trace.c revision cc0e1e4b83d69441cc5f61ea87eda5458ee9fae3
1#include "config.h"
2
3#include <asm/unistd.h>
4#include <sys/types.h>
5#include <sys/wait.h>
6#include <assert.h>
7#include <errno.h>
8#include <stdio.h>
9#include <stdlib.h>
10#include <string.h>
11#include <unistd.h>
12
13#ifdef HAVE_LIBSELINUX
14# include <selinux/selinux.h>
15#endif
16
17#include "ptrace.h"
18#include "common.h"
19#include "breakpoint.h"
20#include "proc.h"
21#include "linux-gnu/trace.h"
22
23/* If the system headers did not provide the constants, hard-code the normal
24   values.  */
25#ifndef PTRACE_EVENT_FORK
26
27#define PTRACE_OLDSETOPTIONS    21
28#define PTRACE_SETOPTIONS       0x4200
29#define PTRACE_GETEVENTMSG      0x4201
30
31/* options set using PTRACE_SETOPTIONS */
32#define PTRACE_O_TRACESYSGOOD   0x00000001
33#define PTRACE_O_TRACEFORK      0x00000002
34#define PTRACE_O_TRACEVFORK     0x00000004
35#define PTRACE_O_TRACECLONE     0x00000008
36#define PTRACE_O_TRACEEXEC      0x00000010
37#define PTRACE_O_TRACEVFORKDONE 0x00000020
38#define PTRACE_O_TRACEEXIT      0x00000040
39
40/* Wait extended result codes for the above trace options.  */
41#define PTRACE_EVENT_FORK       1
42#define PTRACE_EVENT_VFORK      2
43#define PTRACE_EVENT_CLONE      3
44#define PTRACE_EVENT_EXEC       4
45#define PTRACE_EVENT_VFORK_DONE 5
46#define PTRACE_EVENT_EXIT       6
47
48#endif /* PTRACE_EVENT_FORK */
49
50#ifdef ARCH_HAVE_UMOVELONG
51extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
52int
53umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
54	return arch_umovelong (proc, addr, result, info);
55}
56#else
57/* Read a single long from the process's memory address 'addr' */
58int
59umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
60	long pointed_to;
61
62	errno = 0;
63	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
64	if (pointed_to == -1 && errno)
65		return -errno;
66
67	*result = pointed_to;
68	if (info) {
69		switch(info->type) {
70			case ARGTYPE_INT:
71				*result &= 0x00000000ffffffffUL;
72			default:
73				break;
74		};
75	}
76	return 0;
77}
78#endif
79
80void
81trace_fail_warning(pid_t pid)
82{
83	/* This was adapted from GDB.  */
84#ifdef HAVE_LIBSELINUX
85	static int checked = 0;
86	if (checked)
87		return;
88	checked = 1;
89
90	/* -1 is returned for errors, 0 if it has no effect, 1 if
91	 * PTRACE_ATTACH is forbidden.  */
92	if (security_get_boolean_active("deny_ptrace") == 1)
93		fprintf(stderr,
94"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
95"tracing other processes.  You can disable this process attach protection by\n"
96"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
97#endif /* HAVE_LIBSELINUX */
98}
99
100void
101trace_me(void)
102{
103	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
104	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
105		perror("PTRACE_TRACEME");
106		trace_fail_warning(getpid());
107		exit(1);
108	}
109}
110
111/* There's a (hopefully) brief period of time after the child process
112 * forks when we can't trace it yet.  Here we wait for kernel to
113 * prepare the process.  */
114int
115wait_for_proc(pid_t pid)
116{
117	/* man ptrace: PTRACE_ATTACH attaches to the process specified
118	   in pid.  The child is sent a SIGSTOP, but will not
119	   necessarily have stopped by the completion of this call;
120	   use wait() to wait for the child to stop. */
121	if (waitpid(pid, NULL, __WALL) != pid) {
122		perror ("trace_pid: waitpid");
123		return -1;
124	}
125
126	return 0;
127}
128
129int
130trace_pid(pid_t pid)
131{
132	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
133	/* This shouldn't emit error messages, as there are legitimate
134	 * reasons that the PID can't be attached: like it may have
135	 * already ended.  */
136	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0)
137		return -1;
138
139	return wait_for_proc(pid);
140}
141
142void
143trace_set_options(struct Process *proc)
144{
145	if (proc->tracesysgood & 0x80)
146		return;
147
148	pid_t pid = proc->pid;
149	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
150
151	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
152		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
153		PTRACE_O_TRACEEXEC;
154	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
155	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
156		perror("PTRACE_SETOPTIONS");
157		return;
158	}
159	proc->tracesysgood |= 0x80;
160}
161
162void
163untrace_pid(pid_t pid) {
164	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
165	ptrace(PTRACE_DETACH, pid, 1, 0);
166}
167
168void
169continue_after_signal(pid_t pid, int signum) {
170	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
171	ptrace(PTRACE_SYSCALL, pid, 0, signum);
172}
173
174static enum ecb_status
175event_for_pid(Event * event, void * data)
176{
177	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
178		return ecb_yield;
179	return ecb_cont;
180}
181
182static int
183have_events_for(pid_t pid)
184{
185	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
186}
187
188void
189continue_process(pid_t pid)
190{
191	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
192
193	/* Only really continue the process if there are no events in
194	   the queue for this process.  Otherwise just wait for the
195	   other events to arrive.  */
196	if (!have_events_for(pid))
197		/* We always trace syscalls to control fork(),
198		 * clone(), execve()... */
199		ptrace(PTRACE_SYSCALL, pid, 0, 0);
200	else
201		debug(DEBUG_PROCESS,
202		      "putting off the continue, events in que.");
203}
204
205static struct pid_task *
206get_task_info(struct pid_set * pids, pid_t pid)
207{
208	assert(pid != 0);
209	size_t i;
210	for (i = 0; i < pids->count; ++i)
211		if (pids->tasks[i].pid == pid)
212			return &pids->tasks[i];
213
214	return NULL;
215}
216
217static struct pid_task *
218add_task_info(struct pid_set * pids, pid_t pid)
219{
220	if (pids->count == pids->alloc) {
221		size_t ns = (2 * pids->alloc) ?: 4;
222		struct pid_task * n = realloc(pids->tasks,
223					      sizeof(*pids->tasks) * ns);
224		if (n == NULL)
225			return NULL;
226		pids->tasks = n;
227		pids->alloc = ns;
228	}
229	struct pid_task * task_info = &pids->tasks[pids->count++];
230	memset(task_info, 0, sizeof(*task_info));
231	task_info->pid = pid;
232	return task_info;
233}
234
235static enum callback_status
236task_stopped(struct Process *task, void *data)
237{
238	enum process_status st = process_status(task->pid);
239	if (data != NULL)
240		*(enum process_status *)data = st;
241
242	/* If the task is already stopped, don't worry about it.
243	 * Likewise if it managed to become a zombie or terminate in
244	 * the meantime.  This can happen when the whole thread group
245	 * is terminating.  */
246	switch (st) {
247	case ps_invalid:
248	case ps_tracing_stop:
249	case ps_zombie:
250		return CBS_CONT;
251	case ps_sleeping:
252	case ps_stop:
253	case ps_other:
254		return CBS_STOP;
255	}
256
257	abort ();
258}
259
260/* Task is blocked if it's stopped, or if it's a vfork parent.  */
261static enum callback_status
262task_blocked(struct Process *task, void *data)
263{
264	struct pid_set * pids = data;
265	struct pid_task * task_info = get_task_info(pids, task->pid);
266	if (task_info != NULL
267	    && task_info->vforked)
268		return CBS_CONT;
269
270	return task_stopped(task, NULL);
271}
272
273static Event *process_vfork_on_event(struct event_handler *super, Event *event);
274
275static enum callback_status
276task_vforked(struct Process *task, void *data)
277{
278	if (task->event_handler != NULL
279	    && task->event_handler->on_event == &process_vfork_on_event)
280		return CBS_STOP;
281	return CBS_CONT;
282}
283
284static int
285is_vfork_parent(struct Process *task)
286{
287	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
288}
289
290static enum callback_status
291send_sigstop(struct Process *task, void *data)
292{
293	Process * leader = task->leader;
294	struct pid_set * pids = data;
295
296	/* Look for pre-existing task record, or add new.  */
297	struct pid_task * task_info = get_task_info(pids, task->pid);
298	if (task_info == NULL)
299		task_info = add_task_info(pids, task->pid);
300	if (task_info == NULL) {
301		perror("send_sigstop: add_task_info");
302		destroy_event_handler(leader);
303		/* Signal failure upwards.  */
304		return CBS_STOP;
305	}
306
307	/* This task still has not been attached to.  It should be
308	   stopped by the kernel.  */
309	if (task->state == STATE_BEING_CREATED)
310		return CBS_CONT;
311
312	/* Don't bother sending SIGSTOP if we are already stopped, or
313	 * if we sent the SIGSTOP already, which happens when we are
314	 * handling "onexit" and inherited the handler from breakpoint
315	 * re-enablement.  */
316	enum process_status st;
317	if (task_stopped(task, &st) == CBS_CONT)
318		return CBS_CONT;
319	if (task_info->sigstopped) {
320		if (!task_info->delivered)
321			return CBS_CONT;
322		task_info->delivered = 0;
323	}
324
325	/* Also don't attempt to stop the process if it's a parent of
326	 * vforked process.  We set up event handler specially to hint
327	 * us.  In that case parent is in D state, which we use to
328	 * weed out unnecessary looping.  */
329	if (st == ps_sleeping
330	    && is_vfork_parent (task)) {
331		task_info->vforked = 1;
332		return CBS_CONT;
333	}
334
335	if (task_kill(task->pid, SIGSTOP) >= 0) {
336		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
337		task_info->sigstopped = 1;
338	} else
339		fprintf(stderr,
340			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
341
342	return CBS_CONT;
343}
344
345/* On certain kernels, detaching right after a singlestep causes the
346   tracee to be killed with a SIGTRAP (that even though the singlestep
347   was properly caught by waitpid.  The ugly workaround is to put a
348   breakpoint where IP points and let the process continue.  After
349   this the breakpoint can be retracted and the process detached.  */
350static void
351ugly_workaround(Process * proc)
352{
353	void * ip = get_instruction_pointer(proc);
354	struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip);
355	if (sbp != NULL)
356		enable_breakpoint(proc, sbp);
357	else
358		insert_breakpoint(proc, ip, NULL);
359	ptrace(PTRACE_CONT, proc->pid, 0, 0);
360}
361
362static void
363process_stopping_done(struct process_stopping_handler * self, Process * leader)
364{
365	debug(DEBUG_PROCESS, "process stopping done %d",
366	      self->task_enabling_breakpoint->pid);
367	size_t i;
368	if (!self->exiting) {
369		for (i = 0; i < self->pids.count; ++i)
370			if (self->pids.tasks[i].pid != 0
371			    && (self->pids.tasks[i].delivered
372				|| self->pids.tasks[i].sysret))
373				continue_process(self->pids.tasks[i].pid);
374		continue_process(self->task_enabling_breakpoint->pid);
375		destroy_event_handler(leader);
376	}
377
378	if (self->exiting) {
379	ugly_workaround:
380		self->state = psh_ugly_workaround;
381		ugly_workaround(self->task_enabling_breakpoint);
382	} else {
383		switch ((self->ugly_workaround_p)(self)) {
384		case CBS_FAIL:
385			/* xxx handle me */
386		case CBS_STOP:
387			break;
388		case CBS_CONT:
389			goto ugly_workaround;
390		}
391	}
392}
393
394/* Before we detach, we need to make sure that task's IP is on the
395 * edge of an instruction.  So for tasks that have a breakpoint event
396 * in the queue, we adjust the instruction pointer, just like
397 * continue_after_breakpoint does.  */
398static enum ecb_status
399undo_breakpoint(Event * event, void * data)
400{
401	if (event != NULL
402	    && event->proc->leader == data
403	    && event->type == EVENT_BREAKPOINT)
404		set_instruction_pointer(event->proc, event->e_un.brk_addr);
405	return ecb_cont;
406}
407
408static enum callback_status
409untrace_task(struct Process *task, void *data)
410{
411	if (task != data)
412		untrace_pid(task->pid);
413	return CBS_CONT;
414}
415
416static enum callback_status
417remove_task(struct Process *task, void *data)
418{
419	/* Don't untrace leader just yet.  */
420	if (task != data)
421		remove_process(task);
422	return CBS_CONT;
423}
424
425static enum callback_status
426retract_breakpoint_cb(struct Process *proc, struct breakpoint *bp, void *data)
427{
428	breakpoint_on_retract(bp, proc);
429	return CBS_CONT;
430}
431
432static void
433detach_process(Process * leader)
434{
435	each_qd_event(&undo_breakpoint, leader);
436	disable_all_breakpoints(leader);
437	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
438
439	/* Now untrace the process, if it was attached to by -p.  */
440	struct opt_p_t * it;
441	for (it = opt_p; it != NULL; it = it->next) {
442		Process * proc = pid2proc(it->pid);
443		if (proc == NULL)
444			continue;
445		if (proc->leader == leader) {
446			each_task(leader, NULL, &untrace_task, NULL);
447			break;
448		}
449	}
450	each_task(leader, NULL, &remove_task, leader);
451	destroy_event_handler(leader);
452	remove_task(leader, NULL);
453}
454
455static void
456handle_stopping_event(struct pid_task * task_info, Event ** eventp)
457{
458	/* Mark all events, so that we know whom to SIGCONT later.  */
459	if (task_info != NULL)
460		task_info->got_event = 1;
461
462	Event * event = *eventp;
463
464	/* In every state, sink SIGSTOP events for tasks that it was
465	 * sent to.  */
466	if (task_info != NULL
467	    && event->type == EVENT_SIGNAL
468	    && event->e_un.signum == SIGSTOP) {
469		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
470		if (task_info->sigstopped
471		    && !task_info->delivered) {
472			task_info->delivered = 1;
473			*eventp = NULL; // sink the event
474		} else
475			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
476				"sigstopped=%d and delivered=%d\n",
477				task_info->pid, task_info->sigstopped,
478				task_info->delivered);
479	}
480}
481
482/* Some SIGSTOPs may have not been delivered to their respective tasks
483 * yet.  They are still in the queue.  If we have seen an event for
484 * that process, continue it, so that the SIGSTOP can be delivered and
485 * caught by ltrace.  We don't mind that the process is after
486 * breakpoint (and therefore potentially doesn't have aligned IP),
487 * because the signal will be delivered without the process actually
488 * starting.  */
489static void
490continue_for_sigstop_delivery(struct pid_set * pids)
491{
492	size_t i;
493	for (i = 0; i < pids->count; ++i) {
494		if (pids->tasks[i].pid != 0
495		    && pids->tasks[i].sigstopped
496		    && !pids->tasks[i].delivered
497		    && pids->tasks[i].got_event) {
498			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
499			      pids->tasks[i].pid);
500			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
501		}
502	}
503}
504
505static int
506event_exit_p(Event * event)
507{
508	return event != NULL && (event->type == EVENT_EXIT
509				 || event->type == EVENT_EXIT_SIGNAL);
510}
511
512static int
513event_exit_or_none_p(Event * event)
514{
515	return event == NULL || event_exit_p(event)
516		|| event->type == EVENT_NONE;
517}
518
519static int
520await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
521		       Event * event)
522{
523	/* If we still didn't get our SIGSTOP, continue the process
524	 * and carry on.  */
525	if (event != NULL && !event_exit_or_none_p(event)
526	    && task_info != NULL && task_info->sigstopped) {
527		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
528		      task_info->pid);
529		/* We should get the signal the first thing
530		 * after this, so it should be OK to continue
531		 * even if we are over a breakpoint.  */
532		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
533
534	} else {
535		/* If all SIGSTOPs were delivered, uninstall the
536		 * handler and continue everyone.  */
537		/* XXX I suspect that we should check tasks that are
538		 * still around.  Is things are now, there should be a
539		 * race between waiting for everyone to stop and one
540		 * of the tasks exiting.  */
541		int all_clear = 1;
542		size_t i;
543		for (i = 0; i < pids->count; ++i)
544			if (pids->tasks[i].pid != 0
545			    && pids->tasks[i].sigstopped
546			    && !pids->tasks[i].delivered) {
547				all_clear = 0;
548				break;
549			}
550		return all_clear;
551	}
552
553	return 0;
554}
555
556static int
557all_stops_accountable(struct pid_set * pids)
558{
559	size_t i;
560	for (i = 0; i < pids->count; ++i)
561		if (pids->tasks[i].pid != 0
562		    && !pids->tasks[i].got_event
563		    && !have_events_for(pids->tasks[i].pid))
564			return 0;
565	return 1;
566}
567
568/* The protocol is: 0 for success, negative for failure, positive if
569 * default singlestep is to be used.  */
570int arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
571			   int (*add_cb)(void *addr, void *data),
572			   void *add_cb_data);
573
574#ifndef ARCH_HAVE_ATOMIC_SINGLESTEP
575int
576arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
577		       int (*add_cb)(void *addr, void *data),
578		       void *add_cb_data)
579{
580	return 1;
581}
582#endif
583
584static Event *process_stopping_on_event(struct event_handler *super,
585					Event *event);
586
587static void
588remove_atomic_breakpoints(struct Process *proc)
589{
590	struct process_stopping_handler *self
591		= (void *)proc->leader->event_handler;
592	assert(self != NULL);
593	assert(self->super.on_event == process_stopping_on_event);
594
595	int ct = sizeof(self->atomic_skip_bp_addrs)
596		/ sizeof(*self->atomic_skip_bp_addrs);
597	int i;
598	for (i = 0; i < ct; ++i)
599		if (self->atomic_skip_bp_addrs[i] != 0) {
600			delete_breakpoint(proc, self->atomic_skip_bp_addrs[i]);
601			self->atomic_skip_bp_addrs[i] = 0;
602		}
603}
604
605static void
606atomic_singlestep_bp_on_hit(struct breakpoint *bp, struct Process *proc)
607{
608	remove_atomic_breakpoints(proc);
609}
610
611static int
612atomic_singlestep_add_bp(void *addr, void *data)
613{
614	struct process_stopping_handler *self = data;
615	struct Process *proc = self->task_enabling_breakpoint;
616
617	int ct = sizeof(self->atomic_skip_bp_addrs)
618		/ sizeof(*self->atomic_skip_bp_addrs);
619	int i;
620	for (i = 0; i < ct; ++i)
621		if (self->atomic_skip_bp_addrs[i] == 0) {
622			self->atomic_skip_bp_addrs[i] = addr;
623			static struct bp_callbacks cbs = {
624				.on_hit = atomic_singlestep_bp_on_hit,
625			};
626			struct breakpoint *bp
627				= insert_breakpoint(proc, addr, NULL);
628			breakpoint_set_callbacks(bp, &cbs);
629			return 0;
630		}
631
632	assert(!"Too many atomic singlestep breakpoints!");
633	abort();
634}
635
636static int
637singlestep(struct process_stopping_handler *self)
638{
639	struct Process *proc = self->task_enabling_breakpoint;
640
641	int status = arch_atomic_singlestep(self->task_enabling_breakpoint,
642					    self->breakpoint_being_enabled,
643					    &atomic_singlestep_add_bp, self);
644
645	/* Propagate failure and success.  */
646	if (status <= 0)
647		return status;
648
649	/* Otherwise do the default action: singlestep.  */
650	debug(1, "PTRACE_SINGLESTEP");
651	if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) {
652		perror("PTRACE_SINGLESTEP");
653		return -1;
654	}
655	return 0;
656}
657
658static void
659post_singlestep(struct process_stopping_handler *self,
660		struct Event **eventp)
661{
662	continue_for_sigstop_delivery(&self->pids);
663
664	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
665		*eventp = NULL; // handled
666
667	struct Process *proc = self->task_enabling_breakpoint;
668
669	remove_atomic_breakpoints(proc);
670	self->breakpoint_being_enabled = NULL;
671}
672
673static void
674singlestep_error(struct process_stopping_handler *self)
675{
676	struct Process *teb = self->task_enabling_breakpoint;
677	struct breakpoint *sbp = self->breakpoint_being_enabled;
678	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
679		teb->pid, sbp->libsym != NULL ? sbp->libsym->name : NULL,
680		sbp->addr, get_instruction_pointer(teb));
681	delete_breakpoint(teb->leader, sbp->addr);
682}
683
684static void
685pt_continue(struct process_stopping_handler *self)
686{
687	struct Process *teb = self->task_enabling_breakpoint;
688	debug(1, "PTRACE_CONT");
689	ptrace(PTRACE_CONT, teb->pid, 0, 0);
690}
691
692static void
693pt_singlestep(struct process_stopping_handler *self)
694{
695	if (singlestep(self) < 0)
696		singlestep_error(self);
697}
698
699static void
700disable_and(struct process_stopping_handler *self,
701	    void (*do_this)(struct process_stopping_handler *self))
702{
703	struct Process *teb = self->task_enabling_breakpoint;
704	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
705	if (self->breakpoint_being_enabled->enabled)
706		disable_breakpoint(teb, self->breakpoint_being_enabled);
707	(do_this)(self);
708	self->state = psh_singlestep;
709}
710
711void
712linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
713{
714	disable_and(self, &pt_singlestep);
715}
716
717void
718linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
719{
720	disable_and(self, &pt_continue);
721}
722
723/* This event handler is installed when we are in the process of
724 * stopping the whole thread group to do the pointer re-enablement for
725 * one of the threads.  We pump all events to the queue for later
726 * processing while we wait for all the threads to stop.  When this
727 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
728 * re-enable, and continue everyone.  */
729static Event *
730process_stopping_on_event(struct event_handler *super, Event *event)
731{
732	struct process_stopping_handler * self = (void *)super;
733	Process * task = event->proc;
734	Process * leader = task->leader;
735	Process * teb = self->task_enabling_breakpoint;
736
737	debug(DEBUG_PROCESS,
738	      "process_stopping_on_event: pid %d; event type %d; state %d",
739	      task->pid, event->type, self->state);
740
741	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
742	if (task_info == NULL)
743		fprintf(stderr, "new task??? %d\n", task->pid);
744	handle_stopping_event(task_info, &event);
745
746	int state = self->state;
747	int event_to_queue = !event_exit_or_none_p(event);
748
749	/* Deactivate the entry if the task exits.  */
750	if (event_exit_p(event) && task_info != NULL)
751		task_info->pid = 0;
752
753	/* Always handle sysrets.  Whether sysret occurred and what
754	 * sys it rets from may need to be determined based on process
755	 * stack, so we need to keep that in sync with reality.  Note
756	 * that we don't continue the process after the sysret is
757	 * handled.  See continue_after_syscall.  */
758	if (event != NULL && event->type == EVENT_SYSRET) {
759		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
760		event_to_queue = 0;
761		task_info->sysret = 1;
762	}
763
764	switch (state) {
765	case psh_stopping:
766		/* If everyone is stopped, singlestep.  */
767		if (each_task(leader, NULL, &task_blocked,
768			      &self->pids) == NULL) {
769			(self->on_all_stopped)(self);
770			state = self->state;
771		}
772		break;
773
774	case psh_singlestep:
775		/* In singlestep state, breakpoint signifies that we
776		 * have now stepped, and can re-enable the breakpoint.  */
777		if (event != NULL && task == teb) {
778
779			/* If this was caused by a real breakpoint, as
780			 * opposed to a singlestep, assume that it's
781			 * an artificial breakpoint installed for some
782			 * reason for the re-enablement.  In that case
783			 * handle it.  */
784			if (event->type == EVENT_BREAKPOINT) {
785				target_address_t ip
786					= get_instruction_pointer(task);
787				struct breakpoint *other
788					= address2bpstruct(leader, ip);
789				if (other != NULL)
790					breakpoint_on_hit(other, task);
791			}
792
793			/* If we got SIGNAL instead of BREAKPOINT,
794			 * then this is not singlestep at all.  */
795			if (event->type == EVENT_SIGNAL) {
796			do_singlestep:
797				if (singlestep(self) < 0) {
798					singlestep_error(self);
799					post_singlestep(self, &event);
800					goto psh_sinking;
801				}
802				break;
803			} else {
804				switch ((self->keep_stepping_p)(self)) {
805				case CBS_FAIL:
806					/* XXX handle me */
807				case CBS_STOP:
808					break;
809				case CBS_CONT:
810					/* Sink singlestep event.  */
811					if (event->type == EVENT_BREAKPOINT)
812						event = NULL;
813					goto do_singlestep;
814				}
815			}
816
817			/* Re-enable the breakpoint that we are
818			 * stepping over.  */
819			struct breakpoint *sbp = self->breakpoint_being_enabled;
820			if (sbp->enabled)
821				enable_breakpoint(teb, sbp);
822
823			post_singlestep(self, &event);
824			goto psh_sinking;
825		}
826		break;
827
828	psh_sinking:
829		state = self->state = psh_sinking;
830	case psh_sinking:
831		if (await_sigstop_delivery(&self->pids, task_info, event))
832			process_stopping_done(self, leader);
833		break;
834
835	case psh_ugly_workaround:
836		if (event == NULL)
837			break;
838		if (event->type == EVENT_BREAKPOINT) {
839			undo_breakpoint(event, leader);
840			if (task == teb)
841				self->task_enabling_breakpoint = NULL;
842		}
843		if (self->task_enabling_breakpoint == NULL
844		    && all_stops_accountable(&self->pids)) {
845			undo_breakpoint(event, leader);
846			detach_process(leader);
847			event = NULL; // handled
848		}
849	}
850
851	if (event != NULL && event_to_queue) {
852		enque_event(event);
853		event = NULL; // sink the event
854	}
855
856	return event;
857}
858
859static void
860process_stopping_destroy(struct event_handler *super)
861{
862	struct process_stopping_handler * self = (void *)super;
863	free(self->pids.tasks);
864}
865
866static enum callback_status
867no(struct process_stopping_handler *self)
868{
869	return CBS_STOP;
870}
871
872int
873process_install_stopping_handler(struct Process *proc, struct breakpoint *sbp,
874				 void (*as)(struct process_stopping_handler *),
875				 enum callback_status (*ks)
876					 (struct process_stopping_handler *),
877				 enum callback_status (*uw)
878					(struct process_stopping_handler *))
879{
880	debug(DEBUG_FUNCTION,
881	      "process_install_stopping_handler: pid=%d", proc->pid);
882
883	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
884	if (handler == NULL)
885		return -1;
886
887	if (as == NULL)
888		as = &linux_ptrace_disable_and_singlestep;
889	if (ks == NULL)
890		ks = &no;
891	if (uw == NULL)
892		uw = &no;
893
894	handler->super.on_event = process_stopping_on_event;
895	handler->super.destroy = process_stopping_destroy;
896	handler->task_enabling_breakpoint = proc;
897	handler->breakpoint_being_enabled = sbp;
898	handler->on_all_stopped = as;
899	handler->keep_stepping_p = ks;
900	handler->ugly_workaround_p = uw;
901
902	install_event_handler(proc->leader, &handler->super);
903
904	if (each_task(proc->leader, NULL, &send_sigstop,
905		      &handler->pids) != NULL) {
906		destroy_event_handler(proc);
907		return -1;
908	}
909
910	/* And deliver the first fake event, in case all the
911	 * conditions are already fulfilled.  */
912	Event ev = {
913		.type = EVENT_NONE,
914		.proc = proc,
915	};
916	process_stopping_on_event(&handler->super, &ev);
917
918	return 0;
919}
920
921void
922continue_after_breakpoint(Process *proc, struct breakpoint *sbp)
923{
924	debug(DEBUG_PROCESS,
925	      "continue_after_breakpoint: pid=%d, addr=%p",
926	      proc->pid, sbp->addr);
927
928	set_instruction_pointer(proc, sbp->addr);
929
930	if (sbp->enabled == 0) {
931		continue_process(proc->pid);
932	} else {
933#if defined __sparc__  || defined __ia64___ || defined __mips__
934		/* we don't want to singlestep here */
935		continue_process(proc->pid);
936#else
937		if (process_install_stopping_handler
938		    (proc, sbp, NULL, NULL, NULL) < 0) {
939			perror("process_stopping_handler_create");
940			/* Carry on not bothering to re-enable.  */
941			continue_process(proc->pid);
942		}
943#endif
944	}
945}
946
947/**
948 * Ltrace exit.  When we are about to exit, we have to go through all
949 * the processes, stop them all, remove all the breakpoints, and then
950 * detach the processes that we attached to using -p.  If we left the
951 * other tasks running, they might hit stray return breakpoints and
952 * produce artifacts, so we better stop everyone, even if it's a bit
953 * of extra work.
954 */
955struct ltrace_exiting_handler
956{
957	struct event_handler super;
958	struct pid_set pids;
959};
960
961static Event *
962ltrace_exiting_on_event(struct event_handler *super, Event *event)
963{
964	struct ltrace_exiting_handler * self = (void *)super;
965	Process * task = event->proc;
966	Process * leader = task->leader;
967
968	debug(DEBUG_PROCESS,
969	      "ltrace_exiting_on_event: pid %d; event type %d",
970	      task->pid, event->type);
971
972	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
973	handle_stopping_event(task_info, &event);
974
975	if (event != NULL && event->type == EVENT_BREAKPOINT)
976		undo_breakpoint(event, leader);
977
978	if (await_sigstop_delivery(&self->pids, task_info, event)
979	    && all_stops_accountable(&self->pids))
980		detach_process(leader);
981
982	/* Sink all non-exit events.  We are about to exit, so we
983	 * don't bother with queuing them. */
984	if (event_exit_or_none_p(event))
985		return event;
986
987	return NULL;
988}
989
990static void
991ltrace_exiting_destroy(struct event_handler *super)
992{
993	struct ltrace_exiting_handler * self = (void *)super;
994	free(self->pids.tasks);
995}
996
997static int
998ltrace_exiting_install_handler(Process * proc)
999{
1000	/* Only install to leader.  */
1001	if (proc->leader != proc)
1002		return 0;
1003
1004	/* Perhaps we are already installed, if the user passed
1005	 * several -p options that are tasks of one process.  */
1006	if (proc->event_handler != NULL
1007	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
1008		return 0;
1009
1010	/* If stopping handler is already present, let it do the
1011	 * work.  */
1012	if (proc->event_handler != NULL) {
1013		assert(proc->event_handler->on_event
1014		       == &process_stopping_on_event);
1015		struct process_stopping_handler * other
1016			= (void *)proc->event_handler;
1017		other->exiting = 1;
1018		return 0;
1019	}
1020
1021	struct ltrace_exiting_handler * handler
1022		= calloc(sizeof(*handler), 1);
1023	if (handler == NULL) {
1024		perror("malloc exiting handler");
1025	fatal:
1026		/* XXXXXXXXXXXXXXXXXXX fixme */
1027		return -1;
1028	}
1029
1030	handler->super.on_event = ltrace_exiting_on_event;
1031	handler->super.destroy = ltrace_exiting_destroy;
1032	install_event_handler(proc->leader, &handler->super);
1033
1034	if (each_task(proc->leader, NULL, &send_sigstop,
1035		      &handler->pids) != NULL)
1036		goto fatal;
1037
1038	return 0;
1039}
1040
1041/*
1042 * When the traced process vforks, it's suspended until the child
1043 * process calls _exit or exec*.  In the meantime, the two share the
1044 * address space.
1045 *
1046 * The child process should only ever call _exit or exec*, but we
1047 * can't count on that (it's not the role of ltrace to policy, but to
1048 * observe).  In any case, we will _at least_ have to deal with
1049 * removal of vfork return breakpoint (which we have to smuggle back
1050 * in, so that the parent can see it, too), and introduction of exec*
1051 * return breakpoint.  Since we already have both breakpoint actions
1052 * to deal with, we might as well support it all.
1053 *
1054 * The gist is that we pretend that the child is in a thread group
1055 * with its parent, and handle it as a multi-threaded case, with the
1056 * exception that we know that the parent is blocked, and don't
1057 * attempt to stop it.  When the child execs, we undo the setup.
1058 */
1059
1060struct process_vfork_handler
1061{
1062	struct event_handler super;
1063	void * bp_addr;
1064};
1065
1066static Event *
1067process_vfork_on_event(struct event_handler *super, Event *event)
1068{
1069	debug(DEBUG_PROCESS,
1070	      "process_vfork_on_event: pid %d; event type %d",
1071	      event->proc->pid, event->type);
1072
1073	struct process_vfork_handler * self = (void *)super;
1074	struct breakpoint *sbp;
1075	assert(self != NULL);
1076
1077	switch (event->type) {
1078	case EVENT_BREAKPOINT:
1079		/* Remember the vfork return breakpoint.  */
1080		if (self->bp_addr == 0)
1081			self->bp_addr = event->e_un.brk_addr;
1082		break;
1083
1084	case EVENT_EXIT:
1085	case EVENT_EXIT_SIGNAL:
1086	case EVENT_EXEC:
1087		/* Smuggle back in the vfork return breakpoint, so
1088		 * that our parent can trip over it once again.  */
1089		if (self->bp_addr != 0) {
1090			sbp = dict_find_entry(event->proc->leader->breakpoints,
1091					      self->bp_addr);
1092			if (sbp != NULL)
1093				assert(sbp->libsym == NULL);
1094			/* We don't mind failing that, it's not a big
1095			 * deal to not display one extra vfork return.  */
1096			insert_breakpoint(event->proc->parent,
1097					  self->bp_addr, NULL);
1098		}
1099
1100		continue_process(event->proc->parent->pid);
1101
1102		/* Remove the leader that we artificially set up
1103		 * earlier.  */
1104		change_process_leader(event->proc, event->proc);
1105		destroy_event_handler(event->proc);
1106
1107	default:
1108		;
1109	}
1110
1111	return event;
1112}
1113
1114void
1115continue_after_vfork(Process * proc)
1116{
1117	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1118	struct process_vfork_handler * handler = calloc(sizeof(*handler), 1);
1119	if (handler == NULL) {
1120		perror("malloc vfork handler");
1121		/* Carry on not bothering to treat the process as
1122		 * necessary.  */
1123		continue_process(proc->parent->pid);
1124		return;
1125	}
1126
1127	/* We must set up custom event handler, so that we see
1128	 * exec/exit events for the task itself.  */
1129	handler->super.on_event = process_vfork_on_event;
1130	install_event_handler(proc, &handler->super);
1131
1132	/* Make sure that the child is sole thread.  */
1133	assert(proc->leader == proc);
1134	assert(proc->next == NULL || proc->next->leader != proc);
1135
1136	/* Make sure that the child's parent is properly set up.  */
1137	assert(proc->parent != NULL);
1138	assert(proc->parent->leader != NULL);
1139
1140	change_process_leader(proc, proc->parent->leader);
1141}
1142
1143static int
1144is_mid_stopping(Process *proc)
1145{
1146	return proc != NULL
1147		&& proc->event_handler != NULL
1148		&& proc->event_handler->on_event == &process_stopping_on_event;
1149}
1150
1151void
1152continue_after_syscall(Process * proc, int sysnum, int ret_p)
1153{
1154	/* Don't continue if we are mid-stopping.  */
1155	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1156		debug(DEBUG_PROCESS,
1157		      "continue_after_syscall: don't continue %d",
1158		      proc->pid);
1159		return;
1160	}
1161	continue_process(proc->pid);
1162}
1163
1164/* If ltrace gets SIGINT, the processes directly or indirectly run by
1165 * ltrace get it too.  We just have to wait long enough for the signal
1166 * to be delivered and the process terminated, which we notice and
1167 * exit ltrace, too.  So there's not much we need to do there.  We
1168 * want to keep tracing those processes as usual, in case they just
1169 * SIG_IGN the SIGINT to do their shutdown etc.
1170 *
1171 * For processes ran on the background, we want to install an exit
1172 * handler that stops all the threads, removes all breakpoints, and
1173 * detaches.
1174 */
1175void
1176os_ltrace_exiting(void)
1177{
1178	struct opt_p_t * it;
1179	for (it = opt_p; it != NULL; it = it->next) {
1180		Process * proc = pid2proc(it->pid);
1181		if (proc == NULL || proc->leader == NULL)
1182			continue;
1183		if (ltrace_exiting_install_handler(proc->leader) < 0)
1184			fprintf(stderr,
1185				"Couldn't install exiting handler for %d.\n",
1186				proc->pid);
1187	}
1188}
1189
1190int
1191os_ltrace_exiting_sighandler(void)
1192{
1193	extern int linux_in_waitpid;
1194	if (linux_in_waitpid) {
1195		os_ltrace_exiting();
1196		return 1;
1197	}
1198	return 0;
1199}
1200
1201size_t
1202umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
1203
1204	union {
1205		long a;
1206		char c[sizeof(long)];
1207	} a;
1208	int started = 0;
1209	size_t offset = 0, bytes_read = 0;
1210
1211	while (offset < len) {
1212		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1213		if (a.a == -1 && errno) {
1214			if (started && errno == EIO)
1215				return bytes_read;
1216			else
1217				return -1;
1218		}
1219		started = 1;
1220
1221		if (len - offset >= sizeof(long)) {
1222			memcpy(laddr + offset, &a.c[0], sizeof(long));
1223			bytes_read += sizeof(long);
1224		}
1225		else {
1226			memcpy(laddr + offset, &a.c[0], len - offset);
1227			bytes_read += (len - offset);
1228		}
1229		offset += sizeof(long);
1230	}
1231
1232	return bytes_read;
1233}
1234
1235/* Read a series of bytes starting at the process's memory address
1236   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
1237   have been read.
1238*/
1239int
1240umovestr(Process *proc, void *addr, int len, void *laddr) {
1241	union {
1242		long a;
1243		char c[sizeof(long)];
1244	} a;
1245	unsigned i;
1246	int offset = 0;
1247
1248	while (offset < len) {
1249		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1250		for (i = 0; i < sizeof(long); i++) {
1251			if (a.c[i] && offset + (signed)i < len) {
1252				*(char *)(laddr + offset + i) = a.c[i];
1253			} else {
1254				*(char *)(laddr + offset + i) = '\0';
1255				return 0;
1256			}
1257		}
1258		offset += sizeof(long);
1259	}
1260	*(char *)(laddr + offset) = '\0';
1261	return 0;
1262}
1263