brw_fs_visitor.cpp revision 3f78f719732b87e6707f94c187ad6e263c6c2ef0
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM || this->result.file == GRF);
146      this->result.reg_offset += index->value.i[0] * element_size;
147   } else {
148      assert(!"FINISHME: non-constant array element");
149   }
150}
151
152/* Instruction selection: Produce a MOV.sat instead of
153 * MIN(MAX(val, 0), 1) when possible.
154 */
155bool
156fs_visitor::try_emit_saturate(ir_expression *ir)
157{
158   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
159
160   if (!sat_val)
161      return false;
162
163   this->result = reg_undef;
164   sat_val->accept(this);
165   fs_reg src = this->result;
166
167   this->result = fs_reg(this, ir->type);
168   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
169   inst->saturate = true;
170
171   return true;
172}
173
174void
175fs_visitor::visit(ir_expression *ir)
176{
177   unsigned int operand;
178   fs_reg op[2], temp;
179   fs_inst *inst;
180
181   assert(ir->get_num_operands() <= 2);
182
183   if (try_emit_saturate(ir))
184      return;
185
186   /* This is where our caller would like us to put the result, if possible. */
187   fs_reg saved_result_storage = this->result;
188
189   for (operand = 0; operand < ir->get_num_operands(); operand++) {
190      this->result = reg_undef;
191      ir->operands[operand]->accept(this);
192      if (this->result.file == BAD_FILE) {
193	 ir_print_visitor v;
194	 fail("Failed to get tree for expression operand:\n");
195	 ir->operands[operand]->accept(&v);
196      }
197      op[operand] = this->result;
198
199      /* Matrix expression operands should have been broken down to vector
200       * operations already.
201       */
202      assert(!ir->operands[operand]->type->is_matrix());
203      /* And then those vector operands should have been broken down to scalar.
204       */
205      assert(!ir->operands[operand]->type->is_vector());
206   }
207
208   /* Inherit storage from our parent if possible, and otherwise we
209    * alloc a temporary.
210    */
211   if (saved_result_storage.file == BAD_FILE) {
212      this->result = fs_reg(this, ir->type);
213   } else {
214      this->result = saved_result_storage;
215   }
216
217   switch (ir->operation) {
218   case ir_unop_logic_not:
219      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
220       * ones complement of the whole register, not just bit 0.
221       */
222      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
223      break;
224   case ir_unop_neg:
225      op[0].negate = !op[0].negate;
226      this->result = op[0];
227      break;
228   case ir_unop_abs:
229      op[0].abs = true;
230      op[0].negate = false;
231      this->result = op[0];
232      break;
233   case ir_unop_sign:
234      temp = fs_reg(this, ir->type);
235
236      /* Unalias the destination.  (imagine a = sign(a)) */
237      this->result = fs_reg(this, ir->type);
238
239      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
240
241      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
242      inst->conditional_mod = BRW_CONDITIONAL_G;
243      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
244      inst->predicated = true;
245
246      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
247      inst->conditional_mod = BRW_CONDITIONAL_L;
248      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
249      inst->predicated = true;
250
251      break;
252   case ir_unop_rcp:
253      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
254      break;
255
256   case ir_unop_exp2:
257      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
258      break;
259   case ir_unop_log2:
260      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
261      break;
262   case ir_unop_exp:
263   case ir_unop_log:
264      assert(!"not reached: should be handled by ir_explog_to_explog2");
265      break;
266   case ir_unop_sin:
267   case ir_unop_sin_reduced:
268      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
269      break;
270   case ir_unop_cos:
271   case ir_unop_cos_reduced:
272      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
273      break;
274
275   case ir_unop_dFdx:
276      emit(FS_OPCODE_DDX, this->result, op[0]);
277      break;
278   case ir_unop_dFdy:
279      emit(FS_OPCODE_DDY, this->result, op[0]);
280      break;
281
282   case ir_binop_add:
283      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
284      break;
285   case ir_binop_sub:
286      assert(!"not reached: should be handled by ir_sub_to_add_neg");
287      break;
288
289   case ir_binop_mul:
290      if (ir->type->is_integer()) {
291	 /* For integer multiplication, the MUL uses the low 16 bits
292	  * of one of the operands (src0 on gen6, src1 on gen7).  The
293	  * MACH accumulates in the contribution of the upper 16 bits
294	  * of that operand.
295	  *
296	  * FINISHME: Emit just the MUL if we know an operand is small
297	  * enough.
298	  */
299	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
300
301	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
302	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
303	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
304      } else {
305	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
306      }
307      break;
308   case ir_binop_div:
309      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
310      break;
311   case ir_binop_mod:
312      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
313      break;
314
315   case ir_binop_less:
316   case ir_binop_greater:
317   case ir_binop_lequal:
318   case ir_binop_gequal:
319   case ir_binop_equal:
320   case ir_binop_all_equal:
321   case ir_binop_nequal:
322   case ir_binop_any_nequal:
323      temp = this->result;
324      /* original gen4 does implicit conversion before comparison. */
325      if (intel->gen < 5)
326	 temp.type = op[0].type;
327
328      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
329      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
330      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
331      break;
332
333   case ir_binop_logic_xor:
334      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
335      break;
336
337   case ir_binop_logic_or:
338      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
339      break;
340
341   case ir_binop_logic_and:
342      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
343      break;
344
345   case ir_binop_dot:
346   case ir_unop_any:
347      assert(!"not reached: should be handled by brw_fs_channel_expressions");
348      break;
349
350   case ir_unop_noise:
351      assert(!"not reached: should be handled by lower_noise");
352      break;
353
354   case ir_quadop_vector:
355      assert(!"not reached: should be handled by lower_quadop_vector");
356      break;
357
358   case ir_unop_sqrt:
359      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
360      break;
361
362   case ir_unop_rsq:
363      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
364      break;
365
366   case ir_unop_i2u:
367      op[0].type = BRW_REGISTER_TYPE_UD;
368      this->result = op[0];
369      break;
370   case ir_unop_u2i:
371      op[0].type = BRW_REGISTER_TYPE_D;
372      this->result = op[0];
373      break;
374   case ir_unop_i2f:
375   case ir_unop_b2f:
376   case ir_unop_b2i:
377   case ir_unop_f2i:
378      emit(BRW_OPCODE_MOV, this->result, op[0]);
379      break;
380   case ir_unop_f2b:
381   case ir_unop_i2b:
382      temp = this->result;
383      /* original gen4 does implicit conversion before comparison. */
384      if (intel->gen < 5)
385	 temp.type = op[0].type;
386
387      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
388      inst->conditional_mod = BRW_CONDITIONAL_NZ;
389      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
390      break;
391
392   case ir_unop_trunc:
393      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
394      break;
395   case ir_unop_ceil:
396      op[0].negate = !op[0].negate;
397      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
398      this->result.negate = true;
399      break;
400   case ir_unop_floor:
401      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
402      break;
403   case ir_unop_fract:
404      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
405      break;
406   case ir_unop_round_even:
407      emit(BRW_OPCODE_RNDE, this->result, op[0]);
408      break;
409
410   case ir_binop_min:
411      if (intel->gen >= 6) {
412	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
413	 inst->conditional_mod = BRW_CONDITIONAL_L;
414      } else {
415	 /* Unalias the destination */
416	 this->result = fs_reg(this, ir->type);
417
418	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
419	 inst->conditional_mod = BRW_CONDITIONAL_L;
420
421	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
422	 inst->predicated = true;
423      }
424      break;
425   case ir_binop_max:
426      if (intel->gen >= 6) {
427	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
428	 inst->conditional_mod = BRW_CONDITIONAL_GE;
429      } else {
430	 /* Unalias the destination */
431	 this->result = fs_reg(this, ir->type);
432
433	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
434	 inst->conditional_mod = BRW_CONDITIONAL_G;
435
436	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
437	 inst->predicated = true;
438      }
439      break;
440
441   case ir_binop_pow:
442      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
443      break;
444
445   case ir_unop_bit_not:
446      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
447      break;
448   case ir_binop_bit_and:
449      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
450      break;
451   case ir_binop_bit_xor:
452      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
453      break;
454   case ir_binop_bit_or:
455      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
456      break;
457
458   case ir_unop_u2f:
459   case ir_binop_lshift:
460   case ir_binop_rshift:
461      assert(!"GLSL 1.30 features unsupported");
462      break;
463   }
464}
465
466void
467fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
468				   const glsl_type *type, bool predicated)
469{
470   switch (type->base_type) {
471   case GLSL_TYPE_FLOAT:
472   case GLSL_TYPE_UINT:
473   case GLSL_TYPE_INT:
474   case GLSL_TYPE_BOOL:
475      for (unsigned int i = 0; i < type->components(); i++) {
476	 l.type = brw_type_for_base_type(type);
477	 r.type = brw_type_for_base_type(type);
478
479	 if (predicated || !l.equals(&r)) {
480	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
481	    inst->predicated = predicated;
482	 }
483
484	 l.reg_offset++;
485	 r.reg_offset++;
486      }
487      break;
488   case GLSL_TYPE_ARRAY:
489      for (unsigned int i = 0; i < type->length; i++) {
490	 emit_assignment_writes(l, r, type->fields.array, predicated);
491      }
492      break;
493
494   case GLSL_TYPE_STRUCT:
495      for (unsigned int i = 0; i < type->length; i++) {
496	 emit_assignment_writes(l, r, type->fields.structure[i].type,
497				predicated);
498      }
499      break;
500
501   case GLSL_TYPE_SAMPLER:
502      break;
503
504   default:
505      assert(!"not reached");
506      break;
507   }
508}
509
510void
511fs_visitor::visit(ir_assignment *ir)
512{
513   struct fs_reg l, r;
514   fs_inst *inst;
515
516   /* FINISHME: arrays on the lhs */
517   this->result = reg_undef;
518   ir->lhs->accept(this);
519   l = this->result;
520
521   /* If we're doing a direct assignment, an RHS expression could
522    * drop its result right into our destination.  Otherwise, tell it
523    * not to.
524    */
525   if (ir->condition ||
526       !(ir->lhs->type->is_scalar() ||
527	 (ir->lhs->type->is_vector() &&
528	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
529      this->result = reg_undef;
530   }
531
532   ir->rhs->accept(this);
533   r = this->result;
534
535   assert(l.file != BAD_FILE);
536   assert(r.file != BAD_FILE);
537
538   if (ir->condition) {
539      emit_bool_to_cond_code(ir->condition);
540   }
541
542   if (ir->lhs->type->is_scalar() ||
543       ir->lhs->type->is_vector()) {
544      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
545	 if (ir->write_mask & (1 << i)) {
546	    if (ir->condition) {
547	       inst = emit(BRW_OPCODE_MOV, l, r);
548	       inst->predicated = true;
549	    } else if (!l.equals(&r)) {
550	       inst = emit(BRW_OPCODE_MOV, l, r);
551	    }
552
553	    r.reg_offset++;
554	 }
555	 l.reg_offset++;
556      }
557   } else {
558      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
559   }
560}
561
562fs_inst *
563fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
564			      int sampler)
565{
566   int mlen;
567   int base_mrf = 1;
568   bool simd16 = false;
569   fs_reg orig_dst;
570
571   /* g0 header. */
572   mlen = 1;
573
574   if (ir->shadow_comparitor && ir->op != ir_txd) {
575      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
576	 fs_inst *inst = emit(BRW_OPCODE_MOV,
577			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
578	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
579	    inst->saturate = true;
580
581	 coordinate.reg_offset++;
582      }
583      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
584      mlen += 3;
585
586      if (ir->op == ir_tex) {
587	 /* There's no plain shadow compare message, so we use shadow
588	  * compare with a bias of 0.0.
589	  */
590	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
591	 mlen++;
592      } else if (ir->op == ir_txb) {
593	 this->result = reg_undef;
594	 ir->lod_info.bias->accept(this);
595	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
596	 mlen++;
597      } else {
598	 assert(ir->op == ir_txl);
599	 this->result = reg_undef;
600	 ir->lod_info.lod->accept(this);
601	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
602	 mlen++;
603      }
604
605      this->result = reg_undef;
606      ir->shadow_comparitor->accept(this);
607      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
608      mlen++;
609   } else if (ir->op == ir_tex) {
610      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
611	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
612			      coordinate);
613	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
614	    inst->saturate = true;
615	 coordinate.reg_offset++;
616      }
617      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
618      mlen += 3;
619   } else if (ir->op == ir_txd) {
620      this->result = reg_undef;
621      ir->lod_info.grad.dPdx->accept(this);
622      fs_reg dPdx = this->result;
623
624      this->result = reg_undef;
625      ir->lod_info.grad.dPdy->accept(this);
626      fs_reg dPdy = this->result;
627
628      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
629	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
630	 coordinate.reg_offset++;
631      }
632      /* the slots for u and v are always present, but r is optional */
633      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
634
635      /*  P   = u, v, r
636       * dPdx = dudx, dvdx, drdx
637       * dPdy = dudy, dvdy, drdy
638       *
639       * 1-arg: Does not exist.
640       *
641       * 2-arg: dudx   dvdx   dudy   dvdy
642       *        dPdx.x dPdx.y dPdy.x dPdy.y
643       *        m4     m5     m6     m7
644       *
645       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
646       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
647       *        m5     m6     m7     m8     m9     m10
648       */
649      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
650	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
651	 dPdx.reg_offset++;
652      }
653      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
654
655      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
656	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
657	 dPdy.reg_offset++;
658      }
659      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
660   } else {
661      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
662       * instructions.  We'll need to do SIMD16 here.
663       */
664      assert(ir->op == ir_txb || ir->op == ir_txl);
665
666      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
667	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
668						     base_mrf + mlen + i * 2),
669			      coordinate);
670	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
671	    inst->saturate = true;
672	 coordinate.reg_offset++;
673      }
674
675      /* lod/bias appears after u/v/r. */
676      mlen += 6;
677
678      if (ir->op == ir_txb) {
679	 this->result = reg_undef;
680	 ir->lod_info.bias->accept(this);
681	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
682	 mlen++;
683      } else {
684	 this->result = reg_undef;
685	 ir->lod_info.lod->accept(this);
686	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
687	 mlen++;
688      }
689
690      /* The unused upper half. */
691      mlen++;
692
693      /* Now, since we're doing simd16, the return is 2 interleaved
694       * vec4s where the odd-indexed ones are junk. We'll need to move
695       * this weirdness around to the expected layout.
696       */
697      simd16 = true;
698      orig_dst = dst;
699      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
700						       2));
701      dst.type = BRW_REGISTER_TYPE_F;
702   }
703
704   fs_inst *inst = NULL;
705   switch (ir->op) {
706   case ir_tex:
707      inst = emit(FS_OPCODE_TEX, dst);
708      break;
709   case ir_txb:
710      inst = emit(FS_OPCODE_TXB, dst);
711      break;
712   case ir_txl:
713      inst = emit(FS_OPCODE_TXL, dst);
714      break;
715   case ir_txd:
716      inst = emit(FS_OPCODE_TXD, dst);
717      break;
718   case ir_txf:
719      assert(!"GLSL 1.30 features unsupported");
720      break;
721   }
722   inst->base_mrf = base_mrf;
723   inst->mlen = mlen;
724   inst->header_present = true;
725
726   if (simd16) {
727      for (int i = 0; i < 4; i++) {
728	 emit(BRW_OPCODE_MOV, orig_dst, dst);
729	 orig_dst.reg_offset++;
730	 dst.reg_offset += 2;
731      }
732   }
733
734   return inst;
735}
736
737/* gen5's sampler has slots for u, v, r, array index, then optional
738 * parameters like shadow comparitor or LOD bias.  If optional
739 * parameters aren't present, those base slots are optional and don't
740 * need to be included in the message.
741 *
742 * We don't fill in the unnecessary slots regardless, which may look
743 * surprising in the disassembly.
744 */
745fs_inst *
746fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
747			      int sampler)
748{
749   int mlen = 0;
750   int base_mrf = 2;
751   int reg_width = c->dispatch_width / 8;
752   bool header_present = false;
753
754   if (ir->offset) {
755      /* The offsets set up by the ir_texture visitor are in the
756       * m1 header, so we can't go headerless.
757       */
758      header_present = true;
759      mlen++;
760      base_mrf--;
761   }
762
763   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
764      fs_inst *inst = emit(BRW_OPCODE_MOV,
765			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
766			   coordinate);
767      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
768	 inst->saturate = true;
769      coordinate.reg_offset++;
770   }
771   mlen += ir->coordinate->type->vector_elements * reg_width;
772
773   if (ir->shadow_comparitor && ir->op != ir_txd) {
774      mlen = MAX2(mlen, header_present + 4 * reg_width);
775
776      this->result = reg_undef;
777      ir->shadow_comparitor->accept(this);
778      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
779      mlen += reg_width;
780   }
781
782   fs_inst *inst = NULL;
783   switch (ir->op) {
784   case ir_tex:
785      inst = emit(FS_OPCODE_TEX, dst);
786      break;
787   case ir_txb:
788      this->result = reg_undef;
789      ir->lod_info.bias->accept(this);
790      mlen = MAX2(mlen, header_present + 4 * reg_width);
791      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
792      mlen += reg_width;
793
794      inst = emit(FS_OPCODE_TXB, dst);
795
796      break;
797   case ir_txl:
798      this->result = reg_undef;
799      ir->lod_info.lod->accept(this);
800      mlen = MAX2(mlen, header_present + 4 * reg_width);
801      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
802      mlen += reg_width;
803
804      inst = emit(FS_OPCODE_TXL, dst);
805      break;
806   case ir_txd: {
807      this->result = reg_undef;
808      ir->lod_info.grad.dPdx->accept(this);
809      fs_reg dPdx = this->result;
810
811      this->result = reg_undef;
812      ir->lod_info.grad.dPdy->accept(this);
813      fs_reg dPdy = this->result;
814
815      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
816
817      /**
818       *  P   =  u,    v,    r
819       * dPdx = dudx, dvdx, drdx
820       * dPdy = dudy, dvdy, drdy
821       *
822       * Load up these values:
823       * - dudx   dudy   dvdx   dvdy   drdx   drdy
824       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
825       */
826      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
827	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
828	 dPdx.reg_offset++;
829	 mlen += reg_width;
830
831	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
832	 dPdy.reg_offset++;
833	 mlen += reg_width;
834      }
835
836      inst = emit(FS_OPCODE_TXD, dst);
837      break;
838   }
839   case ir_txf:
840      assert(!"GLSL 1.30 features unsupported");
841      break;
842   }
843   inst->base_mrf = base_mrf;
844   inst->mlen = mlen;
845   inst->header_present = header_present;
846
847   if (mlen > 11) {
848      fail("Message length >11 disallowed by hardware\n");
849   }
850
851   return inst;
852}
853
854fs_inst *
855fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
856			      int sampler)
857{
858   int mlen = 0;
859   int base_mrf = 2;
860   int reg_width = c->dispatch_width / 8;
861   bool header_present = false;
862
863   if (ir->offset) {
864      /* The offsets set up by the ir_texture visitor are in the
865       * m1 header, so we can't go headerless.
866       */
867      header_present = true;
868      mlen++;
869      base_mrf--;
870   }
871
872   if (ir->shadow_comparitor && ir->op != ir_txd) {
873      this->result = reg_undef;
874      ir->shadow_comparitor->accept(this);
875      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
876      mlen += reg_width;
877   }
878
879   /* Set up the LOD info */
880   switch (ir->op) {
881   case ir_tex:
882      break;
883   case ir_txb:
884      this->result = reg_undef;
885      ir->lod_info.bias->accept(this);
886      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
887      mlen += reg_width;
888      break;
889   case ir_txl:
890      this->result = reg_undef;
891      ir->lod_info.lod->accept(this);
892      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
893      mlen += reg_width;
894      break;
895   case ir_txd: {
896      if (c->dispatch_width == 16)
897	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
898
899      this->result = reg_undef;
900      ir->lod_info.grad.dPdx->accept(this);
901      fs_reg dPdx = this->result;
902
903      this->result = reg_undef;
904      ir->lod_info.grad.dPdy->accept(this);
905      fs_reg dPdy = this->result;
906
907      /* Load dPdx and the coordinate together:
908       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
909       */
910      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
911	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
912			      coordinate);
913	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
914	    inst->saturate = true;
915	 coordinate.reg_offset++;
916	 mlen += reg_width;
917
918	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
919	 dPdx.reg_offset++;
920	 mlen += reg_width;
921
922	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
923	 dPdy.reg_offset++;
924	 mlen += reg_width;
925      }
926      break;
927   }
928   case ir_txf:
929      assert(!"GLSL 1.30 features unsupported");
930      break;
931   }
932
933   /* Set up the coordinate (except for TXD where it was done earlier) */
934   if (ir->op != ir_txd) {
935      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
936	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
937			      coordinate);
938	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
939	    inst->saturate = true;
940	 coordinate.reg_offset++;
941	 mlen += reg_width;
942      }
943   }
944
945   /* Generate the SEND */
946   fs_inst *inst = NULL;
947   switch (ir->op) {
948   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
949   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
950   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
951   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
952   case ir_txf: assert(!"TXF unsupported.");
953   }
954   inst->base_mrf = base_mrf;
955   inst->mlen = mlen;
956   inst->header_present = header_present;
957
958   if (mlen > 11) {
959      fail("Message length >11 disallowed by hardware\n");
960   }
961
962   return inst;
963}
964
965void
966fs_visitor::visit(ir_texture *ir)
967{
968   fs_inst *inst = NULL;
969
970   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
971   sampler = fp->Base.SamplerUnits[sampler];
972
973   /* Our hardware doesn't have a sample_d_c message, so shadow compares
974    * for textureGrad/TXD need to be emulated with instructions.
975    */
976   bool hw_compare_supported = ir->op != ir_txd;
977   if (ir->shadow_comparitor && !hw_compare_supported) {
978      assert(c->key.compare_funcs[sampler] != GL_NONE);
979      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
980      if (c->key.compare_funcs[sampler] == GL_ALWAYS)
981	 return swizzle_result(ir, fs_reg(1.0f), sampler);
982      else if (c->key.compare_funcs[sampler] == GL_NEVER)
983	 return swizzle_result(ir, fs_reg(0.0f), sampler);
984   }
985
986   this->result = reg_undef;
987   ir->coordinate->accept(this);
988   fs_reg coordinate = this->result;
989
990   if (ir->offset != NULL) {
991      ir_constant *offset = ir->offset->as_constant();
992      assert(offset != NULL);
993
994      signed char offsets[3];
995      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
996	 offsets[i] = (signed char) offset->value.i[i];
997
998      /* Combine all three offsets into a single unsigned dword:
999       *
1000       *    bits 11:8 - U Offset (X component)
1001       *    bits  7:4 - V Offset (Y component)
1002       *    bits  3:0 - R Offset (Z component)
1003       */
1004      unsigned offset_bits = 0;
1005      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
1006	 const unsigned shift = 4 * (2 - i);
1007	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
1008      }
1009
1010      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1011      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1012	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
1013
1014      /* Then set the offset bits in DWord 2 of the message header. */
1015      emit(BRW_OPCODE_MOV,
1016	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1017			 BRW_REGISTER_TYPE_UD)),
1018	   fs_reg(brw_imm_uw(offset_bits)));
1019   }
1020
1021   /* Should be lowered by do_lower_texture_projection */
1022   assert(!ir->projector);
1023
1024   /* The 965 requires the EU to do the normalization of GL rectangle
1025    * texture coordinates.  We use the program parameter state
1026    * tracking to get the scaling factor.
1027    */
1028   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1029      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1030      int tokens[STATE_LENGTH] = {
1031	 STATE_INTERNAL,
1032	 STATE_TEXRECT_SCALE,
1033	 sampler,
1034	 0,
1035	 0
1036      };
1037
1038      if (c->dispatch_width == 16) {
1039	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1040	 this->result = fs_reg(this, ir->type);
1041	 return;
1042      }
1043
1044      c->prog_data.param_convert[c->prog_data.nr_params] =
1045	 PARAM_NO_CONVERT;
1046      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1047	 PARAM_NO_CONVERT;
1048
1049      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1050      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1051      GLuint index = _mesa_add_state_reference(params,
1052					       (gl_state_index *)tokens);
1053
1054      this->param_index[c->prog_data.nr_params] = index;
1055      this->param_offset[c->prog_data.nr_params] = 0;
1056      c->prog_data.nr_params++;
1057      this->param_index[c->prog_data.nr_params] = index;
1058      this->param_offset[c->prog_data.nr_params] = 1;
1059      c->prog_data.nr_params++;
1060
1061      fs_reg dst = fs_reg(this, ir->coordinate->type);
1062      fs_reg src = coordinate;
1063      coordinate = dst;
1064
1065      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1066      dst.reg_offset++;
1067      src.reg_offset++;
1068      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1069   }
1070
1071   /* Writemasking doesn't eliminate channels on SIMD8 texture
1072    * samples, so don't worry about them.
1073    */
1074   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1075
1076   if (intel->gen >= 7) {
1077      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1078   } else if (intel->gen >= 5) {
1079      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1080   } else {
1081      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1082   }
1083
1084   /* If there's an offset, we already set up m1.  To avoid the implied move,
1085    * use the null register.  Otherwise, we want an implied move from g0.
1086    */
1087   if (ir->offset != NULL || !inst->header_present)
1088      inst->src[0] = reg_undef;
1089   else
1090      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1091
1092   inst->sampler = sampler;
1093
1094   if (ir->shadow_comparitor) {
1095      if (hw_compare_supported) {
1096	 inst->shadow_compare = true;
1097      } else {
1098	 this->result = reg_undef;
1099	 ir->shadow_comparitor->accept(this);
1100	 fs_reg ref = this->result;
1101
1102	 fs_reg value = dst;
1103	 dst = fs_reg(this, glsl_type::vec4_type);
1104
1105	 /* FINISHME: This needs to be done pre-filtering. */
1106
1107	 uint32_t conditional = 0;
1108	 switch (c->key.compare_funcs[sampler]) {
1109	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1110	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1111	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1112	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1113	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1114	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1115	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1116	 default: assert(!"Should not get here: bad shadow compare function");
1117	 }
1118
1119	 /* Use conditional moves to load 0 or 1 as the result */
1120	 this->current_annotation = "manual shadow comparison";
1121	 for (int i = 0; i < 4; i++) {
1122	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1123
1124	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1125	    inst->conditional_mod = conditional;
1126
1127	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1128	    inst->predicated = true;
1129
1130	    dst.reg_offset++;
1131	    value.reg_offset++;
1132	 }
1133	 dst.reg_offset = 0;
1134      }
1135   }
1136
1137   swizzle_result(ir, dst, sampler);
1138}
1139
1140/**
1141 * Swizzle the result of a texture result.  This is necessary for
1142 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1143 */
1144void
1145fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1146{
1147   this->result = orig_val;
1148
1149   if (ir->type == glsl_type::float_type) {
1150      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1151      assert(ir->sampler->type->sampler_shadow);
1152   } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1153      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1154
1155      for (int i = 0; i < 4; i++) {
1156	 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1157	 fs_reg l = swizzled_result;
1158	 l.reg_offset += i;
1159
1160	 if (swiz == SWIZZLE_ZERO) {
1161	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1162	 } else if (swiz == SWIZZLE_ONE) {
1163	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1164	 } else {
1165	    fs_reg r = orig_val;
1166	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1167	    emit(BRW_OPCODE_MOV, l, r);
1168	 }
1169      }
1170      this->result = swizzled_result;
1171   }
1172}
1173
1174void
1175fs_visitor::visit(ir_swizzle *ir)
1176{
1177   this->result = reg_undef;
1178   ir->val->accept(this);
1179   fs_reg val = this->result;
1180
1181   if (ir->type->vector_elements == 1) {
1182      this->result.reg_offset += ir->mask.x;
1183      return;
1184   }
1185
1186   fs_reg result = fs_reg(this, ir->type);
1187   this->result = result;
1188
1189   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1190      fs_reg channel = val;
1191      int swiz = 0;
1192
1193      switch (i) {
1194      case 0:
1195	 swiz = ir->mask.x;
1196	 break;
1197      case 1:
1198	 swiz = ir->mask.y;
1199	 break;
1200      case 2:
1201	 swiz = ir->mask.z;
1202	 break;
1203      case 3:
1204	 swiz = ir->mask.w;
1205	 break;
1206      }
1207
1208      channel.reg_offset += swiz;
1209      emit(BRW_OPCODE_MOV, result, channel);
1210      result.reg_offset++;
1211   }
1212}
1213
1214void
1215fs_visitor::visit(ir_discard *ir)
1216{
1217   assert(ir->condition == NULL); /* FINISHME */
1218
1219   emit(FS_OPCODE_DISCARD);
1220   kill_emitted = true;
1221}
1222
1223void
1224fs_visitor::visit(ir_constant *ir)
1225{
1226   /* Set this->result to reg at the bottom of the function because some code
1227    * paths will cause this visitor to be applied to other fields.  This will
1228    * cause the value stored in this->result to be modified.
1229    *
1230    * Make reg constant so that it doesn't get accidentally modified along the
1231    * way.  Yes, I actually had this problem. :(
1232    */
1233   const fs_reg reg(this, ir->type);
1234   fs_reg dst_reg = reg;
1235
1236   if (ir->type->is_array()) {
1237      const unsigned size = type_size(ir->type->fields.array);
1238
1239      for (unsigned i = 0; i < ir->type->length; i++) {
1240	 this->result = reg_undef;
1241	 ir->array_elements[i]->accept(this);
1242	 fs_reg src_reg = this->result;
1243
1244	 dst_reg.type = src_reg.type;
1245	 for (unsigned j = 0; j < size; j++) {
1246	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1247	    src_reg.reg_offset++;
1248	    dst_reg.reg_offset++;
1249	 }
1250      }
1251   } else if (ir->type->is_record()) {
1252      foreach_list(node, &ir->components) {
1253	 ir_instruction *const field = (ir_instruction *) node;
1254	 const unsigned size = type_size(field->type);
1255
1256	 this->result = reg_undef;
1257	 field->accept(this);
1258	 fs_reg src_reg = this->result;
1259
1260	 dst_reg.type = src_reg.type;
1261	 for (unsigned j = 0; j < size; j++) {
1262	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1263	    src_reg.reg_offset++;
1264	    dst_reg.reg_offset++;
1265	 }
1266      }
1267   } else {
1268      const unsigned size = type_size(ir->type);
1269
1270      for (unsigned i = 0; i < size; i++) {
1271	 switch (ir->type->base_type) {
1272	 case GLSL_TYPE_FLOAT:
1273	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1274	    break;
1275	 case GLSL_TYPE_UINT:
1276	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1277	    break;
1278	 case GLSL_TYPE_INT:
1279	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1280	    break;
1281	 case GLSL_TYPE_BOOL:
1282	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1283	    break;
1284	 default:
1285	    assert(!"Non-float/uint/int/bool constant");
1286	 }
1287	 dst_reg.reg_offset++;
1288      }
1289   }
1290
1291   this->result = reg;
1292}
1293
1294void
1295fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1296{
1297   ir_expression *expr = ir->as_expression();
1298
1299   if (expr) {
1300      fs_reg op[2];
1301      fs_inst *inst;
1302
1303      assert(expr->get_num_operands() <= 2);
1304      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1305	 assert(expr->operands[i]->type->is_scalar());
1306
1307	 this->result = reg_undef;
1308	 expr->operands[i]->accept(this);
1309	 op[i] = this->result;
1310      }
1311
1312      switch (expr->operation) {
1313      case ir_unop_logic_not:
1314	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1315	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1316	 break;
1317
1318      case ir_binop_logic_xor:
1319	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1320	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1321	 break;
1322
1323      case ir_binop_logic_or:
1324	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1325	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1326	 break;
1327
1328      case ir_binop_logic_and:
1329	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1330	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1331	 break;
1332
1333      case ir_unop_f2b:
1334	 if (intel->gen >= 6) {
1335	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1336	 } else {
1337	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1338	 }
1339	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1340	 break;
1341
1342      case ir_unop_i2b:
1343	 if (intel->gen >= 6) {
1344	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1345	 } else {
1346	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1347	 }
1348	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1349	 break;
1350
1351      case ir_binop_greater:
1352      case ir_binop_gequal:
1353      case ir_binop_less:
1354      case ir_binop_lequal:
1355      case ir_binop_equal:
1356      case ir_binop_all_equal:
1357      case ir_binop_nequal:
1358      case ir_binop_any_nequal:
1359	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1360	 inst->conditional_mod =
1361	    brw_conditional_for_comparison(expr->operation);
1362	 break;
1363
1364      default:
1365	 assert(!"not reached");
1366	 fail("bad cond code\n");
1367	 break;
1368      }
1369      return;
1370   }
1371
1372   this->result = reg_undef;
1373   ir->accept(this);
1374
1375   if (intel->gen >= 6) {
1376      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1377      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1378   } else {
1379      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1380      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1381   }
1382}
1383
1384/**
1385 * Emit a gen6 IF statement with the comparison folded into the IF
1386 * instruction.
1387 */
1388void
1389fs_visitor::emit_if_gen6(ir_if *ir)
1390{
1391   ir_expression *expr = ir->condition->as_expression();
1392
1393   if (expr) {
1394      fs_reg op[2];
1395      fs_inst *inst;
1396      fs_reg temp;
1397
1398      assert(expr->get_num_operands() <= 2);
1399      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1400	 assert(expr->operands[i]->type->is_scalar());
1401
1402	 this->result = reg_undef;
1403	 expr->operands[i]->accept(this);
1404	 op[i] = this->result;
1405      }
1406
1407      switch (expr->operation) {
1408      case ir_unop_logic_not:
1409	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1410	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1411	 return;
1412
1413      case ir_binop_logic_xor:
1414	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1415	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1416	 return;
1417
1418      case ir_binop_logic_or:
1419	 temp = fs_reg(this, glsl_type::bool_type);
1420	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1421	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1422	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1423	 return;
1424
1425      case ir_binop_logic_and:
1426	 temp = fs_reg(this, glsl_type::bool_type);
1427	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1428	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1429	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1430	 return;
1431
1432      case ir_unop_f2b:
1433	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1434	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1435	 return;
1436
1437      case ir_unop_i2b:
1438	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1439	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1440	 return;
1441
1442      case ir_binop_greater:
1443      case ir_binop_gequal:
1444      case ir_binop_less:
1445      case ir_binop_lequal:
1446      case ir_binop_equal:
1447      case ir_binop_all_equal:
1448      case ir_binop_nequal:
1449      case ir_binop_any_nequal:
1450	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1451	 inst->conditional_mod =
1452	    brw_conditional_for_comparison(expr->operation);
1453	 return;
1454      default:
1455	 assert(!"not reached");
1456	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1457	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1458	 fail("bad condition\n");
1459	 return;
1460      }
1461      return;
1462   }
1463
1464   this->result = reg_undef;
1465   ir->condition->accept(this);
1466
1467   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1468   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1469}
1470
1471void
1472fs_visitor::visit(ir_if *ir)
1473{
1474   fs_inst *inst;
1475
1476   if (intel->gen != 6 && c->dispatch_width == 16) {
1477      fail("Can't support (non-uniform) control flow on 16-wide\n");
1478   }
1479
1480   /* Don't point the annotation at the if statement, because then it plus
1481    * the then and else blocks get printed.
1482    */
1483   this->base_ir = ir->condition;
1484
1485   if (intel->gen == 6) {
1486      emit_if_gen6(ir);
1487   } else {
1488      emit_bool_to_cond_code(ir->condition);
1489
1490      inst = emit(BRW_OPCODE_IF);
1491      inst->predicated = true;
1492   }
1493
1494   foreach_list(node, &ir->then_instructions) {
1495      ir_instruction *ir = (ir_instruction *)node;
1496      this->base_ir = ir;
1497      this->result = reg_undef;
1498      ir->accept(this);
1499   }
1500
1501   if (!ir->else_instructions.is_empty()) {
1502      emit(BRW_OPCODE_ELSE);
1503
1504      foreach_list(node, &ir->else_instructions) {
1505	 ir_instruction *ir = (ir_instruction *)node;
1506	 this->base_ir = ir;
1507	 this->result = reg_undef;
1508	 ir->accept(this);
1509      }
1510   }
1511
1512   emit(BRW_OPCODE_ENDIF);
1513}
1514
1515void
1516fs_visitor::visit(ir_loop *ir)
1517{
1518   fs_reg counter = reg_undef;
1519
1520   if (c->dispatch_width == 16) {
1521      fail("Can't support (non-uniform) control flow on 16-wide\n");
1522   }
1523
1524   if (ir->counter) {
1525      this->base_ir = ir->counter;
1526      ir->counter->accept(this);
1527      counter = *(variable_storage(ir->counter));
1528
1529      if (ir->from) {
1530	 this->result = counter;
1531
1532	 this->base_ir = ir->from;
1533	 this->result = counter;
1534	 ir->from->accept(this);
1535
1536	 if (!this->result.equals(&counter))
1537	    emit(BRW_OPCODE_MOV, counter, this->result);
1538      }
1539   }
1540
1541   emit(BRW_OPCODE_DO);
1542
1543   if (ir->to) {
1544      this->base_ir = ir->to;
1545      this->result = reg_undef;
1546      ir->to->accept(this);
1547
1548      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1549      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1550
1551      inst = emit(BRW_OPCODE_BREAK);
1552      inst->predicated = true;
1553   }
1554
1555   foreach_list(node, &ir->body_instructions) {
1556      ir_instruction *ir = (ir_instruction *)node;
1557
1558      this->base_ir = ir;
1559      this->result = reg_undef;
1560      ir->accept(this);
1561   }
1562
1563   if (ir->increment) {
1564      this->base_ir = ir->increment;
1565      this->result = reg_undef;
1566      ir->increment->accept(this);
1567      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1568   }
1569
1570   emit(BRW_OPCODE_WHILE);
1571}
1572
1573void
1574fs_visitor::visit(ir_loop_jump *ir)
1575{
1576   switch (ir->mode) {
1577   case ir_loop_jump::jump_break:
1578      emit(BRW_OPCODE_BREAK);
1579      break;
1580   case ir_loop_jump::jump_continue:
1581      emit(BRW_OPCODE_CONTINUE);
1582      break;
1583   }
1584}
1585
1586void
1587fs_visitor::visit(ir_call *ir)
1588{
1589   assert(!"FINISHME");
1590}
1591
1592void
1593fs_visitor::visit(ir_return *ir)
1594{
1595   assert(!"FINISHME");
1596}
1597
1598void
1599fs_visitor::visit(ir_function *ir)
1600{
1601   /* Ignore function bodies other than main() -- we shouldn't see calls to
1602    * them since they should all be inlined before we get to ir_to_mesa.
1603    */
1604   if (strcmp(ir->name, "main") == 0) {
1605      const ir_function_signature *sig;
1606      exec_list empty;
1607
1608      sig = ir->matching_signature(&empty);
1609
1610      assert(sig);
1611
1612      foreach_list(node, &sig->body) {
1613	 ir_instruction *ir = (ir_instruction *)node;
1614	 this->base_ir = ir;
1615	 this->result = reg_undef;
1616	 ir->accept(this);
1617      }
1618   }
1619}
1620
1621void
1622fs_visitor::visit(ir_function_signature *ir)
1623{
1624   assert(!"not reached");
1625   (void)ir;
1626}
1627
1628fs_inst *
1629fs_visitor::emit(fs_inst inst)
1630{
1631   fs_inst *list_inst = new(mem_ctx) fs_inst;
1632   *list_inst = inst;
1633
1634   if (force_uncompressed_stack > 0)
1635      list_inst->force_uncompressed = true;
1636   else if (force_sechalf_stack > 0)
1637      list_inst->force_sechalf = true;
1638
1639   list_inst->annotation = this->current_annotation;
1640   list_inst->ir = this->base_ir;
1641
1642   this->instructions.push_tail(list_inst);
1643
1644   return list_inst;
1645}
1646
1647/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1648void
1649fs_visitor::emit_dummy_fs()
1650{
1651   /* Everyone's favorite color. */
1652   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1653   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1654   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1655   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1656
1657   fs_inst *write;
1658   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1659   write->base_mrf = 2;
1660}
1661
1662/* The register location here is relative to the start of the URB
1663 * data.  It will get adjusted to be a real location before
1664 * generate_code() time.
1665 */
1666struct brw_reg
1667fs_visitor::interp_reg(int location, int channel)
1668{
1669   int regnr = urb_setup[location] * 2 + channel / 2;
1670   int stride = (channel & 1) * 4;
1671
1672   assert(urb_setup[location] != -1);
1673
1674   return brw_vec1_grf(regnr, stride);
1675}
1676
1677/** Emits the interpolation for the varying inputs. */
1678void
1679fs_visitor::emit_interpolation_setup_gen4()
1680{
1681   this->current_annotation = "compute pixel centers";
1682   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1683   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1684   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1685   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1686
1687   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1688   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1689
1690   this->current_annotation = "compute pixel deltas from v0";
1691   if (brw->has_pln) {
1692      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1693      this->delta_y = this->delta_x;
1694      this->delta_y.reg_offset++;
1695   } else {
1696      this->delta_x = fs_reg(this, glsl_type::float_type);
1697      this->delta_y = fs_reg(this, glsl_type::float_type);
1698   }
1699   emit(BRW_OPCODE_ADD, this->delta_x,
1700	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1701   emit(BRW_OPCODE_ADD, this->delta_y,
1702	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1703
1704   this->current_annotation = "compute pos.w and 1/pos.w";
1705   /* Compute wpos.w.  It's always in our setup, since it's needed to
1706    * interpolate the other attributes.
1707    */
1708   this->wpos_w = fs_reg(this, glsl_type::float_type);
1709   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1710	interp_reg(FRAG_ATTRIB_WPOS, 3));
1711   /* Compute the pixel 1/W value from wpos.w. */
1712   this->pixel_w = fs_reg(this, glsl_type::float_type);
1713   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1714   this->current_annotation = NULL;
1715}
1716
1717/** Emits the interpolation for the varying inputs. */
1718void
1719fs_visitor::emit_interpolation_setup_gen6()
1720{
1721   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1722
1723   /* If the pixel centers end up used, the setup is the same as for gen4. */
1724   this->current_annotation = "compute pixel centers";
1725   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1726   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1727   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1728   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1729   emit(BRW_OPCODE_ADD,
1730	int_pixel_x,
1731	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1732	fs_reg(brw_imm_v(0x10101010)));
1733   emit(BRW_OPCODE_ADD,
1734	int_pixel_y,
1735	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1736	fs_reg(brw_imm_v(0x11001100)));
1737
1738   /* As of gen6, we can no longer mix float and int sources.  We have
1739    * to turn the integer pixel centers into floats for their actual
1740    * use.
1741    */
1742   this->pixel_x = fs_reg(this, glsl_type::float_type);
1743   this->pixel_y = fs_reg(this, glsl_type::float_type);
1744   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1745   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1746
1747   this->current_annotation = "compute pos.w";
1748   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1749   this->wpos_w = fs_reg(this, glsl_type::float_type);
1750   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1751
1752   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1753   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1754
1755   this->current_annotation = NULL;
1756}
1757
1758void
1759fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1760{
1761   int reg_width = c->dispatch_width / 8;
1762   fs_inst *inst;
1763
1764   if (c->dispatch_width == 8 || intel->gen == 6) {
1765      /* SIMD8 write looks like:
1766       * m + 0: r0
1767       * m + 1: r1
1768       * m + 2: g0
1769       * m + 3: g1
1770       *
1771       * gen6 SIMD16 DP write looks like:
1772       * m + 0: r0
1773       * m + 1: r1
1774       * m + 2: g0
1775       * m + 3: g1
1776       * m + 4: b0
1777       * m + 5: b1
1778       * m + 6: a0
1779       * m + 7: a1
1780       */
1781      inst = emit(BRW_OPCODE_MOV,
1782		  fs_reg(MRF, first_color_mrf + index * reg_width),
1783		  color);
1784      inst->saturate = c->key.clamp_fragment_color;
1785   } else {
1786      /* pre-gen6 SIMD16 single source DP write looks like:
1787       * m + 0: r0
1788       * m + 1: g0
1789       * m + 2: b0
1790       * m + 3: a0
1791       * m + 4: r1
1792       * m + 5: g1
1793       * m + 6: b1
1794       * m + 7: a1
1795       */
1796      if (brw->has_compr4) {
1797	 /* By setting the high bit of the MRF register number, we
1798	  * indicate that we want COMPR4 mode - instead of doing the
1799	  * usual destination + 1 for the second half we get
1800	  * destination + 4.
1801	  */
1802	 inst = emit(BRW_OPCODE_MOV,
1803		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index),
1804		     color);
1805	 inst->saturate = c->key.clamp_fragment_color;
1806      } else {
1807	 push_force_uncompressed();
1808	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index),
1809		     color);
1810	 inst->saturate = c->key.clamp_fragment_color;
1811	 pop_force_uncompressed();
1812
1813	 push_force_sechalf();
1814	 color.sechalf = true;
1815	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4),
1816		     color);
1817	 inst->saturate = c->key.clamp_fragment_color;
1818	 pop_force_sechalf();
1819	 color.sechalf = false;
1820      }
1821   }
1822}
1823
1824void
1825fs_visitor::emit_fb_writes()
1826{
1827   this->current_annotation = "FB write header";
1828   GLboolean header_present = GL_TRUE;
1829   int base_mrf = 2;
1830   int nr = base_mrf;
1831   int reg_width = c->dispatch_width / 8;
1832
1833   if (intel->gen >= 6 &&
1834       !this->kill_emitted &&
1835       c->key.nr_color_regions == 1) {
1836      header_present = false;
1837   }
1838
1839   if (header_present) {
1840      /* m2, m3 header */
1841      nr += 2;
1842   }
1843
1844   if (c->aa_dest_stencil_reg) {
1845      push_force_uncompressed();
1846      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1847	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1848      pop_force_uncompressed();
1849   }
1850
1851   /* Reserve space for color. It'll be filled in per MRT below. */
1852   int color_mrf = nr;
1853   nr += 4 * reg_width;
1854
1855   if (c->source_depth_to_render_target) {
1856      if (intel->gen == 6 && c->dispatch_width == 16) {
1857	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1858	  * used.  This would require 8-wide moves of each half to
1859	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1860	  * Just bail on doing so for now.
1861	  */
1862	 fail("Missing support for simd16 depth writes on gen6\n");
1863      }
1864
1865      if (c->computes_depth) {
1866	 /* Hand over gl_FragDepth. */
1867	 assert(this->frag_depth);
1868	 fs_reg depth = *(variable_storage(this->frag_depth));
1869
1870	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1871      } else {
1872	 /* Pass through the payload depth. */
1873	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1874	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1875      }
1876      nr += reg_width;
1877   }
1878
1879   if (c->dest_depth_reg) {
1880      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1881	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1882      nr += reg_width;
1883   }
1884
1885   fs_reg color = reg_undef;
1886   if (this->frag_color)
1887      color = *(variable_storage(this->frag_color));
1888   else if (this->frag_data) {
1889      color = *(variable_storage(this->frag_data));
1890      color.type = BRW_REGISTER_TYPE_F;
1891   }
1892
1893   for (int target = 0; target < c->key.nr_color_regions; target++) {
1894      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1895						 "FB write target %d",
1896						 target);
1897      if (this->frag_color || this->frag_data) {
1898	 for (int i = 0; i < 4; i++) {
1899	    emit_color_write(i, color_mrf, color);
1900	    color.reg_offset++;
1901	 }
1902      }
1903
1904      if (this->frag_color)
1905	 color.reg_offset -= 4;
1906
1907      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1908      inst->target = target;
1909      inst->base_mrf = base_mrf;
1910      inst->mlen = nr - base_mrf;
1911      if (target == c->key.nr_color_regions - 1)
1912	 inst->eot = true;
1913      inst->header_present = header_present;
1914   }
1915
1916   if (c->key.nr_color_regions == 0) {
1917      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1918	 /* If the alpha test is enabled but there's no color buffer,
1919	  * we still need to send alpha out the pipeline to our null
1920	  * renderbuffer.
1921	  */
1922	 color.reg_offset += 3;
1923	 emit_color_write(3, color_mrf, color);
1924      }
1925
1926      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1927      inst->base_mrf = base_mrf;
1928      inst->mlen = nr - base_mrf;
1929      inst->eot = true;
1930      inst->header_present = header_present;
1931   }
1932
1933   this->current_annotation = NULL;
1934}
1935