ast_function.cpp revision 6e4852a3a5f3cbe52c53d91d343a37861f207563
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include "glsl_symbol_table.h"
25#include "ast.h"
26#include "glsl_types.h"
27#include "ir.h"
28#include "main/core.h" /* for MIN2 */
29
30static ir_rvalue *
31convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33bool
34apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35                          struct _mesa_glsl_parse_state *state);
36
37static unsigned
38process_parameters(exec_list *instructions, exec_list *actual_parameters,
39		   exec_list *parameters,
40		   struct _mesa_glsl_parse_state *state)
41{
42   unsigned count = 0;
43
44   foreach_list (n, parameters) {
45      ast_node *const ast = exec_node_data(ast_node, n, link);
46      ir_rvalue *result = ast->hir(instructions, state);
47
48      ir_constant *const constant = result->constant_expression_value();
49      if (constant != NULL)
50	 result = constant;
51
52      actual_parameters->push_tail(result);
53      count++;
54   }
55
56   return count;
57}
58
59
60/**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function.  May be \c NULL.
64 * \param name        Name of the function.
65 * \param parameters  List of \c ir_instruction nodes representing the
66 *                    parameter list for the function.  This may be either a
67 *                    formal (\c ir_variable) or actual (\c ir_rvalue)
68 *                    parameter list.  Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73char *
74prototype_string(const glsl_type *return_type, const char *name,
75		 exec_list *parameters)
76{
77   char *str = NULL;
78
79   if (return_type != NULL)
80      str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82   ralloc_asprintf_append(&str, "%s(", name);
83
84   const char *comma = "";
85   foreach_list(node, parameters) {
86      const ir_variable *const param = (ir_variable *) node;
87
88      ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89      comma = ", ";
90   }
91
92   ralloc_strcat(&str, ")");
93   return str;
94}
95
96/**
97 * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101static bool
102verify_parameter_modes(_mesa_glsl_parse_state *state,
103		       ir_function_signature *sig,
104		       exec_list &actual_ir_parameters,
105		       exec_list &actual_ast_parameters)
106{
107   exec_node *actual_ir_node  = actual_ir_parameters.head;
108   exec_node *actual_ast_node = actual_ast_parameters.head;
109
110   foreach_list(formal_node, &sig->parameters) {
111      /* The lists must be the same length. */
112      assert(!actual_ir_node->is_tail_sentinel());
113      assert(!actual_ast_node->is_tail_sentinel());
114
115      const ir_variable *const formal = (ir_variable *) formal_node;
116      const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117      const ast_expression *const actual_ast =
118	 exec_node_data(ast_expression, actual_ast_node, link);
119
120      /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121       * FIXME: 0:0(0).
122       */
123      YYLTYPE loc = actual_ast->get_location();
124
125      /* Verify that 'const_in' parameters are ir_constants. */
126      if (formal->mode == ir_var_const_in &&
127	  actual->ir_type != ir_type_constant) {
128	 _mesa_glsl_error(&loc, state,
129			  "parameter `in %s' must be a constant expression",
130			  formal->name);
131	 return false;
132      }
133
134      /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135      if (formal->mode == ir_var_out || formal->mode == ir_var_inout) {
136	 const char *mode = NULL;
137	 switch (formal->mode) {
138	 case ir_var_out:   mode = "out";   break;
139	 case ir_var_inout: mode = "inout"; break;
140	 default:           assert(false);  break;
141	 }
142
143	 /* This AST-based check catches errors like f(i++).  The IR-based
144	  * is_lvalue() is insufficient because the actual parameter at the
145	  * IR-level is just a temporary value, which is an l-value.
146	  */
147	 if (actual_ast->non_lvalue_description != NULL) {
148	    _mesa_glsl_error(&loc, state,
149			     "function parameter '%s %s' references a %s",
150			     mode, formal->name,
151			     actual_ast->non_lvalue_description);
152	    return false;
153	 }
154
155	 ir_variable *var = actual->variable_referenced();
156	 if (var)
157	    var->assigned = true;
158
159	 if (var && var->read_only) {
160	    _mesa_glsl_error(&loc, state,
161			     "function parameter '%s %s' references the "
162			     "read-only variable '%s'",
163			     mode, formal->name,
164			     actual->variable_referenced()->name);
165	    return false;
166	 } else if (!actual->is_lvalue()) {
167	    _mesa_glsl_error(&loc, state,
168			     "function parameter '%s %s' is not an lvalue",
169			     mode, formal->name);
170	    return false;
171	 }
172      }
173
174      actual_ir_node  = actual_ir_node->next;
175      actual_ast_node = actual_ast_node->next;
176   }
177   return true;
178}
179
180/**
181 * If a function call is generated, \c call_ir will point to it on exit.
182 * Otherwise \c call_ir will be set to \c NULL.
183 */
184static ir_rvalue *
185generate_call(exec_list *instructions, ir_function_signature *sig,
186	      YYLTYPE *loc, exec_list *actual_parameters,
187	      ir_call **call_ir,
188	      struct _mesa_glsl_parse_state *state)
189{
190   void *ctx = state;
191   exec_list post_call_conversions;
192
193   *call_ir = NULL;
194
195   /* Perform implicit conversion of arguments.  For out parameters, we need
196    * to place them in a temporary variable and do the conversion after the
197    * call takes place.  Since we haven't emitted the call yet, we'll place
198    * the post-call conversions in a temporary exec_list, and emit them later.
199    */
200   exec_list_iterator actual_iter = actual_parameters->iterator();
201   exec_list_iterator formal_iter = sig->parameters.iterator();
202
203   while (actual_iter.has_next()) {
204      ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
205      ir_variable *formal = (ir_variable *) formal_iter.get();
206
207      assert(actual != NULL);
208      assert(formal != NULL);
209
210      if (formal->type->is_numeric() || formal->type->is_boolean()) {
211	 switch (formal->mode) {
212	 case ir_var_const_in:
213	 case ir_var_in: {
214	    ir_rvalue *converted
215	       = convert_component(actual, formal->type);
216	    actual->replace_with(converted);
217	    break;
218	 }
219	 case ir_var_out:
220	    if (actual->type != formal->type) {
221	       /* To convert an out parameter, we need to create a
222		* temporary variable to hold the value before conversion,
223		* and then perform the conversion after the function call
224		* returns.
225		*
226		* This has the effect of transforming code like this:
227		*
228		*   void f(out int x);
229		*   float value;
230		*   f(value);
231		*
232		* Into IR that's equivalent to this:
233		*
234		*   void f(out int x);
235		*   float value;
236		*   int out_parameter_conversion;
237		*   f(out_parameter_conversion);
238		*   value = float(out_parameter_conversion);
239		*/
240	       ir_variable *tmp =
241		  new(ctx) ir_variable(formal->type,
242				       "out_parameter_conversion",
243				       ir_var_temporary);
244	       instructions->push_tail(tmp);
245	       ir_dereference_variable *deref_tmp_1
246		  = new(ctx) ir_dereference_variable(tmp);
247	       ir_dereference_variable *deref_tmp_2
248		  = new(ctx) ir_dereference_variable(tmp);
249	       ir_rvalue *converted_tmp
250		  = convert_component(deref_tmp_1, actual->type);
251	       ir_assignment *assignment
252		  = new(ctx) ir_assignment(actual, converted_tmp);
253	       post_call_conversions.push_tail(assignment);
254	       actual->replace_with(deref_tmp_2);
255	    }
256	    break;
257	 case ir_var_inout:
258	    /* Inout parameters should never require conversion, since that
259	     * would require an implicit conversion to exist both to and
260	     * from the formal parameter type, and there are no
261	     * bidirectional implicit conversions.
262	     */
263	    assert (actual->type == formal->type);
264	    break;
265	 default:
266	    assert (!"Illegal formal parameter mode");
267	    break;
268	 }
269      }
270
271      actual_iter.next();
272      formal_iter.next();
273   }
274
275   /* If the function call is a constant expression, don't generate any
276    * instructions; just generate an ir_constant.
277    *
278    * Function calls were first allowed to be constant expressions in GLSL 1.20.
279    */
280   if (state->language_version >= 120) {
281      ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
282      if (value != NULL) {
283	 return value;
284      }
285   }
286
287   ir_dereference_variable *deref = NULL;
288   if (!sig->return_type->is_void()) {
289      /* Create a new temporary to hold the return value. */
290      ir_variable *var;
291
292      var = new(ctx) ir_variable(sig->return_type,
293				 ralloc_asprintf(ctx, "%s_retval",
294						 sig->function_name()),
295				 ir_var_temporary);
296      instructions->push_tail(var);
297
298      deref = new(ctx) ir_dereference_variable(var);
299   }
300   ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
301   instructions->push_tail(call);
302
303   /* Also emit any necessary out-parameter conversions. */
304   instructions->append_list(&post_call_conversions);
305
306   return deref ? deref->clone(ctx, NULL) : NULL;
307}
308
309/**
310 * Given a function name and parameter list, find the matching signature.
311 */
312static ir_function_signature *
313match_function_by_name(const char *name,
314		       exec_list *actual_parameters,
315		       struct _mesa_glsl_parse_state *state)
316{
317   void *ctx = state;
318   ir_function *f = state->symbols->get_function(name);
319   ir_function_signature *local_sig = NULL;
320   ir_function_signature *sig = NULL;
321
322   /* Is the function hidden by a record type constructor? */
323   if (state->symbols->get_type(name))
324      goto done; /* no match */
325
326   /* Is the function hidden by a variable (impossible in 1.10)? */
327   if (state->language_version != 110 && state->symbols->get_variable(name))
328      goto done; /* no match */
329
330   if (f != NULL) {
331      /* Look for a match in the local shader.  If exact, we're done. */
332      bool is_exact = false;
333      sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
334      if (is_exact)
335	 goto done;
336
337      if (!state->es_shader && f->has_user_signature()) {
338	 /* In desktop GL, the presence of a user-defined signature hides any
339	  * built-in signatures, so we must ignore them.  In contrast, in ES2
340	  * user-defined signatures add new overloads, so we must proceed.
341	  */
342	 goto done;
343      }
344   }
345
346   /* Local shader has no exact candidates; check the built-ins. */
347   _mesa_glsl_initialize_functions(state);
348   for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
349      ir_function *builtin =
350	 state->builtins_to_link[i]->symbols->get_function(name);
351      if (builtin == NULL)
352	 continue;
353
354      bool is_exact = false;
355      ir_function_signature *builtin_sig =
356	 builtin->matching_signature(actual_parameters, &is_exact);
357
358      if (builtin_sig == NULL)
359	 continue;
360
361      /* If the built-in signature is exact, we can stop. */
362      if (is_exact) {
363	 sig = builtin_sig;
364	 goto done;
365      }
366
367      if (sig == NULL) {
368	 /* We found an inexact match, which is better than nothing.  However,
369	  * we should keep searching for an exact match.
370	  */
371	 sig = builtin_sig;
372      }
373   }
374
375done:
376   if (sig != NULL) {
377      /* If the match is from a linked built-in shader, import the prototype. */
378      if (sig != local_sig) {
379	 if (f == NULL) {
380	    f = new(ctx) ir_function(name);
381	    state->symbols->add_global_function(f);
382	    emit_function(state, f);
383	 }
384	 f->add_signature(sig->clone_prototype(f, NULL));
385      }
386   }
387   return sig;
388}
389
390/**
391 * Raise a "no matching function" error, listing all possible overloads the
392 * compiler considered so developers can figure out what went wrong.
393 */
394static void
395no_matching_function_error(const char *name,
396			   YYLTYPE *loc,
397			   exec_list *actual_parameters,
398			   _mesa_glsl_parse_state *state)
399{
400   char *str = prototype_string(NULL, name, actual_parameters);
401   _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
402   ralloc_free(str);
403
404   const char *prefix = "candidates are: ";
405
406   for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
407      glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
408				       : state->symbols;
409      ir_function *f = syms->get_function(name);
410      if (f == NULL)
411	 continue;
412
413      foreach_list (node, &f->signatures) {
414	 ir_function_signature *sig = (ir_function_signature *) node;
415
416	 str = prototype_string(sig->return_type, f->name, &sig->parameters);
417	 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
418	 ralloc_free(str);
419
420	 prefix = "                ";
421      }
422   }
423}
424
425/**
426 * Perform automatic type conversion of constructor parameters
427 *
428 * This implements the rules in the "Conversion and Scalar Constructors"
429 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
430 */
431static ir_rvalue *
432convert_component(ir_rvalue *src, const glsl_type *desired_type)
433{
434   void *ctx = ralloc_parent(src);
435   const unsigned a = desired_type->base_type;
436   const unsigned b = src->type->base_type;
437   ir_expression *result = NULL;
438
439   if (src->type->is_error())
440      return src;
441
442   assert(a <= GLSL_TYPE_BOOL);
443   assert(b <= GLSL_TYPE_BOOL);
444
445   if (a == b)
446      return src;
447
448   switch (a) {
449   case GLSL_TYPE_UINT:
450      switch (b) {
451      case GLSL_TYPE_INT:
452	 result = new(ctx) ir_expression(ir_unop_i2u, src);
453	 break;
454      case GLSL_TYPE_FLOAT:
455	 result = new(ctx) ir_expression(ir_unop_i2u,
456		  new(ctx) ir_expression(ir_unop_f2i, src));
457	 break;
458      case GLSL_TYPE_BOOL:
459	 result = new(ctx) ir_expression(ir_unop_i2u,
460		  new(ctx) ir_expression(ir_unop_b2i, src));
461	 break;
462      }
463      break;
464   case GLSL_TYPE_INT:
465      switch (b) {
466      case GLSL_TYPE_UINT:
467	 result = new(ctx) ir_expression(ir_unop_u2i, src);
468	 break;
469      case GLSL_TYPE_FLOAT:
470	 result = new(ctx) ir_expression(ir_unop_f2i, src);
471	 break;
472      case GLSL_TYPE_BOOL:
473	 result = new(ctx) ir_expression(ir_unop_b2i, src);
474	 break;
475      }
476      break;
477   case GLSL_TYPE_FLOAT:
478      switch (b) {
479      case GLSL_TYPE_UINT:
480	 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
481	 break;
482      case GLSL_TYPE_INT:
483	 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
484	 break;
485      case GLSL_TYPE_BOOL:
486	 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
487	 break;
488      }
489      break;
490   case GLSL_TYPE_BOOL:
491      switch (b) {
492      case GLSL_TYPE_UINT:
493	 result = new(ctx) ir_expression(ir_unop_i2b,
494		  new(ctx) ir_expression(ir_unop_u2i, src));
495	 break;
496      case GLSL_TYPE_INT:
497	 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
498	 break;
499      case GLSL_TYPE_FLOAT:
500	 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
501	 break;
502      }
503      break;
504   }
505
506   assert(result != NULL);
507   assert(result->type == desired_type);
508
509   /* Try constant folding; it may fold in the conversion we just added. */
510   ir_constant *const constant = result->constant_expression_value();
511   return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
512}
513
514/**
515 * Dereference a specific component from a scalar, vector, or matrix
516 */
517static ir_rvalue *
518dereference_component(ir_rvalue *src, unsigned component)
519{
520   void *ctx = ralloc_parent(src);
521   assert(component < src->type->components());
522
523   /* If the source is a constant, just create a new constant instead of a
524    * dereference of the existing constant.
525    */
526   ir_constant *constant = src->as_constant();
527   if (constant)
528      return new(ctx) ir_constant(constant, component);
529
530   if (src->type->is_scalar()) {
531      return src;
532   } else if (src->type->is_vector()) {
533      return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
534   } else {
535      assert(src->type->is_matrix());
536
537      /* Dereference a row of the matrix, then call this function again to get
538       * a specific element from that row.
539       */
540      const int c = component / src->type->column_type()->vector_elements;
541      const int r = component % src->type->column_type()->vector_elements;
542      ir_constant *const col_index = new(ctx) ir_constant(c);
543      ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
544
545      col->type = src->type->column_type();
546
547      return dereference_component(col, r);
548   }
549
550   assert(!"Should not get here.");
551   return NULL;
552}
553
554
555static ir_rvalue *
556process_array_constructor(exec_list *instructions,
557			  const glsl_type *constructor_type,
558			  YYLTYPE *loc, exec_list *parameters,
559			  struct _mesa_glsl_parse_state *state)
560{
561   void *ctx = state;
562   /* Array constructors come in two forms: sized and unsized.  Sized array
563    * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
564    * variables.  In this case the number of parameters must exactly match the
565    * specified size of the array.
566    *
567    * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
568    * are vec4 variables.  In this case the size of the array being constructed
569    * is determined by the number of parameters.
570    *
571    * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
572    *
573    *    "There must be exactly the same number of arguments as the size of
574    *    the array being constructed. If no size is present in the
575    *    constructor, then the array is explicitly sized to the number of
576    *    arguments provided. The arguments are assigned in order, starting at
577    *    element 0, to the elements of the constructed array. Each argument
578    *    must be the same type as the element type of the array, or be a type
579    *    that can be converted to the element type of the array according to
580    *    Section 4.1.10 "Implicit Conversions.""
581    */
582   exec_list actual_parameters;
583   const unsigned parameter_count =
584      process_parameters(instructions, &actual_parameters, parameters, state);
585
586   if ((parameter_count == 0)
587       || ((constructor_type->length != 0)
588	   && (constructor_type->length != parameter_count))) {
589      const unsigned min_param = (constructor_type->length == 0)
590	 ? 1 : constructor_type->length;
591
592      _mesa_glsl_error(loc, state, "array constructor must have %s %u "
593		       "parameter%s",
594		       (constructor_type->length != 0) ? "at least" : "exactly",
595		       min_param, (min_param <= 1) ? "" : "s");
596      return ir_rvalue::error_value(ctx);
597   }
598
599   if (constructor_type->length == 0) {
600      constructor_type =
601	 glsl_type::get_array_instance(constructor_type->element_type(),
602				       parameter_count);
603      assert(constructor_type != NULL);
604      assert(constructor_type->length == parameter_count);
605   }
606
607   bool all_parameters_are_constant = true;
608
609   /* Type cast each parameter and, if possible, fold constants. */
610   foreach_list_safe(n, &actual_parameters) {
611      ir_rvalue *ir = (ir_rvalue *) n;
612      ir_rvalue *result = ir;
613
614      /* Apply implicit conversions (not the scalar constructor rules!). See
615       * the spec quote above. */
616      if (constructor_type->element_type()->is_float()) {
617	 const glsl_type *desired_type =
618	    glsl_type::get_instance(GLSL_TYPE_FLOAT,
619				    ir->type->vector_elements,
620				    ir->type->matrix_columns);
621	 if (result->type->can_implicitly_convert_to(desired_type)) {
622	    /* Even though convert_component() implements the constructor
623	     * conversion rules (not the implicit conversion rules), its safe
624	     * to use it here because we already checked that the implicit
625	     * conversion is legal.
626	     */
627	    result = convert_component(ir, desired_type);
628	 }
629      }
630
631      if (result->type != constructor_type->element_type()) {
632	 _mesa_glsl_error(loc, state, "type error in array constructor: "
633			  "expected: %s, found %s",
634			  constructor_type->element_type()->name,
635			  result->type->name);
636      }
637
638      /* Attempt to convert the parameter to a constant valued expression.
639       * After doing so, track whether or not all the parameters to the
640       * constructor are trivially constant valued expressions.
641       */
642      ir_rvalue *const constant = result->constant_expression_value();
643
644      if (constant != NULL)
645         result = constant;
646      else
647         all_parameters_are_constant = false;
648
649      ir->replace_with(result);
650   }
651
652   if (all_parameters_are_constant)
653      return new(ctx) ir_constant(constructor_type, &actual_parameters);
654
655   ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
656					   ir_var_temporary);
657   instructions->push_tail(var);
658
659   int i = 0;
660   foreach_list(node, &actual_parameters) {
661      ir_rvalue *rhs = (ir_rvalue *) node;
662      ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
663						     new(ctx) ir_constant(i));
664
665      ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
666      instructions->push_tail(assignment);
667
668      i++;
669   }
670
671   return new(ctx) ir_dereference_variable(var);
672}
673
674
675/**
676 * Try to convert a record constructor to a constant expression
677 */
678static ir_constant *
679constant_record_constructor(const glsl_type *constructor_type,
680			    exec_list *parameters, void *mem_ctx)
681{
682   foreach_list(node, parameters) {
683      ir_constant *constant = ((ir_instruction *) node)->as_constant();
684      if (constant == NULL)
685	 return NULL;
686      node->replace_with(constant);
687   }
688
689   return new(mem_ctx) ir_constant(constructor_type, parameters);
690}
691
692
693/**
694 * Determine if a list consists of a single scalar r-value
695 */
696bool
697single_scalar_parameter(exec_list *parameters)
698{
699   const ir_rvalue *const p = (ir_rvalue *) parameters->head;
700   assert(((ir_rvalue *)p)->as_rvalue() != NULL);
701
702   return (p->type->is_scalar() && p->next->is_tail_sentinel());
703}
704
705
706/**
707 * Generate inline code for a vector constructor
708 *
709 * The generated constructor code will consist of a temporary variable
710 * declaration of the same type as the constructor.  A sequence of assignments
711 * from constructor parameters to the temporary will follow.
712 *
713 * \return
714 * An \c ir_dereference_variable of the temprorary generated in the constructor
715 * body.
716 */
717ir_rvalue *
718emit_inline_vector_constructor(const glsl_type *type,
719			       exec_list *instructions,
720			       exec_list *parameters,
721			       void *ctx)
722{
723   assert(!parameters->is_empty());
724
725   ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
726   instructions->push_tail(var);
727
728   /* There are two kinds of vector constructors.
729    *
730    *  - Construct a vector from a single scalar by replicating that scalar to
731    *    all components of the vector.
732    *
733    *  - Construct a vector from an arbirary combination of vectors and
734    *    scalars.  The components of the constructor parameters are assigned
735    *    to the vector in order until the vector is full.
736    */
737   const unsigned lhs_components = type->components();
738   if (single_scalar_parameter(parameters)) {
739      ir_rvalue *first_param = (ir_rvalue *)parameters->head;
740      ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
741					   lhs_components);
742      ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
743      const unsigned mask = (1U << lhs_components) - 1;
744
745      assert(rhs->type == lhs->type);
746
747      ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
748      instructions->push_tail(inst);
749   } else {
750      unsigned base_component = 0;
751      unsigned base_lhs_component = 0;
752      ir_constant_data data;
753      unsigned constant_mask = 0, constant_components = 0;
754
755      memset(&data, 0, sizeof(data));
756
757      foreach_list(node, parameters) {
758	 ir_rvalue *param = (ir_rvalue *) node;
759	 unsigned rhs_components = param->type->components();
760
761	 /* Do not try to assign more components to the vector than it has!
762	  */
763	 if ((rhs_components + base_lhs_component) > lhs_components) {
764	    rhs_components = lhs_components - base_lhs_component;
765	 }
766
767	 const ir_constant *const c = param->as_constant();
768	 if (c != NULL) {
769	    for (unsigned i = 0; i < rhs_components; i++) {
770	       switch (c->type->base_type) {
771	       case GLSL_TYPE_UINT:
772		  data.u[i + base_component] = c->get_uint_component(i);
773		  break;
774	       case GLSL_TYPE_INT:
775		  data.i[i + base_component] = c->get_int_component(i);
776		  break;
777	       case GLSL_TYPE_FLOAT:
778		  data.f[i + base_component] = c->get_float_component(i);
779		  break;
780	       case GLSL_TYPE_BOOL:
781		  data.b[i + base_component] = c->get_bool_component(i);
782		  break;
783	       default:
784		  assert(!"Should not get here.");
785		  break;
786	       }
787	    }
788
789	    /* Mask of fields to be written in the assignment.
790	     */
791	    constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
792	    constant_components += rhs_components;
793
794	    base_component += rhs_components;
795	 }
796	 /* Advance the component index by the number of components
797	  * that were just assigned.
798	  */
799	 base_lhs_component += rhs_components;
800      }
801
802      if (constant_mask != 0) {
803	 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
804	 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
805							     constant_components,
806							     1);
807	 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
808
809	 ir_instruction *inst =
810	    new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
811	 instructions->push_tail(inst);
812      }
813
814      base_component = 0;
815      foreach_list(node, parameters) {
816	 ir_rvalue *param = (ir_rvalue *) node;
817	 unsigned rhs_components = param->type->components();
818
819	 /* Do not try to assign more components to the vector than it has!
820	  */
821	 if ((rhs_components + base_component) > lhs_components) {
822	    rhs_components = lhs_components - base_component;
823	 }
824
825	 const ir_constant *const c = param->as_constant();
826	 if (c == NULL) {
827	    /* Mask of fields to be written in the assignment.
828	     */
829	    const unsigned write_mask = ((1U << rhs_components) - 1)
830	       << base_component;
831
832	    ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
833
834	    /* Generate a swizzle so that LHS and RHS sizes match.
835	     */
836	    ir_rvalue *rhs =
837	       new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
838
839	    ir_instruction *inst =
840	       new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
841	    instructions->push_tail(inst);
842	 }
843
844	 /* Advance the component index by the number of components that were
845	  * just assigned.
846	  */
847	 base_component += rhs_components;
848      }
849   }
850   return new(ctx) ir_dereference_variable(var);
851}
852
853
854/**
855 * Generate assignment of a portion of a vector to a portion of a matrix column
856 *
857 * \param src_base  First component of the source to be used in assignment
858 * \param column    Column of destination to be assiged
859 * \param row_base  First component of the destination column to be assigned
860 * \param count     Number of components to be assigned
861 *
862 * \note
863 * \c src_base + \c count must be less than or equal to the number of components
864 * in the source vector.
865 */
866ir_instruction *
867assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
868			ir_rvalue *src, unsigned src_base, unsigned count,
869			void *mem_ctx)
870{
871   ir_constant *col_idx = new(mem_ctx) ir_constant(column);
872   ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
873
874   assert(column_ref->type->components() >= (row_base + count));
875   assert(src->type->components() >= (src_base + count));
876
877   /* Generate a swizzle that extracts the number of components from the source
878    * that are to be assigned to the column of the matrix.
879    */
880   if (count < src->type->vector_elements) {
881      src = new(mem_ctx) ir_swizzle(src,
882				    src_base + 0, src_base + 1,
883				    src_base + 2, src_base + 3,
884				    count);
885   }
886
887   /* Mask of fields to be written in the assignment.
888    */
889   const unsigned write_mask = ((1U << count) - 1) << row_base;
890
891   return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
892}
893
894
895/**
896 * Generate inline code for a matrix constructor
897 *
898 * The generated constructor code will consist of a temporary variable
899 * declaration of the same type as the constructor.  A sequence of assignments
900 * from constructor parameters to the temporary will follow.
901 *
902 * \return
903 * An \c ir_dereference_variable of the temprorary generated in the constructor
904 * body.
905 */
906ir_rvalue *
907emit_inline_matrix_constructor(const glsl_type *type,
908			       exec_list *instructions,
909			       exec_list *parameters,
910			       void *ctx)
911{
912   assert(!parameters->is_empty());
913
914   ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
915   instructions->push_tail(var);
916
917   /* There are three kinds of matrix constructors.
918    *
919    *  - Construct a matrix from a single scalar by replicating that scalar to
920    *    along the diagonal of the matrix and setting all other components to
921    *    zero.
922    *
923    *  - Construct a matrix from an arbirary combination of vectors and
924    *    scalars.  The components of the constructor parameters are assigned
925    *    to the matrix in colum-major order until the matrix is full.
926    *
927    *  - Construct a matrix from a single matrix.  The source matrix is copied
928    *    to the upper left portion of the constructed matrix, and the remaining
929    *    elements take values from the identity matrix.
930    */
931   ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
932   if (single_scalar_parameter(parameters)) {
933      /* Assign the scalar to the X component of a vec4, and fill the remaining
934       * components with zero.
935       */
936      ir_variable *rhs_var =
937	 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
938			      ir_var_temporary);
939      instructions->push_tail(rhs_var);
940
941      ir_constant_data zero;
942      zero.f[0] = 0.0;
943      zero.f[1] = 0.0;
944      zero.f[2] = 0.0;
945      zero.f[3] = 0.0;
946
947      ir_instruction *inst =
948	 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
949				new(ctx) ir_constant(rhs_var->type, &zero),
950				NULL);
951      instructions->push_tail(inst);
952
953      ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
954
955      inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
956      instructions->push_tail(inst);
957
958      /* Assign the temporary vector to each column of the destination matrix
959       * with a swizzle that puts the X component on the diagonal of the
960       * matrix.  In some cases this may mean that the X component does not
961       * get assigned into the column at all (i.e., when the matrix has more
962       * columns than rows).
963       */
964      static const unsigned rhs_swiz[4][4] = {
965	 { 0, 1, 1, 1 },
966	 { 1, 0, 1, 1 },
967	 { 1, 1, 0, 1 },
968	 { 1, 1, 1, 0 }
969      };
970
971      const unsigned cols_to_init = MIN2(type->matrix_columns,
972					 type->vector_elements);
973      for (unsigned i = 0; i < cols_to_init; i++) {
974	 ir_constant *const col_idx = new(ctx) ir_constant(i);
975	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
976
977	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
978	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
979						    type->vector_elements);
980
981	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
982	 instructions->push_tail(inst);
983      }
984
985      for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
986	 ir_constant *const col_idx = new(ctx) ir_constant(i);
987	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
988
989	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
990	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
991						    type->vector_elements);
992
993	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
994	 instructions->push_tail(inst);
995      }
996   } else if (first_param->type->is_matrix()) {
997      /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
998       *
999       *     "If a matrix is constructed from a matrix, then each component
1000       *     (column i, row j) in the result that has a corresponding
1001       *     component (column i, row j) in the argument will be initialized
1002       *     from there. All other components will be initialized to the
1003       *     identity matrix. If a matrix argument is given to a matrix
1004       *     constructor, it is an error to have any other arguments."
1005       */
1006      assert(first_param->next->is_tail_sentinel());
1007      ir_rvalue *const src_matrix = first_param;
1008
1009      /* If the source matrix is smaller, pre-initialize the relavent parts of
1010       * the destination matrix to the identity matrix.
1011       */
1012      if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1013	  || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1014
1015	 /* If the source matrix has fewer rows, every column of the destination
1016	  * must be initialized.  Otherwise only the columns in the destination
1017	  * that do not exist in the source must be initialized.
1018	  */
1019	 unsigned col =
1020	    (src_matrix->type->vector_elements < var->type->vector_elements)
1021	    ? 0 : src_matrix->type->matrix_columns;
1022
1023	 const glsl_type *const col_type = var->type->column_type();
1024	 for (/* empty */; col < var->type->matrix_columns; col++) {
1025	    ir_constant_data ident;
1026
1027	    ident.f[0] = 0.0;
1028	    ident.f[1] = 0.0;
1029	    ident.f[2] = 0.0;
1030	    ident.f[3] = 0.0;
1031
1032	    ident.f[col] = 1.0;
1033
1034	    ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1035
1036	    ir_rvalue *const lhs =
1037	       new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1038
1039	    ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1040	    instructions->push_tail(inst);
1041	 }
1042      }
1043
1044      /* Assign columns from the source matrix to the destination matrix.
1045       *
1046       * Since the parameter will be used in the RHS of multiple assignments,
1047       * generate a temporary and copy the paramter there.
1048       */
1049      ir_variable *const rhs_var =
1050	 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1051			      ir_var_temporary);
1052      instructions->push_tail(rhs_var);
1053
1054      ir_dereference *const rhs_var_ref =
1055	 new(ctx) ir_dereference_variable(rhs_var);
1056      ir_instruction *const inst =
1057	 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1058      instructions->push_tail(inst);
1059
1060      const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1061				     var->type->vector_elements);
1062      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1063				     var->type->matrix_columns);
1064
1065      unsigned swiz[4] = { 0, 0, 0, 0 };
1066      for (unsigned i = 1; i < last_row; i++)
1067	 swiz[i] = i;
1068
1069      const unsigned write_mask = (1U << last_row) - 1;
1070
1071      for (unsigned i = 0; i < last_col; i++) {
1072	 ir_dereference *const lhs =
1073	    new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1074	 ir_rvalue *const rhs_col =
1075	    new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1076
1077	 /* If one matrix has columns that are smaller than the columns of the
1078	  * other matrix, wrap the column access of the larger with a swizzle
1079	  * so that the LHS and RHS of the assignment have the same size (and
1080	  * therefore have the same type).
1081	  *
1082	  * It would be perfectly valid to unconditionally generate the
1083	  * swizzles, this this will typically result in a more compact IR tree.
1084	  */
1085	 ir_rvalue *rhs;
1086	 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1087	    rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1088	 } else {
1089	    rhs = rhs_col;
1090	 }
1091
1092	 ir_instruction *inst =
1093	    new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1094	 instructions->push_tail(inst);
1095      }
1096   } else {
1097      const unsigned cols = type->matrix_columns;
1098      const unsigned rows = type->vector_elements;
1099      unsigned col_idx = 0;
1100      unsigned row_idx = 0;
1101
1102      foreach_list (node, parameters) {
1103	 ir_rvalue *const rhs = (ir_rvalue *) node;
1104	 const unsigned components_remaining_this_column = rows - row_idx;
1105	 unsigned rhs_components = rhs->type->components();
1106	 unsigned rhs_base = 0;
1107
1108	 /* Since the parameter might be used in the RHS of two assignments,
1109	  * generate a temporary and copy the paramter there.
1110	  */
1111	 ir_variable *rhs_var =
1112	    new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1113	 instructions->push_tail(rhs_var);
1114
1115	 ir_dereference *rhs_var_ref =
1116	    new(ctx) ir_dereference_variable(rhs_var);
1117	 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1118	 instructions->push_tail(inst);
1119
1120	 /* Assign the current parameter to as many components of the matrix
1121	  * as it will fill.
1122	  *
1123	  * NOTE: A single vector parameter can span two matrix columns.  A
1124	  * single vec4, for example, can completely fill a mat2.
1125	  */
1126	 if (rhs_components >= components_remaining_this_column) {
1127	    const unsigned count = MIN2(rhs_components,
1128					components_remaining_this_column);
1129
1130	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1131
1132	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1133							   row_idx,
1134							   rhs_var_ref, 0,
1135							   count, ctx);
1136	    instructions->push_tail(inst);
1137
1138	    rhs_base = count;
1139
1140	    col_idx++;
1141	    row_idx = 0;
1142	 }
1143
1144	 /* If there is data left in the parameter and components left to be
1145	  * set in the destination, emit another assignment.  It is possible
1146	  * that the assignment could be of a vec4 to the last element of the
1147	  * matrix.  In this case col_idx==cols, but there is still data
1148	  * left in the source parameter.  Obviously, don't emit an assignment
1149	  * to data outside the destination matrix.
1150	  */
1151	 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1152	    const unsigned count = rhs_components - rhs_base;
1153
1154	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1155
1156	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1157							   row_idx,
1158							   rhs_var_ref,
1159							   rhs_base,
1160							   count, ctx);
1161	    instructions->push_tail(inst);
1162
1163	    row_idx += count;
1164	 }
1165      }
1166   }
1167
1168   return new(ctx) ir_dereference_variable(var);
1169}
1170
1171
1172ir_rvalue *
1173emit_inline_record_constructor(const glsl_type *type,
1174			       exec_list *instructions,
1175			       exec_list *parameters,
1176			       void *mem_ctx)
1177{
1178   ir_variable *const var =
1179      new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1180   ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1181
1182   instructions->push_tail(var);
1183
1184   exec_node *node = parameters->head;
1185   for (unsigned i = 0; i < type->length; i++) {
1186      assert(!node->is_tail_sentinel());
1187
1188      ir_dereference *const lhs =
1189	 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1190					    type->fields.structure[i].name);
1191
1192      ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1193      assert(rhs != NULL);
1194
1195      ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1196
1197      instructions->push_tail(assign);
1198      node = node->next;
1199   }
1200
1201   return d;
1202}
1203
1204
1205ir_rvalue *
1206ast_function_expression::hir(exec_list *instructions,
1207			     struct _mesa_glsl_parse_state *state)
1208{
1209   void *ctx = state;
1210   /* There are three sorts of function calls.
1211    *
1212    * 1. constructors - The first subexpression is an ast_type_specifier.
1213    * 2. methods - Only the .length() method of array types.
1214    * 3. functions - Calls to regular old functions.
1215    *
1216    * Method calls are actually detected when the ast_field_selection
1217    * expression is handled.
1218    */
1219   if (is_constructor()) {
1220      const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1221      YYLTYPE loc = type->get_location();
1222      const char *name;
1223
1224      const glsl_type *const constructor_type = type->glsl_type(& name, state);
1225
1226      /* constructor_type can be NULL if a variable with the same name as the
1227       * structure has come into scope.
1228       */
1229      if (constructor_type == NULL) {
1230	 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1231			  "may be shadowed by a variable with the same name)",
1232			  type->type_name);
1233	 return ir_rvalue::error_value(ctx);
1234      }
1235
1236
1237      /* Constructors for samplers are illegal.
1238       */
1239      if (constructor_type->is_sampler()) {
1240	 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1241			  constructor_type->name);
1242	 return ir_rvalue::error_value(ctx);
1243      }
1244
1245      if (constructor_type->is_array()) {
1246	 if (state->language_version <= 110) {
1247	    _mesa_glsl_error(& loc, state,
1248			     "array constructors forbidden in GLSL 1.10");
1249	    return ir_rvalue::error_value(ctx);
1250	 }
1251
1252	 return process_array_constructor(instructions, constructor_type,
1253					  & loc, &this->expressions, state);
1254      }
1255
1256
1257      /* There are two kinds of constructor call.  Constructors for built-in
1258       * language types, such as mat4 and vec2, are free form.  The only
1259       * requirement is that the parameters must provide enough values of the
1260       * correct scalar type.  Constructors for arrays and structures must
1261       * have the exact number of parameters with matching types in the
1262       * correct order.  These constructors follow essentially the same type
1263       * matching rules as functions.
1264       */
1265      if (constructor_type->is_record()) {
1266	 exec_list actual_parameters;
1267
1268	 process_parameters(instructions, &actual_parameters,
1269			    &this->expressions, state);
1270
1271	 exec_node *node = actual_parameters.head;
1272	 for (unsigned i = 0; i < constructor_type->length; i++) {
1273	    ir_rvalue *ir = (ir_rvalue *) node;
1274
1275	    if (node->is_tail_sentinel()) {
1276	       _mesa_glsl_error(&loc, state,
1277				"insufficient parameters to constructor "
1278				"for `%s'",
1279				constructor_type->name);
1280	       return ir_rvalue::error_value(ctx);
1281	    }
1282
1283	    if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1284					  ir, state)) {
1285	       node->replace_with(ir);
1286	    } else {
1287	       _mesa_glsl_error(&loc, state,
1288				"parameter type mismatch in constructor "
1289				"for `%s.%s' (%s vs %s)",
1290				constructor_type->name,
1291				constructor_type->fields.structure[i].name,
1292				ir->type->name,
1293				constructor_type->fields.structure[i].type->name);
1294	       return ir_rvalue::error_value(ctx);;
1295	    }
1296
1297	    node = node->next;
1298	 }
1299
1300	 if (!node->is_tail_sentinel()) {
1301	    _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1302			     "for `%s'", constructor_type->name);
1303	    return ir_rvalue::error_value(ctx);
1304	 }
1305
1306	 ir_rvalue *const constant =
1307	    constant_record_constructor(constructor_type, &actual_parameters,
1308					state);
1309
1310	 return (constant != NULL)
1311	    ? constant
1312	    : emit_inline_record_constructor(constructor_type, instructions,
1313					     &actual_parameters, state);
1314      }
1315
1316      if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1317	 return ir_rvalue::error_value(ctx);
1318
1319      /* Total number of components of the type being constructed. */
1320      const unsigned type_components = constructor_type->components();
1321
1322      /* Number of components from parameters that have actually been
1323       * consumed.  This is used to perform several kinds of error checking.
1324       */
1325      unsigned components_used = 0;
1326
1327      unsigned matrix_parameters = 0;
1328      unsigned nonmatrix_parameters = 0;
1329      exec_list actual_parameters;
1330
1331      foreach_list (n, &this->expressions) {
1332	 ast_node *ast = exec_node_data(ast_node, n, link);
1333	 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1334
1335	 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1336	  *
1337	  *    "It is an error to provide extra arguments beyond this
1338	  *    last used argument."
1339	  */
1340	 if (components_used >= type_components) {
1341	    _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1342			     "constructor",
1343			     constructor_type->name);
1344	    return ir_rvalue::error_value(ctx);
1345	 }
1346
1347	 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1348	    _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1349			     "non-numeric data type",
1350			     constructor_type->name);
1351	    return ir_rvalue::error_value(ctx);
1352	 }
1353
1354	 /* Count the number of matrix and nonmatrix parameters.  This
1355	  * is used below to enforce some of the constructor rules.
1356	  */
1357	 if (result->type->is_matrix())
1358	    matrix_parameters++;
1359	 else
1360	    nonmatrix_parameters++;
1361
1362	 actual_parameters.push_tail(result);
1363	 components_used += result->type->components();
1364      }
1365
1366      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1367       *
1368       *    "It is an error to construct matrices from other matrices. This
1369       *    is reserved for future use."
1370       */
1371      if (state->language_version == 110 && matrix_parameters > 0
1372	  && constructor_type->is_matrix()) {
1373	 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1374			  "matrix in GLSL 1.10",
1375			  constructor_type->name);
1376	 return ir_rvalue::error_value(ctx);
1377      }
1378
1379      /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1380       *
1381       *    "If a matrix argument is given to a matrix constructor, it is
1382       *    an error to have any other arguments."
1383       */
1384      if ((matrix_parameters > 0)
1385	  && ((matrix_parameters + nonmatrix_parameters) > 1)
1386	  && constructor_type->is_matrix()) {
1387	 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1388			  "matrix must be only parameter",
1389			  constructor_type->name);
1390	 return ir_rvalue::error_value(ctx);
1391      }
1392
1393      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1394       *
1395       *    "In these cases, there must be enough components provided in the
1396       *    arguments to provide an initializer for every component in the
1397       *    constructed value."
1398       */
1399      if (components_used < type_components && components_used != 1
1400	  && matrix_parameters == 0) {
1401	 _mesa_glsl_error(& loc, state, "too few components to construct "
1402			  "`%s'",
1403			  constructor_type->name);
1404	 return ir_rvalue::error_value(ctx);
1405      }
1406
1407      /* Later, we cast each parameter to the same base type as the
1408       * constructor.  Since there are no non-floating point matrices, we
1409       * need to break them up into a series of column vectors.
1410       */
1411      if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1412	 foreach_list_safe(n, &actual_parameters) {
1413	    ir_rvalue *matrix = (ir_rvalue *) n;
1414
1415	    if (!matrix->type->is_matrix())
1416	       continue;
1417
1418	    /* Create a temporary containing the matrix. */
1419	    ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1420						    ir_var_temporary);
1421	    instructions->push_tail(var);
1422	    instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1423	       ir_dereference_variable(var), matrix, NULL));
1424	    var->constant_value = matrix->constant_expression_value();
1425
1426	    /* Replace the matrix with dereferences of its columns. */
1427	    for (int i = 0; i < matrix->type->matrix_columns; i++) {
1428	       matrix->insert_before(new (ctx) ir_dereference_array(var,
1429		  new(ctx) ir_constant(i)));
1430	    }
1431	    matrix->remove();
1432	 }
1433      }
1434
1435      bool all_parameters_are_constant = true;
1436
1437      /* Type cast each parameter and, if possible, fold constants.*/
1438      foreach_list_safe(n, &actual_parameters) {
1439	 ir_rvalue *ir = (ir_rvalue *) n;
1440
1441	 const glsl_type *desired_type =
1442	    glsl_type::get_instance(constructor_type->base_type,
1443				    ir->type->vector_elements,
1444				    ir->type->matrix_columns);
1445	 ir_rvalue *result = convert_component(ir, desired_type);
1446
1447	 /* Attempt to convert the parameter to a constant valued expression.
1448	  * After doing so, track whether or not all the parameters to the
1449	  * constructor are trivially constant valued expressions.
1450	  */
1451	 ir_rvalue *const constant = result->constant_expression_value();
1452
1453	 if (constant != NULL)
1454	    result = constant;
1455	 else
1456	    all_parameters_are_constant = false;
1457
1458	 if (result != ir) {
1459	    ir->replace_with(result);
1460	 }
1461      }
1462
1463      /* If all of the parameters are trivially constant, create a
1464       * constant representing the complete collection of parameters.
1465       */
1466      if (all_parameters_are_constant) {
1467	 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1468      } else if (constructor_type->is_scalar()) {
1469	 return dereference_component((ir_rvalue *) actual_parameters.head,
1470				      0);
1471      } else if (constructor_type->is_vector()) {
1472	 return emit_inline_vector_constructor(constructor_type,
1473					       instructions,
1474					       &actual_parameters,
1475					       ctx);
1476      } else {
1477	 assert(constructor_type->is_matrix());
1478	 return emit_inline_matrix_constructor(constructor_type,
1479					       instructions,
1480					       &actual_parameters,
1481					       ctx);
1482      }
1483   } else {
1484      const ast_expression *id = subexpressions[0];
1485      const char *func_name = id->primary_expression.identifier;
1486      YYLTYPE loc = id->get_location();
1487      exec_list actual_parameters;
1488
1489      process_parameters(instructions, &actual_parameters, &this->expressions,
1490			 state);
1491
1492      ir_function_signature *sig =
1493	 match_function_by_name(func_name, &actual_parameters, state);
1494
1495      ir_call *call = NULL;
1496      ir_rvalue *value = NULL;
1497      if (sig == NULL) {
1498	 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1499	 value = ir_rvalue::error_value(ctx);
1500      } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1501	 /* an error has already been emitted */
1502	 value = ir_rvalue::error_value(ctx);
1503      } else {
1504	 value = generate_call(instructions, sig, &loc, &actual_parameters,
1505			       &call, state);
1506      }
1507
1508      return value;
1509   }
1510
1511   return ir_rvalue::error_value(ctx);
1512}
1513