brw_fs_visitor.cpp revision 6750226e6d915742ebf96bae2cfcdd287b85db35
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "../glsl/glsl_types.h"
50#include "../glsl/ir_optimization.h"
51#include "../glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (strcmp(ir->name, "gl_FragColor") == 0) {
62      this->frag_color = ir;
63   } else if (strcmp(ir->name, "gl_FragData") == 0) {
64      this->frag_data = ir;
65   } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
66      this->frag_depth = ir;
67   }
68
69   if (ir->mode == ir_var_in) {
70      if (!strcmp(ir->name, "gl_FragCoord")) {
71	 reg = emit_fragcoord_interpolation(ir);
72      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
73	 reg = emit_frontfacing_interpolation(ir);
74      } else {
75	 reg = emit_general_interpolation(ir);
76      }
77      assert(reg);
78      hash_table_insert(this->variable_ht, reg, ir);
79      return;
80   }
81
82   if (ir->mode == ir_var_uniform) {
83      int param_index = c->prog_data.nr_params;
84
85      if (c->dispatch_width == 16) {
86	 if (!variable_storage(ir)) {
87	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
88	 }
89	 return;
90      }
91
92      if (!strncmp(ir->name, "gl_", 3)) {
93	 setup_builtin_uniform_values(ir);
94      } else {
95	 setup_uniform_values(ir->location, ir->type);
96      }
97
98      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
99      reg->type = brw_type_for_base_type(ir->type);
100   }
101
102   if (!reg)
103      reg = new(this->mem_ctx) fs_reg(this, ir->type);
104
105   hash_table_insert(this->variable_ht, reg, ir);
106}
107
108void
109fs_visitor::visit(ir_dereference_variable *ir)
110{
111   fs_reg *reg = variable_storage(ir->var);
112   this->result = *reg;
113}
114
115void
116fs_visitor::visit(ir_dereference_record *ir)
117{
118   const glsl_type *struct_type = ir->record->type;
119
120   ir->record->accept(this);
121
122   unsigned int offset = 0;
123   for (unsigned int i = 0; i < struct_type->length; i++) {
124      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
125	 break;
126      offset += type_size(struct_type->fields.structure[i].type);
127   }
128   this->result.reg_offset += offset;
129   this->result.type = brw_type_for_base_type(ir->type);
130}
131
132void
133fs_visitor::visit(ir_dereference_array *ir)
134{
135   ir_constant *index;
136   int element_size;
137
138   ir->array->accept(this);
139   index = ir->array_index->as_constant();
140
141   element_size = type_size(ir->type);
142   this->result.type = brw_type_for_base_type(ir->type);
143
144   if (index) {
145      assert(this->result.file == UNIFORM ||
146	     (this->result.file == GRF &&
147	      this->result.reg != 0));
148      this->result.reg_offset += index->value.i[0] * element_size;
149   } else {
150      assert(!"FINISHME: non-constant array element");
151   }
152}
153
154/* Instruction selection: Produce a MOV.sat instead of
155 * MIN(MAX(val, 0), 1) when possible.
156 */
157bool
158fs_visitor::try_emit_saturate(ir_expression *ir)
159{
160   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
161
162   if (!sat_val)
163      return false;
164
165   this->result = reg_undef;
166   sat_val->accept(this);
167   fs_reg src = this->result;
168
169   this->result = fs_reg(this, ir->type);
170   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
171   inst->saturate = true;
172
173   return true;
174}
175
176void
177fs_visitor::visit(ir_expression *ir)
178{
179   unsigned int operand;
180   fs_reg op[2], temp;
181   fs_inst *inst;
182
183   assert(ir->get_num_operands() <= 2);
184
185   if (try_emit_saturate(ir))
186      return;
187
188   /* This is where our caller would like us to put the result, if possible. */
189   fs_reg saved_result_storage = this->result;
190
191   for (operand = 0; operand < ir->get_num_operands(); operand++) {
192      this->result = reg_undef;
193      ir->operands[operand]->accept(this);
194      if (this->result.file == BAD_FILE) {
195	 ir_print_visitor v;
196	 fail("Failed to get tree for expression operand:\n");
197	 ir->operands[operand]->accept(&v);
198      }
199      op[operand] = this->result;
200
201      /* Matrix expression operands should have been broken down to vector
202       * operations already.
203       */
204      assert(!ir->operands[operand]->type->is_matrix());
205      /* And then those vector operands should have been broken down to scalar.
206       */
207      assert(!ir->operands[operand]->type->is_vector());
208   }
209
210   /* Inherit storage from our parent if possible, and otherwise we
211    * alloc a temporary.
212    */
213   if (saved_result_storage.file == BAD_FILE) {
214      this->result = fs_reg(this, ir->type);
215   } else {
216      this->result = saved_result_storage;
217   }
218
219   switch (ir->operation) {
220   case ir_unop_logic_not:
221      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
222       * ones complement of the whole register, not just bit 0.
223       */
224      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
225      break;
226   case ir_unop_neg:
227      op[0].negate = !op[0].negate;
228      this->result = op[0];
229      break;
230   case ir_unop_abs:
231      op[0].abs = true;
232      op[0].negate = false;
233      this->result = op[0];
234      break;
235   case ir_unop_sign:
236      temp = fs_reg(this, ir->type);
237
238      /* Unalias the destination.  (imagine a = sign(a)) */
239      this->result = fs_reg(this, ir->type);
240
241      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
242
243      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
244      inst->conditional_mod = BRW_CONDITIONAL_G;
245      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
246      inst->predicated = true;
247
248      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
249      inst->conditional_mod = BRW_CONDITIONAL_L;
250      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
251      inst->predicated = true;
252
253      break;
254   case ir_unop_rcp:
255      emit_math(FS_OPCODE_RCP, this->result, op[0]);
256      break;
257
258   case ir_unop_exp2:
259      emit_math(FS_OPCODE_EXP2, this->result, op[0]);
260      break;
261   case ir_unop_log2:
262      emit_math(FS_OPCODE_LOG2, this->result, op[0]);
263      break;
264   case ir_unop_exp:
265   case ir_unop_log:
266      assert(!"not reached: should be handled by ir_explog_to_explog2");
267      break;
268   case ir_unop_sin:
269   case ir_unop_sin_reduced:
270      emit_math(FS_OPCODE_SIN, this->result, op[0]);
271      break;
272   case ir_unop_cos:
273   case ir_unop_cos_reduced:
274      emit_math(FS_OPCODE_COS, this->result, op[0]);
275      break;
276
277   case ir_unop_dFdx:
278      emit(FS_OPCODE_DDX, this->result, op[0]);
279      break;
280   case ir_unop_dFdy:
281      emit(FS_OPCODE_DDY, this->result, op[0]);
282      break;
283
284   case ir_binop_add:
285      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
286      break;
287   case ir_binop_sub:
288      assert(!"not reached: should be handled by ir_sub_to_add_neg");
289      break;
290
291   case ir_binop_mul:
292      emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
293      break;
294   case ir_binop_div:
295      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
296      break;
297   case ir_binop_mod:
298      assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
299      break;
300
301   case ir_binop_less:
302   case ir_binop_greater:
303   case ir_binop_lequal:
304   case ir_binop_gequal:
305   case ir_binop_equal:
306   case ir_binop_all_equal:
307   case ir_binop_nequal:
308   case ir_binop_any_nequal:
309      temp = this->result;
310      /* original gen4 does implicit conversion before comparison. */
311      if (intel->gen < 5)
312	 temp.type = op[0].type;
313
314      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
315      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
316      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
317      break;
318
319   case ir_binop_logic_xor:
320      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
321      break;
322
323   case ir_binop_logic_or:
324      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
325      break;
326
327   case ir_binop_logic_and:
328      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
329      break;
330
331   case ir_binop_dot:
332   case ir_unop_any:
333      assert(!"not reached: should be handled by brw_fs_channel_expressions");
334      break;
335
336   case ir_unop_noise:
337      assert(!"not reached: should be handled by lower_noise");
338      break;
339
340   case ir_quadop_vector:
341      assert(!"not reached: should be handled by lower_quadop_vector");
342      break;
343
344   case ir_unop_sqrt:
345      emit_math(FS_OPCODE_SQRT, this->result, op[0]);
346      break;
347
348   case ir_unop_rsq:
349      emit_math(FS_OPCODE_RSQ, this->result, op[0]);
350      break;
351
352   case ir_unop_i2f:
353   case ir_unop_b2f:
354   case ir_unop_b2i:
355   case ir_unop_f2i:
356      emit(BRW_OPCODE_MOV, this->result, op[0]);
357      break;
358   case ir_unop_f2b:
359   case ir_unop_i2b:
360      temp = this->result;
361      /* original gen4 does implicit conversion before comparison. */
362      if (intel->gen < 5)
363	 temp.type = op[0].type;
364
365      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
366      inst->conditional_mod = BRW_CONDITIONAL_NZ;
367      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
368      break;
369
370   case ir_unop_trunc:
371      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
372      break;
373   case ir_unop_ceil:
374      op[0].negate = !op[0].negate;
375      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
376      this->result.negate = true;
377      break;
378   case ir_unop_floor:
379      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
380      break;
381   case ir_unop_fract:
382      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
383      break;
384   case ir_unop_round_even:
385      emit(BRW_OPCODE_RNDE, this->result, op[0]);
386      break;
387
388   case ir_binop_min:
389      if (intel->gen >= 6) {
390	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
391	 inst->conditional_mod = BRW_CONDITIONAL_L;
392      } else {
393	 /* Unalias the destination */
394	 this->result = fs_reg(this, ir->type);
395
396	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
397	 inst->conditional_mod = BRW_CONDITIONAL_L;
398
399	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
400	 inst->predicated = true;
401      }
402      break;
403   case ir_binop_max:
404      if (intel->gen >= 6) {
405	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
406	 inst->conditional_mod = BRW_CONDITIONAL_GE;
407      } else {
408	 /* Unalias the destination */
409	 this->result = fs_reg(this, ir->type);
410
411	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
412	 inst->conditional_mod = BRW_CONDITIONAL_G;
413
414	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
415	 inst->predicated = true;
416      }
417      break;
418
419   case ir_binop_pow:
420      emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
421      break;
422
423   case ir_unop_bit_not:
424      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
425      break;
426   case ir_binop_bit_and:
427      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
428      break;
429   case ir_binop_bit_xor:
430      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
431      break;
432   case ir_binop_bit_or:
433      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
434      break;
435
436   case ir_unop_u2f:
437   case ir_binop_lshift:
438   case ir_binop_rshift:
439      assert(!"GLSL 1.30 features unsupported");
440      break;
441   }
442}
443
444void
445fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
446				   const glsl_type *type, bool predicated)
447{
448   switch (type->base_type) {
449   case GLSL_TYPE_FLOAT:
450   case GLSL_TYPE_UINT:
451   case GLSL_TYPE_INT:
452   case GLSL_TYPE_BOOL:
453      for (unsigned int i = 0; i < type->components(); i++) {
454	 l.type = brw_type_for_base_type(type);
455	 r.type = brw_type_for_base_type(type);
456
457	 if (predicated || !l.equals(&r)) {
458	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
459	    inst->predicated = predicated;
460	 }
461
462	 l.reg_offset++;
463	 r.reg_offset++;
464      }
465      break;
466   case GLSL_TYPE_ARRAY:
467      for (unsigned int i = 0; i < type->length; i++) {
468	 emit_assignment_writes(l, r, type->fields.array, predicated);
469      }
470      break;
471
472   case GLSL_TYPE_STRUCT:
473      for (unsigned int i = 0; i < type->length; i++) {
474	 emit_assignment_writes(l, r, type->fields.structure[i].type,
475				predicated);
476      }
477      break;
478
479   case GLSL_TYPE_SAMPLER:
480      break;
481
482   default:
483      assert(!"not reached");
484      break;
485   }
486}
487
488void
489fs_visitor::visit(ir_assignment *ir)
490{
491   struct fs_reg l, r;
492   fs_inst *inst;
493
494   /* FINISHME: arrays on the lhs */
495   this->result = reg_undef;
496   ir->lhs->accept(this);
497   l = this->result;
498
499   /* If we're doing a direct assignment, an RHS expression could
500    * drop its result right into our destination.  Otherwise, tell it
501    * not to.
502    */
503   if (ir->condition ||
504       !(ir->lhs->type->is_scalar() ||
505	 (ir->lhs->type->is_vector() &&
506	  ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) {
507      this->result = reg_undef;
508   }
509
510   ir->rhs->accept(this);
511   r = this->result;
512
513   assert(l.file != BAD_FILE);
514   assert(r.file != BAD_FILE);
515
516   if (ir->condition) {
517      emit_bool_to_cond_code(ir->condition);
518   }
519
520   if (ir->lhs->type->is_scalar() ||
521       ir->lhs->type->is_vector()) {
522      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
523	 if (ir->write_mask & (1 << i)) {
524	    if (ir->condition) {
525	       inst = emit(BRW_OPCODE_MOV, l, r);
526	       inst->predicated = true;
527	    } else if (!l.equals(&r)) {
528	       inst = emit(BRW_OPCODE_MOV, l, r);
529	    }
530
531	    r.reg_offset++;
532	 }
533	 l.reg_offset++;
534      }
535   } else {
536      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
537   }
538}
539
540fs_inst *
541fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
542			      int sampler)
543{
544   int mlen;
545   int base_mrf = 1;
546   bool simd16 = false;
547   fs_reg orig_dst;
548
549   /* g0 header. */
550   mlen = 1;
551
552   if (ir->shadow_comparitor && ir->op != ir_txd) {
553      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
554	 fs_inst *inst = emit(BRW_OPCODE_MOV,
555			      fs_reg(MRF, base_mrf + mlen + i), coordinate);
556	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
557	    inst->saturate = true;
558
559	 coordinate.reg_offset++;
560      }
561      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
562      mlen += 3;
563
564      if (ir->op == ir_tex) {
565	 /* There's no plain shadow compare message, so we use shadow
566	  * compare with a bias of 0.0.
567	  */
568	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
569	 mlen++;
570      } else if (ir->op == ir_txb) {
571	 this->result = reg_undef;
572	 ir->lod_info.bias->accept(this);
573	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
574	 mlen++;
575      } else {
576	 assert(ir->op == ir_txl);
577	 this->result = reg_undef;
578	 ir->lod_info.lod->accept(this);
579	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
580	 mlen++;
581      }
582
583      this->result = reg_undef;
584      ir->shadow_comparitor->accept(this);
585      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
586      mlen++;
587   } else if (ir->op == ir_tex) {
588      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
589	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
590			      coordinate);
591	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
592	    inst->saturate = true;
593	 coordinate.reg_offset++;
594      }
595      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
596      mlen += 3;
597   } else if (ir->op == ir_txd) {
598      ir->lod_info.grad.dPdx->accept(this);
599      fs_reg dPdx = this->result;
600
601      ir->lod_info.grad.dPdy->accept(this);
602      fs_reg dPdy = this->result;
603
604      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
605	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
606	 coordinate.reg_offset++;
607      }
608      /* the slots for u and v are always present, but r is optional */
609      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
610
611      /*  P   = u, v, r
612       * dPdx = dudx, dvdx, drdx
613       * dPdy = dudy, dvdy, drdy
614       *
615       * 2-arg: dudx   dvdx   dudy   dvdy
616       *        dPdx.x dPdx.y dPdy.x dPdy.y
617       *        m4     m5     m6     m7
618       *
619       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
620       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
621       *        m5     m6     m7     m8     m9     m10
622       */
623      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
624	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
625	 dPdx.reg_offset++;
626	 mlen++;
627      }
628
629      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
630	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
631	 dPdy.reg_offset++;
632	 mlen++;
633      }
634   } else {
635      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
636       * instructions.  We'll need to do SIMD16 here.
637       */
638      assert(ir->op == ir_txb || ir->op == ir_txl);
639
640      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
641	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF,
642						     base_mrf + mlen + i * 2),
643			      coordinate);
644	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
645	    inst->saturate = true;
646	 coordinate.reg_offset++;
647      }
648
649      /* lod/bias appears after u/v/r. */
650      mlen += 6;
651
652      if (ir->op == ir_txb) {
653	 this->result = reg_undef;
654	 ir->lod_info.bias->accept(this);
655	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
656	 mlen++;
657      } else {
658	 this->result = reg_undef;
659	 ir->lod_info.lod->accept(this);
660	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
661	 mlen++;
662      }
663
664      /* The unused upper half. */
665      mlen++;
666
667      /* Now, since we're doing simd16, the return is 2 interleaved
668       * vec4s where the odd-indexed ones are junk. We'll need to move
669       * this weirdness around to the expected layout.
670       */
671      simd16 = true;
672      orig_dst = dst;
673      dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
674						       2));
675      dst.type = BRW_REGISTER_TYPE_F;
676   }
677
678   fs_inst *inst = NULL;
679   switch (ir->op) {
680   case ir_tex:
681      inst = emit(FS_OPCODE_TEX, dst);
682      break;
683   case ir_txb:
684      inst = emit(FS_OPCODE_TXB, dst);
685      break;
686   case ir_txl:
687      inst = emit(FS_OPCODE_TXL, dst);
688      break;
689   case ir_txd:
690      inst = emit(FS_OPCODE_TXD, dst);
691      break;
692   case ir_txf:
693      assert(!"GLSL 1.30 features unsupported");
694      break;
695   }
696   inst->base_mrf = base_mrf;
697   inst->mlen = mlen;
698   inst->header_present = true;
699
700   if (simd16) {
701      for (int i = 0; i < 4; i++) {
702	 emit(BRW_OPCODE_MOV, orig_dst, dst);
703	 orig_dst.reg_offset++;
704	 dst.reg_offset += 2;
705      }
706   }
707
708   return inst;
709}
710
711/* gen5's sampler has slots for u, v, r, array index, then optional
712 * parameters like shadow comparitor or LOD bias.  If optional
713 * parameters aren't present, those base slots are optional and don't
714 * need to be included in the message.
715 *
716 * We don't fill in the unnecessary slots regardless, which may look
717 * surprising in the disassembly.
718 */
719fs_inst *
720fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
721			      int sampler)
722{
723   int mlen = 0;
724   int base_mrf = 2;
725   int reg_width = c->dispatch_width / 8;
726   bool header_present = false;
727
728   if (ir->offset) {
729      /* The offsets set up by the ir_texture visitor are in the
730       * m1 header, so we can't go headerless.
731       */
732      header_present = true;
733      mlen++;
734      base_mrf--;
735   }
736
737   for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
738      fs_inst *inst = emit(BRW_OPCODE_MOV,
739			   fs_reg(MRF, base_mrf + mlen + i * reg_width),
740			   coordinate);
741      if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
742	 inst->saturate = true;
743      coordinate.reg_offset++;
744   }
745   mlen += ir->coordinate->type->vector_elements * reg_width;
746
747   if (ir->shadow_comparitor && ir->op != ir_txd) {
748      mlen = MAX2(mlen, header_present + 4 * reg_width);
749
750      this->result = reg_undef;
751      ir->shadow_comparitor->accept(this);
752      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
753      mlen += reg_width;
754   }
755
756   fs_inst *inst = NULL;
757   switch (ir->op) {
758   case ir_tex:
759      inst = emit(FS_OPCODE_TEX, dst);
760      break;
761   case ir_txb:
762      this->result = reg_undef;
763      ir->lod_info.bias->accept(this);
764      mlen = MAX2(mlen, header_present + 4 * reg_width);
765      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
766      mlen += reg_width;
767
768      inst = emit(FS_OPCODE_TXB, dst);
769
770      break;
771   case ir_txl:
772      this->result = reg_undef;
773      ir->lod_info.lod->accept(this);
774      mlen = MAX2(mlen, header_present + 4 * reg_width);
775      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
776      mlen += reg_width;
777
778      inst = emit(FS_OPCODE_TXL, dst);
779      break;
780   case ir_txd: {
781      ir->lod_info.grad.dPdx->accept(this);
782      fs_reg dPdx = this->result;
783
784      ir->lod_info.grad.dPdy->accept(this);
785      fs_reg dPdy = this->result;
786
787      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
788
789      /**
790       *  P   =  u,    v,    r
791       * dPdx = dudx, dvdx, drdx
792       * dPdy = dudy, dvdy, drdy
793       *
794       * Load up these values:
795       * - dudx   dudy   dvdx   dvdy   drdx   drdy
796       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
797       */
798      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
799	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
800	 dPdx.reg_offset++;
801	 mlen += reg_width;
802
803	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
804	 dPdy.reg_offset++;
805	 mlen += reg_width;
806      }
807
808      inst = emit(FS_OPCODE_TXD, dst);
809      break;
810   }
811   case ir_txf:
812      assert(!"GLSL 1.30 features unsupported");
813      break;
814   }
815   inst->base_mrf = base_mrf;
816   inst->mlen = mlen;
817   inst->header_present = header_present;
818
819   if (mlen > 11) {
820      fail("Message length >11 disallowed by hardware\n");
821   }
822
823   return inst;
824}
825
826fs_inst *
827fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
828			      int sampler)
829{
830   int mlen = 0;
831   int base_mrf = 2;
832   int reg_width = c->dispatch_width / 8;
833   bool header_present = false;
834
835   if (ir->offset) {
836      /* The offsets set up by the ir_texture visitor are in the
837       * m1 header, so we can't go headerless.
838       */
839      header_present = true;
840      mlen++;
841      base_mrf--;
842   }
843
844   if (ir->shadow_comparitor && ir->op != ir_txd) {
845      ir->shadow_comparitor->accept(this);
846      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
847      mlen += reg_width;
848   }
849
850   /* Set up the LOD info */
851   switch (ir->op) {
852   case ir_tex:
853      break;
854   case ir_txb:
855      ir->lod_info.bias->accept(this);
856      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
857      mlen += reg_width;
858      break;
859   case ir_txl:
860      ir->lod_info.lod->accept(this);
861      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
862      mlen += reg_width;
863      break;
864   case ir_txd: {
865      if (c->dispatch_width == 16)
866	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
867
868      ir->lod_info.grad.dPdx->accept(this);
869      fs_reg dPdx = this->result;
870
871      ir->lod_info.grad.dPdy->accept(this);
872      fs_reg dPdy = this->result;
873
874      /* Load dPdx and the coordinate together:
875       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
876       */
877      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
878	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
879			      coordinate);
880	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
881	    inst->saturate = true;
882	 coordinate.reg_offset++;
883	 mlen += reg_width;
884
885	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
886	 dPdx.reg_offset++;
887	 mlen += reg_width;
888
889	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
890	 dPdy.reg_offset++;
891	 mlen += reg_width;
892      }
893      break;
894   }
895   case ir_txf:
896      assert(!"GLSL 1.30 features unsupported");
897      break;
898   }
899
900   /* Set up the coordinate (except for TXD where it was done earlier) */
901   if (ir->op != ir_txd) {
902      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
903	 fs_inst *inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
904			      coordinate);
905	 if (i < 3 && c->key.gl_clamp_mask[i] & (1 << sampler))
906	    inst->saturate = true;
907	 coordinate.reg_offset++;
908	 mlen += reg_width;
909      }
910   }
911
912   /* Generate the SEND */
913   fs_inst *inst = NULL;
914   switch (ir->op) {
915   case ir_tex: inst = emit(FS_OPCODE_TEX, dst); break;
916   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
917   case ir_txl: inst = emit(FS_OPCODE_TXL, dst); break;
918   case ir_txd: inst = emit(FS_OPCODE_TXD, dst); break;
919   case ir_txf: assert(!"TXF unsupported.");
920   }
921   inst->base_mrf = base_mrf;
922   inst->mlen = mlen;
923   inst->header_present = header_present;
924
925   if (mlen > 11) {
926      fail("Message length >11 disallowed by hardware\n");
927   }
928
929   return inst;
930}
931
932void
933fs_visitor::visit(ir_texture *ir)
934{
935   fs_inst *inst = NULL;
936
937   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
938   sampler = fp->Base.SamplerUnits[sampler];
939
940   /* Our hardware doesn't have a sample_d_c message, so shadow compares
941    * for textureGrad/TXD need to be emulated with instructions.
942    */
943   bool hw_compare_supported = ir->op != ir_txd;
944   if (ir->shadow_comparitor && !hw_compare_supported) {
945      assert(c->key.compare_funcs[sampler] != GL_NONE);
946      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
947      if (c->key.compare_funcs[sampler] == GL_ALWAYS)
948	 return swizzle_result(ir, fs_reg(1.0f), sampler);
949      else if (c->key.compare_funcs[sampler] == GL_NEVER)
950	 return swizzle_result(ir, fs_reg(0.0f), sampler);
951   }
952
953   this->result = reg_undef;
954   ir->coordinate->accept(this);
955   fs_reg coordinate = this->result;
956
957   if (ir->offset != NULL) {
958      ir_constant *offset = ir->offset->as_constant();
959      assert(offset != NULL);
960
961      signed char offsets[3];
962      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++)
963	 offsets[i] = (signed char) offset->value.i[i];
964
965      /* Combine all three offsets into a single unsigned dword:
966       *
967       *    bits 11:8 - U Offset (X component)
968       *    bits  7:4 - V Offset (Y component)
969       *    bits  3:0 - R Offset (Z component)
970       */
971      unsigned offset_bits = 0;
972      for (unsigned i = 0; i < ir->offset->type->vector_elements; i++) {
973	 const unsigned shift = 4 * (2 - i);
974	 offset_bits |= (offsets[i] << shift) & (0xF << shift);
975      }
976
977      /* Explicitly set up the message header by copying g0 to msg reg m1. */
978      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
979	   fs_reg(GRF, 0, BRW_REGISTER_TYPE_UD));
980
981      /* Then set the offset bits in DWord 2 of the message header. */
982      emit(BRW_OPCODE_MOV,
983	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
984			 BRW_REGISTER_TYPE_UD)),
985	   fs_reg(brw_imm_uw(offset_bits)));
986   }
987
988   /* Should be lowered by do_lower_texture_projection */
989   assert(!ir->projector);
990
991   /* The 965 requires the EU to do the normalization of GL rectangle
992    * texture coordinates.  We use the program parameter state
993    * tracking to get the scaling factor.
994    */
995   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
996      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
997      int tokens[STATE_LENGTH] = {
998	 STATE_INTERNAL,
999	 STATE_TEXRECT_SCALE,
1000	 sampler,
1001	 0,
1002	 0
1003      };
1004
1005      if (c->dispatch_width == 16) {
1006	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1007	 this->result = fs_reg(this, ir->type);
1008	 return;
1009      }
1010
1011      c->prog_data.param_convert[c->prog_data.nr_params] =
1012	 PARAM_NO_CONVERT;
1013      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1014	 PARAM_NO_CONVERT;
1015
1016      fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1017      fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1018      GLuint index = _mesa_add_state_reference(params,
1019					       (gl_state_index *)tokens);
1020
1021      this->param_index[c->prog_data.nr_params] = index;
1022      this->param_offset[c->prog_data.nr_params] = 0;
1023      c->prog_data.nr_params++;
1024      this->param_index[c->prog_data.nr_params] = index;
1025      this->param_offset[c->prog_data.nr_params] = 1;
1026      c->prog_data.nr_params++;
1027
1028      fs_reg dst = fs_reg(this, ir->coordinate->type);
1029      fs_reg src = coordinate;
1030      coordinate = dst;
1031
1032      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1033      dst.reg_offset++;
1034      src.reg_offset++;
1035      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1036   }
1037
1038   /* Writemasking doesn't eliminate channels on SIMD8 texture
1039    * samples, so don't worry about them.
1040    */
1041   fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1042
1043   if (intel->gen >= 7) {
1044      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1045   } else if (intel->gen >= 5) {
1046      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1047   } else {
1048      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1049   }
1050
1051   /* If there's an offset, we already set up m1.  To avoid the implied move,
1052    * use the null register.  Otherwise, we want an implied move from g0.
1053    */
1054   if (ir->offset != NULL || !inst->header_present)
1055      inst->src[0] = reg_undef;
1056   else
1057      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1058
1059   inst->sampler = sampler;
1060
1061   if (ir->shadow_comparitor) {
1062      if (hw_compare_supported) {
1063	 inst->shadow_compare = true;
1064      } else {
1065	 ir->shadow_comparitor->accept(this);
1066	 fs_reg ref = this->result;
1067
1068	 fs_reg value = dst;
1069	 dst = fs_reg(this, glsl_type::vec4_type);
1070
1071	 /* FINISHME: This needs to be done pre-filtering. */
1072
1073	 uint32_t conditional = 0;
1074	 switch (c->key.compare_funcs[sampler]) {
1075	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1076	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1077	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1078	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1079	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1080	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1081	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1082	 default: assert(!"Should not get here: bad shadow compare function");
1083	 }
1084
1085	 /* Use conditional moves to load 0 or 1 as the result */
1086	 this->current_annotation = "manual shadow comparison";
1087	 for (int i = 0; i < 4; i++) {
1088	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1089
1090	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1091	    inst->conditional_mod = conditional;
1092
1093	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1094	    inst->predicated = true;
1095
1096	    dst.reg_offset++;
1097	    value.reg_offset++;
1098	 }
1099	 dst.reg_offset = 0;
1100      }
1101   }
1102
1103   swizzle_result(ir, dst, sampler);
1104}
1105
1106/**
1107 * Swizzle the result of a texture result.  This is necessary for
1108 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1109 */
1110void
1111fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1112{
1113   this->result = orig_val;
1114
1115   if (ir->type == glsl_type::float_type) {
1116      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1117      assert(ir->sampler->type->sampler_shadow);
1118   } else if (c->key.tex_swizzles[sampler] != SWIZZLE_NOOP) {
1119      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1120
1121      for (int i = 0; i < 4; i++) {
1122	 int swiz = GET_SWZ(c->key.tex_swizzles[sampler], i);
1123	 fs_reg l = swizzled_result;
1124	 l.reg_offset += i;
1125
1126	 if (swiz == SWIZZLE_ZERO) {
1127	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1128	 } else if (swiz == SWIZZLE_ONE) {
1129	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1130	 } else {
1131	    fs_reg r = orig_val;
1132	    r.reg_offset += GET_SWZ(c->key.tex_swizzles[sampler], i);
1133	    emit(BRW_OPCODE_MOV, l, r);
1134	 }
1135      }
1136      this->result = swizzled_result;
1137   }
1138}
1139
1140void
1141fs_visitor::visit(ir_swizzle *ir)
1142{
1143   this->result = reg_undef;
1144   ir->val->accept(this);
1145   fs_reg val = this->result;
1146
1147   if (ir->type->vector_elements == 1) {
1148      this->result.reg_offset += ir->mask.x;
1149      return;
1150   }
1151
1152   fs_reg result = fs_reg(this, ir->type);
1153   this->result = result;
1154
1155   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1156      fs_reg channel = val;
1157      int swiz = 0;
1158
1159      switch (i) {
1160      case 0:
1161	 swiz = ir->mask.x;
1162	 break;
1163      case 1:
1164	 swiz = ir->mask.y;
1165	 break;
1166      case 2:
1167	 swiz = ir->mask.z;
1168	 break;
1169      case 3:
1170	 swiz = ir->mask.w;
1171	 break;
1172      }
1173
1174      channel.reg_offset += swiz;
1175      emit(BRW_OPCODE_MOV, result, channel);
1176      result.reg_offset++;
1177   }
1178}
1179
1180void
1181fs_visitor::visit(ir_discard *ir)
1182{
1183   assert(ir->condition == NULL); /* FINISHME */
1184
1185   emit(FS_OPCODE_DISCARD);
1186   kill_emitted = true;
1187}
1188
1189void
1190fs_visitor::visit(ir_constant *ir)
1191{
1192   /* Set this->result to reg at the bottom of the function because some code
1193    * paths will cause this visitor to be applied to other fields.  This will
1194    * cause the value stored in this->result to be modified.
1195    *
1196    * Make reg constant so that it doesn't get accidentally modified along the
1197    * way.  Yes, I actually had this problem. :(
1198    */
1199   const fs_reg reg(this, ir->type);
1200   fs_reg dst_reg = reg;
1201
1202   if (ir->type->is_array()) {
1203      const unsigned size = type_size(ir->type->fields.array);
1204
1205      for (unsigned i = 0; i < ir->type->length; i++) {
1206	 this->result = reg_undef;
1207	 ir->array_elements[i]->accept(this);
1208	 fs_reg src_reg = this->result;
1209
1210	 dst_reg.type = src_reg.type;
1211	 for (unsigned j = 0; j < size; j++) {
1212	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1213	    src_reg.reg_offset++;
1214	    dst_reg.reg_offset++;
1215	 }
1216      }
1217   } else if (ir->type->is_record()) {
1218      foreach_list(node, &ir->components) {
1219	 ir_instruction *const field = (ir_instruction *) node;
1220	 const unsigned size = type_size(field->type);
1221
1222	 this->result = reg_undef;
1223	 field->accept(this);
1224	 fs_reg src_reg = this->result;
1225
1226	 dst_reg.type = src_reg.type;
1227	 for (unsigned j = 0; j < size; j++) {
1228	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1229	    src_reg.reg_offset++;
1230	    dst_reg.reg_offset++;
1231	 }
1232      }
1233   } else {
1234      const unsigned size = type_size(ir->type);
1235
1236      for (unsigned i = 0; i < size; i++) {
1237	 switch (ir->type->base_type) {
1238	 case GLSL_TYPE_FLOAT:
1239	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1240	    break;
1241	 case GLSL_TYPE_UINT:
1242	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1243	    break;
1244	 case GLSL_TYPE_INT:
1245	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1246	    break;
1247	 case GLSL_TYPE_BOOL:
1248	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1249	    break;
1250	 default:
1251	    assert(!"Non-float/uint/int/bool constant");
1252	 }
1253	 dst_reg.reg_offset++;
1254      }
1255   }
1256
1257   this->result = reg;
1258}
1259
1260void
1261fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1262{
1263   ir_expression *expr = ir->as_expression();
1264
1265   if (expr) {
1266      fs_reg op[2];
1267      fs_inst *inst;
1268
1269      assert(expr->get_num_operands() <= 2);
1270      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1271	 assert(expr->operands[i]->type->is_scalar());
1272
1273	 this->result = reg_undef;
1274	 expr->operands[i]->accept(this);
1275	 op[i] = this->result;
1276      }
1277
1278      switch (expr->operation) {
1279      case ir_unop_logic_not:
1280	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1281	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1282	 break;
1283
1284      case ir_binop_logic_xor:
1285	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1286	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1287	 break;
1288
1289      case ir_binop_logic_or:
1290	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1291	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1292	 break;
1293
1294      case ir_binop_logic_and:
1295	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1296	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1297	 break;
1298
1299      case ir_unop_f2b:
1300	 if (intel->gen >= 6) {
1301	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1302	 } else {
1303	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1304	 }
1305	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1306	 break;
1307
1308      case ir_unop_i2b:
1309	 if (intel->gen >= 6) {
1310	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1311	 } else {
1312	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1313	 }
1314	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1315	 break;
1316
1317      case ir_binop_greater:
1318      case ir_binop_gequal:
1319      case ir_binop_less:
1320      case ir_binop_lequal:
1321      case ir_binop_equal:
1322      case ir_binop_all_equal:
1323      case ir_binop_nequal:
1324      case ir_binop_any_nequal:
1325	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1326	 inst->conditional_mod =
1327	    brw_conditional_for_comparison(expr->operation);
1328	 break;
1329
1330      default:
1331	 assert(!"not reached");
1332	 fail("bad cond code\n");
1333	 break;
1334      }
1335      return;
1336   }
1337
1338   this->result = reg_undef;
1339   ir->accept(this);
1340
1341   if (intel->gen >= 6) {
1342      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1343      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1344   } else {
1345      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1346      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1347   }
1348}
1349
1350/**
1351 * Emit a gen6 IF statement with the comparison folded into the IF
1352 * instruction.
1353 */
1354void
1355fs_visitor::emit_if_gen6(ir_if *ir)
1356{
1357   ir_expression *expr = ir->condition->as_expression();
1358
1359   if (expr) {
1360      fs_reg op[2];
1361      fs_inst *inst;
1362      fs_reg temp;
1363
1364      assert(expr->get_num_operands() <= 2);
1365      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1366	 assert(expr->operands[i]->type->is_scalar());
1367
1368	 this->result = reg_undef;
1369	 expr->operands[i]->accept(this);
1370	 op[i] = this->result;
1371      }
1372
1373      switch (expr->operation) {
1374      case ir_unop_logic_not:
1375	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1376	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1377	 return;
1378
1379      case ir_binop_logic_xor:
1380	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1381	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1382	 return;
1383
1384      case ir_binop_logic_or:
1385	 temp = fs_reg(this, glsl_type::bool_type);
1386	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1387	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1388	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1389	 return;
1390
1391      case ir_binop_logic_and:
1392	 temp = fs_reg(this, glsl_type::bool_type);
1393	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1394	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1395	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1396	 return;
1397
1398      case ir_unop_f2b:
1399	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1400	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1401	 return;
1402
1403      case ir_unop_i2b:
1404	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1405	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1406	 return;
1407
1408      case ir_binop_greater:
1409      case ir_binop_gequal:
1410      case ir_binop_less:
1411      case ir_binop_lequal:
1412      case ir_binop_equal:
1413      case ir_binop_all_equal:
1414      case ir_binop_nequal:
1415      case ir_binop_any_nequal:
1416	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1417	 inst->conditional_mod =
1418	    brw_conditional_for_comparison(expr->operation);
1419	 return;
1420      default:
1421	 assert(!"not reached");
1422	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1423	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1424	 fail("bad condition\n");
1425	 return;
1426      }
1427      return;
1428   }
1429
1430   this->result = reg_undef;
1431   ir->condition->accept(this);
1432
1433   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1434   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1435}
1436
1437void
1438fs_visitor::visit(ir_if *ir)
1439{
1440   fs_inst *inst;
1441
1442   if (intel->gen != 6 && c->dispatch_width == 16) {
1443      fail("Can't support (non-uniform) control flow on 16-wide\n");
1444   }
1445
1446   /* Don't point the annotation at the if statement, because then it plus
1447    * the then and else blocks get printed.
1448    */
1449   this->base_ir = ir->condition;
1450
1451   if (intel->gen == 6) {
1452      emit_if_gen6(ir);
1453   } else {
1454      emit_bool_to_cond_code(ir->condition);
1455
1456      inst = emit(BRW_OPCODE_IF);
1457      inst->predicated = true;
1458   }
1459
1460   foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1461      ir_instruction *ir = (ir_instruction *)iter.get();
1462      this->base_ir = ir;
1463      this->result = reg_undef;
1464      ir->accept(this);
1465   }
1466
1467   if (!ir->else_instructions.is_empty()) {
1468      emit(BRW_OPCODE_ELSE);
1469
1470      foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1471	 ir_instruction *ir = (ir_instruction *)iter.get();
1472	 this->base_ir = ir;
1473	 this->result = reg_undef;
1474	 ir->accept(this);
1475      }
1476   }
1477
1478   emit(BRW_OPCODE_ENDIF);
1479}
1480
1481void
1482fs_visitor::visit(ir_loop *ir)
1483{
1484   fs_reg counter = reg_undef;
1485
1486   if (c->dispatch_width == 16) {
1487      fail("Can't support (non-uniform) control flow on 16-wide\n");
1488   }
1489
1490   if (ir->counter) {
1491      this->base_ir = ir->counter;
1492      ir->counter->accept(this);
1493      counter = *(variable_storage(ir->counter));
1494
1495      if (ir->from) {
1496	 this->result = counter;
1497
1498	 this->base_ir = ir->from;
1499	 this->result = counter;
1500	 ir->from->accept(this);
1501
1502	 if (!this->result.equals(&counter))
1503	    emit(BRW_OPCODE_MOV, counter, this->result);
1504      }
1505   }
1506
1507   emit(BRW_OPCODE_DO);
1508
1509   if (ir->to) {
1510      this->base_ir = ir->to;
1511      this->result = reg_undef;
1512      ir->to->accept(this);
1513
1514      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1515      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1516
1517      inst = emit(BRW_OPCODE_BREAK);
1518      inst->predicated = true;
1519   }
1520
1521   foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1522      ir_instruction *ir = (ir_instruction *)iter.get();
1523
1524      this->base_ir = ir;
1525      this->result = reg_undef;
1526      ir->accept(this);
1527   }
1528
1529   if (ir->increment) {
1530      this->base_ir = ir->increment;
1531      this->result = reg_undef;
1532      ir->increment->accept(this);
1533      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1534   }
1535
1536   emit(BRW_OPCODE_WHILE);
1537}
1538
1539void
1540fs_visitor::visit(ir_loop_jump *ir)
1541{
1542   switch (ir->mode) {
1543   case ir_loop_jump::jump_break:
1544      emit(BRW_OPCODE_BREAK);
1545      break;
1546   case ir_loop_jump::jump_continue:
1547      emit(BRW_OPCODE_CONTINUE);
1548      break;
1549   }
1550}
1551
1552void
1553fs_visitor::visit(ir_call *ir)
1554{
1555   assert(!"FINISHME");
1556}
1557
1558void
1559fs_visitor::visit(ir_return *ir)
1560{
1561   assert(!"FINISHME");
1562}
1563
1564void
1565fs_visitor::visit(ir_function *ir)
1566{
1567   /* Ignore function bodies other than main() -- we shouldn't see calls to
1568    * them since they should all be inlined before we get to ir_to_mesa.
1569    */
1570   if (strcmp(ir->name, "main") == 0) {
1571      const ir_function_signature *sig;
1572      exec_list empty;
1573
1574      sig = ir->matching_signature(&empty);
1575
1576      assert(sig);
1577
1578      foreach_iter(exec_list_iterator, iter, sig->body) {
1579	 ir_instruction *ir = (ir_instruction *)iter.get();
1580	 this->base_ir = ir;
1581	 this->result = reg_undef;
1582	 ir->accept(this);
1583      }
1584   }
1585}
1586
1587void
1588fs_visitor::visit(ir_function_signature *ir)
1589{
1590   assert(!"not reached");
1591   (void)ir;
1592}
1593
1594fs_inst *
1595fs_visitor::emit(fs_inst inst)
1596{
1597   fs_inst *list_inst = new(mem_ctx) fs_inst;
1598   *list_inst = inst;
1599
1600   if (force_uncompressed_stack > 0)
1601      list_inst->force_uncompressed = true;
1602   else if (force_sechalf_stack > 0)
1603      list_inst->force_sechalf = true;
1604
1605   list_inst->annotation = this->current_annotation;
1606   list_inst->ir = this->base_ir;
1607
1608   this->instructions.push_tail(list_inst);
1609
1610   return list_inst;
1611}
1612
1613/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1614void
1615fs_visitor::emit_dummy_fs()
1616{
1617   /* Everyone's favorite color. */
1618   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f));
1619   emit(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f));
1620   emit(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f));
1621   emit(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f));
1622
1623   fs_inst *write;
1624   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1625   write->base_mrf = 2;
1626}
1627
1628/* The register location here is relative to the start of the URB
1629 * data.  It will get adjusted to be a real location before
1630 * generate_code() time.
1631 */
1632struct brw_reg
1633fs_visitor::interp_reg(int location, int channel)
1634{
1635   int regnr = urb_setup[location] * 2 + channel / 2;
1636   int stride = (channel & 1) * 4;
1637
1638   assert(urb_setup[location] != -1);
1639
1640   return brw_vec1_grf(regnr, stride);
1641}
1642
1643/** Emits the interpolation for the varying inputs. */
1644void
1645fs_visitor::emit_interpolation_setup_gen4()
1646{
1647   this->current_annotation = "compute pixel centers";
1648   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1649   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1650   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1651   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1652
1653   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1654   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1655
1656   this->current_annotation = "compute pixel deltas from v0";
1657   if (brw->has_pln) {
1658      this->delta_x = fs_reg(this, glsl_type::vec2_type);
1659      this->delta_y = this->delta_x;
1660      this->delta_y.reg_offset++;
1661   } else {
1662      this->delta_x = fs_reg(this, glsl_type::float_type);
1663      this->delta_y = fs_reg(this, glsl_type::float_type);
1664   }
1665   emit(BRW_OPCODE_ADD, this->delta_x,
1666	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1667   emit(BRW_OPCODE_ADD, this->delta_y,
1668	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1669
1670   this->current_annotation = "compute pos.w and 1/pos.w";
1671   /* Compute wpos.w.  It's always in our setup, since it's needed to
1672    * interpolate the other attributes.
1673    */
1674   this->wpos_w = fs_reg(this, glsl_type::float_type);
1675   emit(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1676	interp_reg(FRAG_ATTRIB_WPOS, 3));
1677   /* Compute the pixel 1/W value from wpos.w. */
1678   this->pixel_w = fs_reg(this, glsl_type::float_type);
1679   emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1680   this->current_annotation = NULL;
1681}
1682
1683/** Emits the interpolation for the varying inputs. */
1684void
1685fs_visitor::emit_interpolation_setup_gen6()
1686{
1687   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1688
1689   /* If the pixel centers end up used, the setup is the same as for gen4. */
1690   this->current_annotation = "compute pixel centers";
1691   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1692   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1693   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1694   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1695   emit(BRW_OPCODE_ADD,
1696	int_pixel_x,
1697	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1698	fs_reg(brw_imm_v(0x10101010)));
1699   emit(BRW_OPCODE_ADD,
1700	int_pixel_y,
1701	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1702	fs_reg(brw_imm_v(0x11001100)));
1703
1704   /* As of gen6, we can no longer mix float and int sources.  We have
1705    * to turn the integer pixel centers into floats for their actual
1706    * use.
1707    */
1708   this->pixel_x = fs_reg(this, glsl_type::float_type);
1709   this->pixel_y = fs_reg(this, glsl_type::float_type);
1710   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1711   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1712
1713   this->current_annotation = "compute pos.w";
1714   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1715   this->wpos_w = fs_reg(this, glsl_type::float_type);
1716   emit_math(FS_OPCODE_RCP, this->wpos_w, this->pixel_w);
1717
1718   this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1719   this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1720
1721   this->current_annotation = NULL;
1722}
1723
1724void
1725fs_visitor::emit_color_write(int index, int first_color_mrf, fs_reg color)
1726{
1727   int reg_width = c->dispatch_width / 8;
1728
1729   if (c->dispatch_width == 8 || intel->gen == 6) {
1730      /* SIMD8 write looks like:
1731       * m + 0: r0
1732       * m + 1: r1
1733       * m + 2: g0
1734       * m + 3: g1
1735       *
1736       * gen6 SIMD16 DP write looks like:
1737       * m + 0: r0
1738       * m + 1: r1
1739       * m + 2: g0
1740       * m + 3: g1
1741       * m + 4: b0
1742       * m + 5: b1
1743       * m + 6: a0
1744       * m + 7: a1
1745       */
1746      emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index * reg_width),
1747	   color);
1748   } else {
1749      /* pre-gen6 SIMD16 single source DP write looks like:
1750       * m + 0: r0
1751       * m + 1: g0
1752       * m + 2: b0
1753       * m + 3: a0
1754       * m + 4: r1
1755       * m + 5: g1
1756       * m + 6: b1
1757       * m + 7: a1
1758       */
1759      if (brw->has_compr4) {
1760	 /* By setting the high bit of the MRF register number, we
1761	  * indicate that we want COMPR4 mode - instead of doing the
1762	  * usual destination + 1 for the second half we get
1763	  * destination + 4.
1764	  */
1765	 emit(BRW_OPCODE_MOV,
1766	      fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index), color);
1767      } else {
1768	 push_force_uncompressed();
1769	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index), color);
1770	 pop_force_uncompressed();
1771
1772	 push_force_sechalf();
1773	 color.sechalf = true;
1774	 emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4), color);
1775	 pop_force_sechalf();
1776	 color.sechalf = false;
1777      }
1778   }
1779}
1780
1781void
1782fs_visitor::emit_fb_writes()
1783{
1784   this->current_annotation = "FB write header";
1785   GLboolean header_present = GL_TRUE;
1786   int nr = 2;
1787   int reg_width = c->dispatch_width / 8;
1788
1789   if (intel->gen >= 6 &&
1790       !this->kill_emitted &&
1791       c->key.nr_color_regions == 1) {
1792      header_present = false;
1793   }
1794
1795   if (header_present) {
1796      /* m2, m3 header */
1797      nr += 2;
1798   }
1799
1800   if (c->aa_dest_stencil_reg) {
1801      push_force_uncompressed();
1802      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1803	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
1804      pop_force_uncompressed();
1805   }
1806
1807   /* Reserve space for color. It'll be filled in per MRT below. */
1808   int color_mrf = nr;
1809   nr += 4 * reg_width;
1810
1811   if (c->source_depth_to_render_target) {
1812      if (intel->gen == 6 && c->dispatch_width == 16) {
1813	 /* For outputting oDepth on gen6, SIMD8 writes have to be
1814	  * used.  This would require 8-wide moves of each half to
1815	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
1816	  * Just bail on doing so for now.
1817	  */
1818	 fail("Missing support for simd16 depth writes on gen6\n");
1819      }
1820
1821      if (c->computes_depth) {
1822	 /* Hand over gl_FragDepth. */
1823	 assert(this->frag_depth);
1824	 fs_reg depth = *(variable_storage(this->frag_depth));
1825
1826	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
1827      } else {
1828	 /* Pass through the payload depth. */
1829	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1830	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
1831      }
1832      nr += reg_width;
1833   }
1834
1835   if (c->dest_depth_reg) {
1836      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
1837	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
1838      nr += reg_width;
1839   }
1840
1841   fs_reg color = reg_undef;
1842   if (this->frag_color)
1843      color = *(variable_storage(this->frag_color));
1844   else if (this->frag_data) {
1845      color = *(variable_storage(this->frag_data));
1846      color.type = BRW_REGISTER_TYPE_F;
1847   }
1848
1849   for (int target = 0; target < c->key.nr_color_regions; target++) {
1850      this->current_annotation = ralloc_asprintf(this->mem_ctx,
1851						 "FB write target %d",
1852						 target);
1853      if (this->frag_color || this->frag_data) {
1854	 for (int i = 0; i < 4; i++) {
1855	    emit_color_write(i, color_mrf, color);
1856	    color.reg_offset++;
1857	 }
1858      }
1859
1860      if (this->frag_color)
1861	 color.reg_offset -= 4;
1862
1863      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1864      inst->target = target;
1865      inst->base_mrf = 2;
1866      inst->mlen = nr;
1867      if (target == c->key.nr_color_regions - 1)
1868	 inst->eot = true;
1869      inst->header_present = header_present;
1870   }
1871
1872   if (c->key.nr_color_regions == 0) {
1873      if (c->key.alpha_test && (this->frag_color || this->frag_data)) {
1874	 /* If the alpha test is enabled but there's no color buffer,
1875	  * we still need to send alpha out the pipeline to our null
1876	  * renderbuffer.
1877	  */
1878	 color.reg_offset += 3;
1879	 emit_color_write(3, color_mrf, color);
1880      }
1881
1882      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
1883      inst->base_mrf = 2;
1884      inst->mlen = nr;
1885      inst->eot = true;
1886      inst->header_present = header_present;
1887   }
1888
1889   this->current_annotation = NULL;
1890}
1891