * stack, so we need to keep that in sync with reality.  Note
713	 * that we don't continue the process after the sysret is
714	 * handled.  See continue_after_syscall.  */
715	if (event != NULL && event->type == EVENT_SYSRET) {
716		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
717		event_to_queue = 0;
718		task_info->sysret = 1;
719	}
720
721	switch (state) {
722	case psh_stopping:
723		/* If everyone is stopped, singlestep.  */
724		if (each_task(leader, NULL, &task_blocked,
725			      &self->pids) == NULL) {
726			(self->on_all_stopped)(self);
727			state = self->state;
728		}
729		break;
730
731	case psh_singlestep:
732		/* In singlestep state, breakpoint signifies that we
733		 * have now stepped, and can re-enable the breakpoint.  */
734		if (event != NULL && task == teb) {
735
736			/* If we got SIGNAL instead of BREAKPOINT,
737			 * then this is not singlestep at all.  */
738			if (event->type == EVENT_SIGNAL) {
739			do_singlestep:
740				if (singlestep(self) < 0) {
741					singlestep_error(self);
742					post_singlestep(self, &event);
743					goto psh_sinking;
744				}
745				break;
746			} else {
747				switch ((self->keep_stepping_p)(self)) {
748				case CBS_FAIL:
749					/* XXX handle me */
750				case CBS_STOP:
751					break;
752				case CBS_CONT:
753					/* Sink singlestep event.  */
754					if (event->type == EVENT_BREAKPOINT)
755						event = NULL;
756					goto do_singlestep;
757				}
758			}
759
760			/* Re-enable the breakpoint that we are
761			 * stepping over.  */
762			struct breakpoint *sbp = self->breakpoint_being_enabled;
763			if (sbp->enabled)
764				enable_breakpoint(teb, sbp);
765
766			/* If this was caused by a real breakpoint, as
767			 * opposed to a singlestep, assume that it's
768			 * an artificial breakpoint installed for some
769			 * reason for the re-enablement.  In that case
770			 * handle it.  */
771			target_address_t ip = get_instruction_pointer(task);
772			struct breakpoint *other = address2bpstruct(leader, ip);
773			if (other != NULL)
774				breakpoint_on_hit(other, task);
775
776			post_singlestep(self, &event);
777			goto psh_sinking;
778		}
779		break;
780
781	psh_sinking:
782		state = self->state = psh_sinking;
783	case psh_sinking:
784		if (await_sigstop_delivery(&self->pids, task_info, event))
785			process_stopping_done(self, leader);
786		break;
787
788	case psh_ugly_workaround:
789		if (event == NULL)
790			break;
791		if (event->type == EVENT_BREAKPOINT) {
792			undo_breakpoint(event, leader);
793			if (task == teb)
794				self->task_enabling_breakpoint = NULL;
795		}
796		if (self->task_enabling_breakpoint == NULL
797		    && all_stops_accountable(&self->pids)) {
798			undo_breakpoint(event, leader);
799			detach_process(leader);
800			event = NULL; // handled
801		}
802	}
803
804	if (event != NULL && event_to_queue) {
805		enque_event(event);
806		event = NULL; // sink the event
807	}
808
809	return event;
810}
811
812static void
813process_stopping_destroy(struct event_handler *super)
814{
815	struct process_stopping_handler * self = (void *)super;
816	free(self->pids.tasks);
817}
818
819static enum callback_status
820no(struct process_stopping_handler *self)
821{
822	return CBS_STOP;
823}
824
825int
826process_install_stopping_handler(struct Process *proc, struct breakpoint *sbp,
827				 void (*as)(struct process_stopping_handler *),
828				 enum callback_status (*ks)
829					 (struct process_stopping_handler *),
830				 enum callback_status (*uw)
831					(struct process_stopping_handler *))
832{
833	debug(DEBUG_FUNCTION,
834	      "process_install_stopping_handler: pid=%d", proc->pid);
835
836	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
837	if (handler == NULL)
838		return -1;
839
840	if (as == NULL)
841		as = &linux_ptrace_disable_and_singlestep;
842	if (ks == NULL)
843		ks = &no;
844	if (uw == NULL)
845		uw = &no;
846
847	handler->super.on_event = process_stopping_on_event;
848	handler->super.destroy = process_stopping_destroy;
849	handler->task_enabling_breakpoint = proc;
850	handler->breakpoint_being_enabled = sbp;
851	handler->on_all_stopped = as;
852	handler->keep_stepping_p = ks;
853	handler->ugly_workaround_p = uw;
854
855	install_event_handler(proc->leader, &handler->super);
856
857	if (each_task(proc->leader, NULL, &send_sigstop,
858		      &handler->pids) != NULL) {
859		destroy_event_handler(proc);
860		return -1;
861	}
862
863	/* And deliver the first fake event, in case all the
864	 * conditions are already fulfilled.  */
865	Event ev = {
866		.type = EVENT_NONE,
867		.proc = proc,
868	};
869	process_stopping_on_event(&handler->super, &ev);
870
871	return 0;
872}
873
874void
875continue_after_breakpoint(Process *proc, struct breakpoint *sbp)
876{
877	debug(DEBUG_PROCESS,
878	      "continue_after_breakpoint: pid=%d, addr=%p",
879	      proc->pid, sbp->addr);
880
881	set_instruction_pointer(proc, sbp->addr);
882
883	if (sbp->enabled == 0) {
884		continue_process(proc->pid);
885	} else {
886#if defined __sparc__  || defined __ia64___ || defined __mips__
887		/* we don't want to singlestep here */
888		continue_process(proc->pid);
889#else
890		if (process_install_stopping_handler
891		    (proc, sbp, NULL, NULL, NULL) < 0) {
892			perror("process_stopping_handler_create");
893			/* Carry on not bothering to re-enable.  */
894			continue_process(proc->pid);
895		}
896#endif
897	}
898}
899
900/**
901 * Ltrace exit.  When we are about to exit, we have to go through all
902 * the processes, stop them all, remove all the breakpoints, and then
903 * detach the processes that we attached to using -p.  If we left the
904 * other tasks running, they might hit stray return breakpoints and
905 * produce artifacts, so we better stop everyone, even if it's a bit
906 * of extra work.
907 */
908struct ltrace_exiting_handler
909{
910	struct event_handler super;
911	struct pid_set pids;
912};
913
914static Event *
915ltrace_exiting_on_event(struct event_handler *super, Event *event)
916{
917	struct ltrace_exiting_handler * self = (void *)super;
918	Process * task = event->proc;
919	Process * leader = task->leader;
920
921	debug(DEBUG_PROCESS,
922	      "ltrace_exiting_on_event: pid %d; event type %d",
923	      task->pid, event->type);
924
925	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
926	handle_stopping_event(task_info, &event);
927
928	if (event != NULL && event->type == EVENT_BREAKPOINT)
929		undo_breakpoint(event, leader);
930
931	if (await_sigstop_delivery(&self->pids, task_info, event)
932	    && all_stops_accountable(&self->pids))
933		detach_process(leader);
934
935	/* Sink all non-exit events.  We are about to exit, so we
936	 * don't bother with queuing them. */
937	if (event_exit_or_none_p(event))
938		return event;
939
940	return NULL;
941}
942
943static void
944ltrace_exiting_destroy(struct event_handler *super)
945{
946	struct ltrace_exiting_handler * self = (void *)super;
947	free(self->pids.tasks);
948}
949
950static int
951ltrace_exiting_install_handler(Process * proc)
952{
953	/* Only install to leader.  */
954	if (proc->leader != proc)
955		return 0;
956
957	/* Perhaps we are already installed, if the user passed
958	 * several -p options that are tasks of one process.  */
959	if (proc->event_handler != NULL
960	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
961		return 0;
962
963	/* If stopping handler is already present, let it do the
964	 * work.  */
965	if (proc->event_handler != NULL) {
966		assert(proc->event_handler->on_event
967		       == &process_stopping_on_event);
968		struct process_stopping_handler * other
969			= (void *)proc->event_handler;
970		other->exiting = 1;
971		return 0;
972	}
973
974	struct ltrace_exiting_handler * handler
975		= calloc(sizeof(*handler), 1);
976	if (handler == NULL) {
977		perror("malloc exiting handler");
978	fatal:
979		/* XXXXXXXXXXXXXXXXXXX fixme */
980		return -1;
981	}
982
983	handler->super.on_event = ltrace_exiting_on_event;
984	handler->super.destroy = ltrace_exiting_destroy;
985	install_event_handler(proc->leader, &handler->super);
986
987	if (each_task(proc->leader, NULL, &send_sigstop,
988		      &handler->pids) != NULL)
989		goto fatal;
990
991	return 0;
992}
993
994/*
995 * When the traced process vforks, it's suspended until the child
996 * process calls _exit or exec*.  In the meantime, the two share the
997 * address space.
998 *
999 * The child process should only ever call _exit or exec*, but we
1000 * can't count on that (it's not the role of ltrace to policy, but to
1001 * observe).  In any case, we will _at least_ have to deal with
1002 * removal of vfork return breakpoint (which we have to smuggle back
1003 * in, so that the parent can see it, too), and introduction of exec*
1004 * return breakpoint.  Since we already have both breakpoint actions
1005 * to deal with, we might as well support it all.
1006 *
1007 * The gist is that we pretend that the child is in a thread group
1008 * with its parent, and handle it as a multi-threaded case, with the
1009 * exception that we know that the parent is blocked, and don't
1010 * attempt to stop it.  When the child execs, we undo the setup.
1011 */
1012
1013struct process_vfork_handler
1014{
1015	struct event_handler super;
1016	void * bp_addr;
1017};
1018
1019static Event *
1020process_vfork_on_event(struct event_handler *super, Event *event)
1021{
1022	debug(DEBUG_PROCESS,
1023	      "process_vfork_on_event: pid %d; event type %d",
1024	      event->proc->pid, event->type);
1025
1026	struct process_vfork_handler * self = (void *)super;
1027	struct breakpoint *sbp;
1028	assert(self != NULL);
1029
1030	switch (event->type) {
1031	case EVENT_BREAKPOINT:
1032		/* Remember the vfork return breakpoint.  */
1033		if (self->bp_addr == NULL)
1034			self->bp_addr = event->e_un.brk_addr;
1035		break;
1036
1037	case EVENT_EXIT:
1038	case EVENT_EXIT_SIGNAL:
1039	case EVENT_EXEC:
1040		/* Smuggle back in the vfork return breakpoint, so
1041		 * that our parent can trip over it once again.  */
1042		if (self->bp_addr != NULL) {
1043			sbp = dict_find_entry(event->proc->leader->breakpoints,
1044					      self->bp_addr);
1045			if (sbp != NULL)
1046				insert_breakpoint(event->proc->parent,
1047						  self->bp_addr, sbp->libsym);
1048		}
1049
1050		continue_process(event->proc->parent->pid);
1051
1052		/* Remove the leader that we artificially set up
1053		 * earlier.  */
1054		change_process_leader(event->proc, event->proc);
1055		destroy_event_handler(event->proc);
1056
1057	default:
1058		;
1059	}
1060
1061	return event;
1062}
1063
1064void
1065continue_after_vfork(Process * proc)
1066{
1067	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1068	struct process_vfork_handler * handler = calloc(sizeof(*handler), 1);
1069	if (handler == NULL) {
1070		perror("malloc vfork handler");
1071		/* Carry on not bothering to treat the process as
1072		 * necessary.  */
1073		continue_process(proc->parent->pid);
1074		return;
1075	}
1076
1077	/* We must set up custom event handler, so that we see
1078	 * exec/exit events for the task itself.  */
1079	handler->super.on_event = process_vfork_on_event;
1080	install_event_handler(proc, &handler->super);
1081
1082	/* Make sure that the child is sole thread.  */
1083	assert(proc->leader == proc);
1084	assert(proc->next == NULL || proc->next->leader != proc);
1085
1086	/* Make sure that the child's parent is properly set up.  */
1087	assert(proc->parent != NULL);
1088	assert(proc->parent->leader != NULL);
1089
1090	change_process_leader(proc, proc->parent->leader);
1091}
1092
1093static int
1094is_mid_stopping(Process *proc)
1095{
1096	return proc != NULL
1097		&& proc->event_handler != NULL
1098		&& proc->event_handler->on_event == &process_stopping_on_event;
1099}
1100
1101void
1102continue_after_syscall(Process * proc, int sysnum, int ret_p)
1103{
1104	/* Don't continue if we are mid-stopping.  */
1105	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1106		debug(DEBUG_PROCESS,
1107		      "continue_after_syscall: don't continue %d",
1108		      proc->pid);
1109		return;
1110	}
1111	continue_process(proc->pid);
1112}
1113
1114/* If ltrace gets SIGINT, the processes directly or indirectly run by
1115 * ltrace get it too.  We just have to wait long enough for the signal
1116 * to be delivered and the process terminated, which we notice and
1117 * exit ltrace, too.  So there's not much we need to do there.  We
1118 * want to keep tracing those processes as usual, in case they just
1119 * SIG_IGN the SIGINT to do their shutdown etc.
1120 *
1121 * For processes ran on the background, we want to install an exit
1122 * handler that stops all the threads, removes all breakpoints, and
1123 * detaches.
1124 */
1125void
1126os_ltrace_exiting(void)
1127{
1128	struct opt_p_t * it;
1129	for (it = opt_p; it != NULL; it = it->next) {
1130		Process * proc = pid2proc(it->pid);
1131		if (proc == NULL || proc->leader == NULL)
1132			continue;
1133		if (ltrace_exiting_install_handler(proc->leader) < 0)
1134			fprintf(stderr,
1135				"Couldn't install exiting handler for %d.\n",
1136				proc->pid);
1137	}
1138}
1139
1140int
1141os_ltrace_exiting_sighandler(void)
1142{
1143	extern int linux_in_waitpid;
1144	if (linux_in_waitpid) {
1145		os_ltrace_exiting();
1146		return 1;
1147	}
1148	return 0;
1149}
1150
1151size_t
1152umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
1153
1154	union {
1155		long a;
1156		char c[sizeof(long)];
1157	} a;
1158	int started = 0;
1159	size_t offset = 0, bytes_read = 0;
1160
1161	while (offset < len) {
1162		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1163		if (a.a == -1 && errno) {
1164			if (started && errno == EIO)
1165				return bytes_read;
1166			else
1167				return -1;
1168		}
1169		started = 1;
1170
1171		if (len - offset >= sizeof(long)) {
1172			memcpy(laddr + offset, &a.c[0], sizeof(long));
1173			bytes_read += sizeof(long);
1174		}
1175		else {
1176			memcpy(laddr + offset, &a.c[0], len - offset);
1177			bytes_read += (len - offset);
1178		}
1179		offset += sizeof(long);
1180	}
1181
1182	return bytes_read;
1183}
1184
1185/* Read a series of bytes starting at the process's memory address
1186   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
1187   have been read.
1188*/
1189int
1190umovestr(Process *proc, void *addr, int len, void *laddr) {
1191	union {
1192		long a;
1193		char c[sizeof(long)];
1194	} a;
1195	unsigned i;
1196	int offset = 0;
1197
1198	while (offset < len) {
1199		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1200		for (i = 0; i < sizeof(long); i++) {
1201			if (a.c[i] && offset + (signed)i < len) {
1202				*(char *)(laddr + offset + i) = a.c[i];
1203			} else {
1204				*(char *)(laddr + offset + i) = '\0';
1205				return 0;
1206			}
1207		}
1208		offset += sizeof(long);
1209	}
1210	*(char *)(laddr + offset) = '\0';
1211	return 0;
1212}
1213