brw_fs_visitor.cpp revision 1e188f2daef1ae31224d2429bcc1fab75c81fb36
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->location == FRAG_RESULT_COLOR) {
76	 /* Writing gl_FragColor outputs to all color regions. */
77	 for (unsigned int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78	    this->outputs[i] = *reg;
79	 }
80      } else if (ir->location == FRAG_RESULT_DEPTH) {
81	 this->frag_depth = ir;
82      } else {
83	 /* gl_FragData or a user-defined FS output */
84	 assert(ir->location >= FRAG_RESULT_DATA0 &&
85		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87	 /* General color output. */
88	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89	    int output = ir->location - FRAG_RESULT_DATA0 + i;
90	    this->outputs[output] = *reg;
91	    this->outputs[output].reg_offset += 4 * i;
92	 }
93      }
94   } else if (ir->mode == ir_var_uniform) {
95      int param_index = c->prog_data.nr_params;
96
97      if (c->dispatch_width == 16) {
98	 if (!variable_storage(ir)) {
99	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100	 }
101	 return;
102      }
103
104      if (!strncmp(ir->name, "gl_", 3)) {
105	 setup_builtin_uniform_values(ir);
106      } else {
107	 setup_uniform_values(ir->location, ir->type);
108      }
109
110      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111      reg->type = brw_type_for_base_type(ir->type);
112   }
113
114   if (!reg)
115      reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117   hash_table_insert(this->variable_ht, reg, ir);
118}
119
120void
121fs_visitor::visit(ir_dereference_variable *ir)
122{
123   fs_reg *reg = variable_storage(ir->var);
124   this->result = *reg;
125}
126
127void
128fs_visitor::visit(ir_dereference_record *ir)
129{
130   const glsl_type *struct_type = ir->record->type;
131
132   ir->record->accept(this);
133
134   unsigned int offset = 0;
135   for (unsigned int i = 0; i < struct_type->length; i++) {
136      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137	 break;
138      offset += type_size(struct_type->fields.structure[i].type);
139   }
140   this->result.reg_offset += offset;
141   this->result.type = brw_type_for_base_type(ir->type);
142}
143
144void
145fs_visitor::visit(ir_dereference_array *ir)
146{
147   ir_constant *index;
148   int element_size;
149
150   ir->array->accept(this);
151   index = ir->array_index->as_constant();
152
153   element_size = type_size(ir->type);
154   this->result.type = brw_type_for_base_type(ir->type);
155
156   if (index) {
157      assert(this->result.file == UNIFORM || this->result.file == GRF);
158      this->result.reg_offset += index->value.i[0] * element_size;
159   } else {
160      assert(!"FINISHME: non-constant array element");
161   }
162}
163
164/* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167bool
168fs_visitor::try_emit_saturate(ir_expression *ir)
169{
170   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172   if (!sat_val)
173      return false;
174
175   fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail();
176
177   sat_val->accept(this);
178   fs_reg src = this->result;
179
180   fs_inst *last_inst = (fs_inst *) this->instructions.get_tail();
181
182   /* If the last instruction from our accept() didn't generate our
183    * src, generate a saturated MOV
184    */
185   fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src);
186   if (!modify || modify->regs_written() != 1) {
187      fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
188      inst->saturate = true;
189   } else {
190      modify->saturate = true;
191      this->result = src;
192   }
193
194
195   return true;
196}
197
198bool
199fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
200{
201   /* 3-src instructions were introduced in gen6. */
202   if (intel->gen < 6)
203      return false;
204
205   /* MAD can only handle floating-point data. */
206   if (ir->type != glsl_type::float_type)
207      return false;
208
209   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
210   ir_expression *mul = ir->operands[mul_arg]->as_expression();
211
212   if (!mul || mul->operation != ir_binop_mul)
213      return false;
214
215   if (nonmul->as_constant() ||
216       mul->operands[0]->as_constant() ||
217       mul->operands[1]->as_constant())
218      return false;
219
220   nonmul->accept(this);
221   fs_reg src0 = this->result;
222
223   mul->operands[0]->accept(this);
224   fs_reg src1 = this->result;
225
226   mul->operands[1]->accept(this);
227   fs_reg src2 = this->result;
228
229   this->result = fs_reg(this, ir->type);
230   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
231
232   return true;
233}
234
235void
236fs_visitor::visit(ir_expression *ir)
237{
238   unsigned int operand;
239   fs_reg op[2], temp;
240   fs_inst *inst;
241
242   assert(ir->get_num_operands() <= 2);
243
244   if (try_emit_saturate(ir))
245      return;
246   if (ir->operation == ir_binop_add) {
247      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
248	 return;
249   }
250
251   for (operand = 0; operand < ir->get_num_operands(); operand++) {
252      ir->operands[operand]->accept(this);
253      if (this->result.file == BAD_FILE) {
254	 ir_print_visitor v;
255	 fail("Failed to get tree for expression operand:\n");
256	 ir->operands[operand]->accept(&v);
257      }
258      op[operand] = this->result;
259
260      /* Matrix expression operands should have been broken down to vector
261       * operations already.
262       */
263      assert(!ir->operands[operand]->type->is_matrix());
264      /* And then those vector operands should have been broken down to scalar.
265       */
266      assert(!ir->operands[operand]->type->is_vector());
267   }
268
269   /* Storage for our result.  If our result goes into an assignment, it will
270    * just get copy-propagated out, so no worries.
271    */
272   this->result = fs_reg(this, ir->type);
273
274   switch (ir->operation) {
275   case ir_unop_logic_not:
276      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
277       * ones complement of the whole register, not just bit 0.
278       */
279      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
280      break;
281   case ir_unop_neg:
282      op[0].negate = !op[0].negate;
283      this->result = op[0];
284      break;
285   case ir_unop_abs:
286      op[0].abs = true;
287      op[0].negate = false;
288      this->result = op[0];
289      break;
290   case ir_unop_sign:
291      temp = fs_reg(this, ir->type);
292
293      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
294
295      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
296      inst->conditional_mod = BRW_CONDITIONAL_G;
297      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
298      inst->predicated = true;
299
300      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
301      inst->conditional_mod = BRW_CONDITIONAL_L;
302      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
303      inst->predicated = true;
304
305      break;
306   case ir_unop_rcp:
307      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
308      break;
309
310   case ir_unop_exp2:
311      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
312      break;
313   case ir_unop_log2:
314      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
315      break;
316   case ir_unop_exp:
317   case ir_unop_log:
318      assert(!"not reached: should be handled by ir_explog_to_explog2");
319      break;
320   case ir_unop_sin:
321   case ir_unop_sin_reduced:
322      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
323      break;
324   case ir_unop_cos:
325   case ir_unop_cos_reduced:
326      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
327      break;
328
329   case ir_unop_dFdx:
330      emit(FS_OPCODE_DDX, this->result, op[0]);
331      break;
332   case ir_unop_dFdy:
333      emit(FS_OPCODE_DDY, this->result, op[0]);
334      break;
335
336   case ir_binop_add:
337      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
338      break;
339   case ir_binop_sub:
340      assert(!"not reached: should be handled by ir_sub_to_add_neg");
341      break;
342
343   case ir_binop_mul:
344      if (ir->type->is_integer()) {
345	 /* For integer multiplication, the MUL uses the low 16 bits
346	  * of one of the operands (src0 on gen6, src1 on gen7).  The
347	  * MACH accumulates in the contribution of the upper 16 bits
348	  * of that operand.
349	  *
350	  * FINISHME: Emit just the MUL if we know an operand is small
351	  * enough.
352	  */
353	 if (intel->gen >= 7 && c->dispatch_width == 16)
354	    fail("16-wide explicit accumulator operands unsupported\n");
355
356	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
357
358	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
359	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
360	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
361      } else {
362	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
363      }
364      break;
365   case ir_binop_div:
366      if (intel->gen >= 7 && c->dispatch_width == 16)
367	 fail("16-wide INTDIV unsupported\n");
368
369      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
370      assert(ir->type->is_integer());
371      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
372      break;
373   case ir_binop_mod:
374      if (intel->gen >= 7 && c->dispatch_width == 16)
375	 fail("16-wide INTDIV unsupported\n");
376
377      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
378      assert(ir->type->is_integer());
379      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
380      break;
381
382   case ir_binop_less:
383   case ir_binop_greater:
384   case ir_binop_lequal:
385   case ir_binop_gequal:
386   case ir_binop_equal:
387   case ir_binop_all_equal:
388   case ir_binop_nequal:
389   case ir_binop_any_nequal:
390      temp = this->result;
391      /* original gen4 does implicit conversion before comparison. */
392      if (intel->gen < 5)
393	 temp.type = op[0].type;
394
395      resolve_ud_negate(&op[0]);
396      resolve_ud_negate(&op[1]);
397
398      resolve_bool_comparison(ir->operands[0], &op[0]);
399      resolve_bool_comparison(ir->operands[1], &op[1]);
400
401      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
402      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
403      break;
404
405   case ir_binop_logic_xor:
406      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
407      break;
408
409   case ir_binop_logic_or:
410      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
411      break;
412
413   case ir_binop_logic_and:
414      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
415      break;
416
417   case ir_binop_dot:
418   case ir_unop_any:
419      assert(!"not reached: should be handled by brw_fs_channel_expressions");
420      break;
421
422   case ir_unop_noise:
423      assert(!"not reached: should be handled by lower_noise");
424      break;
425
426   case ir_quadop_vector:
427      assert(!"not reached: should be handled by lower_quadop_vector");
428      break;
429
430   case ir_unop_sqrt:
431      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
432      break;
433
434   case ir_unop_rsq:
435      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
436      break;
437
438   case ir_unop_i2u:
439      op[0].type = BRW_REGISTER_TYPE_UD;
440      this->result = op[0];
441      break;
442   case ir_unop_u2i:
443      op[0].type = BRW_REGISTER_TYPE_D;
444      this->result = op[0];
445      break;
446   case ir_unop_i2f:
447   case ir_unop_u2f:
448   case ir_unop_f2i:
449      emit(BRW_OPCODE_MOV, this->result, op[0]);
450      break;
451
452   case ir_unop_b2i:
453      inst = emit(BRW_OPCODE_AND, this->result, op[0], fs_reg(1));
454      break;
455   case ir_unop_b2f:
456      temp = fs_reg(this, glsl_type::int_type);
457      emit(BRW_OPCODE_AND, temp, op[0], fs_reg(1));
458      emit(BRW_OPCODE_MOV, this->result, temp);
459      break;
460
461   case ir_unop_f2b:
462   case ir_unop_i2b:
463      temp = this->result;
464      /* original gen4 does implicit conversion before comparison. */
465      if (intel->gen < 5)
466	 temp.type = op[0].type;
467
468      resolve_ud_negate(&op[0]);
469
470      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
471      inst->conditional_mod = BRW_CONDITIONAL_NZ;
472      break;
473
474   case ir_unop_trunc:
475      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
476      break;
477   case ir_unop_ceil:
478      op[0].negate = !op[0].negate;
479      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
480      this->result.negate = true;
481      break;
482   case ir_unop_floor:
483      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
484      break;
485   case ir_unop_fract:
486      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
487      break;
488   case ir_unop_round_even:
489      emit(BRW_OPCODE_RNDE, this->result, op[0]);
490      break;
491
492   case ir_binop_min:
493      resolve_ud_negate(&op[0]);
494      resolve_ud_negate(&op[1]);
495
496      if (intel->gen >= 6) {
497	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
498	 inst->conditional_mod = BRW_CONDITIONAL_L;
499      } else {
500	 /* Unalias the destination */
501	 this->result = fs_reg(this, ir->type);
502
503	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
504	 inst->conditional_mod = BRW_CONDITIONAL_L;
505
506	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
507	 inst->predicated = true;
508      }
509      break;
510   case ir_binop_max:
511      resolve_ud_negate(&op[0]);
512      resolve_ud_negate(&op[1]);
513
514      if (intel->gen >= 6) {
515	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
516	 inst->conditional_mod = BRW_CONDITIONAL_GE;
517      } else {
518	 /* Unalias the destination */
519	 this->result = fs_reg(this, ir->type);
520
521	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
522	 inst->conditional_mod = BRW_CONDITIONAL_G;
523
524	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
525	 inst->predicated = true;
526      }
527      break;
528
529   case ir_binop_pow:
530      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
531      break;
532
533   case ir_unop_bit_not:
534      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
535      break;
536   case ir_binop_bit_and:
537      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
538      break;
539   case ir_binop_bit_xor:
540      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
541      break;
542   case ir_binop_bit_or:
543      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
544      break;
545
546   case ir_binop_lshift:
547      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
548      break;
549
550   case ir_binop_rshift:
551      if (ir->type->base_type == GLSL_TYPE_INT)
552	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
553      else
554	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
555      break;
556   }
557}
558
559void
560fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
561				   const glsl_type *type, bool predicated)
562{
563   switch (type->base_type) {
564   case GLSL_TYPE_FLOAT:
565   case GLSL_TYPE_UINT:
566   case GLSL_TYPE_INT:
567   case GLSL_TYPE_BOOL:
568      for (unsigned int i = 0; i < type->components(); i++) {
569	 l.type = brw_type_for_base_type(type);
570	 r.type = brw_type_for_base_type(type);
571
572	 if (predicated || !l.equals(r)) {
573	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
574	    inst->predicated = predicated;
575	 }
576
577	 l.reg_offset++;
578	 r.reg_offset++;
579      }
580      break;
581   case GLSL_TYPE_ARRAY:
582      for (unsigned int i = 0; i < type->length; i++) {
583	 emit_assignment_writes(l, r, type->fields.array, predicated);
584      }
585      break;
586
587   case GLSL_TYPE_STRUCT:
588      for (unsigned int i = 0; i < type->length; i++) {
589	 emit_assignment_writes(l, r, type->fields.structure[i].type,
590				predicated);
591      }
592      break;
593
594   case GLSL_TYPE_SAMPLER:
595      break;
596
597   default:
598      assert(!"not reached");
599      break;
600   }
601}
602
603/* If the RHS processing resulted in an instruction generating a
604 * temporary value, and it would be easy to rewrite the instruction to
605 * generate its result right into the LHS instead, do so.  This ends
606 * up reliably removing instructions where it can be tricky to do so
607 * later without real UD chain information.
608 */
609bool
610fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
611                                   fs_reg dst,
612                                   fs_reg src,
613                                   fs_inst *pre_rhs_inst,
614                                   fs_inst *last_rhs_inst)
615{
616   /* Only attempt if we're doing a direct assignment. */
617   if (ir->condition ||
618       !(ir->lhs->type->is_scalar() ||
619        (ir->lhs->type->is_vector() &&
620         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
621      return false;
622
623   /* Make sure the last instruction generated our source reg. */
624   fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst,
625						    last_rhs_inst,
626						    src);
627   if (!modify)
628      return false;
629
630   /* If last_rhs_inst wrote a different number of components than our LHS,
631    * we can't safely rewrite it.
632    */
633   if (ir->lhs->type->vector_elements != modify->regs_written())
634      return false;
635
636   /* Success!  Rewrite the instruction. */
637   modify->dst = dst;
638
639   return true;
640}
641
642void
643fs_visitor::visit(ir_assignment *ir)
644{
645   fs_reg l, r;
646   fs_inst *inst;
647
648   /* FINISHME: arrays on the lhs */
649   ir->lhs->accept(this);
650   l = this->result;
651
652   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
653
654   ir->rhs->accept(this);
655   r = this->result;
656
657   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
658
659   assert(l.file != BAD_FILE);
660   assert(r.file != BAD_FILE);
661
662   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
663      return;
664
665   if (ir->condition) {
666      emit_bool_to_cond_code(ir->condition);
667   }
668
669   if (ir->lhs->type->is_scalar() ||
670       ir->lhs->type->is_vector()) {
671      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
672	 if (ir->write_mask & (1 << i)) {
673	    inst = emit(BRW_OPCODE_MOV, l, r);
674	    if (ir->condition)
675	       inst->predicated = true;
676	    r.reg_offset++;
677	 }
678	 l.reg_offset++;
679      }
680   } else {
681      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
682   }
683}
684
685fs_inst *
686fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
687			      int sampler)
688{
689   int mlen;
690   int base_mrf = 1;
691   bool simd16 = false;
692   fs_reg orig_dst;
693
694   /* g0 header. */
695   mlen = 1;
696
697   if (ir->shadow_comparitor && ir->op != ir_txd) {
698      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
699	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
700	 coordinate.reg_offset++;
701      }
702      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
703      mlen += 3;
704
705      if (ir->op == ir_tex) {
706	 /* There's no plain shadow compare message, so we use shadow
707	  * compare with a bias of 0.0.
708	  */
709	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
710	 mlen++;
711      } else if (ir->op == ir_txb) {
712	 ir->lod_info.bias->accept(this);
713	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
714	 mlen++;
715      } else {
716	 assert(ir->op == ir_txl);
717	 ir->lod_info.lod->accept(this);
718	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
719	 mlen++;
720      }
721
722      ir->shadow_comparitor->accept(this);
723      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
724      mlen++;
725   } else if (ir->op == ir_tex) {
726      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
727	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
728	 coordinate.reg_offset++;
729      }
730      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
731      mlen += 3;
732   } else if (ir->op == ir_txd) {
733      ir->lod_info.grad.dPdx->accept(this);
734      fs_reg dPdx = this->result;
735
736      ir->lod_info.grad.dPdy->accept(this);
737      fs_reg dPdy = this->result;
738
739      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
740	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
741	 coordinate.reg_offset++;
742      }
743      /* the slots for u and v are always present, but r is optional */
744      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
745
746      /*  P   = u, v, r
747       * dPdx = dudx, dvdx, drdx
748       * dPdy = dudy, dvdy, drdy
749       *
750       * 1-arg: Does not exist.
751       *
752       * 2-arg: dudx   dvdx   dudy   dvdy
753       *        dPdx.x dPdx.y dPdy.x dPdy.y
754       *        m4     m5     m6     m7
755       *
756       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
757       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
758       *        m5     m6     m7     m8     m9     m10
759       */
760      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
761	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
762	 dPdx.reg_offset++;
763      }
764      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
765
766      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
767	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
768	 dPdy.reg_offset++;
769      }
770      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
771   } else if (ir->op == ir_txs) {
772      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
773      simd16 = true;
774      ir->lod_info.lod->accept(this);
775      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
776      mlen += 2;
777   } else {
778      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
779       * instructions.  We'll need to do SIMD16 here.
780       */
781      simd16 = true;
782      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
783
784      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
785	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
786	      coordinate);
787	 coordinate.reg_offset++;
788      }
789
790      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
791       * be necessary for TXF (ld), but seems wise to do for all messages.
792       */
793      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
794	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
795      }
796
797      /* lod/bias appears after u/v/r. */
798      mlen += 6;
799
800      if (ir->op == ir_txb) {
801	 ir->lod_info.bias->accept(this);
802	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
803	 mlen++;
804      } else {
805	 ir->lod_info.lod->accept(this);
806	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
807			      this->result);
808	 mlen++;
809      }
810
811      /* The unused upper half. */
812      mlen++;
813   }
814
815   if (simd16) {
816      /* Now, since we're doing simd16, the return is 2 interleaved
817       * vec4s where the odd-indexed ones are junk. We'll need to move
818       * this weirdness around to the expected layout.
819       */
820      orig_dst = dst;
821      const glsl_type *vec_type =
822	 glsl_type::get_instance(ir->type->base_type, 4, 1);
823      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
824      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
825			       : BRW_REGISTER_TYPE_F;
826   }
827
828   fs_inst *inst = NULL;
829   switch (ir->op) {
830   case ir_tex:
831      inst = emit(SHADER_OPCODE_TEX, dst);
832      break;
833   case ir_txb:
834      inst = emit(FS_OPCODE_TXB, dst);
835      break;
836   case ir_txl:
837      inst = emit(SHADER_OPCODE_TXL, dst);
838      break;
839   case ir_txd:
840      inst = emit(SHADER_OPCODE_TXD, dst);
841      break;
842   case ir_txs:
843      inst = emit(SHADER_OPCODE_TXS, dst);
844      break;
845   case ir_txf:
846      inst = emit(SHADER_OPCODE_TXF, dst);
847      break;
848   }
849   inst->base_mrf = base_mrf;
850   inst->mlen = mlen;
851   inst->header_present = true;
852
853   if (simd16) {
854      for (int i = 0; i < 4; i++) {
855	 emit(BRW_OPCODE_MOV, orig_dst, dst);
856	 orig_dst.reg_offset++;
857	 dst.reg_offset += 2;
858      }
859   }
860
861   return inst;
862}
863
864/* gen5's sampler has slots for u, v, r, array index, then optional
865 * parameters like shadow comparitor or LOD bias.  If optional
866 * parameters aren't present, those base slots are optional and don't
867 * need to be included in the message.
868 *
869 * We don't fill in the unnecessary slots regardless, which may look
870 * surprising in the disassembly.
871 */
872fs_inst *
873fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
874			      int sampler)
875{
876   int mlen = 0;
877   int base_mrf = 2;
878   int reg_width = c->dispatch_width / 8;
879   bool header_present = false;
880   const int vector_elements =
881      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
882
883   if (ir->offset) {
884      /* The offsets set up by the ir_texture visitor are in the
885       * m1 header, so we can't go headerless.
886       */
887      header_present = true;
888      mlen++;
889      base_mrf--;
890   }
891
892   for (int i = 0; i < vector_elements; i++) {
893      emit(BRW_OPCODE_MOV,
894	   fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
895	   coordinate);
896      coordinate.reg_offset++;
897   }
898   mlen += vector_elements * reg_width;
899
900   if (ir->shadow_comparitor && ir->op != ir_txd) {
901      mlen = MAX2(mlen, header_present + 4 * reg_width);
902
903      ir->shadow_comparitor->accept(this);
904      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
905      mlen += reg_width;
906   }
907
908   fs_inst *inst = NULL;
909   switch (ir->op) {
910   case ir_tex:
911      inst = emit(SHADER_OPCODE_TEX, dst);
912      break;
913   case ir_txb:
914      ir->lod_info.bias->accept(this);
915      mlen = MAX2(mlen, header_present + 4 * reg_width);
916      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
917      mlen += reg_width;
918
919      inst = emit(FS_OPCODE_TXB, dst);
920
921      break;
922   case ir_txl:
923      ir->lod_info.lod->accept(this);
924      mlen = MAX2(mlen, header_present + 4 * reg_width);
925      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
926      mlen += reg_width;
927
928      inst = emit(SHADER_OPCODE_TXL, dst);
929      break;
930   case ir_txd: {
931      ir->lod_info.grad.dPdx->accept(this);
932      fs_reg dPdx = this->result;
933
934      ir->lod_info.grad.dPdy->accept(this);
935      fs_reg dPdy = this->result;
936
937      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
938
939      /**
940       *  P   =  u,    v,    r
941       * dPdx = dudx, dvdx, drdx
942       * dPdy = dudy, dvdy, drdy
943       *
944       * Load up these values:
945       * - dudx   dudy   dvdx   dvdy   drdx   drdy
946       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
947       */
948      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
949	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
950	 dPdx.reg_offset++;
951	 mlen += reg_width;
952
953	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
954	 dPdy.reg_offset++;
955	 mlen += reg_width;
956      }
957
958      inst = emit(SHADER_OPCODE_TXD, dst);
959      break;
960   }
961   case ir_txs:
962      ir->lod_info.lod->accept(this);
963      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
964      mlen += reg_width;
965      inst = emit(SHADER_OPCODE_TXS, dst);
966      break;
967   case ir_txf:
968      mlen = header_present + 4 * reg_width;
969
970      ir->lod_info.lod->accept(this);
971      emit(BRW_OPCODE_MOV,
972	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
973	   this->result);
974      inst = emit(SHADER_OPCODE_TXF, dst);
975      break;
976   }
977   inst->base_mrf = base_mrf;
978   inst->mlen = mlen;
979   inst->header_present = header_present;
980
981   if (mlen > 11) {
982      fail("Message length >11 disallowed by hardware\n");
983   }
984
985   return inst;
986}
987
988fs_inst *
989fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
990			      int sampler)
991{
992   int mlen = 0;
993   int base_mrf = 2;
994   int reg_width = c->dispatch_width / 8;
995   bool header_present = false;
996   int offsets[3];
997
998   if (ir->offset && ir->op != ir_txf) {
999      /* The offsets set up by the ir_texture visitor are in the
1000       * m1 header, so we can't go headerless.
1001       */
1002      header_present = true;
1003      mlen++;
1004      base_mrf--;
1005   }
1006
1007   if (ir->shadow_comparitor && ir->op != ir_txd) {
1008      ir->shadow_comparitor->accept(this);
1009      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1010      mlen += reg_width;
1011   }
1012
1013   /* Set up the LOD info */
1014   switch (ir->op) {
1015   case ir_tex:
1016      break;
1017   case ir_txb:
1018      ir->lod_info.bias->accept(this);
1019      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1020      mlen += reg_width;
1021      break;
1022   case ir_txl:
1023      ir->lod_info.lod->accept(this);
1024      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1025      mlen += reg_width;
1026      break;
1027   case ir_txd: {
1028      if (c->dispatch_width == 16)
1029	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1030
1031      ir->lod_info.grad.dPdx->accept(this);
1032      fs_reg dPdx = this->result;
1033
1034      ir->lod_info.grad.dPdy->accept(this);
1035      fs_reg dPdy = this->result;
1036
1037      /* Load dPdx and the coordinate together:
1038       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1039       */
1040      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1041	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1042	 coordinate.reg_offset++;
1043	 mlen += reg_width;
1044
1045	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1046	 dPdx.reg_offset++;
1047	 mlen += reg_width;
1048
1049	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1050	 dPdy.reg_offset++;
1051	 mlen += reg_width;
1052      }
1053      break;
1054   }
1055   case ir_txs:
1056      ir->lod_info.lod->accept(this);
1057      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1058      mlen += reg_width;
1059      break;
1060   case ir_txf:
1061      /* It appears that the ld instruction used for txf does its
1062       * address bounds check before adding in the offset.  To work
1063       * around this, just add the integer offset to the integer texel
1064       * coordinate, and don't put the offset in the header.
1065       */
1066      if (ir->offset) {
1067	 ir_constant *offset = ir->offset->as_constant();
1068	 offsets[0] = offset->value.i[0];
1069	 offsets[1] = offset->value.i[1];
1070	 offsets[2] = offset->value.i[2];
1071      } else {
1072	 memset(offsets, 0, sizeof(offsets));
1073      }
1074
1075      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1076      emit(BRW_OPCODE_ADD,
1077	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[0]);
1078      coordinate.reg_offset++;
1079      mlen += reg_width;
1080
1081      ir->lod_info.lod->accept(this);
1082      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1083      mlen += reg_width;
1084
1085      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1086	 emit(BRW_OPCODE_ADD,
1087	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate, offsets[i]);
1088	 coordinate.reg_offset++;
1089	 mlen += reg_width;
1090      }
1091      break;
1092   }
1093
1094   /* Set up the coordinate (except for cases where it was done above) */
1095   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1096      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1097	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1098	 coordinate.reg_offset++;
1099	 mlen += reg_width;
1100      }
1101   }
1102
1103   /* Generate the SEND */
1104   fs_inst *inst = NULL;
1105   switch (ir->op) {
1106   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1107   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1108   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1109   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1110   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1111   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1112   }
1113   inst->base_mrf = base_mrf;
1114   inst->mlen = mlen;
1115   inst->header_present = header_present;
1116
1117   if (mlen > 11) {
1118      fail("Message length >11 disallowed by hardware\n");
1119   }
1120
1121   return inst;
1122}
1123
1124void
1125fs_visitor::visit(ir_texture *ir)
1126{
1127   fs_inst *inst = NULL;
1128
1129   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1130   sampler = fp->Base.SamplerUnits[sampler];
1131
1132   /* Our hardware doesn't have a sample_d_c message, so shadow compares
1133    * for textureGrad/TXD need to be emulated with instructions.
1134    */
1135   bool hw_compare_supported = ir->op != ir_txd;
1136   if (ir->shadow_comparitor && !hw_compare_supported) {
1137      assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1138      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1139      if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1140	 return swizzle_result(ir, fs_reg(1.0f), sampler);
1141      else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1142	 return swizzle_result(ir, fs_reg(0.0f), sampler);
1143   }
1144
1145   if (ir->coordinate)
1146      ir->coordinate->accept(this);
1147   fs_reg coordinate = this->result;
1148
1149   if (ir->offset != NULL && !(intel->gen == 7 && ir->op == ir_txf)) {
1150      uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1151
1152      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1153      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1154	   fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1155
1156      /* Then set the offset bits in DWord 2 of the message header. */
1157      emit(BRW_OPCODE_MOV,
1158	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1159			 BRW_REGISTER_TYPE_UD)),
1160	   fs_reg(brw_imm_uw(offset_bits)));
1161   }
1162
1163   /* Should be lowered by do_lower_texture_projection */
1164   assert(!ir->projector);
1165
1166   bool needs_gl_clamp = true;
1167
1168   fs_reg scale_x, scale_y;
1169
1170   /* The 965 requires the EU to do the normalization of GL rectangle
1171    * texture coordinates.  We use the program parameter state
1172    * tracking to get the scaling factor.
1173    */
1174   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1175       (intel->gen < 6 ||
1176	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1177			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1178      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1179      int tokens[STATE_LENGTH] = {
1180	 STATE_INTERNAL,
1181	 STATE_TEXRECT_SCALE,
1182	 sampler,
1183	 0,
1184	 0
1185      };
1186
1187      if (c->dispatch_width == 16) {
1188	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1189	 this->result = fs_reg(this, ir->type);
1190	 return;
1191      }
1192
1193      c->prog_data.param_convert[c->prog_data.nr_params] =
1194	 PARAM_NO_CONVERT;
1195      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1196	 PARAM_NO_CONVERT;
1197
1198      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1199      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1200
1201      GLuint index = _mesa_add_state_reference(params,
1202					       (gl_state_index *)tokens);
1203
1204      this->param_index[c->prog_data.nr_params] = index;
1205      this->param_offset[c->prog_data.nr_params] = 0;
1206      c->prog_data.nr_params++;
1207      this->param_index[c->prog_data.nr_params] = index;
1208      this->param_offset[c->prog_data.nr_params] = 1;
1209      c->prog_data.nr_params++;
1210   }
1211
1212   /* The 965 requires the EU to do the normalization of GL rectangle
1213    * texture coordinates.  We use the program parameter state
1214    * tracking to get the scaling factor.
1215    */
1216   if (intel->gen < 6 &&
1217       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1218      fs_reg dst = fs_reg(this, ir->coordinate->type);
1219      fs_reg src = coordinate;
1220      coordinate = dst;
1221
1222      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1223      dst.reg_offset++;
1224      src.reg_offset++;
1225      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1226   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1227      /* On gen6+, the sampler handles the rectangle coordinates
1228       * natively, without needing rescaling.  But that means we have
1229       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1230       * not [0, 1] like the default case below.
1231       */
1232      needs_gl_clamp = false;
1233
1234      for (int i = 0; i < 2; i++) {
1235	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1236	    fs_reg chan = coordinate;
1237	    chan.reg_offset += i;
1238
1239	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1240	    inst->conditional_mod = BRW_CONDITIONAL_G;
1241
1242	    /* Our parameter comes in as 1.0/width or 1.0/height,
1243	     * because that's what people normally want for doing
1244	     * texture rectangle handling.  We need width or height
1245	     * for clamping, but we don't care enough to make a new
1246	     * parameter type, so just invert back.
1247	     */
1248	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1249	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1250	    emit(SHADER_OPCODE_RCP, limit, limit);
1251
1252	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1253	    inst->conditional_mod = BRW_CONDITIONAL_L;
1254	 }
1255      }
1256   }
1257
1258   if (ir->coordinate && needs_gl_clamp) {
1259      for (unsigned int i = 0;
1260	   i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1261	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1262	    fs_reg chan = coordinate;
1263	    chan.reg_offset += i;
1264
1265	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1266	    inst->saturate = true;
1267	 }
1268      }
1269   }
1270
1271   /* Writemasking doesn't eliminate channels on SIMD8 texture
1272    * samples, so don't worry about them.
1273    */
1274   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1275
1276   if (intel->gen >= 7) {
1277      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1278   } else if (intel->gen >= 5) {
1279      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1280   } else {
1281      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1282   }
1283
1284   /* If there's an offset, we already set up m1.  To avoid the implied move,
1285    * use the null register.  Otherwise, we want an implied move from g0.
1286    */
1287   if (ir->offset != NULL || !inst->header_present)
1288      inst->src[0] = reg_undef;
1289   else
1290      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1291
1292   inst->sampler = sampler;
1293
1294   if (ir->shadow_comparitor) {
1295      if (hw_compare_supported) {
1296	 inst->shadow_compare = true;
1297      } else {
1298	 ir->shadow_comparitor->accept(this);
1299	 fs_reg ref = this->result;
1300
1301	 fs_reg value = dst;
1302	 dst = fs_reg(this, glsl_type::vec4_type);
1303
1304	 /* FINISHME: This needs to be done pre-filtering. */
1305
1306	 uint32_t conditional = 0;
1307	 switch (c->key.tex.compare_funcs[sampler]) {
1308	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1309	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1310	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1311	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1312	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1313	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1314	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1315	 default: assert(!"Should not get here: bad shadow compare function");
1316	 }
1317
1318	 /* Use conditional moves to load 0 or 1 as the result */
1319	 this->current_annotation = "manual shadow comparison";
1320	 for (int i = 0; i < 4; i++) {
1321	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1322
1323	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1324	    inst->conditional_mod = conditional;
1325
1326	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1327	    inst->predicated = true;
1328
1329	    dst.reg_offset++;
1330	    value.reg_offset++;
1331	 }
1332	 dst.reg_offset = 0;
1333      }
1334   }
1335
1336   swizzle_result(ir, dst, sampler);
1337}
1338
1339/**
1340 * Swizzle the result of a texture result.  This is necessary for
1341 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1342 */
1343void
1344fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1345{
1346   this->result = orig_val;
1347
1348   if (ir->op == ir_txs)
1349      return;
1350
1351   if (ir->type == glsl_type::float_type) {
1352      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1353      assert(ir->sampler->type->sampler_shadow);
1354   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1355      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1356
1357      for (int i = 0; i < 4; i++) {
1358	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1359	 fs_reg l = swizzled_result;
1360	 l.reg_offset += i;
1361
1362	 if (swiz == SWIZZLE_ZERO) {
1363	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1364	 } else if (swiz == SWIZZLE_ONE) {
1365	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1366	 } else {
1367	    fs_reg r = orig_val;
1368	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1369	    emit(BRW_OPCODE_MOV, l, r);
1370	 }
1371      }
1372      this->result = swizzled_result;
1373   }
1374}
1375
1376void
1377fs_visitor::visit(ir_swizzle *ir)
1378{
1379   ir->val->accept(this);
1380   fs_reg val = this->result;
1381
1382   if (ir->type->vector_elements == 1) {
1383      this->result.reg_offset += ir->mask.x;
1384      return;
1385   }
1386
1387   fs_reg result = fs_reg(this, ir->type);
1388   this->result = result;
1389
1390   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1391      fs_reg channel = val;
1392      int swiz = 0;
1393
1394      switch (i) {
1395      case 0:
1396	 swiz = ir->mask.x;
1397	 break;
1398      case 1:
1399	 swiz = ir->mask.y;
1400	 break;
1401      case 2:
1402	 swiz = ir->mask.z;
1403	 break;
1404      case 3:
1405	 swiz = ir->mask.w;
1406	 break;
1407      }
1408
1409      channel.reg_offset += swiz;
1410      emit(BRW_OPCODE_MOV, result, channel);
1411      result.reg_offset++;
1412   }
1413}
1414
1415void
1416fs_visitor::visit(ir_discard *ir)
1417{
1418   assert(ir->condition == NULL); /* FINISHME */
1419
1420   emit(FS_OPCODE_DISCARD);
1421   kill_emitted = true;
1422}
1423
1424void
1425fs_visitor::visit(ir_constant *ir)
1426{
1427   /* Set this->result to reg at the bottom of the function because some code
1428    * paths will cause this visitor to be applied to other fields.  This will
1429    * cause the value stored in this->result to be modified.
1430    *
1431    * Make reg constant so that it doesn't get accidentally modified along the
1432    * way.  Yes, I actually had this problem. :(
1433    */
1434   const fs_reg reg(this, ir->type);
1435   fs_reg dst_reg = reg;
1436
1437   if (ir->type->is_array()) {
1438      const unsigned size = type_size(ir->type->fields.array);
1439
1440      for (unsigned i = 0; i < ir->type->length; i++) {
1441	 ir->array_elements[i]->accept(this);
1442	 fs_reg src_reg = this->result;
1443
1444	 dst_reg.type = src_reg.type;
1445	 for (unsigned j = 0; j < size; j++) {
1446	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1447	    src_reg.reg_offset++;
1448	    dst_reg.reg_offset++;
1449	 }
1450      }
1451   } else if (ir->type->is_record()) {
1452      foreach_list(node, &ir->components) {
1453	 ir_constant *const field = (ir_constant *) node;
1454	 const unsigned size = type_size(field->type);
1455
1456	 field->accept(this);
1457	 fs_reg src_reg = this->result;
1458
1459	 dst_reg.type = src_reg.type;
1460	 for (unsigned j = 0; j < size; j++) {
1461	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1462	    src_reg.reg_offset++;
1463	    dst_reg.reg_offset++;
1464	 }
1465      }
1466   } else {
1467      const unsigned size = type_size(ir->type);
1468
1469      for (unsigned i = 0; i < size; i++) {
1470	 switch (ir->type->base_type) {
1471	 case GLSL_TYPE_FLOAT:
1472	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1473	    break;
1474	 case GLSL_TYPE_UINT:
1475	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1476	    break;
1477	 case GLSL_TYPE_INT:
1478	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1479	    break;
1480	 case GLSL_TYPE_BOOL:
1481	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1482	    break;
1483	 default:
1484	    assert(!"Non-float/uint/int/bool constant");
1485	 }
1486	 dst_reg.reg_offset++;
1487      }
1488   }
1489
1490   this->result = reg;
1491}
1492
1493void
1494fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1495{
1496   ir_expression *expr = ir->as_expression();
1497
1498   if (expr) {
1499      fs_reg op[2];
1500      fs_inst *inst;
1501
1502      assert(expr->get_num_operands() <= 2);
1503      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1504	 assert(expr->operands[i]->type->is_scalar());
1505
1506	 expr->operands[i]->accept(this);
1507	 op[i] = this->result;
1508
1509	 resolve_ud_negate(&op[i]);
1510      }
1511
1512      switch (expr->operation) {
1513      case ir_unop_logic_not:
1514	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1515	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1516	 break;
1517
1518      case ir_binop_logic_xor:
1519      case ir_binop_logic_or:
1520      case ir_binop_logic_and:
1521	 goto out;
1522
1523      case ir_unop_f2b:
1524	 if (intel->gen >= 6) {
1525	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1526	 } else {
1527	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1528	 }
1529	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1530	 break;
1531
1532      case ir_unop_i2b:
1533	 if (intel->gen >= 6) {
1534	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1535	 } else {
1536	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1537	 }
1538	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1539	 break;
1540
1541      case ir_binop_greater:
1542      case ir_binop_gequal:
1543      case ir_binop_less:
1544      case ir_binop_lequal:
1545      case ir_binop_equal:
1546      case ir_binop_all_equal:
1547      case ir_binop_nequal:
1548      case ir_binop_any_nequal:
1549	 resolve_bool_comparison(expr->operands[0], &op[0]);
1550	 resolve_bool_comparison(expr->operands[1], &op[1]);
1551
1552	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1553	 inst->conditional_mod =
1554	    brw_conditional_for_comparison(expr->operation);
1555	 break;
1556
1557      default:
1558	 assert(!"not reached");
1559	 fail("bad cond code\n");
1560	 break;
1561      }
1562      return;
1563   }
1564
1565out:
1566   ir->accept(this);
1567
1568   fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1569   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1570}
1571
1572/**
1573 * Emit a gen6 IF statement with the comparison folded into the IF
1574 * instruction.
1575 */
1576void
1577fs_visitor::emit_if_gen6(ir_if *ir)
1578{
1579   ir_expression *expr = ir->condition->as_expression();
1580
1581   if (expr) {
1582      fs_reg op[2];
1583      fs_inst *inst;
1584      fs_reg temp;
1585
1586      assert(expr->get_num_operands() <= 2);
1587      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1588	 assert(expr->operands[i]->type->is_scalar());
1589
1590	 expr->operands[i]->accept(this);
1591	 op[i] = this->result;
1592      }
1593
1594      switch (expr->operation) {
1595      case ir_unop_logic_not:
1596	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1597	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1598	 return;
1599
1600      case ir_binop_logic_xor:
1601	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1602	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1603	 return;
1604
1605      case ir_binop_logic_or:
1606	 temp = fs_reg(this, glsl_type::bool_type);
1607	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1608	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1609	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1610	 return;
1611
1612      case ir_binop_logic_and:
1613	 temp = fs_reg(this, glsl_type::bool_type);
1614	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1615	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1616	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1617	 return;
1618
1619      case ir_unop_f2b:
1620	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1621	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1622	 return;
1623
1624      case ir_unop_i2b:
1625	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1626	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1627	 return;
1628
1629      case ir_binop_greater:
1630      case ir_binop_gequal:
1631      case ir_binop_less:
1632      case ir_binop_lequal:
1633      case ir_binop_equal:
1634      case ir_binop_all_equal:
1635      case ir_binop_nequal:
1636      case ir_binop_any_nequal:
1637	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1638	 inst->conditional_mod =
1639	    brw_conditional_for_comparison(expr->operation);
1640	 return;
1641      default:
1642	 assert(!"not reached");
1643	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1644	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1645	 fail("bad condition\n");
1646	 return;
1647      }
1648      return;
1649   }
1650
1651   ir->condition->accept(this);
1652
1653   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1654   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1655}
1656
1657void
1658fs_visitor::visit(ir_if *ir)
1659{
1660   fs_inst *inst;
1661
1662   if (intel->gen < 6 && c->dispatch_width == 16) {
1663      fail("Can't support (non-uniform) control flow on 16-wide\n");
1664   }
1665
1666   /* Don't point the annotation at the if statement, because then it plus
1667    * the then and else blocks get printed.
1668    */
1669   this->base_ir = ir->condition;
1670
1671   if (intel->gen == 6) {
1672      emit_if_gen6(ir);
1673   } else {
1674      emit_bool_to_cond_code(ir->condition);
1675
1676      inst = emit(BRW_OPCODE_IF);
1677      inst->predicated = true;
1678   }
1679
1680   foreach_list(node, &ir->then_instructions) {
1681      ir_instruction *ir = (ir_instruction *)node;
1682      this->base_ir = ir;
1683
1684      ir->accept(this);
1685   }
1686
1687   if (!ir->else_instructions.is_empty()) {
1688      emit(BRW_OPCODE_ELSE);
1689
1690      foreach_list(node, &ir->else_instructions) {
1691	 ir_instruction *ir = (ir_instruction *)node;
1692	 this->base_ir = ir;
1693
1694	 ir->accept(this);
1695      }
1696   }
1697
1698   emit(BRW_OPCODE_ENDIF);
1699}
1700
1701void
1702fs_visitor::visit(ir_loop *ir)
1703{
1704   fs_reg counter = reg_undef;
1705
1706   if (intel->gen < 6 && c->dispatch_width == 16) {
1707      fail("Can't support (non-uniform) control flow on 16-wide\n");
1708   }
1709
1710   if (ir->counter) {
1711      this->base_ir = ir->counter;
1712      ir->counter->accept(this);
1713      counter = *(variable_storage(ir->counter));
1714
1715      if (ir->from) {
1716	 this->base_ir = ir->from;
1717	 ir->from->accept(this);
1718
1719	 emit(BRW_OPCODE_MOV, counter, this->result);
1720      }
1721   }
1722
1723   this->base_ir = NULL;
1724   emit(BRW_OPCODE_DO);
1725
1726   if (ir->to) {
1727      this->base_ir = ir->to;
1728      ir->to->accept(this);
1729
1730      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1731      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1732
1733      inst = emit(BRW_OPCODE_BREAK);
1734      inst->predicated = true;
1735   }
1736
1737   foreach_list(node, &ir->body_instructions) {
1738      ir_instruction *ir = (ir_instruction *)node;
1739
1740      this->base_ir = ir;
1741      ir->accept(this);
1742   }
1743
1744   if (ir->increment) {
1745      this->base_ir = ir->increment;
1746      ir->increment->accept(this);
1747      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1748   }
1749
1750   this->base_ir = NULL;
1751   emit(BRW_OPCODE_WHILE);
1752}
1753
1754void
1755fs_visitor::visit(ir_loop_jump *ir)
1756{
1757   switch (ir->mode) {
1758   case ir_loop_jump::jump_break:
1759      emit(BRW_OPCODE_BREAK);
1760      break;
1761   case ir_loop_jump::jump_continue:
1762      emit(BRW_OPCODE_CONTINUE);
1763      break;
1764   }
1765}
1766
1767void
1768fs_visitor::visit(ir_call *ir)
1769{
1770   assert(!"FINISHME");
1771}
1772
1773void
1774fs_visitor::visit(ir_return *ir)
1775{
1776   assert(!"FINISHME");
1777}
1778
1779void
1780fs_visitor::visit(ir_function *ir)
1781{
1782   /* Ignore function bodies other than main() -- we shouldn't see calls to
1783    * them since they should all be inlined before we get to ir_to_mesa.
1784    */
1785   if (strcmp(ir->name, "main") == 0) {
1786      const ir_function_signature *sig;
1787      exec_list empty;
1788
1789      sig = ir->matching_signature(&empty);
1790
1791      assert(sig);
1792
1793      foreach_list(node, &sig->body) {
1794	 ir_instruction *ir = (ir_instruction *)node;
1795	 this->base_ir = ir;
1796
1797	 ir->accept(this);
1798      }
1799   }
1800}
1801
1802void
1803fs_visitor::visit(ir_function_signature *ir)
1804{
1805   assert(!"not reached");
1806   (void)ir;
1807}
1808
1809fs_inst *
1810fs_visitor::emit(fs_inst inst)
1811{
1812   fs_inst *list_inst = new(mem_ctx) fs_inst;
1813   *list_inst = inst;
1814
1815   if (force_uncompressed_stack > 0)
1816      list_inst->force_uncompressed = true;
1817   else if (force_sechalf_stack > 0)
1818      list_inst->force_sechalf = true;
1819
1820   list_inst->annotation = this->current_annotation;
1821   list_inst->ir = this->base_ir;
1822
1823   this->instructions.push_tail(list_inst);
1824
1825   return list_inst;
1826}
1827
1828/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1829void
1830fs_visitor::emit_dummy_fs()
1831{
1832   int reg_width = c->dispatch_width / 8;
1833
1834   /* Everyone's favorite color. */
1835   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1836   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1837   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1838   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1839
1840   fs_inst *write;
1841   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1842   write->base_mrf = 2;
1843   write->mlen = 4 * reg_width;
1844   write->eot = true;
1845}
1846
1847/* The register location here is relative to the start of the URB
1848 * data.  It will get adjusted to be a real location before
1849 * generate_code() time.
1850 */
1851struct brw_reg
1852fs_visitor::interp_reg(int location, int channel)
1853{
1854   int regnr = urb_setup[location] * 2 + channel / 2;
1855   int stride = (channel & 1) * 4;
1856
1857   assert(urb_setup[location] != -1);
1858
1859   return brw_vec1_grf(regnr, stride);
1860}
1861
1862/** Emits the interpolation for the varying inputs. */
1863void
1864fs_visitor::emit_interpolation_setup_gen4()
1865{
1866   this->current_annotation = "compute pixel centers";
1867   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1868   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1869   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1870   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1871
1872   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1873   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1874
1875   this->current_annotation = "compute pixel deltas from v0";
1876   if (brw->has_pln) {
1877      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1878         fs_reg(this, glsl_type::vec2_type);
1879      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1880         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1881      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1882   } else {
1883      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1884         fs_reg(this, glsl_type::float_type);
1885      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1886         fs_reg(this, glsl_type::float_type);
1887   }
1888   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1889	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1890   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1891	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1892
1893   this->current_annotation = "compute pos.w and 1/pos.w";
1894   /* Compute wpos.w.  It's always in our setup, since it's needed to
1895    * interpolate the other attributes.
1896    */
1897   this->wpos_w = fs_reg(this, glsl_type::float_type);
1898   emit(FS_OPCODE_LINTERP, wpos_w,
1899        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1900        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1901	interp_reg(FRAG_ATTRIB_WPOS, 3));
1902   /* Compute the pixel 1/W value from wpos.w. */
1903   this->pixel_w = fs_reg(this, glsl_type::float_type);
1904   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1905   this->current_annotation = NULL;
1906}
1907
1908/** Emits the interpolation for the varying inputs. */
1909void
1910fs_visitor::emit_interpolation_setup_gen6()
1911{
1912   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1913
1914   /* If the pixel centers end up used, the setup is the same as for gen4. */
1915   this->current_annotation = "compute pixel centers";
1916   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1917   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1918   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1919   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1920   emit(BRW_OPCODE_ADD,
1921	int_pixel_x,
1922	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1923	fs_reg(brw_imm_v(0x10101010)));
1924   emit(BRW_OPCODE_ADD,
1925	int_pixel_y,
1926	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1927	fs_reg(brw_imm_v(0x11001100)));
1928
1929   /* As of gen6, we can no longer mix float and int sources.  We have
1930    * to turn the integer pixel centers into floats for their actual
1931    * use.
1932    */
1933   this->pixel_x = fs_reg(this, glsl_type::float_type);
1934   this->pixel_y = fs_reg(this, glsl_type::float_type);
1935   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1936   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1937
1938   this->current_annotation = "compute pos.w";
1939   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1940   this->wpos_w = fs_reg(this, glsl_type::float_type);
1941   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1942
1943   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1944      uint8_t reg = c->barycentric_coord_reg[i];
1945      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1946      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1947   }
1948
1949   this->current_annotation = NULL;
1950}
1951
1952void
1953fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1954{
1955   int reg_width = c->dispatch_width / 8;
1956   fs_inst *inst;
1957   fs_reg color = outputs[target];
1958   fs_reg mrf;
1959
1960   /* If there's no color data to be written, skip it. */
1961   if (color.file == BAD_FILE)
1962      return;
1963
1964   color.reg_offset += index;
1965
1966   if (c->dispatch_width == 8 || intel->gen >= 6) {
1967      /* SIMD8 write looks like:
1968       * m + 0: r0
1969       * m + 1: r1
1970       * m + 2: g0
1971       * m + 3: g1
1972       *
1973       * gen6 SIMD16 DP write looks like:
1974       * m + 0: r0
1975       * m + 1: r1
1976       * m + 2: g0
1977       * m + 3: g1
1978       * m + 4: b0
1979       * m + 5: b1
1980       * m + 6: a0
1981       * m + 7: a1
1982       */
1983      inst = emit(BRW_OPCODE_MOV,
1984		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1985		  color);
1986      inst->saturate = c->key.clamp_fragment_color;
1987   } else {
1988      /* pre-gen6 SIMD16 single source DP write looks like:
1989       * m + 0: r0
1990       * m + 1: g0
1991       * m + 2: b0
1992       * m + 3: a0
1993       * m + 4: r1
1994       * m + 5: g1
1995       * m + 6: b1
1996       * m + 7: a1
1997       */
1998      if (brw->has_compr4) {
1999	 /* By setting the high bit of the MRF register number, we
2000	  * indicate that we want COMPR4 mode - instead of doing the
2001	  * usual destination + 1 for the second half we get
2002	  * destination + 4.
2003	  */
2004	 inst = emit(BRW_OPCODE_MOV,
2005		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
2006			    color.type),
2007		     color);
2008	 inst->saturate = c->key.clamp_fragment_color;
2009      } else {
2010	 push_force_uncompressed();
2011	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
2012					    color.type),
2013		     color);
2014	 inst->saturate = c->key.clamp_fragment_color;
2015	 pop_force_uncompressed();
2016
2017	 push_force_sechalf();
2018	 color.sechalf = true;
2019	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
2020					    color.type),
2021		     color);
2022	 inst->saturate = c->key.clamp_fragment_color;
2023	 pop_force_sechalf();
2024	 color.sechalf = false;
2025      }
2026   }
2027}
2028
2029void
2030fs_visitor::emit_fb_writes()
2031{
2032   this->current_annotation = "FB write header";
2033   bool header_present = true;
2034   /* We can potentially have a message length of up to 15, so we have to set
2035    * base_mrf to either 0 or 1 in order to fit in m0..m15.
2036    */
2037   int base_mrf = 1;
2038   int nr = base_mrf;
2039   int reg_width = c->dispatch_width / 8;
2040
2041   if (intel->gen >= 6 &&
2042       !this->kill_emitted &&
2043       c->key.nr_color_regions == 1) {
2044      header_present = false;
2045   }
2046
2047   if (header_present) {
2048      /* m2, m3 header */
2049      nr += 2;
2050   }
2051
2052   if (c->aa_dest_stencil_reg) {
2053      push_force_uncompressed();
2054      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2055	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2056      pop_force_uncompressed();
2057   }
2058
2059   /* Reserve space for color. It'll be filled in per MRT below. */
2060   int color_mrf = nr;
2061   nr += 4 * reg_width;
2062
2063   if (c->source_depth_to_render_target) {
2064      if (intel->gen == 6 && c->dispatch_width == 16) {
2065	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2066	  * used.  This would require 8-wide moves of each half to
2067	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2068	  * Just bail on doing so for now.
2069	  */
2070	 fail("Missing support for simd16 depth writes on gen6\n");
2071      }
2072
2073      if (c->computes_depth) {
2074	 /* Hand over gl_FragDepth. */
2075	 assert(this->frag_depth);
2076	 fs_reg depth = *(variable_storage(this->frag_depth));
2077
2078	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2079      } else {
2080	 /* Pass through the payload depth. */
2081	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2082	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2083      }
2084      nr += reg_width;
2085   }
2086
2087   if (c->dest_depth_reg) {
2088      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2089	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2090      nr += reg_width;
2091   }
2092
2093   for (int target = 0; target < c->key.nr_color_regions; target++) {
2094      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2095						 "FB write target %d",
2096						 target);
2097      for (int i = 0; i < 4; i++)
2098	 emit_color_write(target, i, color_mrf);
2099
2100      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2101      inst->target = target;
2102      inst->base_mrf = base_mrf;
2103      inst->mlen = nr - base_mrf;
2104      if (target == c->key.nr_color_regions - 1)
2105	 inst->eot = true;
2106      inst->header_present = header_present;
2107   }
2108
2109   if (c->key.nr_color_regions == 0) {
2110      if (c->key.alpha_test) {
2111	 /* If the alpha test is enabled but there's no color buffer,
2112	  * we still need to send alpha out the pipeline to our null
2113	  * renderbuffer.
2114	  */
2115	 emit_color_write(0, 3, color_mrf);
2116      }
2117
2118      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2119      inst->base_mrf = base_mrf;
2120      inst->mlen = nr - base_mrf;
2121      inst->eot = true;
2122      inst->header_present = header_present;
2123   }
2124
2125   this->current_annotation = NULL;
2126}
2127
2128void
2129fs_visitor::resolve_ud_negate(fs_reg *reg)
2130{
2131   if (reg->type != BRW_REGISTER_TYPE_UD ||
2132       !reg->negate)
2133      return;
2134
2135   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2136   emit(BRW_OPCODE_MOV, temp, *reg);
2137   *reg = temp;
2138}
2139
2140void
2141fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg)
2142{
2143   if (rvalue->type != glsl_type::bool_type)
2144      return;
2145
2146   fs_reg temp = fs_reg(this, glsl_type::bool_type);
2147   emit(BRW_OPCODE_AND, temp, *reg, fs_reg(1));
2148   *reg = temp;
2149}
2150