shading.html revision 7ff72a76590d5abdbe0891da51a5fed37d6fe312
1<HTML>
2
3<TITLE>Shading Language Support</TITLE>
4
5<link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7<BODY>
8
9<H1>Shading Language Support</H1>
10
11<p>
12This page describes the features and status of Mesa's support for the
13<a href="http://opengl.org/documentation/glsl/" target="_parent">
14OpenGL Shading Language</a>.
15</p>
16
17<p>
18Last updated on 28 March 2007.
19</p>
20
21<p>
22Contents
23</p>
24<ul>
25<li><a href="#unsup">Unsupported Features</a>
26<li><a href="#notes">Implementation Notes</a>
27<li><a href="#hints">Programming Hints</a>
28<li><a href="#standalone">Stand-alone Compiler</a>
29<li><a href="#implementation">Compiler Implementation</a>
30<li><a href="#validation">Compiler Validation</a>
31</ul>
32
33
34<a name="unsup">
35<h2>Unsupported Features</h2>
36
37<p>
38The following features of the shading language are not yet supported
39in Mesa:
40</p>
41
42<ul>
43<li>Dereferencing arrays with non-constant indexes
44<li>Comparison of user-defined structs
45<li>Linking of multiple shaders is not supported
46<li>gl_ClipVertex
47<li>The derivative functions such as dFdx() are not implemented
48<li>The inverse trig functions asin(), acos(), and atan() are not implemented
49</ul>
50
51<p>
52All other major features of the shading language should function.
53</p>
54
55
56<a name="notes">
57<h2>Implementation Notes</h2>
58
59<ul>
60<li>Shading language programs are compiled into low-level programs
61    very similar to those of GL_ARB_vertex/fragment_program.
62<li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
63    float[4] registers.
64<li>Float constants and variables are packed so that up to four floats
65    can occupy one program parameter/register.
66<li>All function calls are inlined.
67<li>Shaders which use too many registers will not compile.
68<li>The quality of generated code is pretty good, register usage is fair.
69<li>Shader error detection and reporting of errors (InfoLog) is not
70    very good yet.
71<li>The ftransform() function doesn't necessarily match the results of
72    fixed-function transformation.
73</ul>
74
75<p>
76These issues will be addressed/resolved in the future.
77</p>
78
79
80<a name="hints">
81<h2>Programming Hints</h2>
82
83<ul>
84<li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
85    This improves the efficiency of function inlining.
86</li>
87<br>
88<li>To reduce register usage, declare variables within smaller scopes.
89    For example, the following code:
90<pre>
91    void main()
92    {
93       vec4 a1, a2, b1, b2;
94       gl_Position = expression using a1, a2.
95       gl_Color = expression using b1, b2;
96    }
97</pre>
98    Can be rewritten as follows to use half as many registers:
99<pre>
100    void main()
101    {
102       {
103          vec4 a1, a2;
104          gl_Position = expression using a1, a2.
105       }
106       {
107          vec4 b1, b2;
108          gl_Color = expression using b1, b2;
109       }
110    }
111</pre>
112    Alternately, rather than using several float variables, use
113    a vec4 instead.  Use swizzling and writemasks to access the
114    components of the vec4 as floats.
115</li>
116<br>
117<li>Use the built-in library functions whenever possible.
118    For example, instead of writing this:
119<pre>
120        float x = 1.0 / sqrt(y);
121</pre>
122    Write this:
123<pre>
124        float x = inversesqrt(y);
125</pre>
126<li>
127   Use ++i when possible as it's more efficient than i++
128</li>
129</ul>
130
131
132<a name="standalone">
133<h2>Stand-alone Compiler</h2>
134
135<p>
136A unique stand-alone GLSL compiler driver has been added to Mesa.
137<p>
138
139<p>
140The stand-alone compiler (like a conventional command-line compiler)
141is a tool that accepts Shading Language programs and emits low-level
142GPU programs.
143</p>
144
145<p>
146This tool is useful for:
147<p>
148<ul>
149<li>Inspecting GPU code to gain insight into compilation
150<li>Generating initial GPU code for subsequent hand-tuning
151<li>Debugging the GLSL compiler itself
152</ul>
153
154<p>
155To build the glslcompiler program (this will be improved someday):
156</p>
157<pre>
158    cd src/mesa
159    make libmesa.a
160    cd drivers/glslcompiler
161    make
162</pre>
163
164
165<p>
166Here's an example of using the compiler to compile a vertex shader and
167emit GL_ARB_vertex_program-style instructions:
168</p>
169<pre>
170    glslcompiler --arb --linenumbers --vs vertshader.txt
171</pre>
172<p>
173The output may look similar to this:
174</p>
175<pre>
176!!ARBvp1.0
177  0: MOV result.texcoord[0], vertex.texcoord[0];
178  1: DP4 temp0.x, state.matrix.mvp.row[0], vertex.position;
179  2: DP4 temp0.y, state.matrix.mvp.row[1], vertex.position;
180  3: DP4 temp0.z, state.matrix.mvp.row[2], vertex.position;
181  4: DP4 temp0.w, state.matrix.mvp.row[3], vertex.position;
182  5: MOV result.position, temp0;
183  6: END
184</pre>
185
186<p>
187Note that some shading language constructs (such as uniform and varying
188variables) aren't expressible in ARB or NV-style programs.
189Therefore, the resulting output is not always legal by definition of
190those program languages.
191</p>
192<p>
193Also note that this compiler driver is still under development.
194Over time, the correctness of the GPU programs, with respect to the ARB
195and NV languagues, should improve.
196</p>
197
198
199
200<a name="implementation">
201<h2>Compiler Implementation</h2>
202
203<p>
204The source code for Mesa's shading language compiler is in the
205<code>src/mesa/shader/slang/</code> directory.
206</p>
207
208<p>
209The compiler follows a fairly standard design and basically works as follows:
210</p>
211<ul>
212<li>The input string is tokenized (see grammar.c) and parsed
213(see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
214The nodes in this tree are slang_operation structures
215(see slang_compile_operation.h).
216The nodes are decorated with symbol table, scoping and datatype information.
217<li>The AST is converted into an Intermediate representation (IR) tree
218(see the slang_codegen.c file).
219The IR nodes represent basic GPU instructions, like add, dot product,
220move, etc. 
221The IR tree is mostly a binary tree, but a few nodes have three or four
222children.
223In principle, the IR tree could be executed by doing an in-order traversal.
224<li>The IR tree is traversed in-order to emit code (see slang_emit.c).
225This is also when registers are allocated to store variables and temps.
226<li>In the future, a pattern-matching code generator-generator may be
227used for code generation.
228Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
229patterns in IR trees, compute weights for subtrees and use the weights
230to select the best instructions to represent the sub-tree.
231<li>The emitted GPU instructions (see prog_instruction.h) are stored in a
232gl_program object (see mtypes.h).
233<li>When a fragment shader and vertex shader are linked (see slang_link.c)
234the varying vars are matched up, uniforms are merged, and vertex
235attributes are resolved (rewriting instructions as needed).
236</ul>
237
238<p>
239The final vertex and fragment programs may be interpreted in software
240(see prog_execute.c) or translated into a specific hardware architecture
241(see drivers/dri/i915/i915_fragprog.c for example).
242</p>
243
244<h3>Code Generation Options</h3>
245
246<p>
247Internally, there are several options that control the compiler's code
248generation and instruction selection.
249These options are seen in the gl_shader_state struct and may be set
250by the device driver to indicate its preferences:
251
252<pre>
253struct gl_shader_state
254{
255   ...
256   /** Driver-selectable options: */
257   GLboolean EmitHighLevelInstructions;
258   GLboolean EmitCondCodes;
259   GLboolean EmitComments;
260};
261</pre>
262
263<ul>
264<li>EmitHighLevelInstructions
265<br>
266This option controls instruction selection for loops and conditionals.
267If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
268instructions will be emitted.
269Otherwise, those constructs will be implemented with BRA instructions.
270</li>
271
272<li>EmitCondCodes
273<br>
274If set, condition codes (ala GL_NV_fragment_program) will be used for
275branching and looping.
276Otherwise, ordinary registers will be used (the IF instruction will
277examine the first operand's X component and do the if-part if non-zero).
278This option is only relevant if EmitHighLevelInstructions is set.
279</li>
280
281<li>EmitComments
282<br>
283If set, instructions will be annoted with comments to help with debugging.
284Extra NOP instructions will also be inserted.
285</br>
286
287</ul>
288
289
290<a name="validation">
291<h2>Compiler Validation</h2>
292
293<p>
294A new <a href="http://glean.sf.net" target="_parent">Glean</a> test has
295been create to exercise the GLSL compiler.
296</p>
297<p>
298The <em>glsl1</em> test runs over 150 sub-tests to check that the language
299features and built-in functions work properly.
300This test should be run frequently while working on the compiler to catch
301regressions.
302</p>
303<p>
304The test coverage is reasonably broad and complete but additional tests
305should be added.
306</p>
307
308
309</BODY>
310</HTML>
311