u_gen_mipmap.c revision 4617981ec72f7985941bee4b03c534d97ff96bc6
1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008  VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37#include "pipe/p_context.h"
38#include "pipe/p_debug.h"
39#include "pipe/p_defines.h"
40#include "pipe/p_inlines.h"
41#include "pipe/p_shader_tokens.h"
42
43#include "util/u_memory.h"
44#include "util/u_draw_quad.h"
45#include "util/u_gen_mipmap.h"
46#include "util/u_simple_shaders.h"
47
48#include "tgsi/tgsi_build.h"
49#include "tgsi/tgsi_dump.h"
50#include "tgsi/tgsi_parse.h"
51
52#include "cso_cache/cso_context.h"
53
54
55struct gen_mipmap_state
56{
57   struct pipe_context *pipe;
58   struct cso_context *cso;
59
60   struct pipe_blend_state blend;
61   struct pipe_depth_stencil_alpha_state depthstencil;
62   struct pipe_rasterizer_state rasterizer;
63   struct pipe_sampler_state sampler;
64   struct pipe_viewport_state viewport;
65
66   struct pipe_shader_state vert_shader;
67   struct pipe_shader_state frag_shader;
68   void *vs;
69   void *fs;
70
71   struct pipe_buffer *vbuf;  /**< quad vertices */
72   unsigned vbuf_slot;
73
74   float vertices[4][2][4];   /**< vertex/texcoords for quad */
75};
76
77
78
79enum dtype
80{
81   UBYTE,
82   UBYTE_3_3_2,
83   USHORT,
84   USHORT_4_4_4_4,
85   USHORT_5_6_5,
86   USHORT_1_5_5_5_REV,
87   UINT,
88   FLOAT,
89   HALF_FLOAT
90};
91
92
93typedef ushort half_float;
94
95
96static half_float
97float_to_half(float f)
98{
99   /* XXX fix this */
100   return 0;
101}
102
103static float
104half_to_float(half_float h)
105{
106   /* XXX fix this */
107   return 0.0f;
108}
109
110
111
112
113/**
114 * \name Support macros for do_row and do_row_3d
115 *
116 * The macro madness is here for two reasons.  First, it compacts the code
117 * slightly.  Second, it makes it much easier to adjust the specifics of the
118 * filter to tune the rounding characteristics.
119 */
120/*@{*/
121#define DECLARE_ROW_POINTERS(t, e) \
122      const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
123      const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
124      const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
125      const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
126      t(*dst)[e] = (t(*)[e]) dstRow
127
128#define DECLARE_ROW_POINTERS0(t) \
129      const t *rowA = (const t *) srcRowA; \
130      const t *rowB = (const t *) srcRowB; \
131      const t *rowC = (const t *) srcRowC; \
132      const t *rowD = (const t *) srcRowD; \
133      t *dst = (t *) dstRow
134
135#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
136   ((unsigned) Aj + (unsigned) Ak \
137    + (unsigned) Bj + (unsigned) Bk \
138    + (unsigned) Cj + (unsigned) Ck \
139    + (unsigned) Dj + (unsigned) Dk \
140    + 4) >> 3
141
142#define FILTER_3D(e) \
143   do { \
144      dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
145                                rowB[j][e], rowB[k][e], \
146                                rowC[j][e], rowC[k][e], \
147                                rowD[j][e], rowD[k][e]); \
148   } while(0)
149
150#define FILTER_F_3D(e) \
151   do { \
152      dst[i][e] = (rowA[j][e] + rowA[k][e] \
153                   + rowB[j][e] + rowB[k][e] \
154                   + rowC[j][e] + rowC[k][e] \
155                   + rowD[j][e] + rowD[k][e]) * 0.125F; \
156   } while(0)
157
158#define FILTER_HF_3D(e) \
159   do { \
160      const float aj = half_to_float(rowA[j][e]); \
161      const float ak = half_to_float(rowA[k][e]); \
162      const float bj = half_to_float(rowB[j][e]); \
163      const float bk = half_to_float(rowB[k][e]); \
164      const float cj = half_to_float(rowC[j][e]); \
165      const float ck = half_to_float(rowC[k][e]); \
166      const float dj = half_to_float(rowD[j][e]); \
167      const float dk = half_to_float(rowD[k][e]); \
168      dst[i][e] = float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
169                                      * 0.125F); \
170   } while(0)
171/*@}*/
172
173
174/**
175 * Average together two rows of a source image to produce a single new
176 * row in the dest image.  It's legal for the two source rows to point
177 * to the same data.  The source width must be equal to either the
178 * dest width or two times the dest width.
179 * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
180 * \param comps  number of components per pixel (1..4)
181 */
182static void
183do_row(enum dtype datatype, uint comps, int srcWidth,
184       const void *srcRowA, const void *srcRowB,
185       int dstWidth, void *dstRow)
186{
187   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
188   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
189
190   assert(comps >= 1);
191   assert(comps <= 4);
192
193   /* This assertion is no longer valid with non-power-of-2 textures
194   assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
195   */
196
197   if (datatype == UBYTE && comps == 4) {
198      uint i, j, k;
199      const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
200      const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
201      ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
202      for (i = j = 0, k = k0; i < (uint) dstWidth;
203           i++, j += colStride, k += colStride) {
204         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
205         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
206         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
207         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
208      }
209   }
210   else if (datatype == UBYTE && comps == 3) {
211      uint i, j, k;
212      const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
213      const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
214      ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
215      for (i = j = 0, k = k0; i < (uint) dstWidth;
216           i++, j += colStride, k += colStride) {
217         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
218         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
219         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
220      }
221   }
222   else if (datatype == UBYTE && comps == 2) {
223      uint i, j, k;
224      const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
225      const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
226      ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
227      for (i = j = 0, k = k0; i < (uint) dstWidth;
228           i++, j += colStride, k += colStride) {
229         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
230         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
231      }
232   }
233   else if (datatype == UBYTE && comps == 1) {
234      uint i, j, k;
235      const ubyte *rowA = (const ubyte *) srcRowA;
236      const ubyte *rowB = (const ubyte *) srcRowB;
237      ubyte *dst = (ubyte *) dstRow;
238      for (i = j = 0, k = k0; i < (uint) dstWidth;
239           i++, j += colStride, k += colStride) {
240         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
241      }
242   }
243
244   else if (datatype == USHORT && comps == 4) {
245      uint i, j, k;
246      const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
247      const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
248      ushort(*dst)[4] = (ushort(*)[4]) dstRow;
249      for (i = j = 0, k = k0; i < (uint) dstWidth;
250           i++, j += colStride, k += colStride) {
251         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
252         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
253         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
254         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
255      }
256   }
257   else if (datatype == USHORT && comps == 3) {
258      uint i, j, k;
259      const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
260      const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
261      ushort(*dst)[3] = (ushort(*)[3]) dstRow;
262      for (i = j = 0, k = k0; i < (uint) dstWidth;
263           i++, j += colStride, k += colStride) {
264         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
265         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
266         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
267      }
268   }
269   else if (datatype == USHORT && comps == 2) {
270      uint i, j, k;
271      const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
272      const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
273      ushort(*dst)[2] = (ushort(*)[2]) dstRow;
274      for (i = j = 0, k = k0; i < (uint) dstWidth;
275           i++, j += colStride, k += colStride) {
276         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
277         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
278      }
279   }
280   else if (datatype == USHORT && comps == 1) {
281      uint i, j, k;
282      const ushort *rowA = (const ushort *) srcRowA;
283      const ushort *rowB = (const ushort *) srcRowB;
284      ushort *dst = (ushort *) dstRow;
285      for (i = j = 0, k = k0; i < (uint) dstWidth;
286           i++, j += colStride, k += colStride) {
287         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
288      }
289   }
290
291   else if (datatype == FLOAT && comps == 4) {
292      uint i, j, k;
293      const float(*rowA)[4] = (const float(*)[4]) srcRowA;
294      const float(*rowB)[4] = (const float(*)[4]) srcRowB;
295      float(*dst)[4] = (float(*)[4]) dstRow;
296      for (i = j = 0, k = k0; i < (uint) dstWidth;
297           i++, j += colStride, k += colStride) {
298         dst[i][0] = (rowA[j][0] + rowA[k][0] +
299                      rowB[j][0] + rowB[k][0]) * 0.25F;
300         dst[i][1] = (rowA[j][1] + rowA[k][1] +
301                      rowB[j][1] + rowB[k][1]) * 0.25F;
302         dst[i][2] = (rowA[j][2] + rowA[k][2] +
303                      rowB[j][2] + rowB[k][2]) * 0.25F;
304         dst[i][3] = (rowA[j][3] + rowA[k][3] +
305                      rowB[j][3] + rowB[k][3]) * 0.25F;
306      }
307   }
308   else if (datatype == FLOAT && comps == 3) {
309      uint i, j, k;
310      const float(*rowA)[3] = (const float(*)[3]) srcRowA;
311      const float(*rowB)[3] = (const float(*)[3]) srcRowB;
312      float(*dst)[3] = (float(*)[3]) dstRow;
313      for (i = j = 0, k = k0; i < (uint) dstWidth;
314           i++, j += colStride, k += colStride) {
315         dst[i][0] = (rowA[j][0] + rowA[k][0] +
316                      rowB[j][0] + rowB[k][0]) * 0.25F;
317         dst[i][1] = (rowA[j][1] + rowA[k][1] +
318                      rowB[j][1] + rowB[k][1]) * 0.25F;
319         dst[i][2] = (rowA[j][2] + rowA[k][2] +
320                      rowB[j][2] + rowB[k][2]) * 0.25F;
321      }
322   }
323   else if (datatype == FLOAT && comps == 2) {
324      uint i, j, k;
325      const float(*rowA)[2] = (const float(*)[2]) srcRowA;
326      const float(*rowB)[2] = (const float(*)[2]) srcRowB;
327      float(*dst)[2] = (float(*)[2]) dstRow;
328      for (i = j = 0, k = k0; i < (uint) dstWidth;
329           i++, j += colStride, k += colStride) {
330         dst[i][0] = (rowA[j][0] + rowA[k][0] +
331                      rowB[j][0] + rowB[k][0]) * 0.25F;
332         dst[i][1] = (rowA[j][1] + rowA[k][1] +
333                      rowB[j][1] + rowB[k][1]) * 0.25F;
334      }
335   }
336   else if (datatype == FLOAT && comps == 1) {
337      uint i, j, k;
338      const float *rowA = (const float *) srcRowA;
339      const float *rowB = (const float *) srcRowB;
340      float *dst = (float *) dstRow;
341      for (i = j = 0, k = k0; i < (uint) dstWidth;
342           i++, j += colStride, k += colStride) {
343         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
344      }
345   }
346
347#if 0
348   else if (datatype == HALF_FLOAT && comps == 4) {
349      uint i, j, k, comp;
350      const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
351      const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
352      half_float(*dst)[4] = (half_float(*)[4]) dstRow;
353      for (i = j = 0, k = k0; i < (uint) dstWidth;
354           i++, j += colStride, k += colStride) {
355         for (comp = 0; comp < 4; comp++) {
356            float aj, ak, bj, bk;
357            aj = half_to_float(rowA[j][comp]);
358            ak = half_to_float(rowA[k][comp]);
359            bj = half_to_float(rowB[j][comp]);
360            bk = half_to_float(rowB[k][comp]);
361            dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
362         }
363      }
364   }
365   else if (datatype == HALF_FLOAT && comps == 3) {
366      uint i, j, k, comp;
367      const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
368      const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
369      half_float(*dst)[3] = (half_float(*)[3]) dstRow;
370      for (i = j = 0, k = k0; i < (uint) dstWidth;
371           i++, j += colStride, k += colStride) {
372         for (comp = 0; comp < 3; comp++) {
373            float aj, ak, bj, bk;
374            aj = half_to_float(rowA[j][comp]);
375            ak = half_to_float(rowA[k][comp]);
376            bj = half_to_float(rowB[j][comp]);
377            bk = half_to_float(rowB[k][comp]);
378            dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
379         }
380      }
381   }
382   else if (datatype == HALF_FLOAT && comps == 2) {
383      uint i, j, k, comp;
384      const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
385      const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
386      half_float(*dst)[2] = (half_float(*)[2]) dstRow;
387      for (i = j = 0, k = k0; i < (uint) dstWidth;
388           i++, j += colStride, k += colStride) {
389         for (comp = 0; comp < 2; comp++) {
390            float aj, ak, bj, bk;
391            aj = half_to_float(rowA[j][comp]);
392            ak = half_to_float(rowA[k][comp]);
393            bj = half_to_float(rowB[j][comp]);
394            bk = half_to_float(rowB[k][comp]);
395            dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
396         }
397      }
398   }
399   else if (datatype == HALF_FLOAT && comps == 1) {
400      uint i, j, k;
401      const half_float *rowA = (const half_float *) srcRowA;
402      const half_float *rowB = (const half_float *) srcRowB;
403      half_float *dst = (half_float *) dstRow;
404      for (i = j = 0, k = k0; i < (uint) dstWidth;
405           i++, j += colStride, k += colStride) {
406         float aj, ak, bj, bk;
407         aj = half_to_float(rowA[j]);
408         ak = half_to_float(rowA[k]);
409         bj = half_to_float(rowB[j]);
410         bk = half_to_float(rowB[k]);
411         dst[i] = float_to_half((aj + ak + bj + bk) * 0.25F);
412      }
413   }
414#endif
415
416   else if (datatype == UINT && comps == 1) {
417      uint i, j, k;
418      const uint *rowA = (const uint *) srcRowA;
419      const uint *rowB = (const uint *) srcRowB;
420      uint *dst = (uint *) dstRow;
421      for (i = j = 0, k = k0; i < (uint) dstWidth;
422           i++, j += colStride, k += colStride) {
423         dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
424      }
425   }
426
427   else if (datatype == USHORT_5_6_5 && comps == 3) {
428      uint i, j, k;
429      const ushort *rowA = (const ushort *) srcRowA;
430      const ushort *rowB = (const ushort *) srcRowB;
431      ushort *dst = (ushort *) dstRow;
432      for (i = j = 0, k = k0; i < (uint) dstWidth;
433           i++, j += colStride, k += colStride) {
434         const int rowAr0 = rowA[j] & 0x1f;
435         const int rowAr1 = rowA[k] & 0x1f;
436         const int rowBr0 = rowB[j] & 0x1f;
437         const int rowBr1 = rowB[k] & 0x1f;
438         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
439         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
440         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
441         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
442         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
443         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
444         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
445         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
446         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
447         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
448         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
449         dst[i] = (blue << 11) | (green << 5) | red;
450      }
451   }
452   else if (datatype == USHORT_4_4_4_4 && comps == 4) {
453      uint i, j, k;
454      const ushort *rowA = (const ushort *) srcRowA;
455      const ushort *rowB = (const ushort *) srcRowB;
456      ushort *dst = (ushort *) dstRow;
457      for (i = j = 0, k = k0; i < (uint) dstWidth;
458           i++, j += colStride, k += colStride) {
459         const int rowAr0 = rowA[j] & 0xf;
460         const int rowAr1 = rowA[k] & 0xf;
461         const int rowBr0 = rowB[j] & 0xf;
462         const int rowBr1 = rowB[k] & 0xf;
463         const int rowAg0 = (rowA[j] >> 4) & 0xf;
464         const int rowAg1 = (rowA[k] >> 4) & 0xf;
465         const int rowBg0 = (rowB[j] >> 4) & 0xf;
466         const int rowBg1 = (rowB[k] >> 4) & 0xf;
467         const int rowAb0 = (rowA[j] >> 8) & 0xf;
468         const int rowAb1 = (rowA[k] >> 8) & 0xf;
469         const int rowBb0 = (rowB[j] >> 8) & 0xf;
470         const int rowBb1 = (rowB[k] >> 8) & 0xf;
471         const int rowAa0 = (rowA[j] >> 12) & 0xf;
472         const int rowAa1 = (rowA[k] >> 12) & 0xf;
473         const int rowBa0 = (rowB[j] >> 12) & 0xf;
474         const int rowBa1 = (rowB[k] >> 12) & 0xf;
475         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
476         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
477         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
478         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
479         dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
480      }
481   }
482   else if (datatype == USHORT_1_5_5_5_REV && comps == 4) {
483      uint i, j, k;
484      const ushort *rowA = (const ushort *) srcRowA;
485      const ushort *rowB = (const ushort *) srcRowB;
486      ushort *dst = (ushort *) dstRow;
487      for (i = j = 0, k = k0; i < (uint) dstWidth;
488           i++, j += colStride, k += colStride) {
489         const int rowAr0 = rowA[j] & 0x1f;
490         const int rowAr1 = rowA[k] & 0x1f;
491         const int rowBr0 = rowB[j] & 0x1f;
492         const int rowBr1 = rowB[k] & 0x1f;
493         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
494         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
495         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
496         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
497         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
498         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
499         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
500         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
501         const int rowAa0 = (rowA[j] >> 15) & 0x1;
502         const int rowAa1 = (rowA[k] >> 15) & 0x1;
503         const int rowBa0 = (rowB[j] >> 15) & 0x1;
504         const int rowBa1 = (rowB[k] >> 15) & 0x1;
505         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
506         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
507         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
508         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
509         dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
510      }
511   }
512   else if (datatype == UBYTE_3_3_2 && comps == 3) {
513      uint i, j, k;
514      const ubyte *rowA = (const ubyte *) srcRowA;
515      const ubyte *rowB = (const ubyte *) srcRowB;
516      ubyte *dst = (ubyte *) dstRow;
517      for (i = j = 0, k = k0; i < (uint) dstWidth;
518           i++, j += colStride, k += colStride) {
519         const int rowAr0 = rowA[j] & 0x3;
520         const int rowAr1 = rowA[k] & 0x3;
521         const int rowBr0 = rowB[j] & 0x3;
522         const int rowBr1 = rowB[k] & 0x3;
523         const int rowAg0 = (rowA[j] >> 2) & 0x7;
524         const int rowAg1 = (rowA[k] >> 2) & 0x7;
525         const int rowBg0 = (rowB[j] >> 2) & 0x7;
526         const int rowBg1 = (rowB[k] >> 2) & 0x7;
527         const int rowAb0 = (rowA[j] >> 5) & 0x7;
528         const int rowAb1 = (rowA[k] >> 5) & 0x7;
529         const int rowBb0 = (rowB[j] >> 5) & 0x7;
530         const int rowBb1 = (rowB[k] >> 5) & 0x7;
531         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
532         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
533         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
534         dst[i] = (blue << 5) | (green << 2) | red;
535      }
536   }
537   else {
538      debug_printf("bad format in do_row()");
539   }
540}
541
542
543/**
544 * Average together four rows of a source image to produce a single new
545 * row in the dest image.  It's legal for the two source rows to point
546 * to the same data.  The source width must be equal to either the
547 * dest width or two times the dest width.
548 *
549 * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
550 *                  \c GL_FLOAT, etc.
551 * \param comps     number of components per pixel (1..4)
552 * \param srcWidth  Width of a row in the source data
553 * \param srcRowA   Pointer to one of the rows of source data
554 * \param srcRowB   Pointer to one of the rows of source data
555 * \param srcRowC   Pointer to one of the rows of source data
556 * \param srcRowD   Pointer to one of the rows of source data
557 * \param dstWidth  Width of a row in the destination data
558 * \param srcRowA   Pointer to the row of destination data
559 */
560static void
561do_row_3D(enum dtype datatype, uint comps, int srcWidth,
562          const void *srcRowA, const void *srcRowB,
563          const void *srcRowC, const void *srcRowD,
564          int dstWidth, void *dstRow)
565{
566   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
567   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
568   uint i, j, k;
569
570   assert(comps >= 1);
571   assert(comps <= 4);
572
573   if ((datatype == UBYTE) && (comps == 4)) {
574      DECLARE_ROW_POINTERS(ubyte, 4);
575
576      for (i = j = 0, k = k0; i < (uint) dstWidth;
577           i++, j += colStride, k += colStride) {
578         FILTER_3D(0);
579         FILTER_3D(1);
580         FILTER_3D(2);
581         FILTER_3D(3);
582      }
583   }
584   else if ((datatype == UBYTE) && (comps == 3)) {
585      DECLARE_ROW_POINTERS(ubyte, 3);
586
587      for (i = j = 0, k = k0; i < (uint) dstWidth;
588           i++, j += colStride, k += colStride) {
589         FILTER_3D(0);
590         FILTER_3D(1);
591         FILTER_3D(2);
592      }
593   }
594   else if ((datatype == UBYTE) && (comps == 2)) {
595      DECLARE_ROW_POINTERS(ubyte, 2);
596
597      for (i = j = 0, k = k0; i < (uint) dstWidth;
598           i++, j += colStride, k += colStride) {
599         FILTER_3D(0);
600         FILTER_3D(1);
601      }
602   }
603   else if ((datatype == UBYTE) && (comps == 1)) {
604      DECLARE_ROW_POINTERS(ubyte, 1);
605
606      for (i = j = 0, k = k0; i < (uint) dstWidth;
607           i++, j += colStride, k += colStride) {
608         FILTER_3D(0);
609      }
610   }
611   else if ((datatype == USHORT) && (comps == 4)) {
612      DECLARE_ROW_POINTERS(ushort, 4);
613
614      for (i = j = 0, k = k0; i < (uint) dstWidth;
615           i++, j += colStride, k += colStride) {
616         FILTER_3D(0);
617         FILTER_3D(1);
618         FILTER_3D(2);
619         FILTER_3D(3);
620      }
621   }
622   else if ((datatype == USHORT) && (comps == 3)) {
623      DECLARE_ROW_POINTERS(ushort, 3);
624
625      for (i = j = 0, k = k0; i < (uint) dstWidth;
626           i++, j += colStride, k += colStride) {
627         FILTER_3D(0);
628         FILTER_3D(1);
629         FILTER_3D(2);
630      }
631   }
632   else if ((datatype == USHORT) && (comps == 2)) {
633      DECLARE_ROW_POINTERS(ushort, 2);
634
635      for (i = j = 0, k = k0; i < (uint) dstWidth;
636           i++, j += colStride, k += colStride) {
637         FILTER_3D(0);
638         FILTER_3D(1);
639      }
640   }
641   else if ((datatype == USHORT) && (comps == 1)) {
642      DECLARE_ROW_POINTERS(ushort, 1);
643
644      for (i = j = 0, k = k0; i < (uint) dstWidth;
645           i++, j += colStride, k += colStride) {
646         FILTER_3D(0);
647      }
648   }
649   else if ((datatype == FLOAT) && (comps == 4)) {
650      DECLARE_ROW_POINTERS(float, 4);
651
652      for (i = j = 0, k = k0; i < (uint) dstWidth;
653           i++, j += colStride, k += colStride) {
654         FILTER_F_3D(0);
655         FILTER_F_3D(1);
656         FILTER_F_3D(2);
657         FILTER_F_3D(3);
658      }
659   }
660   else if ((datatype == FLOAT) && (comps == 3)) {
661      DECLARE_ROW_POINTERS(float, 3);
662
663      for (i = j = 0, k = k0; i < (uint) dstWidth;
664           i++, j += colStride, k += colStride) {
665         FILTER_F_3D(0);
666         FILTER_F_3D(1);
667         FILTER_F_3D(2);
668      }
669   }
670   else if ((datatype == FLOAT) && (comps == 2)) {
671      DECLARE_ROW_POINTERS(float, 2);
672
673      for (i = j = 0, k = k0; i < (uint) dstWidth;
674           i++, j += colStride, k += colStride) {
675         FILTER_F_3D(0);
676         FILTER_F_3D(1);
677      }
678   }
679   else if ((datatype == FLOAT) && (comps == 1)) {
680      DECLARE_ROW_POINTERS(float, 1);
681
682      for (i = j = 0, k = k0; i < (uint) dstWidth;
683           i++, j += colStride, k += colStride) {
684         FILTER_F_3D(0);
685      }
686   }
687   else if ((datatype == HALF_FLOAT) && (comps == 4)) {
688      DECLARE_ROW_POINTERS(half_float, 4);
689
690      for (i = j = 0, k = k0; i < (uint) dstWidth;
691           i++, j += colStride, k += colStride) {
692         FILTER_HF_3D(0);
693         FILTER_HF_3D(1);
694         FILTER_HF_3D(2);
695         FILTER_HF_3D(3);
696      }
697   }
698   else if ((datatype == HALF_FLOAT) && (comps == 3)) {
699      DECLARE_ROW_POINTERS(half_float, 4);
700
701      for (i = j = 0, k = k0; i < (uint) dstWidth;
702           i++, j += colStride, k += colStride) {
703         FILTER_HF_3D(0);
704         FILTER_HF_3D(1);
705         FILTER_HF_3D(2);
706      }
707   }
708   else if ((datatype == HALF_FLOAT) && (comps == 2)) {
709      DECLARE_ROW_POINTERS(half_float, 4);
710
711      for (i = j = 0, k = k0; i < (uint) dstWidth;
712           i++, j += colStride, k += colStride) {
713         FILTER_HF_3D(0);
714         FILTER_HF_3D(1);
715      }
716   }
717   else if ((datatype == HALF_FLOAT) && (comps == 1)) {
718      DECLARE_ROW_POINTERS(half_float, 4);
719
720      for (i = j = 0, k = k0; i < (uint) dstWidth;
721           i++, j += colStride, k += colStride) {
722         FILTER_HF_3D(0);
723      }
724   }
725   else if ((datatype == UINT) && (comps == 1)) {
726      const uint *rowA = (const uint *) srcRowA;
727      const uint *rowB = (const uint *) srcRowB;
728      const uint *rowC = (const uint *) srcRowC;
729      const uint *rowD = (const uint *) srcRowD;
730      float *dst = (float *) dstRow;
731
732      for (i = j = 0, k = k0; i < (uint) dstWidth;
733           i++, j += colStride, k += colStride) {
734         const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
735                               + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
736                               + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
737                               + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
738         dst[i] = (float)((double) tmp * 0.125);
739      }
740   }
741   else if ((datatype == USHORT_5_6_5) && (comps == 3)) {
742      DECLARE_ROW_POINTERS0(ushort);
743
744      for (i = j = 0, k = k0; i < (uint) dstWidth;
745           i++, j += colStride, k += colStride) {
746         const int rowAr0 = rowA[j] & 0x1f;
747         const int rowAr1 = rowA[k] & 0x1f;
748         const int rowBr0 = rowB[j] & 0x1f;
749         const int rowBr1 = rowB[k] & 0x1f;
750         const int rowCr0 = rowC[j] & 0x1f;
751         const int rowCr1 = rowC[k] & 0x1f;
752         const int rowDr0 = rowD[j] & 0x1f;
753         const int rowDr1 = rowD[k] & 0x1f;
754         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
755         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
756         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
757         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
758         const int rowCg0 = (rowC[j] >> 5) & 0x3f;
759         const int rowCg1 = (rowC[k] >> 5) & 0x3f;
760         const int rowDg0 = (rowD[j] >> 5) & 0x3f;
761         const int rowDg1 = (rowD[k] >> 5) & 0x3f;
762         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
763         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
764         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
765         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
766         const int rowCb0 = (rowC[j] >> 11) & 0x1f;
767         const int rowCb1 = (rowC[k] >> 11) & 0x1f;
768         const int rowDb0 = (rowD[j] >> 11) & 0x1f;
769         const int rowDb1 = (rowD[k] >> 11) & 0x1f;
770         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
771                                       rowCr0, rowCr1, rowDr0, rowDr1);
772         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
773                                       rowCg0, rowCg1, rowDg0, rowDg1);
774         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
775                                       rowCb0, rowCb1, rowDb0, rowDb1);
776         dst[i] = (b << 11) | (g << 5) | r;
777      }
778   }
779   else if ((datatype == USHORT_4_4_4_4) && (comps == 4)) {
780      DECLARE_ROW_POINTERS0(ushort);
781
782      for (i = j = 0, k = k0; i < (uint) dstWidth;
783           i++, j += colStride, k += colStride) {
784         const int rowAr0 = rowA[j] & 0xf;
785         const int rowAr1 = rowA[k] & 0xf;
786         const int rowBr0 = rowB[j] & 0xf;
787         const int rowBr1 = rowB[k] & 0xf;
788         const int rowCr0 = rowC[j] & 0xf;
789         const int rowCr1 = rowC[k] & 0xf;
790         const int rowDr0 = rowD[j] & 0xf;
791         const int rowDr1 = rowD[k] & 0xf;
792         const int rowAg0 = (rowA[j] >> 4) & 0xf;
793         const int rowAg1 = (rowA[k] >> 4) & 0xf;
794         const int rowBg0 = (rowB[j] >> 4) & 0xf;
795         const int rowBg1 = (rowB[k] >> 4) & 0xf;
796         const int rowCg0 = (rowC[j] >> 4) & 0xf;
797         const int rowCg1 = (rowC[k] >> 4) & 0xf;
798         const int rowDg0 = (rowD[j] >> 4) & 0xf;
799         const int rowDg1 = (rowD[k] >> 4) & 0xf;
800         const int rowAb0 = (rowA[j] >> 8) & 0xf;
801         const int rowAb1 = (rowA[k] >> 8) & 0xf;
802         const int rowBb0 = (rowB[j] >> 8) & 0xf;
803         const int rowBb1 = (rowB[k] >> 8) & 0xf;
804         const int rowCb0 = (rowC[j] >> 8) & 0xf;
805         const int rowCb1 = (rowC[k] >> 8) & 0xf;
806         const int rowDb0 = (rowD[j] >> 8) & 0xf;
807         const int rowDb1 = (rowD[k] >> 8) & 0xf;
808         const int rowAa0 = (rowA[j] >> 12) & 0xf;
809         const int rowAa1 = (rowA[k] >> 12) & 0xf;
810         const int rowBa0 = (rowB[j] >> 12) & 0xf;
811         const int rowBa1 = (rowB[k] >> 12) & 0xf;
812         const int rowCa0 = (rowC[j] >> 12) & 0xf;
813         const int rowCa1 = (rowC[k] >> 12) & 0xf;
814         const int rowDa0 = (rowD[j] >> 12) & 0xf;
815         const int rowDa1 = (rowD[k] >> 12) & 0xf;
816         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
817                                       rowCr0, rowCr1, rowDr0, rowDr1);
818         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
819                                       rowCg0, rowCg1, rowDg0, rowDg1);
820         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
821                                       rowCb0, rowCb1, rowDb0, rowDb1);
822         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
823                                       rowCa0, rowCa1, rowDa0, rowDa1);
824
825         dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
826      }
827   }
828   else if ((datatype == USHORT_1_5_5_5_REV) && (comps == 4)) {
829      DECLARE_ROW_POINTERS0(ushort);
830
831      for (i = j = 0, k = k0; i < (uint) dstWidth;
832           i++, j += colStride, k += colStride) {
833         const int rowAr0 = rowA[j] & 0x1f;
834         const int rowAr1 = rowA[k] & 0x1f;
835         const int rowBr0 = rowB[j] & 0x1f;
836         const int rowBr1 = rowB[k] & 0x1f;
837         const int rowCr0 = rowC[j] & 0x1f;
838         const int rowCr1 = rowC[k] & 0x1f;
839         const int rowDr0 = rowD[j] & 0x1f;
840         const int rowDr1 = rowD[k] & 0x1f;
841         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
842         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
843         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
844         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
845         const int rowCg0 = (rowC[j] >> 5) & 0x1f;
846         const int rowCg1 = (rowC[k] >> 5) & 0x1f;
847         const int rowDg0 = (rowD[j] >> 5) & 0x1f;
848         const int rowDg1 = (rowD[k] >> 5) & 0x1f;
849         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
850         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
851         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
852         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
853         const int rowCb0 = (rowC[j] >> 10) & 0x1f;
854         const int rowCb1 = (rowC[k] >> 10) & 0x1f;
855         const int rowDb0 = (rowD[j] >> 10) & 0x1f;
856         const int rowDb1 = (rowD[k] >> 10) & 0x1f;
857         const int rowAa0 = (rowA[j] >> 15) & 0x1;
858         const int rowAa1 = (rowA[k] >> 15) & 0x1;
859         const int rowBa0 = (rowB[j] >> 15) & 0x1;
860         const int rowBa1 = (rowB[k] >> 15) & 0x1;
861         const int rowCa0 = (rowC[j] >> 15) & 0x1;
862         const int rowCa1 = (rowC[k] >> 15) & 0x1;
863         const int rowDa0 = (rowD[j] >> 15) & 0x1;
864         const int rowDa1 = (rowD[k] >> 15) & 0x1;
865         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
866                                       rowCr0, rowCr1, rowDr0, rowDr1);
867         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
868                                       rowCg0, rowCg1, rowDg0, rowDg1);
869         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
870                                       rowCb0, rowCb1, rowDb0, rowDb1);
871         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
872                                       rowCa0, rowCa1, rowDa0, rowDa1);
873
874         dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
875      }
876   }
877   else if ((datatype == UBYTE_3_3_2) && (comps == 3)) {
878      DECLARE_ROW_POINTERS0(ushort);
879
880      for (i = j = 0, k = k0; i < (uint) dstWidth;
881           i++, j += colStride, k += colStride) {
882         const int rowAr0 = rowA[j] & 0x3;
883         const int rowAr1 = rowA[k] & 0x3;
884         const int rowBr0 = rowB[j] & 0x3;
885         const int rowBr1 = rowB[k] & 0x3;
886         const int rowCr0 = rowC[j] & 0x3;
887         const int rowCr1 = rowC[k] & 0x3;
888         const int rowDr0 = rowD[j] & 0x3;
889         const int rowDr1 = rowD[k] & 0x3;
890         const int rowAg0 = (rowA[j] >> 2) & 0x7;
891         const int rowAg1 = (rowA[k] >> 2) & 0x7;
892         const int rowBg0 = (rowB[j] >> 2) & 0x7;
893         const int rowBg1 = (rowB[k] >> 2) & 0x7;
894         const int rowCg0 = (rowC[j] >> 2) & 0x7;
895         const int rowCg1 = (rowC[k] >> 2) & 0x7;
896         const int rowDg0 = (rowD[j] >> 2) & 0x7;
897         const int rowDg1 = (rowD[k] >> 2) & 0x7;
898         const int rowAb0 = (rowA[j] >> 5) & 0x7;
899         const int rowAb1 = (rowA[k] >> 5) & 0x7;
900         const int rowBb0 = (rowB[j] >> 5) & 0x7;
901         const int rowBb1 = (rowB[k] >> 5) & 0x7;
902         const int rowCb0 = (rowC[j] >> 5) & 0x7;
903         const int rowCb1 = (rowC[k] >> 5) & 0x7;
904         const int rowDb0 = (rowD[j] >> 5) & 0x7;
905         const int rowDb1 = (rowD[k] >> 5) & 0x7;
906         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
907                                       rowCr0, rowCr1, rowDr0, rowDr1);
908         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
909                                       rowCg0, rowCg1, rowDg0, rowDg1);
910         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
911                                       rowCb0, rowCb1, rowDb0, rowDb1);
912         dst[i] = (b << 5) | (g << 2) | r;
913      }
914   }
915   else {
916      debug_printf("bad format in do_row_3D()");
917   }
918}
919
920
921
922static void
923format_to_type_comps(enum pipe_format pformat,
924                     enum dtype *datatype, uint *comps)
925{
926   switch (pformat) {
927   case PIPE_FORMAT_A8R8G8B8_UNORM:
928   case PIPE_FORMAT_X8R8G8B8_UNORM:
929   case PIPE_FORMAT_B8G8R8A8_UNORM:
930   case PIPE_FORMAT_B8G8R8X8_UNORM:
931      *datatype = UBYTE;
932      *comps = 4;
933      return;
934   case PIPE_FORMAT_A1R5G5B5_UNORM:
935      *datatype = USHORT_1_5_5_5_REV;
936      *comps = 4;
937      return;
938   case PIPE_FORMAT_A4R4G4B4_UNORM:
939      *datatype = USHORT_4_4_4_4;
940      *comps = 4;
941      return;
942   case PIPE_FORMAT_R5G6B5_UNORM:
943      *datatype = USHORT_5_6_5;
944      *comps = 3;
945      return;
946   case PIPE_FORMAT_L8_UNORM:
947   case PIPE_FORMAT_A8_UNORM:
948   case PIPE_FORMAT_I8_UNORM:
949      *datatype = UBYTE;
950      *comps = 1;
951      return;
952   case PIPE_FORMAT_A8L8_UNORM:
953      *datatype = UBYTE;
954      *comps = 2;
955      return;
956   default:
957      assert(0);
958      *datatype = UBYTE;
959      *comps = 0;
960      break;
961   }
962}
963
964
965static void
966reduce_1d(enum pipe_format pformat,
967          int srcWidth, const ubyte *srcPtr,
968          int dstWidth, ubyte *dstPtr)
969{
970   enum dtype datatype;
971   uint comps;
972
973   format_to_type_comps(pformat, &datatype, &comps);
974
975   /* we just duplicate the input row, kind of hack, saves code */
976   do_row(datatype, comps,
977          srcWidth, srcPtr, srcPtr,
978          dstWidth, dstPtr);
979}
980
981
982/**
983 * Strides are in bytes.  If zero, it'll be computed as width * bpp.
984 */
985static void
986reduce_2d(enum pipe_format pformat,
987          int srcWidth, int srcHeight,
988          int srcRowStride, const ubyte *srcPtr,
989          int dstWidth, int dstHeight,
990          int dstRowStride, ubyte *dstPtr)
991{
992   enum dtype datatype;
993   uint comps;
994   const int bpt = pf_get_size(pformat);
995   const ubyte *srcA, *srcB;
996   ubyte *dst;
997   int row;
998
999   format_to_type_comps(pformat, &datatype, &comps);
1000
1001   if (!srcRowStride)
1002      srcRowStride = bpt * srcWidth;
1003
1004   if (!dstRowStride)
1005      dstRowStride = bpt * dstWidth;
1006
1007   /* Compute src and dst pointers */
1008   srcA = srcPtr;
1009   if (srcHeight > 1)
1010      srcB = srcA + srcRowStride;
1011   else
1012      srcB = srcA;
1013   dst = dstPtr;
1014
1015   for (row = 0; row < dstHeight; row++) {
1016      do_row(datatype, comps,
1017             srcWidth, srcA, srcB,
1018             dstWidth, dst);
1019      srcA += 2 * srcRowStride;
1020      srcB += 2 * srcRowStride;
1021      dst += dstRowStride;
1022   }
1023}
1024
1025
1026static void
1027reduce_3d(enum pipe_format pformat,
1028          int srcWidth, int srcHeight, int srcDepth,
1029          int srcRowStride, const ubyte *srcPtr,
1030          int dstWidth, int dstHeight, int dstDepth,
1031          int dstRowStride, ubyte *dstPtr)
1032{
1033   const int bpt = pf_get_size(pformat);
1034   const int border = 0;
1035   int img, row;
1036   int bytesPerSrcImage, bytesPerDstImage;
1037   int bytesPerSrcRow, bytesPerDstRow;
1038   int srcImageOffset, srcRowOffset;
1039   enum dtype datatype;
1040   uint comps;
1041
1042   format_to_type_comps(pformat, &datatype, &comps);
1043
1044   bytesPerSrcImage = srcWidth * srcHeight * bpt;
1045   bytesPerDstImage = dstWidth * dstHeight * bpt;
1046
1047   bytesPerSrcRow = srcWidth * bpt;
1048   bytesPerDstRow = dstWidth * bpt;
1049
1050   /* Offset between adjacent src images to be averaged together */
1051   srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1052
1053   /* Offset between adjacent src rows to be averaged together */
1054   srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1055
1056   /*
1057    * Need to average together up to 8 src pixels for each dest pixel.
1058    * Break that down into 3 operations:
1059    *   1. take two rows from source image and average them together.
1060    *   2. take two rows from next source image and average them together.
1061    *   3. take the two averaged rows and average them for the final dst row.
1062    */
1063
1064   /*
1065   _mesa_printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
1066          srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1067   */
1068
1069   for (img = 0; img < dstDepth; img++) {
1070      /* first source image pointer, skipping border */
1071      const ubyte *imgSrcA = srcPtr
1072         + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1073         + img * (bytesPerSrcImage + srcImageOffset);
1074      /* second source image pointer, skipping border */
1075      const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1076      /* address of the dest image, skipping border */
1077      ubyte *imgDst = dstPtr
1078         + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1079         + img * bytesPerDstImage;
1080
1081      /* setup the four source row pointers and the dest row pointer */
1082      const ubyte *srcImgARowA = imgSrcA;
1083      const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1084      const ubyte *srcImgBRowA = imgSrcB;
1085      const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1086      ubyte *dstImgRow = imgDst;
1087
1088      for (row = 0; row < dstHeight; row++) {
1089         do_row_3D(datatype, comps, srcWidth,
1090                   srcImgARowA, srcImgARowB,
1091                   srcImgBRowA, srcImgBRowB,
1092                   dstWidth, dstImgRow);
1093
1094         /* advance to next rows */
1095         srcImgARowA += bytesPerSrcRow + srcRowOffset;
1096         srcImgARowB += bytesPerSrcRow + srcRowOffset;
1097         srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1098         srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1099         dstImgRow += bytesPerDstRow;
1100      }
1101   }
1102}
1103
1104
1105
1106
1107static void
1108make_1d_mipmap(struct gen_mipmap_state *ctx,
1109               struct pipe_texture *pt,
1110               uint face, uint baseLevel, uint lastLevel)
1111{
1112   struct pipe_context *pipe = ctx->pipe;
1113   struct pipe_screen *screen = pipe->screen;
1114   const uint zslice = 0;
1115   uint dstLevel;
1116
1117   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1118      const uint srcLevel = dstLevel - 1;
1119      struct pipe_transfer *srcTrans, *dstTrans;
1120      void *srcMap, *dstMap;
1121
1122      srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1123                                          PIPE_TRANSFER_READ, 0, 0,
1124                                          pt->width[srcLevel],
1125                                          pt->height[srcLevel]);
1126      dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1127                                          PIPE_TRANSFER_WRITE, 0, 0,
1128                                          pt->width[dstLevel],
1129                                          pt->height[dstLevel]);
1130
1131      srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1132      dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1133
1134      reduce_1d(pt->format,
1135                srcTrans->width, srcMap,
1136                dstTrans->width, dstMap);
1137
1138      screen->transfer_unmap(screen, srcTrans);
1139      screen->transfer_unmap(screen, dstTrans);
1140
1141      screen->tex_transfer_release(screen, &srcTrans);
1142      screen->tex_transfer_release(screen, &dstTrans);
1143   }
1144}
1145
1146
1147static void
1148make_2d_mipmap(struct gen_mipmap_state *ctx,
1149               struct pipe_texture *pt,
1150               uint face, uint baseLevel, uint lastLevel)
1151{
1152   struct pipe_context *pipe = ctx->pipe;
1153   struct pipe_screen *screen = pipe->screen;
1154   const uint zslice = 0;
1155   uint dstLevel;
1156
1157   assert(pt->block.width == 1);
1158   assert(pt->block.height == 1);
1159
1160   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1161      const uint srcLevel = dstLevel - 1;
1162      struct pipe_transfer *srcTrans, *dstTrans;
1163      ubyte *srcMap, *dstMap;
1164
1165      srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1166                                          PIPE_TRANSFER_READ, 0, 0,
1167                                          pt->width[srcLevel],
1168                                          pt->height[srcLevel]);
1169      dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1170                                          PIPE_TRANSFER_WRITE, 0, 0,
1171                                          pt->width[dstLevel],
1172                                          pt->height[dstLevel]);
1173
1174      srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1175      dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1176
1177      reduce_2d(pt->format,
1178                srcTrans->width, srcTrans->height,
1179                srcTrans->stride, srcMap,
1180                dstTrans->width, dstTrans->height,
1181                dstTrans->stride, dstMap);
1182
1183      screen->transfer_unmap(screen, srcTrans);
1184      screen->transfer_unmap(screen, dstTrans);
1185
1186      screen->tex_transfer_release(screen, &srcTrans);
1187      screen->tex_transfer_release(screen, &dstTrans);
1188   }
1189}
1190
1191
1192static void
1193make_3d_mipmap(struct gen_mipmap_state *ctx,
1194               struct pipe_texture *pt,
1195               uint face, uint baseLevel, uint lastLevel)
1196{
1197#if 0
1198   struct pipe_context *pipe = ctx->pipe;
1199   struct pipe_screen *screen = pipe->screen;
1200   uint dstLevel, zslice = 0;
1201
1202   assert(pt->block.width == 1);
1203   assert(pt->block.height == 1);
1204
1205   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1206      const uint srcLevel = dstLevel - 1;
1207      struct pipe_transfer *srcTrans, *dstTrans;
1208      ubyte *srcMap, *dstMap;
1209
1210      srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1211                                          PIPE_TRANSFER_READ, 0, 0,
1212                                          pt->width[srcLevel],
1213                                          pt->height[srcLevel]);
1214      dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1215                                          PIPE_TRANSFER_WRITE, 0, 0,
1216                                          pt->width[dstLevel],
1217                                          pt->height[dstLevel]);
1218
1219      srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1220      dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1221
1222      reduce_3d(pt->format,
1223                srcTrans->width, srcTrans->height,
1224                srcTrans->stride, srcMap,
1225                dstTrans->width, dstTrans->height,
1226                dstTrans->stride, dstMap);
1227
1228      screen->transfer_unmap(screen, srcTrans);
1229      screen->transfer_unmap(screen, dstTrans);
1230
1231      screen->tex_transfer_release(screen, &srcTrans);
1232      screen->tex_transfer_release(screen, &dstTrans);
1233   }
1234#else
1235   (void) reduce_3d;
1236#endif
1237}
1238
1239
1240static void
1241fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1242                    struct pipe_texture *pt,
1243                    uint face, uint baseLevel, uint lastLevel)
1244{
1245   switch (pt->target) {
1246   case PIPE_TEXTURE_1D:
1247      make_1d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1248      break;
1249   case PIPE_TEXTURE_2D:
1250   case PIPE_TEXTURE_CUBE:
1251      make_2d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1252      break;
1253   case PIPE_TEXTURE_3D:
1254      make_3d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1255      break;
1256   default:
1257      assert(0);
1258   }
1259}
1260
1261
1262/**
1263 * Create a mipmap generation context.
1264 * The idea is to create one of these and re-use it each time we need to
1265 * generate a mipmap.
1266 */
1267struct gen_mipmap_state *
1268util_create_gen_mipmap(struct pipe_context *pipe,
1269                       struct cso_context *cso)
1270{
1271   struct gen_mipmap_state *ctx;
1272   uint i;
1273
1274   ctx = CALLOC_STRUCT(gen_mipmap_state);
1275   if (!ctx)
1276      return NULL;
1277
1278   ctx->pipe = pipe;
1279   ctx->cso = cso;
1280
1281   /* disabled blending/masking */
1282   memset(&ctx->blend, 0, sizeof(ctx->blend));
1283   ctx->blend.rgb_src_factor = PIPE_BLENDFACTOR_ONE;
1284   ctx->blend.alpha_src_factor = PIPE_BLENDFACTOR_ONE;
1285   ctx->blend.rgb_dst_factor = PIPE_BLENDFACTOR_ZERO;
1286   ctx->blend.alpha_dst_factor = PIPE_BLENDFACTOR_ZERO;
1287   ctx->blend.colormask = PIPE_MASK_RGBA;
1288
1289   /* no-op depth/stencil/alpha */
1290   memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
1291
1292   /* rasterizer */
1293   memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1294   ctx->rasterizer.front_winding = PIPE_WINDING_CW;
1295   ctx->rasterizer.cull_mode = PIPE_WINDING_NONE;
1296   ctx->rasterizer.bypass_clipping = 1;
1297   /*ctx->rasterizer.bypass_vs = 1;*/
1298   ctx->rasterizer.gl_rasterization_rules = 1;
1299
1300   /* sampler state */
1301   memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1302   ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1303   ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1304   ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1305   ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1306   ctx->sampler.normalized_coords = 1;
1307
1308   /* viewport state (identity, verts are in wincoords) */
1309   ctx->viewport.scale[0] = 1.0;
1310   ctx->viewport.scale[1] = 1.0;
1311   ctx->viewport.scale[2] = 1.0;
1312   ctx->viewport.scale[3] = 1.0;
1313   ctx->viewport.translate[0] = 0.0;
1314   ctx->viewport.translate[1] = 0.0;
1315   ctx->viewport.translate[2] = 0.0;
1316   ctx->viewport.translate[3] = 0.0;
1317
1318   /* vertex shader */
1319   {
1320      const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1321                                      TGSI_SEMANTIC_GENERIC };
1322      const uint semantic_indexes[] = { 0, 0 };
1323      ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names,
1324                                                    semantic_indexes,
1325                                                    &ctx->vert_shader);
1326   }
1327
1328   /* fragment shader */
1329   ctx->fs = util_make_fragment_tex_shader(pipe, &ctx->frag_shader);
1330
1331   /* vertex data that doesn't change */
1332   for (i = 0; i < 4; i++) {
1333      ctx->vertices[i][0][2] = 0.0f; /* z */
1334      ctx->vertices[i][0][3] = 1.0f; /* w */
1335      ctx->vertices[i][1][2] = 0.0f; /* r */
1336      ctx->vertices[i][1][3] = 1.0f; /* q */
1337   }
1338
1339   /* Note: the actual vertex buffer is allocated as needed below */
1340
1341   return ctx;
1342}
1343
1344
1345/**
1346 * Get next "slot" of vertex space in the vertex buffer.
1347 * We're allocating one large vertex buffer and using it piece by piece.
1348 */
1349static unsigned
1350get_next_slot(struct gen_mipmap_state *ctx)
1351{
1352   const unsigned max_slots = 4096 / sizeof ctx->vertices;
1353
1354   if (ctx->vbuf_slot >= max_slots)
1355      util_gen_mipmap_flush( ctx );
1356
1357   if (!ctx->vbuf) {
1358      ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1359                                     32,
1360                                     PIPE_BUFFER_USAGE_VERTEX,
1361                                     max_slots * sizeof ctx->vertices);
1362   }
1363
1364   return ctx->vbuf_slot++ * sizeof ctx->vertices;
1365}
1366
1367
1368static unsigned
1369set_vertex_data(struct gen_mipmap_state *ctx, float width, float height)
1370{
1371   void *buf;
1372   unsigned offset;
1373
1374   ctx->vertices[0][0][0] = 0.0f; /*x*/
1375   ctx->vertices[0][0][1] = 0.0f; /*y*/
1376   ctx->vertices[0][1][0] = 0.0f; /*s*/
1377   ctx->vertices[0][1][1] = 0.0f; /*t*/
1378
1379   ctx->vertices[1][0][0] = width;
1380   ctx->vertices[1][0][1] = 0.0f;
1381   ctx->vertices[1][1][0] = 1.0f;
1382   ctx->vertices[1][1][1] = 0.0f;
1383
1384   ctx->vertices[2][0][0] = width;
1385   ctx->vertices[2][0][1] = height;
1386   ctx->vertices[2][1][0] = 1.0f;
1387   ctx->vertices[2][1][1] = 1.0f;
1388
1389   ctx->vertices[3][0][0] = 0.0f;
1390   ctx->vertices[3][0][1] = height;
1391   ctx->vertices[3][1][0] = 0.0f;
1392   ctx->vertices[3][1][1] = 1.0f;
1393
1394   offset = get_next_slot( ctx );
1395
1396   buf = pipe_buffer_map(ctx->pipe->screen, ctx->vbuf,
1397                         PIPE_BUFFER_USAGE_CPU_WRITE);
1398
1399   memcpy((char *)buf + offset, ctx->vertices, sizeof(ctx->vertices));
1400
1401   pipe_buffer_unmap(ctx->pipe->screen, ctx->vbuf);
1402
1403   return offset;
1404}
1405
1406
1407
1408/**
1409 * Destroy a mipmap generation context
1410 */
1411void
1412util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1413{
1414   struct pipe_context *pipe = ctx->pipe;
1415
1416   pipe->delete_vs_state(pipe, ctx->vs);
1417   pipe->delete_fs_state(pipe, ctx->fs);
1418
1419   FREE((void*) ctx->vert_shader.tokens);
1420   FREE((void*) ctx->frag_shader.tokens);
1421
1422   pipe_buffer_reference(pipe->screen, &ctx->vbuf, NULL);
1423
1424   FREE(ctx);
1425}
1426
1427
1428
1429/* Release vertex buffer at end of frame to avoid synchronous
1430 * rendering.
1431 */
1432void util_gen_mipmap_flush( struct gen_mipmap_state *ctx )
1433{
1434   pipe_buffer_reference(ctx->pipe->screen, &ctx->vbuf, NULL);
1435   ctx->vbuf_slot = 0;
1436}
1437
1438
1439/**
1440 * Generate mipmap images.  It's assumed all needed texture memory is
1441 * already allocated.
1442 *
1443 * \param pt  the texture to generate mipmap levels for
1444 * \param face  which cube face to generate mipmaps for (0 for non-cube maps)
1445 * \param baseLevel  the first mipmap level to use as a src
1446 * \param lastLevel  the last mipmap level to generate
1447 * \param filter  the minification filter used to generate mipmap levels with
1448 * \param filter  one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1449 */
1450void
1451util_gen_mipmap(struct gen_mipmap_state *ctx,
1452                struct pipe_texture *pt,
1453                uint face, uint baseLevel, uint lastLevel, uint filter)
1454{
1455   struct pipe_context *pipe = ctx->pipe;
1456   struct pipe_screen *screen = pipe->screen;
1457   struct pipe_framebuffer_state fb;
1458   uint dstLevel;
1459   uint zslice = 0;
1460   uint offset;
1461
1462   /* check if we can render in the texture's format */
1463   if (!screen->is_format_supported(screen, pt->format, PIPE_TEXTURE_2D,
1464                                    PIPE_TEXTURE_USAGE_RENDER_TARGET, 0)) {
1465      fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1466      return;
1467   }
1468
1469   /* save state (restored below) */
1470   cso_save_blend(ctx->cso);
1471   cso_save_depth_stencil_alpha(ctx->cso);
1472   cso_save_rasterizer(ctx->cso);
1473   cso_save_samplers(ctx->cso);
1474   cso_save_sampler_textures(ctx->cso);
1475   cso_save_framebuffer(ctx->cso);
1476   cso_save_fragment_shader(ctx->cso);
1477   cso_save_vertex_shader(ctx->cso);
1478   cso_save_viewport(ctx->cso);
1479
1480   /* bind our state */
1481   cso_set_blend(ctx->cso, &ctx->blend);
1482   cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
1483   cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1484   cso_set_viewport(ctx->cso, &ctx->viewport);
1485
1486   cso_set_fragment_shader_handle(ctx->cso, ctx->fs);
1487   cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1488
1489   /* init framebuffer state */
1490   memset(&fb, 0, sizeof(fb));
1491   fb.nr_cbufs = 1;
1492
1493   /* set min/mag to same filter for faster sw speed */
1494   ctx->sampler.mag_img_filter = filter;
1495   ctx->sampler.min_img_filter = filter;
1496
1497   /*
1498    * XXX for small mipmap levels, it may be faster to use the software
1499    * fallback path...
1500    */
1501   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1502      const uint srcLevel = dstLevel - 1;
1503
1504      struct pipe_surface *surf =
1505         screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1506                                 PIPE_BUFFER_USAGE_GPU_WRITE);
1507
1508      /*
1509       * Setup framebuffer / dest surface
1510       */
1511      fb.cbufs[0] = surf;
1512      fb.width = pt->width[dstLevel];
1513      fb.height = pt->height[dstLevel];
1514      cso_set_framebuffer(ctx->cso, &fb);
1515
1516      /*
1517       * Setup sampler state
1518       * Note: we should only have to set the min/max LOD clamps to ensure
1519       * we grab texels from the right mipmap level.  But some hardware
1520       * has trouble with min clamping so we also set the lod_bias to
1521       * try to work around that.
1522       */
1523      ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1524      ctx->sampler.lod_bias = (float) srcLevel;
1525      cso_single_sampler(ctx->cso, 0, &ctx->sampler);
1526      cso_single_sampler_done(ctx->cso);
1527
1528      cso_set_sampler_textures(ctx->cso, 1, &pt);
1529
1530      /* quad coords in window coords (bypassing clipping, viewport mapping) */
1531      offset = set_vertex_data(ctx,
1532                               (float) pt->width[dstLevel],
1533                               (float) pt->height[dstLevel]);
1534
1535      util_draw_vertex_buffer(ctx->pipe,
1536                              ctx->vbuf,
1537                              offset,
1538                              PIPE_PRIM_TRIANGLE_FAN,
1539                              4,  /* verts */
1540                              2); /* attribs/vert */
1541
1542      pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE, NULL);
1543
1544      /* need to signal that the texture has changed _after_ rendering to it */
1545      pipe_surface_reference( &surf, NULL );
1546   }
1547
1548   /* restore state we changed */
1549   cso_restore_blend(ctx->cso);
1550   cso_restore_depth_stencil_alpha(ctx->cso);
1551   cso_restore_rasterizer(ctx->cso);
1552   cso_restore_samplers(ctx->cso);
1553   cso_restore_sampler_textures(ctx->cso);
1554   cso_restore_framebuffer(ctx->cso);
1555   cso_restore_fragment_shader(ctx->cso);
1556   cso_restore_vertex_shader(ctx->cso);
1557   cso_restore_viewport(ctx->cso);
1558}
1559