shading.html revision 3bfedb7ed4a35cfcc7187bc22314833ef1d96ec9
1<HTML>
2
3<TITLE>Shading Language Support</TITLE>
4
5<link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7<BODY>
8
9<H1>Shading Language Support</H1>
10
11<p>
12This page describes the features and status of Mesa's support for the
13<a href="http://opengl.org/documentation/glsl/" target="_parent">
14OpenGL Shading Language</a>.
15</p>
16
17<p>
18Last updated on 28 March 2007.
19</p>
20
21<p>
22Contents
23</p>
24<ul>
25<li><a href="#unsup">Unsupported Features</a>
26<li><a href="#notes">Implementation Notes</a>
27<li><a href="#hints">Programming Hints</a>
28<li><a href="#standalone">Stand-alone GLSL Compiler</a>
29<li><a href="#implementation">Compiler Implementation</a>
30<li><a href="#validation">Compiler Validation</a>
31</ul>
32
33
34<a name="unsup">
35<h2>Unsupported Features</h2>
36
37<p>
38The following features of the shading language are not yet supported
39in Mesa:
40</p>
41
42<ul>
43<li>Dereferencing arrays with non-constant indexes
44<li>Comparison of user-defined structs
45<li>Linking of multiple shaders is not supported
46<li>gl_ClipVertex
47<li>The derivative functions such as dFdx() are not implemented
48<li>The inverse trig functions asin(), acos(), and atan() are not implemented
49<li>The gl_Color and gl_SecondaryColor varying vars are interpolated
50    without perspective correction
51<li>Floating point literal suffixes 'f' and 'F' aren't allowed.
52</ul>
53
54<p>
55All other major features of the shading language should function.
56</p>
57
58
59<a name="notes">
60<h2>Implementation Notes</h2>
61
62<ul>
63<li>Shading language programs are compiled into low-level programs
64    very similar to those of GL_ARB_vertex/fragment_program.
65<li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
66    float[4] registers.
67<li>Float constants and variables are packed so that up to four floats
68    can occupy one program parameter/register.
69<li>All function calls are inlined.
70<li>Shaders which use too many registers will not compile.
71<li>The quality of generated code is pretty good, register usage is fair.
72<li>Shader error detection and reporting of errors (InfoLog) is not
73    very good yet.
74<li>The ftransform() function doesn't necessarily match the results of
75    fixed-function transformation.
76</ul>
77
78<p>
79These issues will be addressed/resolved in the future.
80</p>
81
82
83<a name="hints">
84<h2>Programming Hints</h2>
85
86<ul>
87<li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
88    This improves the efficiency of function inlining.
89</li>
90<br>
91<li>To reduce register usage, declare variables within smaller scopes.
92    For example, the following code:
93<pre>
94    void main()
95    {
96       vec4 a1, a2, b1, b2;
97       gl_Position = expression using a1, a2.
98       gl_Color = expression using b1, b2;
99    }
100</pre>
101    Can be rewritten as follows to use half as many registers:
102<pre>
103    void main()
104    {
105       {
106          vec4 a1, a2;
107          gl_Position = expression using a1, a2.
108       }
109       {
110          vec4 b1, b2;
111          gl_Color = expression using b1, b2;
112       }
113    }
114</pre>
115    Alternately, rather than using several float variables, use
116    a vec4 instead.  Use swizzling and writemasks to access the
117    components of the vec4 as floats.
118</li>
119<br>
120<li>Use the built-in library functions whenever possible.
121    For example, instead of writing this:
122<pre>
123        float x = 1.0 / sqrt(y);
124</pre>
125    Write this:
126<pre>
127        float x = inversesqrt(y);
128</pre>
129<li>
130   Use ++i when possible as it's more efficient than i++
131</li>
132</ul>
133
134
135<a name="standalone">
136<h2>Stand-alone GLSL Compiler</h2>
137
138<p>
139A unique stand-alone GLSL compiler driver has been added to Mesa.
140<p>
141
142<p>
143The stand-alone compiler (like a conventional command-line compiler)
144is a tool that accepts Shading Language programs and emits low-level
145GPU programs.
146</p>
147
148<p>
149This tool is useful for:
150<p>
151<ul>
152<li>Inspecting GPU code to gain insight into compilation
153<li>Generating initial GPU code for subsequent hand-tuning
154<li>Debugging the GLSL compiler itself
155</ul>
156
157<p>
158After building Mesa the glslcompiler should be found in the Mesa/bin/ directory.
159If it's not there, it can be built manually:
160</p>
161<pre>
162    cd src/mesa/drivers/glslcompiler
163    make
164</pre>
165
166
167<p>
168Here's an example of using the compiler to compile a vertex shader and
169emit GL_ARB_vertex_program-style instructions:
170</p>
171<pre>
172    bin/glslcompiler --debug --numbers --fs progs/glsl/CH06-brick.frag.txt
173</pre>
174<p>
175results in:
176</p>
177<pre>
178# Fragment Program/Shader
179  0: RCP TEMP[4].x, UNIFORM[2].xxxx;
180  1: RCP TEMP[4].y, UNIFORM[2].yyyy;
181  2: MUL TEMP[3].xy, VARYING[0], TEMP[4];
182  3: MOV TEMP[1], TEMP[3];
183  4: MUL TEMP[0].w, TEMP[1].yyyy, CONST[4].xxxx;
184  5: FRC TEMP[1].z, TEMP[0].wwww;
185  6: SGT.C TEMP[0].w, TEMP[1].zzzz, CONST[4].xxxx;
186  7: IF (NE.wwww); # (if false, goto 9);
187  8:    ADD TEMP[1].x, TEMP[1].xxxx, CONST[4].xxxx;
188  9: ENDIF;
189 10: FRC TEMP[1].xy, TEMP[1];
190 11: SGT TEMP[2].xy, UNIFORM[3], TEMP[1];
191 12: MUL TEMP[1].z, TEMP[2].xxxx, TEMP[2].yyyy;
192 13: LRP TEMP[0], TEMP[1].zzzz, UNIFORM[0], UNIFORM[1];
193 14: MUL TEMP[0].xyz, TEMP[0], VARYING[1].xxxx;
194 15: MOV OUTPUT[0].xyz, TEMP[0];
195 16: MOV OUTPUT[0].w, CONST[4].yyyy;
196 17: END
197</pre>
198
199<p>
200Note that some shading language constructs (such as uniform and varying
201variables) aren't expressible in ARB or NV-style programs.
202Therefore, the resulting output is not always legal by definition of
203those program languages.
204</p>
205<p>
206Also note that this compiler driver is still under development.
207Over time, the correctness of the GPU programs, with respect to the ARB
208and NV languagues, should improve.
209</p>
210
211
212
213<a name="implementation">
214<h2>Compiler Implementation</h2>
215
216<p>
217The source code for Mesa's shading language compiler is in the
218<code>src/mesa/shader/slang/</code> directory.
219</p>
220
221<p>
222The compiler follows a fairly standard design and basically works as follows:
223</p>
224<ul>
225<li>The input string is tokenized (see grammar.c) and parsed
226(see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
227The nodes in this tree are slang_operation structures
228(see slang_compile_operation.h).
229The nodes are decorated with symbol table, scoping and datatype information.
230<li>The AST is converted into an Intermediate representation (IR) tree
231(see the slang_codegen.c file).
232The IR nodes represent basic GPU instructions, like add, dot product,
233move, etc. 
234The IR tree is mostly a binary tree, but a few nodes have three or four
235children.
236In principle, the IR tree could be executed by doing an in-order traversal.
237<li>The IR tree is traversed in-order to emit code (see slang_emit.c).
238This is also when registers are allocated to store variables and temps.
239<li>In the future, a pattern-matching code generator-generator may be
240used for code generation.
241Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
242patterns in IR trees, compute weights for subtrees and use the weights
243to select the best instructions to represent the sub-tree.
244<li>The emitted GPU instructions (see prog_instruction.h) are stored in a
245gl_program object (see mtypes.h).
246<li>When a fragment shader and vertex shader are linked (see slang_link.c)
247the varying vars are matched up, uniforms are merged, and vertex
248attributes are resolved (rewriting instructions as needed).
249</ul>
250
251<p>
252The final vertex and fragment programs may be interpreted in software
253(see prog_execute.c) or translated into a specific hardware architecture
254(see drivers/dri/i915/i915_fragprog.c for example).
255</p>
256
257<h3>Code Generation Options</h3>
258
259<p>
260Internally, there are several options that control the compiler's code
261generation and instruction selection.
262These options are seen in the gl_shader_state struct and may be set
263by the device driver to indicate its preferences:
264
265<pre>
266struct gl_shader_state
267{
268   ...
269   /** Driver-selectable options: */
270   GLboolean EmitHighLevelInstructions;
271   GLboolean EmitCondCodes;
272   GLboolean EmitComments;
273};
274</pre>
275
276<ul>
277<li>EmitHighLevelInstructions
278<br>
279This option controls instruction selection for loops and conditionals.
280If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
281instructions will be emitted.
282Otherwise, those constructs will be implemented with BRA instructions.
283</li>
284
285<li>EmitCondCodes
286<br>
287If set, condition codes (ala GL_NV_fragment_program) will be used for
288branching and looping.
289Otherwise, ordinary registers will be used (the IF instruction will
290examine the first operand's X component and do the if-part if non-zero).
291This option is only relevant if EmitHighLevelInstructions is set.
292</li>
293
294<li>EmitComments
295<br>
296If set, instructions will be annoted with comments to help with debugging.
297Extra NOP instructions will also be inserted.
298</br>
299
300</ul>
301
302
303<a name="validation">
304<h2>Compiler Validation</h2>
305
306<p>
307A new <a href="http://glean.sf.net" target="_parent">Glean</a> test has
308been create to exercise the GLSL compiler.
309</p>
310<p>
311The <em>glsl1</em> test runs over 150 sub-tests to check that the language
312features and built-in functions work properly.
313This test should be run frequently while working on the compiler to catch
314regressions.
315</p>
316<p>
317The test coverage is reasonably broad and complete but additional tests
318should be added.
319</p>
320
321
322</BODY>
323</HTML>
324