shading.html revision c4341fe80acf75bf5417ffeb85fe6902218b752a
1<HTML>
2
3<TITLE>Shading Language Support</TITLE>
4
5<link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7<BODY>
8
9<H1>Shading Language Support</H1>
10
11<p>
12This page describes the features and status of Mesa's support for the
13<a href="http://opengl.org/documentation/glsl/" target="_parent">
14OpenGL Shading Language</a>.
15</p>
16
17<p>
18Last updated on 15 December 2008.
19</p>
20
21<p>
22Contents
23</p>
24<ul>
25<li><a href="#120">GLSL 1.20 support</a>
26<li><a href="#unsup">Unsupported Features</a>
27<li><a href="#notes">Implementation Notes</a>
28<li><a href="#hints">Programming Hints</a>
29<li><a href="#standalone">Stand-alone GLSL Compiler</a>
30<li><a href="#implementation">Compiler Implementation</a>
31<li><a href="#validation">Compiler Validation</a>
32</ul>
33
34
35
36<a name="120">
37<h2>GLSL 1.20 support</h2>
38
39<p>
40GLSL version 1.20 is supported in Mesa 7.3.
41Among the features/differences of GLSL 1.20 are:
42<ul>
43<li><code>mat2x3, mat2x4</code>, etc. types and functions
44<li><code>transpose(), outerProduct(), matrixCompMult()</code> functions
45(but untested)
46<li>precision qualifiers (lowp, mediump, highp)
47<li><code>invariant</code> qualifier
48<li><code>array.length()</code> method
49<li><code>float[5] a;</code> array syntax
50<li><code>centroid</code> qualifier
51<li>unsized array constructors
52<li>initializers for uniforms
53<li>const initializers calling built-in functions
54</ul>
55
56
57
58<a name="unsup">
59<h2>Unsupported Features</h2>
60
61<p>
62The following features of the shading language are not yet supported
63in Mesa:
64</p>
65
66<ul>
67<li>Linking of multiple shaders is not supported
68<li>gl_ClipVertex
69<li>The gl_Color and gl_SecondaryColor varying vars are interpolated
70    without perspective correction
71</ul>
72
73<p>
74All other major features of the shading language should function.
75</p>
76
77
78<a name="notes">
79<h2>Implementation Notes</h2>
80
81<ul>
82<li>Shading language programs are compiled into low-level programs
83    very similar to those of GL_ARB_vertex/fragment_program.
84<li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
85    float[4] registers.
86<li>Float constants and variables are packed so that up to four floats
87    can occupy one program parameter/register.
88<li>All function calls are inlined.
89<li>Shaders which use too many registers will not compile.
90<li>The quality of generated code is pretty good, register usage is fair.
91<li>Shader error detection and reporting of errors (InfoLog) is not
92    very good yet.
93<li>The ftransform() function doesn't necessarily match the results of
94    fixed-function transformation.
95</ul>
96
97<p>
98These issues will be addressed/resolved in the future.
99</p>
100
101
102<a name="hints">
103<h2>Programming Hints</h2>
104
105<ul>
106<li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
107    This improves the efficiency of function inlining.
108</li>
109<br>
110<li>To reduce register usage, declare variables within smaller scopes.
111    For example, the following code:
112<pre>
113    void main()
114    {
115       vec4 a1, a2, b1, b2;
116       gl_Position = expression using a1, a2.
117       gl_Color = expression using b1, b2;
118    }
119</pre>
120    Can be rewritten as follows to use half as many registers:
121<pre>
122    void main()
123    {
124       {
125          vec4 a1, a2;
126          gl_Position = expression using a1, a2.
127       }
128       {
129          vec4 b1, b2;
130          gl_Color = expression using b1, b2;
131       }
132    }
133</pre>
134    Alternately, rather than using several float variables, use
135    a vec4 instead.  Use swizzling and writemasks to access the
136    components of the vec4 as floats.
137</li>
138<br>
139<li>Use the built-in library functions whenever possible.
140    For example, instead of writing this:
141<pre>
142        float x = 1.0 / sqrt(y);
143</pre>
144    Write this:
145<pre>
146        float x = inversesqrt(y);
147</pre>
148<li>
149   Use ++i when possible as it's more efficient than i++
150</li>
151</ul>
152
153
154<a name="standalone">
155<h2>Stand-alone GLSL Compiler</h2>
156
157<p>
158A unique stand-alone GLSL compiler driver has been added to Mesa.
159<p>
160
161<p>
162The stand-alone compiler (like a conventional command-line compiler)
163is a tool that accepts Shading Language programs and emits low-level
164GPU programs.
165</p>
166
167<p>
168This tool is useful for:
169<p>
170<ul>
171<li>Inspecting GPU code to gain insight into compilation
172<li>Generating initial GPU code for subsequent hand-tuning
173<li>Debugging the GLSL compiler itself
174</ul>
175
176<p>
177After building Mesa, the glslcompiler can be built by manually running:
178</p>
179<pre>
180    cd src/mesa/drivers/glslcompiler
181    make
182</pre>
183
184
185<p>
186Here's an example of using the compiler to compile a vertex shader and
187emit GL_ARB_vertex_program-style instructions:
188</p>
189<pre>
190    bin/glslcompiler --debug --numbers --fs progs/glsl/CH06-brick.frag.txt
191</pre>
192<p>
193results in:
194</p>
195<pre>
196# Fragment Program/Shader
197  0: RCP TEMP[4].x, UNIFORM[2].xxxx;
198  1: RCP TEMP[4].y, UNIFORM[2].yyyy;
199  2: MUL TEMP[3].xy, VARYING[0], TEMP[4];
200  3: MOV TEMP[1], TEMP[3];
201  4: MUL TEMP[0].w, TEMP[1].yyyy, CONST[4].xxxx;
202  5: FRC TEMP[1].z, TEMP[0].wwww;
203  6: SGT.C TEMP[0].w, TEMP[1].zzzz, CONST[4].xxxx;
204  7: IF (NE.wwww); # (if false, goto 9);
205  8:    ADD TEMP[1].x, TEMP[1].xxxx, CONST[4].xxxx;
206  9: ENDIF;
207 10: FRC TEMP[1].xy, TEMP[1];
208 11: SGT TEMP[2].xy, UNIFORM[3], TEMP[1];
209 12: MUL TEMP[1].z, TEMP[2].xxxx, TEMP[2].yyyy;
210 13: LRP TEMP[0], TEMP[1].zzzz, UNIFORM[0], UNIFORM[1];
211 14: MUL TEMP[0].xyz, TEMP[0], VARYING[1].xxxx;
212 15: MOV OUTPUT[0].xyz, TEMP[0];
213 16: MOV OUTPUT[0].w, CONST[4].yyyy;
214 17: END
215</pre>
216
217<p>
218Note that some shading language constructs (such as uniform and varying
219variables) aren't expressible in ARB or NV-style programs.
220Therefore, the resulting output is not always legal by definition of
221those program languages.
222</p>
223<p>
224Also note that this compiler driver is still under development.
225Over time, the correctness of the GPU programs, with respect to the ARB
226and NV languagues, should improve.
227</p>
228
229
230
231<a name="implementation">
232<h2>Compiler Implementation</h2>
233
234<p>
235The source code for Mesa's shading language compiler is in the
236<code>src/mesa/shader/slang/</code> directory.
237</p>
238
239<p>
240The compiler follows a fairly standard design and basically works as follows:
241</p>
242<ul>
243<li>The input string is tokenized (see grammar.c) and parsed
244(see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
245The nodes in this tree are slang_operation structures
246(see slang_compile_operation.h).
247The nodes are decorated with symbol table, scoping and datatype information.
248<li>The AST is converted into an Intermediate representation (IR) tree
249(see the slang_codegen.c file).
250The IR nodes represent basic GPU instructions, like add, dot product,
251move, etc. 
252The IR tree is mostly a binary tree, but a few nodes have three or four
253children.
254In principle, the IR tree could be executed by doing an in-order traversal.
255<li>The IR tree is traversed in-order to emit code (see slang_emit.c).
256This is also when registers are allocated to store variables and temps.
257<li>In the future, a pattern-matching code generator-generator may be
258used for code generation.
259Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
260patterns in IR trees, compute weights for subtrees and use the weights
261to select the best instructions to represent the sub-tree.
262<li>The emitted GPU instructions (see prog_instruction.h) are stored in a
263gl_program object (see mtypes.h).
264<li>When a fragment shader and vertex shader are linked (see slang_link.c)
265the varying vars are matched up, uniforms are merged, and vertex
266attributes are resolved (rewriting instructions as needed).
267</ul>
268
269<p>
270The final vertex and fragment programs may be interpreted in software
271(see prog_execute.c) or translated into a specific hardware architecture
272(see drivers/dri/i915/i915_fragprog.c for example).
273</p>
274
275<h3>Code Generation Options</h3>
276
277<p>
278Internally, there are several options that control the compiler's code
279generation and instruction selection.
280These options are seen in the gl_shader_state struct and may be set
281by the device driver to indicate its preferences:
282
283<pre>
284struct gl_shader_state
285{
286   ...
287   /** Driver-selectable options: */
288   GLboolean EmitHighLevelInstructions;
289   GLboolean EmitCondCodes;
290   GLboolean EmitComments;
291};
292</pre>
293
294<ul>
295<li>EmitHighLevelInstructions
296<br>
297This option controls instruction selection for loops and conditionals.
298If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
299instructions will be emitted.
300Otherwise, those constructs will be implemented with BRA instructions.
301</li>
302
303<li>EmitCondCodes
304<br>
305If set, condition codes (ala GL_NV_fragment_program) will be used for
306branching and looping.
307Otherwise, ordinary registers will be used (the IF instruction will
308examine the first operand's X component and do the if-part if non-zero).
309This option is only relevant if EmitHighLevelInstructions is set.
310</li>
311
312<li>EmitComments
313<br>
314If set, instructions will be annoted with comments to help with debugging.
315Extra NOP instructions will also be inserted.
316</br>
317
318</ul>
319
320
321<a name="validation">
322<h2>Compiler Validation</h2>
323
324<p>
325A <a href="http://glean.sf.net" target="_parent">Glean</a> test has
326been create to exercise the GLSL compiler.
327</p>
328<p>
329The <em>glsl1</em> test runs over 170 sub-tests to check that the language
330features and built-in functions work properly.
331This test should be run frequently while working on the compiler to catch
332regressions.
333</p>
334<p>
335The test coverage is reasonably broad and complete but additional tests
336should be added.
337</p>
338
339
340</BODY>
341</HTML>
342