u_gen_mipmap.c revision 9c8db8685432fedd068157795422764ce96b89a0
1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008  VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37#include "pipe/p_context.h"
38#include "pipe/p_debug.h"
39#include "pipe/p_defines.h"
40#include "pipe/p_inlines.h"
41#include "pipe/p_winsys.h"
42#include "pipe/p_shader_tokens.h"
43
44#include "util/u_memory.h"
45#include "util/u_draw_quad.h"
46#include "util/u_gen_mipmap.h"
47#include "util/u_simple_shaders.h"
48
49#include "tgsi/tgsi_build.h"
50#include "tgsi/tgsi_dump.h"
51#include "tgsi/tgsi_parse.h"
52
53#include "cso_cache/cso_context.h"
54
55
56struct gen_mipmap_state
57{
58   struct pipe_context *pipe;
59   struct cso_context *cso;
60
61   struct pipe_blend_state blend;
62   struct pipe_depth_stencil_alpha_state depthstencil;
63   struct pipe_rasterizer_state rasterizer;
64   struct pipe_sampler_state sampler;
65   struct pipe_viewport_state viewport;
66
67   struct pipe_shader_state vert_shader;
68   struct pipe_shader_state frag_shader;
69   void *vs;
70   void *fs;
71
72   struct pipe_buffer *vbuf;  /**< quad vertices */
73   unsigned vbuf_slot;
74
75   float vertices[4][2][4];   /**< vertex/texcoords for quad */
76};
77
78
79
80enum dtype
81{
82   UBYTE,
83   UBYTE_3_3_2,
84   USHORT,
85   USHORT_4_4_4_4,
86   USHORT_5_6_5,
87   USHORT_1_5_5_5_REV,
88   UINT,
89   FLOAT,
90   HALF_FLOAT
91};
92
93
94typedef ushort half_float;
95
96
97static half_float
98float_to_half(float f)
99{
100   /* XXX fix this */
101   return 0;
102}
103
104static float
105half_to_float(half_float h)
106{
107   /* XXX fix this */
108   return 0.0f;
109}
110
111
112
113
114/**
115 * \name Support macros for do_row and do_row_3d
116 *
117 * The macro madness is here for two reasons.  First, it compacts the code
118 * slightly.  Second, it makes it much easier to adjust the specifics of the
119 * filter to tune the rounding characteristics.
120 */
121/*@{*/
122#define DECLARE_ROW_POINTERS(t, e) \
123      const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
124      const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
125      const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
126      const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
127      t(*dst)[e] = (t(*)[e]) dstRow
128
129#define DECLARE_ROW_POINTERS0(t) \
130      const t *rowA = (const t *) srcRowA; \
131      const t *rowB = (const t *) srcRowB; \
132      const t *rowC = (const t *) srcRowC; \
133      const t *rowD = (const t *) srcRowD; \
134      t *dst = (t *) dstRow
135
136#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
137   ((unsigned) Aj + (unsigned) Ak \
138    + (unsigned) Bj + (unsigned) Bk \
139    + (unsigned) Cj + (unsigned) Ck \
140    + (unsigned) Dj + (unsigned) Dk \
141    + 4) >> 3
142
143#define FILTER_3D(e) \
144   do { \
145      dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
146                                rowB[j][e], rowB[k][e], \
147                                rowC[j][e], rowC[k][e], \
148                                rowD[j][e], rowD[k][e]); \
149   } while(0)
150
151#define FILTER_F_3D(e) \
152   do { \
153      dst[i][e] = (rowA[j][e] + rowA[k][e] \
154                   + rowB[j][e] + rowB[k][e] \
155                   + rowC[j][e] + rowC[k][e] \
156                   + rowD[j][e] + rowD[k][e]) * 0.125F; \
157   } while(0)
158
159#define FILTER_HF_3D(e) \
160   do { \
161      const float aj = half_to_float(rowA[j][e]); \
162      const float ak = half_to_float(rowA[k][e]); \
163      const float bj = half_to_float(rowB[j][e]); \
164      const float bk = half_to_float(rowB[k][e]); \
165      const float cj = half_to_float(rowC[j][e]); \
166      const float ck = half_to_float(rowC[k][e]); \
167      const float dj = half_to_float(rowD[j][e]); \
168      const float dk = half_to_float(rowD[k][e]); \
169      dst[i][e] = float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
170                                      * 0.125F); \
171   } while(0)
172/*@}*/
173
174
175/**
176 * Average together two rows of a source image to produce a single new
177 * row in the dest image.  It's legal for the two source rows to point
178 * to the same data.  The source width must be equal to either the
179 * dest width or two times the dest width.
180 * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
181 * \param comps  number of components per pixel (1..4)
182 */
183static void
184do_row(enum dtype datatype, uint comps, int srcWidth,
185       const void *srcRowA, const void *srcRowB,
186       int dstWidth, void *dstRow)
187{
188   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
189   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
190
191   assert(comps >= 1);
192   assert(comps <= 4);
193
194   /* This assertion is no longer valid with non-power-of-2 textures
195   assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
196   */
197
198   if (datatype == UBYTE && comps == 4) {
199      uint i, j, k;
200      const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
201      const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
202      ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
203      for (i = j = 0, k = k0; i < (uint) dstWidth;
204           i++, j += colStride, k += colStride) {
205         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
206         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
207         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
208         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
209      }
210   }
211   else if (datatype == UBYTE && comps == 3) {
212      uint i, j, k;
213      const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
214      const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
215      ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
216      for (i = j = 0, k = k0; i < (uint) dstWidth;
217           i++, j += colStride, k += colStride) {
218         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
219         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
220         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
221      }
222   }
223   else if (datatype == UBYTE && comps == 2) {
224      uint i, j, k;
225      const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
226      const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
227      ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
228      for (i = j = 0, k = k0; i < (uint) dstWidth;
229           i++, j += colStride, k += colStride) {
230         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
231         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
232      }
233   }
234   else if (datatype == UBYTE && comps == 1) {
235      uint i, j, k;
236      const ubyte *rowA = (const ubyte *) srcRowA;
237      const ubyte *rowB = (const ubyte *) srcRowB;
238      ubyte *dst = (ubyte *) dstRow;
239      for (i = j = 0, k = k0; i < (uint) dstWidth;
240           i++, j += colStride, k += colStride) {
241         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
242      }
243   }
244
245   else if (datatype == USHORT && comps == 4) {
246      uint i, j, k;
247      const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
248      const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
249      ushort(*dst)[4] = (ushort(*)[4]) dstRow;
250      for (i = j = 0, k = k0; i < (uint) dstWidth;
251           i++, j += colStride, k += colStride) {
252         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
253         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
254         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
255         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
256      }
257   }
258   else if (datatype == USHORT && comps == 3) {
259      uint i, j, k;
260      const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
261      const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
262      ushort(*dst)[3] = (ushort(*)[3]) dstRow;
263      for (i = j = 0, k = k0; i < (uint) dstWidth;
264           i++, j += colStride, k += colStride) {
265         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
266         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
267         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
268      }
269   }
270   else if (datatype == USHORT && comps == 2) {
271      uint i, j, k;
272      const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
273      const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
274      ushort(*dst)[2] = (ushort(*)[2]) dstRow;
275      for (i = j = 0, k = k0; i < (uint) dstWidth;
276           i++, j += colStride, k += colStride) {
277         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
278         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
279      }
280   }
281   else if (datatype == USHORT && comps == 1) {
282      uint i, j, k;
283      const ushort *rowA = (const ushort *) srcRowA;
284      const ushort *rowB = (const ushort *) srcRowB;
285      ushort *dst = (ushort *) dstRow;
286      for (i = j = 0, k = k0; i < (uint) dstWidth;
287           i++, j += colStride, k += colStride) {
288         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
289      }
290   }
291
292   else if (datatype == FLOAT && comps == 4) {
293      uint i, j, k;
294      const float(*rowA)[4] = (const float(*)[4]) srcRowA;
295      const float(*rowB)[4] = (const float(*)[4]) srcRowB;
296      float(*dst)[4] = (float(*)[4]) dstRow;
297      for (i = j = 0, k = k0; i < (uint) dstWidth;
298           i++, j += colStride, k += colStride) {
299         dst[i][0] = (rowA[j][0] + rowA[k][0] +
300                      rowB[j][0] + rowB[k][0]) * 0.25F;
301         dst[i][1] = (rowA[j][1] + rowA[k][1] +
302                      rowB[j][1] + rowB[k][1]) * 0.25F;
303         dst[i][2] = (rowA[j][2] + rowA[k][2] +
304                      rowB[j][2] + rowB[k][2]) * 0.25F;
305         dst[i][3] = (rowA[j][3] + rowA[k][3] +
306                      rowB[j][3] + rowB[k][3]) * 0.25F;
307      }
308   }
309   else if (datatype == FLOAT && comps == 3) {
310      uint i, j, k;
311      const float(*rowA)[3] = (const float(*)[3]) srcRowA;
312      const float(*rowB)[3] = (const float(*)[3]) srcRowB;
313      float(*dst)[3] = (float(*)[3]) dstRow;
314      for (i = j = 0, k = k0; i < (uint) dstWidth;
315           i++, j += colStride, k += colStride) {
316         dst[i][0] = (rowA[j][0] + rowA[k][0] +
317                      rowB[j][0] + rowB[k][0]) * 0.25F;
318         dst[i][1] = (rowA[j][1] + rowA[k][1] +
319                      rowB[j][1] + rowB[k][1]) * 0.25F;
320         dst[i][2] = (rowA[j][2] + rowA[k][2] +
321                      rowB[j][2] + rowB[k][2]) * 0.25F;
322      }
323   }
324   else if (datatype == FLOAT && comps == 2) {
325      uint i, j, k;
326      const float(*rowA)[2] = (const float(*)[2]) srcRowA;
327      const float(*rowB)[2] = (const float(*)[2]) srcRowB;
328      float(*dst)[2] = (float(*)[2]) dstRow;
329      for (i = j = 0, k = k0; i < (uint) dstWidth;
330           i++, j += colStride, k += colStride) {
331         dst[i][0] = (rowA[j][0] + rowA[k][0] +
332                      rowB[j][0] + rowB[k][0]) * 0.25F;
333         dst[i][1] = (rowA[j][1] + rowA[k][1] +
334                      rowB[j][1] + rowB[k][1]) * 0.25F;
335      }
336   }
337   else if (datatype == FLOAT && comps == 1) {
338      uint i, j, k;
339      const float *rowA = (const float *) srcRowA;
340      const float *rowB = (const float *) srcRowB;
341      float *dst = (float *) dstRow;
342      for (i = j = 0, k = k0; i < (uint) dstWidth;
343           i++, j += colStride, k += colStride) {
344         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
345      }
346   }
347
348#if 0
349   else if (datatype == HALF_FLOAT && comps == 4) {
350      uint i, j, k, comp;
351      const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
352      const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
353      half_float(*dst)[4] = (half_float(*)[4]) dstRow;
354      for (i = j = 0, k = k0; i < (uint) dstWidth;
355           i++, j += colStride, k += colStride) {
356         for (comp = 0; comp < 4; comp++) {
357            float aj, ak, bj, bk;
358            aj = half_to_float(rowA[j][comp]);
359            ak = half_to_float(rowA[k][comp]);
360            bj = half_to_float(rowB[j][comp]);
361            bk = half_to_float(rowB[k][comp]);
362            dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
363         }
364      }
365   }
366   else if (datatype == HALF_FLOAT && comps == 3) {
367      uint i, j, k, comp;
368      const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
369      const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
370      half_float(*dst)[3] = (half_float(*)[3]) dstRow;
371      for (i = j = 0, k = k0; i < (uint) dstWidth;
372           i++, j += colStride, k += colStride) {
373         for (comp = 0; comp < 3; comp++) {
374            float aj, ak, bj, bk;
375            aj = half_to_float(rowA[j][comp]);
376            ak = half_to_float(rowA[k][comp]);
377            bj = half_to_float(rowB[j][comp]);
378            bk = half_to_float(rowB[k][comp]);
379            dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
380         }
381      }
382   }
383   else if (datatype == HALF_FLOAT && comps == 2) {
384      uint i, j, k, comp;
385      const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
386      const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
387      half_float(*dst)[2] = (half_float(*)[2]) dstRow;
388      for (i = j = 0, k = k0; i < (uint) dstWidth;
389           i++, j += colStride, k += colStride) {
390         for (comp = 0; comp < 2; comp++) {
391            float aj, ak, bj, bk;
392            aj = half_to_float(rowA[j][comp]);
393            ak = half_to_float(rowA[k][comp]);
394            bj = half_to_float(rowB[j][comp]);
395            bk = half_to_float(rowB[k][comp]);
396            dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
397         }
398      }
399   }
400   else if (datatype == HALF_FLOAT && comps == 1) {
401      uint i, j, k;
402      const half_float *rowA = (const half_float *) srcRowA;
403      const half_float *rowB = (const half_float *) srcRowB;
404      half_float *dst = (half_float *) dstRow;
405      for (i = j = 0, k = k0; i < (uint) dstWidth;
406           i++, j += colStride, k += colStride) {
407         float aj, ak, bj, bk;
408         aj = half_to_float(rowA[j]);
409         ak = half_to_float(rowA[k]);
410         bj = half_to_float(rowB[j]);
411         bk = half_to_float(rowB[k]);
412         dst[i] = float_to_half((aj + ak + bj + bk) * 0.25F);
413      }
414   }
415#endif
416
417   else if (datatype == UINT && comps == 1) {
418      uint i, j, k;
419      const uint *rowA = (const uint *) srcRowA;
420      const uint *rowB = (const uint *) srcRowB;
421      uint *dst = (uint *) dstRow;
422      for (i = j = 0, k = k0; i < (uint) dstWidth;
423           i++, j += colStride, k += colStride) {
424         dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
425      }
426   }
427
428   else if (datatype == USHORT_5_6_5 && comps == 3) {
429      uint i, j, k;
430      const ushort *rowA = (const ushort *) srcRowA;
431      const ushort *rowB = (const ushort *) srcRowB;
432      ushort *dst = (ushort *) dstRow;
433      for (i = j = 0, k = k0; i < (uint) dstWidth;
434           i++, j += colStride, k += colStride) {
435         const int rowAr0 = rowA[j] & 0x1f;
436         const int rowAr1 = rowA[k] & 0x1f;
437         const int rowBr0 = rowB[j] & 0x1f;
438         const int rowBr1 = rowB[k] & 0x1f;
439         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
440         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
441         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
442         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
443         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
444         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
445         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
446         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
447         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
448         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
449         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
450         dst[i] = (blue << 11) | (green << 5) | red;
451      }
452   }
453   else if (datatype == USHORT_4_4_4_4 && comps == 4) {
454      uint i, j, k;
455      const ushort *rowA = (const ushort *) srcRowA;
456      const ushort *rowB = (const ushort *) srcRowB;
457      ushort *dst = (ushort *) dstRow;
458      for (i = j = 0, k = k0; i < (uint) dstWidth;
459           i++, j += colStride, k += colStride) {
460         const int rowAr0 = rowA[j] & 0xf;
461         const int rowAr1 = rowA[k] & 0xf;
462         const int rowBr0 = rowB[j] & 0xf;
463         const int rowBr1 = rowB[k] & 0xf;
464         const int rowAg0 = (rowA[j] >> 4) & 0xf;
465         const int rowAg1 = (rowA[k] >> 4) & 0xf;
466         const int rowBg0 = (rowB[j] >> 4) & 0xf;
467         const int rowBg1 = (rowB[k] >> 4) & 0xf;
468         const int rowAb0 = (rowA[j] >> 8) & 0xf;
469         const int rowAb1 = (rowA[k] >> 8) & 0xf;
470         const int rowBb0 = (rowB[j] >> 8) & 0xf;
471         const int rowBb1 = (rowB[k] >> 8) & 0xf;
472         const int rowAa0 = (rowA[j] >> 12) & 0xf;
473         const int rowAa1 = (rowA[k] >> 12) & 0xf;
474         const int rowBa0 = (rowB[j] >> 12) & 0xf;
475         const int rowBa1 = (rowB[k] >> 12) & 0xf;
476         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
477         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
478         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
479         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
480         dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
481      }
482   }
483   else if (datatype == USHORT_1_5_5_5_REV && comps == 4) {
484      uint i, j, k;
485      const ushort *rowA = (const ushort *) srcRowA;
486      const ushort *rowB = (const ushort *) srcRowB;
487      ushort *dst = (ushort *) dstRow;
488      for (i = j = 0, k = k0; i < (uint) dstWidth;
489           i++, j += colStride, k += colStride) {
490         const int rowAr0 = rowA[j] & 0x1f;
491         const int rowAr1 = rowA[k] & 0x1f;
492         const int rowBr0 = rowB[j] & 0x1f;
493         const int rowBr1 = rowB[k] & 0x1f;
494         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
495         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
496         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
497         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
498         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
499         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
500         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
501         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
502         const int rowAa0 = (rowA[j] >> 15) & 0x1;
503         const int rowAa1 = (rowA[k] >> 15) & 0x1;
504         const int rowBa0 = (rowB[j] >> 15) & 0x1;
505         const int rowBa1 = (rowB[k] >> 15) & 0x1;
506         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
507         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
508         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
509         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
510         dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
511      }
512   }
513   else if (datatype == UBYTE_3_3_2 && comps == 3) {
514      uint i, j, k;
515      const ubyte *rowA = (const ubyte *) srcRowA;
516      const ubyte *rowB = (const ubyte *) srcRowB;
517      ubyte *dst = (ubyte *) dstRow;
518      for (i = j = 0, k = k0; i < (uint) dstWidth;
519           i++, j += colStride, k += colStride) {
520         const int rowAr0 = rowA[j] & 0x3;
521         const int rowAr1 = rowA[k] & 0x3;
522         const int rowBr0 = rowB[j] & 0x3;
523         const int rowBr1 = rowB[k] & 0x3;
524         const int rowAg0 = (rowA[j] >> 2) & 0x7;
525         const int rowAg1 = (rowA[k] >> 2) & 0x7;
526         const int rowBg0 = (rowB[j] >> 2) & 0x7;
527         const int rowBg1 = (rowB[k] >> 2) & 0x7;
528         const int rowAb0 = (rowA[j] >> 5) & 0x7;
529         const int rowAb1 = (rowA[k] >> 5) & 0x7;
530         const int rowBb0 = (rowB[j] >> 5) & 0x7;
531         const int rowBb1 = (rowB[k] >> 5) & 0x7;
532         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
533         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
534         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
535         dst[i] = (blue << 5) | (green << 2) | red;
536      }
537   }
538   else {
539      debug_printf("bad format in do_row()");
540   }
541}
542
543
544/**
545 * Average together four rows of a source image to produce a single new
546 * row in the dest image.  It's legal for the two source rows to point
547 * to the same data.  The source width must be equal to either the
548 * dest width or two times the dest width.
549 *
550 * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
551 *                  \c GL_FLOAT, etc.
552 * \param comps     number of components per pixel (1..4)
553 * \param srcWidth  Width of a row in the source data
554 * \param srcRowA   Pointer to one of the rows of source data
555 * \param srcRowB   Pointer to one of the rows of source data
556 * \param srcRowC   Pointer to one of the rows of source data
557 * \param srcRowD   Pointer to one of the rows of source data
558 * \param dstWidth  Width of a row in the destination data
559 * \param srcRowA   Pointer to the row of destination data
560 */
561static void
562do_row_3D(enum dtype datatype, uint comps, int srcWidth,
563          const void *srcRowA, const void *srcRowB,
564          const void *srcRowC, const void *srcRowD,
565          int dstWidth, void *dstRow)
566{
567   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
568   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
569   uint i, j, k;
570
571   assert(comps >= 1);
572   assert(comps <= 4);
573
574   if ((datatype == UBYTE) && (comps == 4)) {
575      DECLARE_ROW_POINTERS(ubyte, 4);
576
577      for (i = j = 0, k = k0; i < (uint) dstWidth;
578           i++, j += colStride, k += colStride) {
579         FILTER_3D(0);
580         FILTER_3D(1);
581         FILTER_3D(2);
582         FILTER_3D(3);
583      }
584   }
585   else if ((datatype == UBYTE) && (comps == 3)) {
586      DECLARE_ROW_POINTERS(ubyte, 3);
587
588      for (i = j = 0, k = k0; i < (uint) dstWidth;
589           i++, j += colStride, k += colStride) {
590         FILTER_3D(0);
591         FILTER_3D(1);
592         FILTER_3D(2);
593      }
594   }
595   else if ((datatype == UBYTE) && (comps == 2)) {
596      DECLARE_ROW_POINTERS(ubyte, 2);
597
598      for (i = j = 0, k = k0; i < (uint) dstWidth;
599           i++, j += colStride, k += colStride) {
600         FILTER_3D(0);
601         FILTER_3D(1);
602      }
603   }
604   else if ((datatype == UBYTE) && (comps == 1)) {
605      DECLARE_ROW_POINTERS(ubyte, 1);
606
607      for (i = j = 0, k = k0; i < (uint) dstWidth;
608           i++, j += colStride, k += colStride) {
609         FILTER_3D(0);
610      }
611   }
612   else if ((datatype == USHORT) && (comps == 4)) {
613      DECLARE_ROW_POINTERS(ushort, 4);
614
615      for (i = j = 0, k = k0; i < (uint) dstWidth;
616           i++, j += colStride, k += colStride) {
617         FILTER_3D(0);
618         FILTER_3D(1);
619         FILTER_3D(2);
620         FILTER_3D(3);
621      }
622   }
623   else if ((datatype == USHORT) && (comps == 3)) {
624      DECLARE_ROW_POINTERS(ushort, 3);
625
626      for (i = j = 0, k = k0; i < (uint) dstWidth;
627           i++, j += colStride, k += colStride) {
628         FILTER_3D(0);
629         FILTER_3D(1);
630         FILTER_3D(2);
631      }
632   }
633   else if ((datatype == USHORT) && (comps == 2)) {
634      DECLARE_ROW_POINTERS(ushort, 2);
635
636      for (i = j = 0, k = k0; i < (uint) dstWidth;
637           i++, j += colStride, k += colStride) {
638         FILTER_3D(0);
639         FILTER_3D(1);
640      }
641   }
642   else if ((datatype == USHORT) && (comps == 1)) {
643      DECLARE_ROW_POINTERS(ushort, 1);
644
645      for (i = j = 0, k = k0; i < (uint) dstWidth;
646           i++, j += colStride, k += colStride) {
647         FILTER_3D(0);
648      }
649   }
650   else if ((datatype == FLOAT) && (comps == 4)) {
651      DECLARE_ROW_POINTERS(float, 4);
652
653      for (i = j = 0, k = k0; i < (uint) dstWidth;
654           i++, j += colStride, k += colStride) {
655         FILTER_F_3D(0);
656         FILTER_F_3D(1);
657         FILTER_F_3D(2);
658         FILTER_F_3D(3);
659      }
660   }
661   else if ((datatype == FLOAT) && (comps == 3)) {
662      DECLARE_ROW_POINTERS(float, 3);
663
664      for (i = j = 0, k = k0; i < (uint) dstWidth;
665           i++, j += colStride, k += colStride) {
666         FILTER_F_3D(0);
667         FILTER_F_3D(1);
668         FILTER_F_3D(2);
669      }
670   }
671   else if ((datatype == FLOAT) && (comps == 2)) {
672      DECLARE_ROW_POINTERS(float, 2);
673
674      for (i = j = 0, k = k0; i < (uint) dstWidth;
675           i++, j += colStride, k += colStride) {
676         FILTER_F_3D(0);
677         FILTER_F_3D(1);
678      }
679   }
680   else if ((datatype == FLOAT) && (comps == 1)) {
681      DECLARE_ROW_POINTERS(float, 1);
682
683      for (i = j = 0, k = k0; i < (uint) dstWidth;
684           i++, j += colStride, k += colStride) {
685         FILTER_F_3D(0);
686      }
687   }
688   else if ((datatype == HALF_FLOAT) && (comps == 4)) {
689      DECLARE_ROW_POINTERS(half_float, 4);
690
691      for (i = j = 0, k = k0; i < (uint) dstWidth;
692           i++, j += colStride, k += colStride) {
693         FILTER_HF_3D(0);
694         FILTER_HF_3D(1);
695         FILTER_HF_3D(2);
696         FILTER_HF_3D(3);
697      }
698   }
699   else if ((datatype == HALF_FLOAT) && (comps == 3)) {
700      DECLARE_ROW_POINTERS(half_float, 4);
701
702      for (i = j = 0, k = k0; i < (uint) dstWidth;
703           i++, j += colStride, k += colStride) {
704         FILTER_HF_3D(0);
705         FILTER_HF_3D(1);
706         FILTER_HF_3D(2);
707      }
708   }
709   else if ((datatype == HALF_FLOAT) && (comps == 2)) {
710      DECLARE_ROW_POINTERS(half_float, 4);
711
712      for (i = j = 0, k = k0; i < (uint) dstWidth;
713           i++, j += colStride, k += colStride) {
714         FILTER_HF_3D(0);
715         FILTER_HF_3D(1);
716      }
717   }
718   else if ((datatype == HALF_FLOAT) && (comps == 1)) {
719      DECLARE_ROW_POINTERS(half_float, 4);
720
721      for (i = j = 0, k = k0; i < (uint) dstWidth;
722           i++, j += colStride, k += colStride) {
723         FILTER_HF_3D(0);
724      }
725   }
726   else if ((datatype == UINT) && (comps == 1)) {
727      const uint *rowA = (const uint *) srcRowA;
728      const uint *rowB = (const uint *) srcRowB;
729      const uint *rowC = (const uint *) srcRowC;
730      const uint *rowD = (const uint *) srcRowD;
731      float *dst = (float *) dstRow;
732
733      for (i = j = 0, k = k0; i < (uint) dstWidth;
734           i++, j += colStride, k += colStride) {
735         const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
736                               + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
737                               + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
738                               + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
739         dst[i] = (float)((double) tmp * 0.125);
740      }
741   }
742   else if ((datatype == USHORT_5_6_5) && (comps == 3)) {
743      DECLARE_ROW_POINTERS0(ushort);
744
745      for (i = j = 0, k = k0; i < (uint) dstWidth;
746           i++, j += colStride, k += colStride) {
747         const int rowAr0 = rowA[j] & 0x1f;
748         const int rowAr1 = rowA[k] & 0x1f;
749         const int rowBr0 = rowB[j] & 0x1f;
750         const int rowBr1 = rowB[k] & 0x1f;
751         const int rowCr0 = rowC[j] & 0x1f;
752         const int rowCr1 = rowC[k] & 0x1f;
753         const int rowDr0 = rowD[j] & 0x1f;
754         const int rowDr1 = rowD[k] & 0x1f;
755         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
756         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
757         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
758         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
759         const int rowCg0 = (rowC[j] >> 5) & 0x3f;
760         const int rowCg1 = (rowC[k] >> 5) & 0x3f;
761         const int rowDg0 = (rowD[j] >> 5) & 0x3f;
762         const int rowDg1 = (rowD[k] >> 5) & 0x3f;
763         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
764         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
765         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
766         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
767         const int rowCb0 = (rowC[j] >> 11) & 0x1f;
768         const int rowCb1 = (rowC[k] >> 11) & 0x1f;
769         const int rowDb0 = (rowD[j] >> 11) & 0x1f;
770         const int rowDb1 = (rowD[k] >> 11) & 0x1f;
771         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
772                                       rowCr0, rowCr1, rowDr0, rowDr1);
773         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
774                                       rowCg0, rowCg1, rowDg0, rowDg1);
775         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
776                                       rowCb0, rowCb1, rowDb0, rowDb1);
777         dst[i] = (b << 11) | (g << 5) | r;
778      }
779   }
780   else if ((datatype == USHORT_4_4_4_4) && (comps == 4)) {
781      DECLARE_ROW_POINTERS0(ushort);
782
783      for (i = j = 0, k = k0; i < (uint) dstWidth;
784           i++, j += colStride, k += colStride) {
785         const int rowAr0 = rowA[j] & 0xf;
786         const int rowAr1 = rowA[k] & 0xf;
787         const int rowBr0 = rowB[j] & 0xf;
788         const int rowBr1 = rowB[k] & 0xf;
789         const int rowCr0 = rowC[j] & 0xf;
790         const int rowCr1 = rowC[k] & 0xf;
791         const int rowDr0 = rowD[j] & 0xf;
792         const int rowDr1 = rowD[k] & 0xf;
793         const int rowAg0 = (rowA[j] >> 4) & 0xf;
794         const int rowAg1 = (rowA[k] >> 4) & 0xf;
795         const int rowBg0 = (rowB[j] >> 4) & 0xf;
796         const int rowBg1 = (rowB[k] >> 4) & 0xf;
797         const int rowCg0 = (rowC[j] >> 4) & 0xf;
798         const int rowCg1 = (rowC[k] >> 4) & 0xf;
799         const int rowDg0 = (rowD[j] >> 4) & 0xf;
800         const int rowDg1 = (rowD[k] >> 4) & 0xf;
801         const int rowAb0 = (rowA[j] >> 8) & 0xf;
802         const int rowAb1 = (rowA[k] >> 8) & 0xf;
803         const int rowBb0 = (rowB[j] >> 8) & 0xf;
804         const int rowBb1 = (rowB[k] >> 8) & 0xf;
805         const int rowCb0 = (rowC[j] >> 8) & 0xf;
806         const int rowCb1 = (rowC[k] >> 8) & 0xf;
807         const int rowDb0 = (rowD[j] >> 8) & 0xf;
808         const int rowDb1 = (rowD[k] >> 8) & 0xf;
809         const int rowAa0 = (rowA[j] >> 12) & 0xf;
810         const int rowAa1 = (rowA[k] >> 12) & 0xf;
811         const int rowBa0 = (rowB[j] >> 12) & 0xf;
812         const int rowBa1 = (rowB[k] >> 12) & 0xf;
813         const int rowCa0 = (rowC[j] >> 12) & 0xf;
814         const int rowCa1 = (rowC[k] >> 12) & 0xf;
815         const int rowDa0 = (rowD[j] >> 12) & 0xf;
816         const int rowDa1 = (rowD[k] >> 12) & 0xf;
817         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
818                                       rowCr0, rowCr1, rowDr0, rowDr1);
819         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
820                                       rowCg0, rowCg1, rowDg0, rowDg1);
821         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
822                                       rowCb0, rowCb1, rowDb0, rowDb1);
823         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
824                                       rowCa0, rowCa1, rowDa0, rowDa1);
825
826         dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
827      }
828   }
829   else if ((datatype == USHORT_1_5_5_5_REV) && (comps == 4)) {
830      DECLARE_ROW_POINTERS0(ushort);
831
832      for (i = j = 0, k = k0; i < (uint) dstWidth;
833           i++, j += colStride, k += colStride) {
834         const int rowAr0 = rowA[j] & 0x1f;
835         const int rowAr1 = rowA[k] & 0x1f;
836         const int rowBr0 = rowB[j] & 0x1f;
837         const int rowBr1 = rowB[k] & 0x1f;
838         const int rowCr0 = rowC[j] & 0x1f;
839         const int rowCr1 = rowC[k] & 0x1f;
840         const int rowDr0 = rowD[j] & 0x1f;
841         const int rowDr1 = rowD[k] & 0x1f;
842         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
843         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
844         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
845         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
846         const int rowCg0 = (rowC[j] >> 5) & 0x1f;
847         const int rowCg1 = (rowC[k] >> 5) & 0x1f;
848         const int rowDg0 = (rowD[j] >> 5) & 0x1f;
849         const int rowDg1 = (rowD[k] >> 5) & 0x1f;
850         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
851         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
852         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
853         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
854         const int rowCb0 = (rowC[j] >> 10) & 0x1f;
855         const int rowCb1 = (rowC[k] >> 10) & 0x1f;
856         const int rowDb0 = (rowD[j] >> 10) & 0x1f;
857         const int rowDb1 = (rowD[k] >> 10) & 0x1f;
858         const int rowAa0 = (rowA[j] >> 15) & 0x1;
859         const int rowAa1 = (rowA[k] >> 15) & 0x1;
860         const int rowBa0 = (rowB[j] >> 15) & 0x1;
861         const int rowBa1 = (rowB[k] >> 15) & 0x1;
862         const int rowCa0 = (rowC[j] >> 15) & 0x1;
863         const int rowCa1 = (rowC[k] >> 15) & 0x1;
864         const int rowDa0 = (rowD[j] >> 15) & 0x1;
865         const int rowDa1 = (rowD[k] >> 15) & 0x1;
866         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
867                                       rowCr0, rowCr1, rowDr0, rowDr1);
868         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
869                                       rowCg0, rowCg1, rowDg0, rowDg1);
870         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
871                                       rowCb0, rowCb1, rowDb0, rowDb1);
872         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
873                                       rowCa0, rowCa1, rowDa0, rowDa1);
874
875         dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
876      }
877   }
878   else if ((datatype == UBYTE_3_3_2) && (comps == 3)) {
879      DECLARE_ROW_POINTERS0(ushort);
880
881      for (i = j = 0, k = k0; i < (uint) dstWidth;
882           i++, j += colStride, k += colStride) {
883         const int rowAr0 = rowA[j] & 0x3;
884         const int rowAr1 = rowA[k] & 0x3;
885         const int rowBr0 = rowB[j] & 0x3;
886         const int rowBr1 = rowB[k] & 0x3;
887         const int rowCr0 = rowC[j] & 0x3;
888         const int rowCr1 = rowC[k] & 0x3;
889         const int rowDr0 = rowD[j] & 0x3;
890         const int rowDr1 = rowD[k] & 0x3;
891         const int rowAg0 = (rowA[j] >> 2) & 0x7;
892         const int rowAg1 = (rowA[k] >> 2) & 0x7;
893         const int rowBg0 = (rowB[j] >> 2) & 0x7;
894         const int rowBg1 = (rowB[k] >> 2) & 0x7;
895         const int rowCg0 = (rowC[j] >> 2) & 0x7;
896         const int rowCg1 = (rowC[k] >> 2) & 0x7;
897         const int rowDg0 = (rowD[j] >> 2) & 0x7;
898         const int rowDg1 = (rowD[k] >> 2) & 0x7;
899         const int rowAb0 = (rowA[j] >> 5) & 0x7;
900         const int rowAb1 = (rowA[k] >> 5) & 0x7;
901         const int rowBb0 = (rowB[j] >> 5) & 0x7;
902         const int rowBb1 = (rowB[k] >> 5) & 0x7;
903         const int rowCb0 = (rowC[j] >> 5) & 0x7;
904         const int rowCb1 = (rowC[k] >> 5) & 0x7;
905         const int rowDb0 = (rowD[j] >> 5) & 0x7;
906         const int rowDb1 = (rowD[k] >> 5) & 0x7;
907         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
908                                       rowCr0, rowCr1, rowDr0, rowDr1);
909         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
910                                       rowCg0, rowCg1, rowDg0, rowDg1);
911         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
912                                       rowCb0, rowCb1, rowDb0, rowDb1);
913         dst[i] = (b << 5) | (g << 2) | r;
914      }
915   }
916   else {
917      debug_printf("bad format in do_row_3D()");
918   }
919}
920
921
922
923static void
924format_to_type_comps(enum pipe_format pformat,
925                     enum dtype *datatype, uint *comps)
926{
927   switch (pformat) {
928   case PIPE_FORMAT_A8R8G8B8_UNORM:
929   case PIPE_FORMAT_X8R8G8B8_UNORM:
930   case PIPE_FORMAT_B8G8R8A8_UNORM:
931   case PIPE_FORMAT_B8G8R8X8_UNORM:
932      *datatype = UBYTE;
933      *comps = 4;
934      return;
935   case PIPE_FORMAT_A1R5G5B5_UNORM:
936      *datatype = USHORT_1_5_5_5_REV;
937      *comps = 4;
938      return;
939   case PIPE_FORMAT_A4R4G4B4_UNORM:
940      *datatype = USHORT_4_4_4_4;
941      *comps = 4;
942      return;
943   case PIPE_FORMAT_R5G6B5_UNORM:
944      *datatype = USHORT_5_6_5;
945      *comps = 3;
946      return;
947   case PIPE_FORMAT_L8_UNORM:
948   case PIPE_FORMAT_A8_UNORM:
949   case PIPE_FORMAT_I8_UNORM:
950      *datatype = UBYTE;
951      *comps = 1;
952      return;
953   case PIPE_FORMAT_A8L8_UNORM:
954      *datatype = UBYTE;
955      *comps = 2;
956      return;
957   default:
958      assert(0);
959      *datatype = UBYTE;
960      *comps = 0;
961      break;
962   }
963}
964
965
966static void
967reduce_1d(enum pipe_format pformat,
968          int srcWidth, const ubyte *srcPtr,
969          int dstWidth, ubyte *dstPtr)
970{
971   enum dtype datatype;
972   uint comps;
973
974   format_to_type_comps(pformat, &datatype, &comps);
975
976   /* we just duplicate the input row, kind of hack, saves code */
977   do_row(datatype, comps,
978          srcWidth, srcPtr, srcPtr,
979          dstWidth, dstPtr);
980}
981
982
983/**
984 * Strides are in bytes.  If zero, it'll be computed as width * bpp.
985 */
986static void
987reduce_2d(enum pipe_format pformat,
988          int srcWidth, int srcHeight,
989          int srcRowStride, const ubyte *srcPtr,
990          int dstWidth, int dstHeight,
991          int dstRowStride, ubyte *dstPtr)
992{
993   enum dtype datatype;
994   uint comps;
995   const int bpt = pf_get_size(pformat);
996   const ubyte *srcA, *srcB;
997   ubyte *dst;
998   int row;
999
1000   format_to_type_comps(pformat, &datatype, &comps);
1001
1002   if (!srcRowStride)
1003      srcRowStride = bpt * srcWidth;
1004
1005   if (!dstRowStride)
1006      dstRowStride = bpt * dstWidth;
1007
1008   /* Compute src and dst pointers */
1009   srcA = srcPtr;
1010   if (srcHeight > 1)
1011      srcB = srcA + srcRowStride;
1012   else
1013      srcB = srcA;
1014   dst = dstPtr;
1015
1016   for (row = 0; row < dstHeight; row++) {
1017      do_row(datatype, comps,
1018             srcWidth, srcA, srcB,
1019             dstWidth, dst);
1020      srcA += 2 * srcRowStride;
1021      srcB += 2 * srcRowStride;
1022      dst += dstRowStride;
1023   }
1024}
1025
1026
1027static void
1028reduce_3d(enum pipe_format pformat,
1029          int srcWidth, int srcHeight, int srcDepth,
1030          int srcRowStride, const ubyte *srcPtr,
1031          int dstWidth, int dstHeight, int dstDepth,
1032          int dstRowStride, ubyte *dstPtr)
1033{
1034   const int bpt = pf_get_size(pformat);
1035   const int border = 0;
1036   int img, row;
1037   int bytesPerSrcImage, bytesPerDstImage;
1038   int bytesPerSrcRow, bytesPerDstRow;
1039   int srcImageOffset, srcRowOffset;
1040   enum dtype datatype;
1041   uint comps;
1042
1043   format_to_type_comps(pformat, &datatype, &comps);
1044
1045   bytesPerSrcImage = srcWidth * srcHeight * bpt;
1046   bytesPerDstImage = dstWidth * dstHeight * bpt;
1047
1048   bytesPerSrcRow = srcWidth * bpt;
1049   bytesPerDstRow = dstWidth * bpt;
1050
1051   /* Offset between adjacent src images to be averaged together */
1052   srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1053
1054   /* Offset between adjacent src rows to be averaged together */
1055   srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1056
1057   /*
1058    * Need to average together up to 8 src pixels for each dest pixel.
1059    * Break that down into 3 operations:
1060    *   1. take two rows from source image and average them together.
1061    *   2. take two rows from next source image and average them together.
1062    *   3. take the two averaged rows and average them for the final dst row.
1063    */
1064
1065   /*
1066   _mesa_printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
1067          srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1068   */
1069
1070   for (img = 0; img < dstDepth; img++) {
1071      /* first source image pointer, skipping border */
1072      const ubyte *imgSrcA = srcPtr
1073         + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1074         + img * (bytesPerSrcImage + srcImageOffset);
1075      /* second source image pointer, skipping border */
1076      const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1077      /* address of the dest image, skipping border */
1078      ubyte *imgDst = dstPtr
1079         + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1080         + img * bytesPerDstImage;
1081
1082      /* setup the four source row pointers and the dest row pointer */
1083      const ubyte *srcImgARowA = imgSrcA;
1084      const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1085      const ubyte *srcImgBRowA = imgSrcB;
1086      const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1087      ubyte *dstImgRow = imgDst;
1088
1089      for (row = 0; row < dstHeight; row++) {
1090         do_row_3D(datatype, comps, srcWidth,
1091                   srcImgARowA, srcImgARowB,
1092                   srcImgBRowA, srcImgBRowB,
1093                   dstWidth, dstImgRow);
1094
1095         /* advance to next rows */
1096         srcImgARowA += bytesPerSrcRow + srcRowOffset;
1097         srcImgARowB += bytesPerSrcRow + srcRowOffset;
1098         srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1099         srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1100         dstImgRow += bytesPerDstRow;
1101      }
1102   }
1103}
1104
1105
1106
1107
1108static void
1109make_1d_mipmap(struct gen_mipmap_state *ctx,
1110               struct pipe_texture *pt,
1111               uint face, uint baseLevel, uint lastLevel)
1112{
1113   struct pipe_context *pipe = ctx->pipe;
1114   struct pipe_screen *screen = pipe->screen;
1115   const uint zslice = 0;
1116   uint dstLevel;
1117
1118   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1119      const uint srcLevel = dstLevel - 1;
1120      struct pipe_surface *srcSurf, *dstSurf;
1121      void *srcMap, *dstMap;
1122
1123      srcSurf = screen->get_tex_surface(screen, pt, face, srcLevel, zslice,
1124                                        PIPE_BUFFER_USAGE_CPU_READ);
1125
1126      dstSurf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1127                                        PIPE_BUFFER_USAGE_CPU_WRITE);
1128
1129      srcMap = ((ubyte *) pipe_buffer_map(screen, srcSurf->buffer,
1130                                          PIPE_BUFFER_USAGE_CPU_READ)
1131                + srcSurf->offset);
1132      dstMap = ((ubyte *) pipe_buffer_map(screen, dstSurf->buffer,
1133                                          PIPE_BUFFER_USAGE_CPU_WRITE)
1134                + dstSurf->offset);
1135
1136      reduce_1d(pt->format,
1137                srcSurf->width, srcMap,
1138                dstSurf->width, dstMap);
1139
1140      pipe_buffer_unmap(screen, srcSurf->buffer);
1141      pipe_buffer_unmap(screen, dstSurf->buffer);
1142
1143      pipe_surface_reference(&srcSurf, NULL);
1144      pipe_surface_reference(&dstSurf, NULL);
1145   }
1146}
1147
1148
1149static void
1150make_2d_mipmap(struct gen_mipmap_state *ctx,
1151               struct pipe_texture *pt,
1152               uint face, uint baseLevel, uint lastLevel)
1153{
1154   struct pipe_context *pipe = ctx->pipe;
1155   struct pipe_screen *screen = pipe->screen;
1156   const uint zslice = 0;
1157   uint dstLevel;
1158
1159   assert(pt->block.width == 1);
1160   assert(pt->block.height == 1);
1161
1162   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1163      const uint srcLevel = dstLevel - 1;
1164      struct pipe_surface *srcSurf, *dstSurf;
1165      ubyte *srcMap, *dstMap;
1166
1167      srcSurf = screen->get_tex_surface(screen, pt, face, srcLevel, zslice,
1168                                        PIPE_BUFFER_USAGE_CPU_READ);
1169      dstSurf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1170                                        PIPE_BUFFER_USAGE_CPU_WRITE);
1171
1172      srcMap = ((ubyte *) pipe_buffer_map(screen, srcSurf->buffer,
1173                                          PIPE_BUFFER_USAGE_CPU_READ)
1174                + srcSurf->offset);
1175      dstMap = ((ubyte *) pipe_buffer_map(screen, dstSurf->buffer,
1176                                          PIPE_BUFFER_USAGE_CPU_WRITE)
1177                + dstSurf->offset);
1178
1179      reduce_2d(pt->format,
1180                srcSurf->width, srcSurf->height,
1181                srcSurf->stride, srcMap,
1182                dstSurf->width, dstSurf->height,
1183                dstSurf->stride, dstMap);
1184
1185      pipe_buffer_unmap(screen, srcSurf->buffer);
1186      pipe_buffer_unmap(screen, dstSurf->buffer);
1187
1188      pipe_surface_reference(&srcSurf, NULL);
1189      pipe_surface_reference(&dstSurf, NULL);
1190   }
1191}
1192
1193
1194static void
1195make_3d_mipmap(struct gen_mipmap_state *ctx,
1196               struct pipe_texture *pt,
1197               uint face, uint baseLevel, uint lastLevel)
1198{
1199   struct pipe_context *pipe = ctx->pipe;
1200   struct pipe_screen *screen = pipe->screen;
1201   uint dstLevel, zslice;
1202
1203   assert(pt->block.width == 1);
1204   assert(pt->block.height == 1);
1205
1206   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1207      const uint srcLevel = dstLevel - 1;
1208      struct pipe_surface *srcSurf, *dstSurf;
1209      ubyte *srcMap, *dstMap;
1210
1211      srcSurf = screen->get_tex_surface(screen, pt, face, srcLevel, zslice,
1212                                        PIPE_BUFFER_USAGE_CPU_READ);
1213      dstSurf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1214                                        PIPE_BUFFER_USAGE_CPU_WRITE);
1215
1216      srcMap = ((ubyte *) pipe_buffer_map(screen, srcSurf->buffer,
1217                                          PIPE_BUFFER_USAGE_CPU_READ)
1218                + srcSurf->offset);
1219      dstMap = ((ubyte *) pipe_buffer_map(screen, dstSurf->buffer,
1220                                          PIPE_BUFFER_USAGE_CPU_WRITE)
1221                + dstSurf->offset);
1222
1223#if 0
1224      reduce_3d(pt->format,
1225                srcSurf->width, srcSurf->height,
1226                srcSurf->stride, srcMap,
1227                dstSurf->width, dstSurf->height,
1228                dstSurf->stride, dstMap);
1229#else
1230      (void) reduce_3d;
1231#endif
1232
1233      pipe_buffer_unmap(screen, srcSurf->buffer);
1234      pipe_buffer_unmap(screen, dstSurf->buffer);
1235
1236      pipe_surface_reference(&srcSurf, NULL);
1237      pipe_surface_reference(&dstSurf, NULL);
1238   }
1239}
1240
1241
1242static void
1243fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1244                    struct pipe_texture *pt,
1245                    uint face, uint baseLevel, uint lastLevel)
1246{
1247   switch (pt->target) {
1248   case PIPE_TEXTURE_1D:
1249      make_1d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1250      break;
1251   case PIPE_TEXTURE_2D:
1252   case PIPE_TEXTURE_CUBE:
1253      make_2d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1254      break;
1255   case PIPE_TEXTURE_3D:
1256      make_3d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1257      break;
1258   default:
1259      assert(0);
1260   }
1261}
1262
1263
1264/**
1265 * Create a mipmap generation context.
1266 * The idea is to create one of these and re-use it each time we need to
1267 * generate a mipmap.
1268 */
1269struct gen_mipmap_state *
1270util_create_gen_mipmap(struct pipe_context *pipe,
1271                       struct cso_context *cso)
1272{
1273   struct gen_mipmap_state *ctx;
1274   uint i;
1275
1276   ctx = CALLOC_STRUCT(gen_mipmap_state);
1277   if (!ctx)
1278      return NULL;
1279
1280   ctx->pipe = pipe;
1281   ctx->cso = cso;
1282
1283   /* disabled blending/masking */
1284   memset(&ctx->blend, 0, sizeof(ctx->blend));
1285   ctx->blend.rgb_src_factor = PIPE_BLENDFACTOR_ONE;
1286   ctx->blend.alpha_src_factor = PIPE_BLENDFACTOR_ONE;
1287   ctx->blend.rgb_dst_factor = PIPE_BLENDFACTOR_ZERO;
1288   ctx->blend.alpha_dst_factor = PIPE_BLENDFACTOR_ZERO;
1289   ctx->blend.colormask = PIPE_MASK_RGBA;
1290
1291   /* no-op depth/stencil/alpha */
1292   memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
1293
1294   /* rasterizer */
1295   memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1296   ctx->rasterizer.front_winding = PIPE_WINDING_CW;
1297   ctx->rasterizer.cull_mode = PIPE_WINDING_NONE;
1298   ctx->rasterizer.bypass_clipping = 1;
1299   /*ctx->rasterizer.bypass_vs = 1;*/
1300   ctx->rasterizer.gl_rasterization_rules = 1;
1301
1302   /* sampler state */
1303   memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1304   ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1305   ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1306   ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1307   ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1308   ctx->sampler.normalized_coords = 1;
1309
1310   /* viewport state (identity, verts are in wincoords) */
1311   ctx->viewport.scale[0] = 1.0;
1312   ctx->viewport.scale[1] = 1.0;
1313   ctx->viewport.scale[2] = 1.0;
1314   ctx->viewport.scale[3] = 1.0;
1315   ctx->viewport.translate[0] = 0.0;
1316   ctx->viewport.translate[1] = 0.0;
1317   ctx->viewport.translate[2] = 0.0;
1318   ctx->viewport.translate[3] = 0.0;
1319
1320   /* vertex shader */
1321   {
1322      const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1323                                      TGSI_SEMANTIC_GENERIC };
1324      const uint semantic_indexes[] = { 0, 0 };
1325      ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names,
1326                                                    semantic_indexes,
1327                                                    &ctx->vert_shader);
1328   }
1329
1330   /* fragment shader */
1331   ctx->fs = util_make_fragment_tex_shader(pipe, &ctx->frag_shader);
1332
1333   /* vertex data that doesn't change */
1334   for (i = 0; i < 4; i++) {
1335      ctx->vertices[i][0][2] = 0.0f; /* z */
1336      ctx->vertices[i][0][3] = 1.0f; /* w */
1337      ctx->vertices[i][1][2] = 0.0f; /* r */
1338      ctx->vertices[i][1][3] = 1.0f; /* q */
1339   }
1340
1341   /* Note: the actual vertex buffer is allocated as needed below */
1342
1343   return ctx;
1344}
1345
1346
1347/**
1348 * Get next "slot" of vertex space in the vertex buffer.
1349 * We're allocating one large vertex buffer and using it piece by piece.
1350 */
1351static unsigned
1352get_next_slot(struct gen_mipmap_state *ctx)
1353{
1354   const unsigned max_slots = 4096 / sizeof ctx->vertices;
1355
1356   if (ctx->vbuf_slot >= max_slots)
1357      util_gen_mipmap_flush( ctx );
1358
1359   if (!ctx->vbuf) {
1360      ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1361                                     32,
1362                                     PIPE_BUFFER_USAGE_VERTEX,
1363                                     max_slots * sizeof ctx->vertices);
1364   }
1365
1366   return ctx->vbuf_slot++ * sizeof ctx->vertices;
1367}
1368
1369
1370static unsigned
1371set_vertex_data(struct gen_mipmap_state *ctx, float width, float height)
1372{
1373   void *buf;
1374   unsigned offset;
1375
1376   ctx->vertices[0][0][0] = 0.0f; /*x*/
1377   ctx->vertices[0][0][1] = 0.0f; /*y*/
1378   ctx->vertices[0][1][0] = 0.0f; /*s*/
1379   ctx->vertices[0][1][1] = 0.0f; /*t*/
1380
1381   ctx->vertices[1][0][0] = width;
1382   ctx->vertices[1][0][1] = 0.0f;
1383   ctx->vertices[1][1][0] = 1.0f;
1384   ctx->vertices[1][1][1] = 0.0f;
1385
1386   ctx->vertices[2][0][0] = width;
1387   ctx->vertices[2][0][1] = height;
1388   ctx->vertices[2][1][0] = 1.0f;
1389   ctx->vertices[2][1][1] = 1.0f;
1390
1391   ctx->vertices[3][0][0] = 0.0f;
1392   ctx->vertices[3][0][1] = height;
1393   ctx->vertices[3][1][0] = 0.0f;
1394   ctx->vertices[3][1][1] = 1.0f;
1395
1396   offset = get_next_slot( ctx );
1397
1398   buf = pipe_buffer_map(ctx->pipe->screen, ctx->vbuf,
1399                         PIPE_BUFFER_USAGE_CPU_WRITE);
1400
1401   memcpy((char *)buf + offset, ctx->vertices, sizeof(ctx->vertices));
1402
1403   pipe_buffer_unmap(ctx->pipe->screen, ctx->vbuf);
1404
1405   return offset;
1406}
1407
1408
1409
1410/**
1411 * Destroy a mipmap generation context
1412 */
1413void
1414util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1415{
1416   struct pipe_context *pipe = ctx->pipe;
1417
1418   pipe->delete_vs_state(pipe, ctx->vs);
1419   pipe->delete_fs_state(pipe, ctx->fs);
1420
1421   FREE((void*) ctx->vert_shader.tokens);
1422   FREE((void*) ctx->frag_shader.tokens);
1423
1424   pipe_buffer_reference(pipe->screen, &ctx->vbuf, NULL);
1425
1426   FREE(ctx);
1427}
1428
1429
1430
1431/* Release vertex buffer at end of frame to avoid synchronous
1432 * rendering.
1433 */
1434void util_gen_mipmap_flush( struct gen_mipmap_state *ctx )
1435{
1436   pipe_buffer_reference(ctx->pipe->screen, &ctx->vbuf, NULL);
1437   ctx->vbuf_slot = 0;
1438}
1439
1440
1441/**
1442 * Generate mipmap images.  It's assumed all needed texture memory is
1443 * already allocated.
1444 *
1445 * \param pt  the texture to generate mipmap levels for
1446 * \param face  which cube face to generate mipmaps for (0 for non-cube maps)
1447 * \param baseLevel  the first mipmap level to use as a src
1448 * \param lastLevel  the last mipmap level to generate
1449 * \param filter  the minification filter used to generate mipmap levels with
1450 * \param filter  one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1451 */
1452void
1453util_gen_mipmap(struct gen_mipmap_state *ctx,
1454                struct pipe_texture *pt,
1455                uint face, uint baseLevel, uint lastLevel, uint filter)
1456{
1457   struct pipe_context *pipe = ctx->pipe;
1458   struct pipe_screen *screen = pipe->screen;
1459   struct pipe_framebuffer_state fb;
1460   uint dstLevel;
1461   uint zslice = 0;
1462   uint offset;
1463
1464   /* check if we can render in the texture's format */
1465   if (!screen->is_format_supported(screen, pt->format, PIPE_TEXTURE_2D,
1466                                    PIPE_TEXTURE_USAGE_RENDER_TARGET, 0)) {
1467      fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1468      return;
1469   }
1470
1471   /* save state (restored below) */
1472   cso_save_blend(ctx->cso);
1473   cso_save_depth_stencil_alpha(ctx->cso);
1474   cso_save_rasterizer(ctx->cso);
1475   cso_save_samplers(ctx->cso);
1476   cso_save_sampler_textures(ctx->cso);
1477   cso_save_framebuffer(ctx->cso);
1478   cso_save_fragment_shader(ctx->cso);
1479   cso_save_vertex_shader(ctx->cso);
1480   cso_save_viewport(ctx->cso);
1481
1482   /* bind our state */
1483   cso_set_blend(ctx->cso, &ctx->blend);
1484   cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
1485   cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1486   cso_set_viewport(ctx->cso, &ctx->viewport);
1487
1488   cso_set_fragment_shader_handle(ctx->cso, ctx->fs);
1489   cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1490
1491   /* init framebuffer state */
1492   memset(&fb, 0, sizeof(fb));
1493   fb.num_cbufs = 1;
1494
1495   /* set min/mag to same filter for faster sw speed */
1496   ctx->sampler.mag_img_filter = filter;
1497   ctx->sampler.min_img_filter = filter;
1498
1499   /*
1500    * XXX for small mipmap levels, it may be faster to use the software
1501    * fallback path...
1502    */
1503   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1504      const uint srcLevel = dstLevel - 1;
1505
1506      struct pipe_surface *surf =
1507         screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1508                                 PIPE_BUFFER_USAGE_GPU_WRITE);
1509
1510      /*
1511       * Setup framebuffer / dest surface
1512       */
1513      fb.cbufs[0] = surf;
1514      fb.width = pt->width[dstLevel];
1515      fb.height = pt->height[dstLevel];
1516      cso_set_framebuffer(ctx->cso, &fb);
1517
1518      /*
1519       * Setup sampler state
1520       * Note: we should only have to set the min/max LOD clamps to ensure
1521       * we grab texels from the right mipmap level.  But some hardware
1522       * has trouble with min clamping so we also set the lod_bias to
1523       * try to work around that.
1524       */
1525      ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1526      ctx->sampler.lod_bias = (float) srcLevel;
1527      cso_single_sampler(ctx->cso, 0, &ctx->sampler);
1528      cso_single_sampler_done(ctx->cso);
1529
1530      cso_set_sampler_textures(ctx->cso, 1, &pt);
1531
1532      /* quad coords in window coords (bypassing clipping, viewport mapping) */
1533      offset = set_vertex_data(ctx,
1534                               (float) pt->width[dstLevel],
1535                               (float) pt->height[dstLevel]);
1536
1537      util_draw_vertex_buffer(ctx->pipe,
1538                              ctx->vbuf,
1539                              offset,
1540                              PIPE_PRIM_TRIANGLE_FAN,
1541                              4,  /* verts */
1542                              2); /* attribs/vert */
1543
1544      pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE, NULL);
1545
1546      /* need to signal that the texture has changed _after_ rendering to it */
1547      pipe_surface_reference( &surf, NULL );
1548   }
1549
1550   /* restore state we changed */
1551   cso_restore_blend(ctx->cso);
1552   cso_restore_depth_stencil_alpha(ctx->cso);
1553   cso_restore_rasterizer(ctx->cso);
1554   cso_restore_samplers(ctx->cso);
1555   cso_restore_sampler_textures(ctx->cso);
1556   cso_restore_framebuffer(ctx->cso);
1557   cso_restore_fragment_shader(ctx->cso);
1558   cso_restore_vertex_shader(ctx->cso);
1559   cso_restore_viewport(ctx->cso);
1560}
1561