trace.c revision c897cb796dc4a7d256cbfbf0137ef7cdff9e8ece
1#include "config.h"
2
3#include <asm/unistd.h>
4#include <sys/types.h>
5#include <sys/wait.h>
6#include <assert.h>
7#include <errno.h>
8#include <stdio.h>
9#include <stdlib.h>
10#include <string.h>
11#include <unistd.h>
12
13#ifdef HAVE_LIBSELINUX
14# include <selinux/selinux.h>
15#endif
16
17#include "ptrace.h"
18#include "common.h"
19#include "breakpoint.h"
20#include "proc.h"
21#include "linux-gnu/trace.h"
22
23/* If the system headers did not provide the constants, hard-code the normal
24   values.  */
25#ifndef PTRACE_EVENT_FORK
26
27#define PTRACE_OLDSETOPTIONS    21
28#define PTRACE_SETOPTIONS       0x4200
29#define PTRACE_GETEVENTMSG      0x4201
30
31/* options set using PTRACE_SETOPTIONS */
32#define PTRACE_O_TRACESYSGOOD   0x00000001
33#define PTRACE_O_TRACEFORK      0x00000002
34#define PTRACE_O_TRACEVFORK     0x00000004
35#define PTRACE_O_TRACECLONE     0x00000008
36#define PTRACE_O_TRACEEXEC      0x00000010
37#define PTRACE_O_TRACEVFORKDONE 0x00000020
38#define PTRACE_O_TRACEEXIT      0x00000040
39
40/* Wait extended result codes for the above trace options.  */
41#define PTRACE_EVENT_FORK       1
42#define PTRACE_EVENT_VFORK      2
43#define PTRACE_EVENT_CLONE      3
44#define PTRACE_EVENT_EXEC       4
45#define PTRACE_EVENT_VFORK_DONE 5
46#define PTRACE_EVENT_EXIT       6
47
48#endif /* PTRACE_EVENT_FORK */
49
50#ifdef ARCH_HAVE_UMOVELONG
51extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
52int
53umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
54	return arch_umovelong (proc, addr, result, info);
55}
56#else
57/* Read a single long from the process's memory address 'addr' */
58int
59umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
60	long pointed_to;
61
62	errno = 0;
63	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
64	if (pointed_to == -1 && errno)
65		return -errno;
66
67	*result = pointed_to;
68	if (info) {
69		switch(info->type) {
70			case ARGTYPE_INT:
71				*result &= 0x00000000ffffffffUL;
72			default:
73				break;
74		};
75	}
76	return 0;
77}
78#endif
79
80void
81trace_fail_warning(pid_t pid)
82{
83	/* This was adapted from GDB.  */
84#ifdef HAVE_LIBSELINUX
85	static int checked = 0;
86	if (checked)
87		return;
88	checked = 1;
89
90	/* -1 is returned for errors, 0 if it has no effect, 1 if
91	 * PTRACE_ATTACH is forbidden.  */
92	if (security_get_boolean_active("deny_ptrace") == 1)
93		fprintf(stderr,
94"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
95"tracing other processes.  You can disable this process attach protection by\n"
96"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
97#endif /* HAVE_LIBSELINUX */
98}
99
100void
101trace_me(void)
102{
103	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
104	if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
105		perror("PTRACE_TRACEME");
106		trace_fail_warning(getpid());
107		exit(1);
108	}
109}
110
111/* There's a (hopefully) brief period of time after the child process
112 * forks when we can't trace it yet.  Here we wait for kernel to
113 * prepare the process.  */
114int
115wait_for_proc(pid_t pid)
116{
117	/* man ptrace: PTRACE_ATTACH attaches to the process specified
118	   in pid.  The child is sent a SIGSTOP, but will not
119	   necessarily have stopped by the completion of this call;
120	   use wait() to wait for the child to stop. */
121	if (waitpid(pid, NULL, __WALL) != pid) {
122		perror ("trace_pid: waitpid");
123		return -1;
124	}
125
126	return 0;
127}
128
129int
130trace_pid(pid_t pid)
131{
132	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
133	/* This shouldn't emit error messages, as there are legitimate
134	 * reasons that the PID can't be attached: like it may have
135	 * already ended.  */
136	if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
137		return -1;
138
139	return wait_for_proc(pid);
140}
141
142void
143trace_set_options(struct Process *proc)
144{
145	if (proc->tracesysgood & 0x80)
146		return;
147
148	pid_t pid = proc->pid;
149	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
150
151	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
152		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
153		PTRACE_O_TRACEEXEC;
154	if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
155	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
156		perror("PTRACE_SETOPTIONS");
157		return;
158	}
159	proc->tracesysgood |= 0x80;
160}
161
162void
163untrace_pid(pid_t pid) {
164	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
165	ptrace(PTRACE_DETACH, pid, 0, 0);
166}
167
168void
169continue_after_signal(pid_t pid, int signum)
170{
171	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
172	      pid, signum);
173	ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
174}
175
176static enum ecb_status
177event_for_pid(Event * event, void * data)
178{
179	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
180		return ecb_yield;
181	return ecb_cont;
182}
183
184static int
185have_events_for(pid_t pid)
186{
187	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
188}
189
190void
191continue_process(pid_t pid)
192{
193	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
194
195	/* Only really continue the process if there are no events in
196	   the queue for this process.  Otherwise just wait for the
197	   other events to arrive.  */
198	if (!have_events_for(pid))
199		/* We always trace syscalls to control fork(),
200		 * clone(), execve()... */
201		ptrace(PTRACE_SYSCALL, pid, 0, 0);
202	else
203		debug(DEBUG_PROCESS,
204		      "putting off the continue, events in que.");
205}
206
207static struct pid_task *
208get_task_info(struct pid_set * pids, pid_t pid)
209{
210	assert(pid != 0);
211	size_t i;
212	for (i = 0; i < pids->count; ++i)
213		if (pids->tasks[i].pid == pid)
214			return &pids->tasks[i];
215
216	return NULL;
217}
218
219static struct pid_task *
220add_task_info(struct pid_set * pids, pid_t pid)
221{
222	if (pids->count == pids->alloc) {
223		size_t ns = (2 * pids->alloc) ?: 4;
224		struct pid_task * n = realloc(pids->tasks,
225					      sizeof(*pids->tasks) * ns);
226		if (n == NULL)
227			return NULL;
228		pids->tasks = n;
229		pids->alloc = ns;
230	}
231	struct pid_task * task_info = &pids->tasks[pids->count++];
232	memset(task_info, 0, sizeof(*task_info));
233	task_info->pid = pid;
234	return task_info;
235}
236
237static enum callback_status
238task_stopped(struct Process *task, void *data)
239{
240	enum process_status st = process_status(task->pid);
241	if (data != NULL)
242		*(enum process_status *)data = st;
243
244	/* If the task is already stopped, don't worry about it.
245	 * Likewise if it managed to become a zombie or terminate in
246	 * the meantime.  This can happen when the whole thread group
247	 * is terminating.  */
248	switch (st) {
249	case ps_invalid:
250	case ps_tracing_stop:
251	case ps_zombie:
252		return CBS_CONT;
253	case ps_sleeping:
254	case ps_stop:
255	case ps_other:
256		return CBS_STOP;
257	}
258
259	abort ();
260}
261
262/* Task is blocked if it's stopped, or if it's a vfork parent.  */
263static enum callback_status
264task_blocked(struct Process *task, void *data)
265{
266	struct pid_set * pids = data;
267	struct pid_task * task_info = get_task_info(pids, task->pid);
268	if (task_info != NULL
269	    && task_info->vforked)
270		return CBS_CONT;
271
272	return task_stopped(task, NULL);
273}
274
275static Event *process_vfork_on_event(struct event_handler *super, Event *event);
276
277static enum callback_status
278task_vforked(struct Process *task, void *data)
279{
280	if (task->event_handler != NULL
281	    && task->event_handler->on_event == &process_vfork_on_event)
282		return CBS_STOP;
283	return CBS_CONT;
284}
285
286static int
287is_vfork_parent(struct Process *task)
288{
289	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
290}
291
292static enum callback_status
293send_sigstop(struct Process *task, void *data)
294{
295	Process * leader = task->leader;
296	struct pid_set * pids = data;
297
298	/* Look for pre-existing task record, or add new.  */
299	struct pid_task * task_info = get_task_info(pids, task->pid);
300	if (task_info == NULL)
301		task_info = add_task_info(pids, task->pid);
302	if (task_info == NULL) {
303		perror("send_sigstop: add_task_info");
304		destroy_event_handler(leader);
305		/* Signal failure upwards.  */
306		return CBS_STOP;
307	}
308
309	/* This task still has not been attached to.  It should be
310	   stopped by the kernel.  */
311	if (task->state == STATE_BEING_CREATED)
312		return CBS_CONT;
313
314	/* Don't bother sending SIGSTOP if we are already stopped, or
315	 * if we sent the SIGSTOP already, which happens when we are
316	 * handling "onexit" and inherited the handler from breakpoint
317	 * re-enablement.  */
318	enum process_status st;
319	if (task_stopped(task, &st) == CBS_CONT)
320		return CBS_CONT;
321	if (task_info->sigstopped) {
322		if (!task_info->delivered)
323			return CBS_CONT;
324		task_info->delivered = 0;
325	}
326
327	/* Also don't attempt to stop the process if it's a parent of
328	 * vforked process.  We set up event handler specially to hint
329	 * us.  In that case parent is in D state, which we use to
330	 * weed out unnecessary looping.  */
331	if (st == ps_sleeping
332	    && is_vfork_parent (task)) {
333		task_info->vforked = 1;
334		return CBS_CONT;
335	}
336
337	if (task_kill(task->pid, SIGSTOP) >= 0) {
338		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
339		task_info->sigstopped = 1;
340	} else
341		fprintf(stderr,
342			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
343
344	return CBS_CONT;
345}
346
347/* On certain kernels, detaching right after a singlestep causes the
348   tracee to be killed with a SIGTRAP (that even though the singlestep
349   was properly caught by waitpid.  The ugly workaround is to put a
350   breakpoint where IP points and let the process continue.  After
351   this the breakpoint can be retracted and the process detached.  */
352static void
353ugly_workaround(Process * proc)
354{
355	void * ip = get_instruction_pointer(proc);
356	struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip);
357	if (sbp != NULL)
358		enable_breakpoint(proc, sbp);
359	else
360		insert_breakpoint(proc, ip, NULL);
361	ptrace(PTRACE_CONT, proc->pid, 0, 0);
362}
363
364static void
365process_stopping_done(struct process_stopping_handler * self, Process * leader)
366{
367	debug(DEBUG_PROCESS, "process stopping done %d",
368	      self->task_enabling_breakpoint->pid);
369	size_t i;
370	if (!self->exiting) {
371		for (i = 0; i < self->pids.count; ++i)
372			if (self->pids.tasks[i].pid != 0
373			    && (self->pids.tasks[i].delivered
374				|| self->pids.tasks[i].sysret))
375				continue_process(self->pids.tasks[i].pid);
376		continue_process(self->task_enabling_breakpoint->pid);
377		destroy_event_handler(leader);
378	}
379
380	if (self->exiting) {
381	ugly_workaround:
382		self->state = psh_ugly_workaround;
383		ugly_workaround(self->task_enabling_breakpoint);
384	} else {
385		switch ((self->ugly_workaround_p)(self)) {
386		case CBS_FAIL:
387			/* xxx handle me */
388		case CBS_STOP:
389			break;
390		case CBS_CONT:
391			goto ugly_workaround;
392		}
393	}
394}
395
396/* Before we detach, we need to make sure that task's IP is on the
397 * edge of an instruction.  So for tasks that have a breakpoint event
398 * in the queue, we adjust the instruction pointer, just like
399 * continue_after_breakpoint does.  */
400static enum ecb_status
401undo_breakpoint(Event * event, void * data)
402{
403	if (event != NULL
404	    && event->proc->leader == data
405	    && event->type == EVENT_BREAKPOINT)
406		set_instruction_pointer(event->proc, event->e_un.brk_addr);
407	return ecb_cont;
408}
409
410static enum callback_status
411untrace_task(struct Process *task, void *data)
412{
413	if (task != data)
414		untrace_pid(task->pid);
415	return CBS_CONT;
416}
417
418static enum callback_status
419remove_task(struct Process *task, void *data)
420{
421	/* Don't untrace leader just yet.  */
422	if (task != data)
423		remove_process(task);
424	return CBS_CONT;
425}
426
427static enum callback_status
428retract_breakpoint_cb(struct Process *proc, struct breakpoint *bp, void *data)
429{
430	breakpoint_on_retract(bp, proc);
431	return CBS_CONT;
432}
433
434static void
435detach_process(Process * leader)
436{
437	each_qd_event(&undo_breakpoint, leader);
438	disable_all_breakpoints(leader);
439	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
440
441	/* Now untrace the process, if it was attached to by -p.  */
442	struct opt_p_t * it;
443	for (it = opt_p; it != NULL; it = it->next) {
444		Process * proc = pid2proc(it->pid);
445		if (proc == NULL)
446			continue;
447		if (proc->leader == leader) {
448			each_task(leader, NULL, &untrace_task, NULL);
449			break;
450		}
451	}
452	each_task(leader, NULL, &remove_task, leader);
453	destroy_event_handler(leader);
454	remove_task(leader, NULL);
455}
456
457static void
458handle_stopping_event(struct pid_task * task_info, Event ** eventp)
459{
460	/* Mark all events, so that we know whom to SIGCONT later.  */
461	if (task_info != NULL)
462		task_info->got_event = 1;
463
464	Event * event = *eventp;
465
466	/* In every state, sink SIGSTOP events for tasks that it was
467	 * sent to.  */
468	if (task_info != NULL
469	    && event->type == EVENT_SIGNAL
470	    && event->e_un.signum == SIGSTOP) {
471		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
472		if (task_info->sigstopped
473		    && !task_info->delivered) {
474			task_info->delivered = 1;
475			*eventp = NULL; // sink the event
476		} else
477			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
478				"sigstopped=%d and delivered=%d\n",
479				task_info->pid, task_info->sigstopped,
480				task_info->delivered);
481	}
482}
483
484/* Some SIGSTOPs may have not been delivered to their respective tasks
485 * yet.  They are still in the queue.  If we have seen an event for
486 * that process, continue it, so that the SIGSTOP can be delivered and
487 * caught by ltrace.  We don't mind that the process is after
488 * breakpoint (and therefore potentially doesn't have aligned IP),
489 * because the signal will be delivered without the process actually
490 * starting.  */
491static void
492continue_for_sigstop_delivery(struct pid_set * pids)
493{
494	size_t i;
495	for (i = 0; i < pids->count; ++i) {
496		if (pids->tasks[i].pid != 0
497		    && pids->tasks[i].sigstopped
498		    && !pids->tasks[i].delivered
499		    && pids->tasks[i].got_event) {
500			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
501			      pids->tasks[i].pid);
502			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
503		}
504	}
505}
506
507static int
508event_exit_p(Event * event)
509{
510	return event != NULL && (event->type == EVENT_EXIT
511				 || event->type == EVENT_EXIT_SIGNAL);
512}
513
514static int
515event_exit_or_none_p(Event * event)
516{
517	return event == NULL || event_exit_p(event)
518		|| event->type == EVENT_NONE;
519}
520
521static int
522await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
523		       Event * event)
524{
525	/* If we still didn't get our SIGSTOP, continue the process
526	 * and carry on.  */
527	if (event != NULL && !event_exit_or_none_p(event)
528	    && task_info != NULL && task_info->sigstopped) {
529		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
530		      task_info->pid);
531		/* We should get the signal the first thing
532		 * after this, so it should be OK to continue
533		 * even if we are over a breakpoint.  */
534		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
535
536	} else {
537		/* If all SIGSTOPs were delivered, uninstall the
538		 * handler and continue everyone.  */
539		/* XXX I suspect that we should check tasks that are
540		 * still around.  Is things are now, there should be a
541		 * race between waiting for everyone to stop and one
542		 * of the tasks exiting.  */
543		int all_clear = 1;
544		size_t i;
545		for (i = 0; i < pids->count; ++i)
546			if (pids->tasks[i].pid != 0
547			    && pids->tasks[i].sigstopped
548			    && !pids->tasks[i].delivered) {
549				all_clear = 0;
550				break;
551			}
552		return all_clear;
553	}
554
555	return 0;
556}
557
558static int
559all_stops_accountable(struct pid_set * pids)
560{
561	size_t i;
562	for (i = 0; i < pids->count; ++i)
563		if (pids->tasks[i].pid != 0
564		    && !pids->tasks[i].got_event
565		    && !have_events_for(pids->tasks[i].pid))
566			return 0;
567	return 1;
568}
569
570/* The protocol is: 0 for success, negative for failure, positive if
571 * default singlestep is to be used.  */
572int arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
573			   int (*add_cb)(void *addr, void *data),
574			   void *add_cb_data);
575
576#ifndef ARCH_HAVE_ATOMIC_SINGLESTEP
577int
578arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
579		       int (*add_cb)(void *addr, void *data),
580		       void *add_cb_data)
581{
582	return 1;
583}
584#endif
585
586static Event *process_stopping_on_event(struct event_handler *super,
587					Event *event);
588
589static void
590remove_atomic_breakpoints(struct Process *proc)
591{
592	struct process_stopping_handler *self
593		= (void *)proc->leader->event_handler;
594	assert(self != NULL);
595	assert(self->super.on_event == process_stopping_on_event);
596
597	int ct = sizeof(self->atomic_skip_bp_addrs)
598		/ sizeof(*self->atomic_skip_bp_addrs);
599	int i;
600	for (i = 0; i < ct; ++i)
601		if (self->atomic_skip_bp_addrs[i] != 0) {
602			delete_breakpoint(proc, self->atomic_skip_bp_addrs[i]);
603			self->atomic_skip_bp_addrs[i] = 0;
604		}
605}
606
607static void
608atomic_singlestep_bp_on_hit(struct breakpoint *bp, struct Process *proc)
609{
610	remove_atomic_breakpoints(proc);
611}
612
613static int
614atomic_singlestep_add_bp(void *addr, void *data)
615{
616	struct process_stopping_handler *self = data;
617	struct Process *proc = self->task_enabling_breakpoint;
618
619	int ct = sizeof(self->atomic_skip_bp_addrs)
620		/ sizeof(*self->atomic_skip_bp_addrs);
621	int i;
622	for (i = 0; i < ct; ++i)
623		if (self->atomic_skip_bp_addrs[i] == 0) {
624			self->atomic_skip_bp_addrs[i] = addr;
625			static struct bp_callbacks cbs = {
626				.on_hit = atomic_singlestep_bp_on_hit,
627			};
628			struct breakpoint *bp
629				= insert_breakpoint(proc, addr, NULL);
630			breakpoint_set_callbacks(bp, &cbs);
631			return 0;
632		}
633
634	assert(!"Too many atomic singlestep breakpoints!");
635	abort();
636}
637
638static int
639singlestep(struct process_stopping_handler *self)
640{
641	struct Process *proc = self->task_enabling_breakpoint;
642
643	int status = arch_atomic_singlestep(self->task_enabling_breakpoint,
644					    self->breakpoint_being_enabled,
645					    &atomic_singlestep_add_bp, self);
646
647	/* Propagate failure and success.  */
648	if (status <= 0)
649		return status;
650
651	/* Otherwise do the default action: singlestep.  */
652	debug(1, "PTRACE_SINGLESTEP");
653	if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) {
654		perror("PTRACE_SINGLESTEP");
655		return -1;
656	}
657	return 0;
658}
659
660static void
661post_singlestep(struct process_stopping_handler *self,
662		struct Event **eventp)
663{
664	continue_for_sigstop_delivery(&self->pids);
665
666	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
667		*eventp = NULL; // handled
668
669	struct Process *proc = self->task_enabling_breakpoint;
670
671	remove_atomic_breakpoints(proc);
672	self->breakpoint_being_enabled = NULL;
673}
674
675static void
676singlestep_error(struct process_stopping_handler *self)
677{
678	struct Process *teb = self->task_enabling_breakpoint;
679	struct breakpoint *sbp = self->breakpoint_being_enabled;
680	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
681		teb->pid, sbp->libsym != NULL ? sbp->libsym->name : NULL,
682		sbp->addr, get_instruction_pointer(teb));
683	delete_breakpoint(teb->leader, sbp->addr);
684}
685
686static void
687pt_continue(struct process_stopping_handler *self)
688{
689	struct Process *teb = self->task_enabling_breakpoint;
690	debug(1, "PTRACE_CONT");
691	ptrace(PTRACE_CONT, teb->pid, 0, 0);
692}
693
694static void
695pt_singlestep(struct process_stopping_handler *self)
696{
697	if (singlestep(self) < 0)
698		singlestep_error(self);
699}
700
701static void
702disable_and(struct process_stopping_handler *self,
703	    void (*do_this)(struct process_stopping_handler *self))
704{
705	struct Process *teb = self->task_enabling_breakpoint;
706	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
707	if (self->breakpoint_being_enabled->enabled)
708		disable_breakpoint(teb, self->breakpoint_being_enabled);
709	(do_this)(self);
710	self->state = psh_singlestep;
711}
712
713void
714linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
715{
716	disable_and(self, &pt_singlestep);
717}
718
719void
720linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
721{
722	disable_and(self, &pt_continue);
723}
724
725/* This event handler is installed when we are in the process of
726 * stopping the whole thread group to do the pointer re-enablement for
727 * one of the threads.  We pump all events to the queue for later
728 * processing while we wait for all the threads to stop.  When this
729 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
730 * re-enable, and continue everyone.  */
731static Event *
732process_stopping_on_event(struct event_handler *super, Event *event)
733{
734	struct process_stopping_handler * self = (void *)super;
735	Process * task = event->proc;
736	Process * leader = task->leader;
737	Process * teb = self->task_enabling_breakpoint;
738
739	debug(DEBUG_PROCESS,
740	      "process_stopping_on_event: pid %d; event type %d; state %d",
741	      task->pid, event->type, self->state);
742
743	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
744	if (task_info == NULL)
745		fprintf(stderr, "new task??? %d\n", task->pid);
746	handle_stopping_event(task_info, &event);
747
748	int state = self->state;
749	int event_to_queue = !event_exit_or_none_p(event);
750
751	/* Deactivate the entry if the task exits.  */
752	if (event_exit_p(event) && task_info != NULL)
753		task_info->pid = 0;
754
755	/* Always handle sysrets.  Whether sysret occurred and what
756	 * sys it rets from may need to be determined based on process
757	 * stack, so we need to keep that in sync with reality.  Note
758	 * that we don't continue the process after the sysret is
759	 * handled.  See continue_after_syscall.  */
760	if (event != NULL && event->type == EVENT_SYSRET) {
761		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
762		event_to_queue = 0;
763		task_info->sysret = 1;
764	}
765
766	switch (state) {
767	case psh_stopping:
768		/* If everyone is stopped, singlestep.  */
769		if (each_task(leader, NULL, &task_blocked,
770			      &self->pids) == NULL) {
771			(self->on_all_stopped)(self);
772			state = self->state;
773		}
774		break;
775
776	case psh_singlestep:
777		/* In singlestep state, breakpoint signifies that we
778		 * have now stepped, and can re-enable the breakpoint.  */
779		if (event != NULL && task == teb) {
780
781			/* If this was caused by a real breakpoint, as
782			 * opposed to a singlestep, assume that it's
783			 * an artificial breakpoint installed for some
784			 * reason for the re-enablement.  In that case
785			 * handle it.  */
786			if (event->type == EVENT_BREAKPOINT) {
787				target_address_t ip
788					= get_instruction_pointer(task);
789				struct breakpoint *other
790					= address2bpstruct(leader, ip);
791				if (other != NULL)
792					breakpoint_on_hit(other, task);
793			}
794
795			/* If we got SIGNAL instead of BREAKPOINT,
796			 * then this is not singlestep at all.  */
797			if (event->type == EVENT_SIGNAL) {
798			do_singlestep:
799				if (singlestep(self) < 0) {
800					singlestep_error(self);
801					post_singlestep(self, &event);
802					goto psh_sinking;
803				}
804				break;
805			} else {
806				switch ((self->keep_stepping_p)(self)) {
807				case CBS_FAIL:
808					/* XXX handle me */
809				case CBS_STOP:
810					break;
811				case CBS_CONT:
812					/* Sink singlestep event.  */
813					if (event->type == EVENT_BREAKPOINT)
814						event = NULL;
815					goto do_singlestep;
816				}
817			}
818
819			/* Re-enable the breakpoint that we are
820			 * stepping over.  */
821			struct breakpoint *sbp = self->breakpoint_being_enabled;
822			if (sbp->enabled)
823				enable_breakpoint(teb, sbp);
824
825			post_singlestep(self, &event);
826			goto psh_sinking;
827		}
828		break;
829
830	psh_sinking:
831		state = self->state = psh_sinking;
832	case psh_sinking:
833		if (await_sigstop_delivery(&self->pids, task_info, event))
834			process_stopping_done(self, leader);
835		break;
836
837	case psh_ugly_workaround:
838		if (event == NULL)
839			break;
840		if (event->type == EVENT_BREAKPOINT) {
841			undo_breakpoint(event, leader);
842			if (task == teb)
843				self->task_enabling_breakpoint = NULL;
844		}
845		if (self->task_enabling_breakpoint == NULL
846		    && all_stops_accountable(&self->pids)) {
847			undo_breakpoint(event, leader);
848			detach_process(leader);
849			event = NULL; // handled
850		}
851	}
852
853	if (event != NULL && event_to_queue) {
854		enque_event(event);
855		event = NULL; // sink the event
856	}
857
858	return event;
859}
860
861static void
862process_stopping_destroy(struct event_handler *super)
863{
864	struct process_stopping_handler * self = (void *)super;
865	free(self->pids.tasks);
866}
867
868static enum callback_status
869no(struct process_stopping_handler *self)
870{
871	return CBS_STOP;
872}
873
874int
875process_install_stopping_handler(struct Process *proc, struct breakpoint *sbp,
876				 void (*as)(struct process_stopping_handler *),
877				 enum callback_status (*ks)
878					 (struct process_stopping_handler *),
879				 enum callback_status (*uw)
880					(struct process_stopping_handler *))
881{
882	debug(DEBUG_FUNCTION,
883	      "process_install_stopping_handler: pid=%d", proc->pid);
884
885	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
886	if (handler == NULL)
887		return -1;
888
889	if (as == NULL)
890		as = &linux_ptrace_disable_and_singlestep;
891	if (ks == NULL)
892		ks = &no;
893	if (uw == NULL)
894		uw = &no;
895
896	handler->super.on_event = process_stopping_on_event;
897	handler->super.destroy = process_stopping_destroy;
898	handler->task_enabling_breakpoint = proc;
899	handler->breakpoint_being_enabled = sbp;
900	handler->on_all_stopped = as;
901	handler->keep_stepping_p = ks;
902	handler->ugly_workaround_p = uw;
903
904	install_event_handler(proc->leader, &handler->super);
905
906	if (each_task(proc->leader, NULL, &send_sigstop,
907		      &handler->pids) != NULL) {
908		destroy_event_handler(proc);
909		return -1;
910	}
911
912	/* And deliver the first fake event, in case all the
913	 * conditions are already fulfilled.  */
914	Event ev = {
915		.type = EVENT_NONE,
916		.proc = proc,
917	};
918	process_stopping_on_event(&handler->super, &ev);
919
920	return 0;
921}
922
923void
924continue_after_breakpoint(Process *proc, struct breakpoint *sbp)
925{
926	debug(DEBUG_PROCESS,
927	      "continue_after_breakpoint: pid=%d, addr=%p",
928	      proc->pid, sbp->addr);
929
930	set_instruction_pointer(proc, sbp->addr);
931
932	if (sbp->enabled == 0) {
933		continue_process(proc->pid);
934	} else {
935#if defined __sparc__  || defined __ia64___ || defined __mips__
936		/* we don't want to singlestep here */
937		continue_process(proc->pid);
938#else
939		if (process_install_stopping_handler
940		    (proc, sbp, NULL, NULL, NULL) < 0) {
941			perror("process_stopping_handler_create");
942			/* Carry on not bothering to re-enable.  */
943			continue_process(proc->pid);
944		}
945#endif
946	}
947}
948
949/**
950 * Ltrace exit.  When we are about to exit, we have to go through all
951 * the processes, stop them all, remove all the breakpoints, and then
952 * detach the processes that we attached to using -p.  If we left the
953 * other tasks running, they might hit stray return breakpoints and
954 * produce artifacts, so we better stop everyone, even if it's a bit
955 * of extra work.
956 */
957struct ltrace_exiting_handler
958{
959	struct event_handler super;
960	struct pid_set pids;
961};
962
963static Event *
964ltrace_exiting_on_event(struct event_handler *super, Event *event)
965{
966	struct ltrace_exiting_handler * self = (void *)super;
967	Process * task = event->proc;
968	Process * leader = task->leader;
969
970	debug(DEBUG_PROCESS,
971	      "ltrace_exiting_on_event: pid %d; event type %d",
972	      task->pid, event->type);
973
974	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
975	handle_stopping_event(task_info, &event);
976
977	if (event != NULL && event->type == EVENT_BREAKPOINT)
978		undo_breakpoint(event, leader);
979
980	if (await_sigstop_delivery(&self->pids, task_info, event)
981	    && all_stops_accountable(&self->pids))
982		detach_process(leader);
983
984	/* Sink all non-exit events.  We are about to exit, so we
985	 * don't bother with queuing them. */
986	if (event_exit_or_none_p(event))
987		return event;
988
989	return NULL;
990}
991
992static void
993ltrace_exiting_destroy(struct event_handler *super)
994{
995	struct ltrace_exiting_handler * self = (void *)super;
996	free(self->pids.tasks);
997}
998
999static int
1000ltrace_exiting_install_handler(Process * proc)
1001{
1002	/* Only install to leader.  */
1003	if (proc->leader != proc)
1004		return 0;
1005
1006	/* Perhaps we are already installed, if the user passed
1007	 * several -p options that are tasks of one process.  */
1008	if (proc->event_handler != NULL
1009	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
1010		return 0;
1011
1012	/* If stopping handler is already present, let it do the
1013	 * work.  */
1014	if (proc->event_handler != NULL) {
1015		assert(proc->event_handler->on_event
1016		       == &process_stopping_on_event);
1017		struct process_stopping_handler * other
1018			= (void *)proc->event_handler;
1019		other->exiting = 1;
1020		return 0;
1021	}
1022
1023	struct ltrace_exiting_handler * handler
1024		= calloc(sizeof(*handler), 1);
1025	if (handler == NULL) {
1026		perror("malloc exiting handler");
1027	fatal:
1028		/* XXXXXXXXXXXXXXXXXXX fixme */
1029		return -1;
1030	}
1031
1032	handler->super.on_event = ltrace_exiting_on_event;
1033	handler->super.destroy = ltrace_exiting_destroy;
1034	install_event_handler(proc->leader, &handler->super);
1035
1036	if (each_task(proc->leader, NULL, &send_sigstop,
1037		      &handler->pids) != NULL)
1038		goto fatal;
1039
1040	return 0;
1041}
1042
1043/*
1044 * When the traced process vforks, it's suspended until the child
1045 * process calls _exit or exec*.  In the meantime, the two share the
1046 * address space.
1047 *
1048 * The child process should only ever call _exit or exec*, but we
1049 * can't count on that (it's not the role of ltrace to policy, but to
1050 * observe).  In any case, we will _at least_ have to deal with
1051 * removal of vfork return breakpoint (which we have to smuggle back
1052 * in, so that the parent can see it, too), and introduction of exec*
1053 * return breakpoint.  Since we already have both breakpoint actions
1054 * to deal with, we might as well support it all.
1055 *
1056 * The gist is that we pretend that the child is in a thread group
1057 * with its parent, and handle it as a multi-threaded case, with the
1058 * exception that we know that the parent is blocked, and don't
1059 * attempt to stop it.  When the child execs, we undo the setup.
1060 */
1061
1062struct process_vfork_handler
1063{
1064	struct event_handler super;
1065	void * bp_addr;
1066};
1067
1068static Event *
1069process_vfork_on_event(struct event_handler *super, Event *event)
1070{
1071	debug(DEBUG_PROCESS,
1072	      "process_vfork_on_event: pid %d; event type %d",
1073	      event->proc->pid, event->type);
1074
1075	struct process_vfork_handler * self = (void *)super;
1076	struct breakpoint *sbp;
1077	assert(self != NULL);
1078
1079	switch (event->type) {
1080	case EVENT_BREAKPOINT:
1081		/* Remember the vfork return breakpoint.  */
1082		if (self->bp_addr == 0)
1083			self->bp_addr = event->e_un.brk_addr;
1084		break;
1085
1086	case EVENT_EXIT:
1087	case EVENT_EXIT_SIGNAL:
1088	case EVENT_EXEC:
1089		/* Smuggle back in the vfork return breakpoint, so
1090		 * that our parent can trip over it once again.  */
1091		if (self->bp_addr != 0) {
1092			sbp = dict_find_entry(event->proc->leader->breakpoints,
1093					      self->bp_addr);
1094			if (sbp != NULL)
1095				assert(sbp->libsym == NULL);
1096			/* We don't mind failing that, it's not a big
1097			 * deal to not display one extra vfork return.  */
1098			insert_breakpoint(event->proc->parent,
1099					  self->bp_addr, NULL);
1100		}
1101
1102		continue_process(event->proc->parent->pid);
1103
1104		/* Remove the leader that we artificially set up
1105		 * earlier.  */
1106		change_process_leader(event->proc, event->proc);
1107		destroy_event_handler(event->proc);
1108
1109	default:
1110		;
1111	}
1112
1113	return event;
1114}
1115
1116void
1117continue_after_vfork(Process * proc)
1118{
1119	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1120	struct process_vfork_handler * handler = calloc(sizeof(*handler), 1);
1121	if (handler == NULL) {
1122		perror("malloc vfork handler");
1123		/* Carry on not bothering to treat the process as
1124		 * necessary.  */
1125		continue_process(proc->parent->pid);
1126		return;
1127	}
1128
1129	/* We must set up custom event handler, so that we see
1130	 * exec/exit events for the task itself.  */
1131	handler->super.on_event = process_vfork_on_event;
1132	install_event_handler(proc, &handler->super);
1133
1134	/* Make sure that the child is sole thread.  */
1135	assert(proc->leader == proc);
1136	assert(proc->next == NULL || proc->next->leader != proc);
1137
1138	/* Make sure that the child's parent is properly set up.  */
1139	assert(proc->parent != NULL);
1140	assert(proc->parent->leader != NULL);
1141
1142	change_process_leader(proc, proc->parent->leader);
1143}
1144
1145static int
1146is_mid_stopping(Process *proc)
1147{
1148	return proc != NULL
1149		&& proc->event_handler != NULL
1150		&& proc->event_handler->on_event == &process_stopping_on_event;
1151}
1152
1153void
1154continue_after_syscall(Process * proc, int sysnum, int ret_p)
1155{
1156	/* Don't continue if we are mid-stopping.  */
1157	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1158		debug(DEBUG_PROCESS,
1159		      "continue_after_syscall: don't continue %d",
1160		      proc->pid);
1161		return;
1162	}
1163	continue_process(proc->pid);
1164}
1165
1166/* If ltrace gets SIGINT, the processes directly or indirectly run by
1167 * ltrace get it too.  We just have to wait long enough for the signal
1168 * to be delivered and the process terminated, which we notice and
1169 * exit ltrace, too.  So there's not much we need to do there.  We
1170 * want to keep tracing those processes as usual, in case they just
1171 * SIG_IGN the SIGINT to do their shutdown etc.
1172 *
1173 * For processes ran on the background, we want to install an exit
1174 * handler that stops all the threads, removes all breakpoints, and
1175 * detaches.
1176 */
1177void
1178os_ltrace_exiting(void)
1179{
1180	struct opt_p_t * it;
1181	for (it = opt_p; it != NULL; it = it->next) {
1182		Process * proc = pid2proc(it->pid);
1183		if (proc == NULL || proc->leader == NULL)
1184			continue;
1185		if (ltrace_exiting_install_handler(proc->leader) < 0)
1186			fprintf(stderr,
1187				"Couldn't install exiting handler for %d.\n",
1188				proc->pid);
1189	}
1190}
1191
1192int
1193os_ltrace_exiting_sighandler(void)
1194{
1195	extern int linux_in_waitpid;
1196	if (linux_in_waitpid) {
1197		os_ltrace_exiting();
1198		return 1;
1199	}
1200	return 0;
1201}
1202
1203size_t
1204umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
1205
1206	union {
1207		long a;
1208		char c[sizeof(long)];
1209	} a;
1210	int started = 0;
1211	size_t offset = 0, bytes_read = 0;
1212
1213	while (offset < len) {
1214		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1215		if (a.a == -1 && errno) {
1216			if (started && errno == EIO)
1217				return bytes_read;
1218			else
1219				return -1;
1220		}
1221		started = 1;
1222
1223		if (len - offset >= sizeof(long)) {
1224			memcpy(laddr + offset, &a.c[0], sizeof(long));
1225			bytes_read += sizeof(long);
1226		}
1227		else {
1228			memcpy(laddr + offset, &a.c[0], len - offset);
1229			bytes_read += (len - offset);
1230		}
1231		offset += sizeof(long);
1232	}
1233
1234	return bytes_read;
1235}
1236
1237/* Read a series of bytes starting at the process's memory address
1238   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
1239   have been read.
1240*/
1241int
1242umovestr(Process *proc, void *addr, int len, void *laddr) {
1243	union {
1244		long a;
1245		char c[sizeof(long)];
1246	} a;
1247	unsigned i;
1248	int offset = 0;
1249
1250	while (offset < len) {
1251		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1252		for (i = 0; i < sizeof(long); i++) {
1253			if (a.c[i] && offset + (signed)i < len) {
1254				*(char *)(laddr + offset + i) = a.c[i];
1255			} else {
1256				*(char *)(laddr + offset + i) = '\0';
1257				return 0;
1258			}
1259		}
1260		offset += sizeof(long);
1261	}
1262	*(char *)(laddr + offset) = '\0';
1263	return 0;
1264}
1265