brw_fs_visitor.cpp revision 99cd475cc9d3bd54140f84c24b55b9e05d7310a1
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24/** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR.  The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30extern "C" {
31
32#include <sys/types.h>
33
34#include "main/macros.h"
35#include "main/shaderobj.h"
36#include "main/uniforms.h"
37#include "program/prog_parameter.h"
38#include "program/prog_print.h"
39#include "program/prog_optimize.h"
40#include "program/register_allocate.h"
41#include "program/sampler.h"
42#include "program/hash_table.h"
43#include "brw_context.h"
44#include "brw_eu.h"
45#include "brw_wm.h"
46}
47#include "brw_shader.h"
48#include "brw_fs.h"
49#include "glsl/glsl_types.h"
50#include "glsl/ir_optimization.h"
51#include "glsl/ir_print_visitor.h"
52
53void
54fs_visitor::visit(ir_variable *ir)
55{
56   fs_reg *reg = NULL;
57
58   if (variable_storage(ir))
59      return;
60
61   if (ir->mode == ir_var_in) {
62      if (!strcmp(ir->name, "gl_FragCoord")) {
63	 reg = emit_fragcoord_interpolation(ir);
64      } else if (!strcmp(ir->name, "gl_FrontFacing")) {
65	 reg = emit_frontfacing_interpolation(ir);
66      } else {
67	 reg = emit_general_interpolation(ir);
68      }
69      assert(reg);
70      hash_table_insert(this->variable_ht, reg, ir);
71      return;
72   } else if (ir->mode == ir_var_out) {
73      reg = new(this->mem_ctx) fs_reg(this, ir->type);
74
75      if (ir->location == FRAG_RESULT_COLOR) {
76	 /* Writing gl_FragColor outputs to all color regions. */
77	 for (int i = 0; i < MAX2(c->key.nr_color_regions, 1); i++) {
78	    this->outputs[i] = *reg;
79	 }
80      } else if (ir->location == FRAG_RESULT_DEPTH) {
81	 this->frag_depth = ir;
82      } else {
83	 /* gl_FragData or a user-defined FS output */
84	 assert(ir->location >= FRAG_RESULT_DATA0 &&
85		ir->location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
86
87	 /* General color output. */
88	 for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) {
89	    int output = ir->location - FRAG_RESULT_DATA0 + i;
90	    this->outputs[output] = *reg;
91	    this->outputs[output].reg_offset += 4 * i;
92	 }
93      }
94   } else if (ir->mode == ir_var_uniform) {
95      int param_index = c->prog_data.nr_params;
96
97      if (c->dispatch_width == 16) {
98	 if (!variable_storage(ir)) {
99	    fail("Failed to find uniform '%s' in 16-wide\n", ir->name);
100	 }
101	 return;
102      }
103
104      if (!strncmp(ir->name, "gl_", 3)) {
105	 setup_builtin_uniform_values(ir);
106      } else {
107	 setup_uniform_values(ir->location, ir->type);
108      }
109
110      reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
111      reg->type = brw_type_for_base_type(ir->type);
112   }
113
114   if (!reg)
115      reg = new(this->mem_ctx) fs_reg(this, ir->type);
116
117   hash_table_insert(this->variable_ht, reg, ir);
118}
119
120void
121fs_visitor::visit(ir_dereference_variable *ir)
122{
123   fs_reg *reg = variable_storage(ir->var);
124   this->result = *reg;
125}
126
127void
128fs_visitor::visit(ir_dereference_record *ir)
129{
130   const glsl_type *struct_type = ir->record->type;
131
132   ir->record->accept(this);
133
134   unsigned int offset = 0;
135   for (unsigned int i = 0; i < struct_type->length; i++) {
136      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
137	 break;
138      offset += type_size(struct_type->fields.structure[i].type);
139   }
140   this->result.reg_offset += offset;
141   this->result.type = brw_type_for_base_type(ir->type);
142}
143
144void
145fs_visitor::visit(ir_dereference_array *ir)
146{
147   ir_constant *index;
148   int element_size;
149
150   ir->array->accept(this);
151   index = ir->array_index->as_constant();
152
153   element_size = type_size(ir->type);
154   this->result.type = brw_type_for_base_type(ir->type);
155
156   if (index) {
157      assert(this->result.file == UNIFORM || this->result.file == GRF);
158      this->result.reg_offset += index->value.i[0] * element_size;
159   } else {
160      assert(!"FINISHME: non-constant array element");
161   }
162}
163
164/* Instruction selection: Produce a MOV.sat instead of
165 * MIN(MAX(val, 0), 1) when possible.
166 */
167bool
168fs_visitor::try_emit_saturate(ir_expression *ir)
169{
170   ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
171
172   if (!sat_val)
173      return false;
174
175   sat_val->accept(this);
176   fs_reg src = this->result;
177
178   this->result = fs_reg(this, ir->type);
179   fs_inst *inst = emit(BRW_OPCODE_MOV, this->result, src);
180   inst->saturate = true;
181
182   return true;
183}
184
185bool
186fs_visitor::try_emit_mad(ir_expression *ir, int mul_arg)
187{
188   /* 3-src instructions were introduced in gen6. */
189   if (intel->gen < 6)
190      return false;
191
192   /* MAD can only handle floating-point data. */
193   if (ir->type != glsl_type::float_type)
194      return false;
195
196   ir_rvalue *nonmul = ir->operands[1 - mul_arg];
197   ir_expression *mul = ir->operands[mul_arg]->as_expression();
198
199   if (!mul || mul->operation != ir_binop_mul)
200      return false;
201
202   if (nonmul->as_constant() ||
203       mul->operands[0]->as_constant() ||
204       mul->operands[1]->as_constant())
205      return false;
206
207   nonmul->accept(this);
208   fs_reg src0 = this->result;
209
210   mul->operands[0]->accept(this);
211   fs_reg src1 = this->result;
212
213   mul->operands[1]->accept(this);
214   fs_reg src2 = this->result;
215
216   this->result = fs_reg(this, ir->type);
217   emit(BRW_OPCODE_MAD, this->result, src0, src1, src2);
218
219   return true;
220}
221
222void
223fs_visitor::visit(ir_expression *ir)
224{
225   unsigned int operand;
226   fs_reg op[2], temp;
227   fs_inst *inst;
228
229   assert(ir->get_num_operands() <= 2);
230
231   if (try_emit_saturate(ir))
232      return;
233   if (ir->operation == ir_binop_add) {
234      if (try_emit_mad(ir, 0) || try_emit_mad(ir, 1))
235	 return;
236   }
237
238   for (operand = 0; operand < ir->get_num_operands(); operand++) {
239      ir->operands[operand]->accept(this);
240      if (this->result.file == BAD_FILE) {
241	 ir_print_visitor v;
242	 fail("Failed to get tree for expression operand:\n");
243	 ir->operands[operand]->accept(&v);
244      }
245      op[operand] = this->result;
246
247      /* Matrix expression operands should have been broken down to vector
248       * operations already.
249       */
250      assert(!ir->operands[operand]->type->is_matrix());
251      /* And then those vector operands should have been broken down to scalar.
252       */
253      assert(!ir->operands[operand]->type->is_vector());
254   }
255
256   /* Storage for our result.  If our result goes into an assignment, it will
257    * just get copy-propagated out, so no worries.
258    */
259   this->result = fs_reg(this, ir->type);
260
261   switch (ir->operation) {
262   case ir_unop_logic_not:
263      /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
264       * ones complement of the whole register, not just bit 0.
265       */
266      emit(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1));
267      break;
268   case ir_unop_neg:
269      op[0].negate = !op[0].negate;
270      this->result = op[0];
271      break;
272   case ir_unop_abs:
273      op[0].abs = true;
274      op[0].negate = false;
275      this->result = op[0];
276      break;
277   case ir_unop_sign:
278      temp = fs_reg(this, ir->type);
279
280      emit(BRW_OPCODE_MOV, this->result, fs_reg(0.0f));
281
282      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
283      inst->conditional_mod = BRW_CONDITIONAL_G;
284      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(1.0f));
285      inst->predicated = true;
286
287      inst = emit(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f));
288      inst->conditional_mod = BRW_CONDITIONAL_L;
289      inst = emit(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f));
290      inst->predicated = true;
291
292      break;
293   case ir_unop_rcp:
294      emit_math(SHADER_OPCODE_RCP, this->result, op[0]);
295      break;
296
297   case ir_unop_exp2:
298      emit_math(SHADER_OPCODE_EXP2, this->result, op[0]);
299      break;
300   case ir_unop_log2:
301      emit_math(SHADER_OPCODE_LOG2, this->result, op[0]);
302      break;
303   case ir_unop_exp:
304   case ir_unop_log:
305      assert(!"not reached: should be handled by ir_explog_to_explog2");
306      break;
307   case ir_unop_sin:
308   case ir_unop_sin_reduced:
309      emit_math(SHADER_OPCODE_SIN, this->result, op[0]);
310      break;
311   case ir_unop_cos:
312   case ir_unop_cos_reduced:
313      emit_math(SHADER_OPCODE_COS, this->result, op[0]);
314      break;
315
316   case ir_unop_dFdx:
317      emit(FS_OPCODE_DDX, this->result, op[0]);
318      break;
319   case ir_unop_dFdy:
320      emit(FS_OPCODE_DDY, this->result, op[0]);
321      break;
322
323   case ir_binop_add:
324      emit(BRW_OPCODE_ADD, this->result, op[0], op[1]);
325      break;
326   case ir_binop_sub:
327      assert(!"not reached: should be handled by ir_sub_to_add_neg");
328      break;
329
330   case ir_binop_mul:
331      if (ir->type->is_integer()) {
332	 /* For integer multiplication, the MUL uses the low 16 bits
333	  * of one of the operands (src0 on gen6, src1 on gen7).  The
334	  * MACH accumulates in the contribution of the upper 16 bits
335	  * of that operand.
336	  *
337	  * FINISHME: Emit just the MUL if we know an operand is small
338	  * enough.
339	  */
340	 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
341
342	 emit(BRW_OPCODE_MUL, acc, op[0], op[1]);
343	 emit(BRW_OPCODE_MACH, reg_null_d, op[0], op[1]);
344	 emit(BRW_OPCODE_MOV, this->result, fs_reg(acc));
345      } else {
346	 emit(BRW_OPCODE_MUL, this->result, op[0], op[1]);
347      }
348      break;
349   case ir_binop_div:
350      if (intel->gen >= 7 && c->dispatch_width == 16)
351	 fail("16-wide INTDIV unsupported\n");
352
353      /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
354      assert(ir->type->is_integer());
355      emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]);
356      break;
357   case ir_binop_mod:
358      if (intel->gen >= 7 && c->dispatch_width == 16)
359	 fail("16-wide INTDIV unsupported\n");
360
361      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
362      assert(ir->type->is_integer());
363      emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]);
364      break;
365
366   case ir_binop_less:
367   case ir_binop_greater:
368   case ir_binop_lequal:
369   case ir_binop_gequal:
370   case ir_binop_equal:
371   case ir_binop_all_equal:
372   case ir_binop_nequal:
373   case ir_binop_any_nequal:
374      temp = this->result;
375      /* original gen4 does implicit conversion before comparison. */
376      if (intel->gen < 5)
377	 temp.type = op[0].type;
378
379      resolve_ud_negate(&op[0]);
380      resolve_ud_negate(&op[1]);
381
382      inst = emit(BRW_OPCODE_CMP, temp, op[0], op[1]);
383      inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
384      emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1));
385      break;
386
387   case ir_binop_logic_xor:
388      emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
389      break;
390
391   case ir_binop_logic_or:
392      emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
393      break;
394
395   case ir_binop_logic_and:
396      emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
397      break;
398
399   case ir_binop_dot:
400   case ir_unop_any:
401      assert(!"not reached: should be handled by brw_fs_channel_expressions");
402      break;
403
404   case ir_unop_noise:
405      assert(!"not reached: should be handled by lower_noise");
406      break;
407
408   case ir_quadop_vector:
409      assert(!"not reached: should be handled by lower_quadop_vector");
410      break;
411
412   case ir_unop_sqrt:
413      emit_math(SHADER_OPCODE_SQRT, this->result, op[0]);
414      break;
415
416   case ir_unop_rsq:
417      emit_math(SHADER_OPCODE_RSQ, this->result, op[0]);
418      break;
419
420   case ir_unop_i2u:
421      op[0].type = BRW_REGISTER_TYPE_UD;
422      this->result = op[0];
423      break;
424   case ir_unop_u2i:
425      op[0].type = BRW_REGISTER_TYPE_D;
426      this->result = op[0];
427      break;
428   case ir_unop_i2f:
429   case ir_unop_u2f:
430   case ir_unop_b2f:
431   case ir_unop_b2i:
432   case ir_unop_f2i:
433      emit(BRW_OPCODE_MOV, this->result, op[0]);
434      break;
435   case ir_unop_f2b:
436   case ir_unop_i2b:
437      temp = this->result;
438      /* original gen4 does implicit conversion before comparison. */
439      if (intel->gen < 5)
440	 temp.type = op[0].type;
441
442      resolve_ud_negate(&op[0]);
443
444      inst = emit(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f));
445      inst->conditional_mod = BRW_CONDITIONAL_NZ;
446      inst = emit(BRW_OPCODE_AND, this->result, this->result, fs_reg(1));
447      break;
448
449   case ir_unop_trunc:
450      emit(BRW_OPCODE_RNDZ, this->result, op[0]);
451      break;
452   case ir_unop_ceil:
453      op[0].negate = !op[0].negate;
454      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
455      this->result.negate = true;
456      break;
457   case ir_unop_floor:
458      inst = emit(BRW_OPCODE_RNDD, this->result, op[0]);
459      break;
460   case ir_unop_fract:
461      inst = emit(BRW_OPCODE_FRC, this->result, op[0]);
462      break;
463   case ir_unop_round_even:
464      emit(BRW_OPCODE_RNDE, this->result, op[0]);
465      break;
466
467   case ir_binop_min:
468      resolve_ud_negate(&op[0]);
469      resolve_ud_negate(&op[1]);
470
471      if (intel->gen >= 6) {
472	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
473	 inst->conditional_mod = BRW_CONDITIONAL_L;
474      } else {
475	 /* Unalias the destination */
476	 this->result = fs_reg(this, ir->type);
477
478	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
479	 inst->conditional_mod = BRW_CONDITIONAL_L;
480
481	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
482	 inst->predicated = true;
483      }
484      break;
485   case ir_binop_max:
486      resolve_ud_negate(&op[0]);
487      resolve_ud_negate(&op[1]);
488
489      if (intel->gen >= 6) {
490	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
491	 inst->conditional_mod = BRW_CONDITIONAL_GE;
492      } else {
493	 /* Unalias the destination */
494	 this->result = fs_reg(this, ir->type);
495
496	 inst = emit(BRW_OPCODE_CMP, this->result, op[0], op[1]);
497	 inst->conditional_mod = BRW_CONDITIONAL_G;
498
499	 inst = emit(BRW_OPCODE_SEL, this->result, op[0], op[1]);
500	 inst->predicated = true;
501      }
502      break;
503
504   case ir_binop_pow:
505      emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]);
506      break;
507
508   case ir_unop_bit_not:
509      inst = emit(BRW_OPCODE_NOT, this->result, op[0]);
510      break;
511   case ir_binop_bit_and:
512      inst = emit(BRW_OPCODE_AND, this->result, op[0], op[1]);
513      break;
514   case ir_binop_bit_xor:
515      inst = emit(BRW_OPCODE_XOR, this->result, op[0], op[1]);
516      break;
517   case ir_binop_bit_or:
518      inst = emit(BRW_OPCODE_OR, this->result, op[0], op[1]);
519      break;
520
521   case ir_binop_lshift:
522      inst = emit(BRW_OPCODE_SHL, this->result, op[0], op[1]);
523      break;
524
525   case ir_binop_rshift:
526      if (ir->type->base_type == GLSL_TYPE_INT)
527	 inst = emit(BRW_OPCODE_ASR, this->result, op[0], op[1]);
528      else
529	 inst = emit(BRW_OPCODE_SHR, this->result, op[0], op[1]);
530      break;
531   }
532}
533
534void
535fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
536				   const glsl_type *type, bool predicated)
537{
538   switch (type->base_type) {
539   case GLSL_TYPE_FLOAT:
540   case GLSL_TYPE_UINT:
541   case GLSL_TYPE_INT:
542   case GLSL_TYPE_BOOL:
543      for (unsigned int i = 0; i < type->components(); i++) {
544	 l.type = brw_type_for_base_type(type);
545	 r.type = brw_type_for_base_type(type);
546
547	 if (predicated || !l.equals(&r)) {
548	    fs_inst *inst = emit(BRW_OPCODE_MOV, l, r);
549	    inst->predicated = predicated;
550	 }
551
552	 l.reg_offset++;
553	 r.reg_offset++;
554      }
555      break;
556   case GLSL_TYPE_ARRAY:
557      for (unsigned int i = 0; i < type->length; i++) {
558	 emit_assignment_writes(l, r, type->fields.array, predicated);
559      }
560      break;
561
562   case GLSL_TYPE_STRUCT:
563      for (unsigned int i = 0; i < type->length; i++) {
564	 emit_assignment_writes(l, r, type->fields.structure[i].type,
565				predicated);
566      }
567      break;
568
569   case GLSL_TYPE_SAMPLER:
570      break;
571
572   default:
573      assert(!"not reached");
574      break;
575   }
576}
577
578/* If the RHS processing resulted in an instruction generating a
579 * temporary value, and it would be easy to rewrite the instruction to
580 * generate its result right into the LHS instead, do so.  This ends
581 * up reliably removing instructions where it can be tricky to do so
582 * later without real UD chain information.
583 */
584bool
585fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
586                                   fs_reg dst,
587                                   fs_reg src,
588                                   fs_inst *pre_rhs_inst,
589                                   fs_inst *last_rhs_inst)
590{
591   if (pre_rhs_inst == last_rhs_inst)
592      return false; /* No instructions generated to work with. */
593
594   /* Only attempt if we're doing a direct assignment. */
595   if (ir->condition ||
596       !(ir->lhs->type->is_scalar() ||
597        (ir->lhs->type->is_vector() &&
598         ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1)))
599      return false;
600
601   /* Make sure the last instruction generated our source reg. */
602   if (last_rhs_inst->predicated ||
603       last_rhs_inst->force_uncompressed ||
604       last_rhs_inst->force_sechalf ||
605       !src.equals(&last_rhs_inst->dst))
606      return false;
607
608   /* If last_rhs_inst wrote a different number of components than our LHS,
609    * we can't safely rewrite it.
610    */
611   if (ir->lhs->type->vector_elements != last_rhs_inst->regs_written())
612      return false;
613
614   /* Success!  Rewrite the instruction. */
615   last_rhs_inst->dst = dst;
616
617   return true;
618}
619
620void
621fs_visitor::visit(ir_assignment *ir)
622{
623   fs_reg l, r;
624   fs_inst *inst;
625
626   /* FINISHME: arrays on the lhs */
627   ir->lhs->accept(this);
628   l = this->result;
629
630   fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail();
631
632   ir->rhs->accept(this);
633   r = this->result;
634
635   fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail();
636
637   assert(l.file != BAD_FILE);
638   assert(r.file != BAD_FILE);
639
640   if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst))
641      return;
642
643   if (ir->condition) {
644      emit_bool_to_cond_code(ir->condition);
645   }
646
647   if (ir->lhs->type->is_scalar() ||
648       ir->lhs->type->is_vector()) {
649      for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
650	 if (ir->write_mask & (1 << i)) {
651	    inst = emit(BRW_OPCODE_MOV, l, r);
652	    if (ir->condition)
653	       inst->predicated = true;
654	    r.reg_offset++;
655	 }
656	 l.reg_offset++;
657      }
658   } else {
659      emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
660   }
661}
662
663fs_inst *
664fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate,
665			      int sampler)
666{
667   int mlen;
668   int base_mrf = 1;
669   bool simd16 = false;
670   fs_reg orig_dst;
671
672   /* g0 header. */
673   mlen = 1;
674
675   if (ir->shadow_comparitor && ir->op != ir_txd) {
676      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
677	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
678	 coordinate.reg_offset++;
679      }
680      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
681      mlen += 3;
682
683      if (ir->op == ir_tex) {
684	 /* There's no plain shadow compare message, so we use shadow
685	  * compare with a bias of 0.0.
686	  */
687	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f));
688	 mlen++;
689      } else if (ir->op == ir_txb) {
690	 ir->lod_info.bias->accept(this);
691	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
692	 mlen++;
693      } else {
694	 assert(ir->op == ir_txl);
695	 ir->lod_info.lod->accept(this);
696	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
697	 mlen++;
698      }
699
700      ir->shadow_comparitor->accept(this);
701      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
702      mlen++;
703   } else if (ir->op == ir_tex) {
704      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
705	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
706	 coordinate.reg_offset++;
707      }
708      /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
709      mlen += 3;
710   } else if (ir->op == ir_txd) {
711      ir->lod_info.grad.dPdx->accept(this);
712      fs_reg dPdx = this->result;
713
714      ir->lod_info.grad.dPdy->accept(this);
715      fs_reg dPdy = this->result;
716
717      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
718	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate);
719	 coordinate.reg_offset++;
720      }
721      /* the slots for u and v are always present, but r is optional */
722      mlen += MAX2(ir->coordinate->type->vector_elements, 2);
723
724      /*  P   = u, v, r
725       * dPdx = dudx, dvdx, drdx
726       * dPdy = dudy, dvdy, drdy
727       *
728       * 1-arg: Does not exist.
729       *
730       * 2-arg: dudx   dvdx   dudy   dvdy
731       *        dPdx.x dPdx.y dPdy.x dPdy.y
732       *        m4     m5     m6     m7
733       *
734       * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
735       *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
736       *        m5     m6     m7     m8     m9     m10
737       */
738      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
739	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
740	 dPdx.reg_offset++;
741      }
742      mlen += MAX2(ir->lod_info.grad.dPdx->type->vector_elements, 2);
743
744      for (int i = 0; i < ir->lod_info.grad.dPdy->type->vector_elements; i++) {
745	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
746	 dPdy.reg_offset++;
747      }
748      mlen += MAX2(ir->lod_info.grad.dPdy->type->vector_elements, 2);
749   } else if (ir->op == ir_txs) {
750      /* There's no SIMD8 resinfo message on Gen4.  Use SIMD16 instead. */
751      simd16 = true;
752      ir->lod_info.lod->accept(this);
753      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
754      mlen += 2;
755   } else {
756      /* Oh joy.  gen4 doesn't have SIMD8 non-shadow-compare bias/lod
757       * instructions.  We'll need to do SIMD16 here.
758       */
759      simd16 = true;
760      assert(ir->op == ir_txb || ir->op == ir_txl || ir->op == ir_txf);
761
762      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
763	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type),
764	      coordinate);
765	 coordinate.reg_offset++;
766      }
767
768      /* Initialize the rest of u/v/r with 0.0.  Empirically, this seems to
769       * be necessary for TXF (ld), but seems wise to do for all messages.
770       */
771      for (int i = ir->coordinate->type->vector_elements; i < 3; i++) {
772	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f));
773      }
774
775      /* lod/bias appears after u/v/r. */
776      mlen += 6;
777
778      if (ir->op == ir_txb) {
779	 ir->lod_info.bias->accept(this);
780	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
781	 mlen++;
782      } else {
783	 ir->lod_info.lod->accept(this);
784	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, this->result.type),
785			      this->result);
786	 mlen++;
787      }
788
789      /* The unused upper half. */
790      mlen++;
791   }
792
793   if (simd16) {
794      /* Now, since we're doing simd16, the return is 2 interleaved
795       * vec4s where the odd-indexed ones are junk. We'll need to move
796       * this weirdness around to the expected layout.
797       */
798      orig_dst = dst;
799      const glsl_type *vec_type =
800	 glsl_type::get_instance(ir->type->base_type, 4, 1);
801      dst = fs_reg(this, glsl_type::get_array_instance(vec_type, 2));
802      dst.type = intel->is_g4x ? brw_type_for_base_type(ir->type)
803			       : BRW_REGISTER_TYPE_F;
804   }
805
806   fs_inst *inst = NULL;
807   switch (ir->op) {
808   case ir_tex:
809      inst = emit(SHADER_OPCODE_TEX, dst);
810      break;
811   case ir_txb:
812      inst = emit(FS_OPCODE_TXB, dst);
813      break;
814   case ir_txl:
815      inst = emit(SHADER_OPCODE_TXL, dst);
816      break;
817   case ir_txd:
818      inst = emit(SHADER_OPCODE_TXD, dst);
819      break;
820   case ir_txs:
821      inst = emit(SHADER_OPCODE_TXS, dst);
822      break;
823   case ir_txf:
824      inst = emit(SHADER_OPCODE_TXF, dst);
825      break;
826   }
827   inst->base_mrf = base_mrf;
828   inst->mlen = mlen;
829   inst->header_present = true;
830
831   if (simd16) {
832      for (int i = 0; i < 4; i++) {
833	 emit(BRW_OPCODE_MOV, orig_dst, dst);
834	 orig_dst.reg_offset++;
835	 dst.reg_offset += 2;
836      }
837   }
838
839   return inst;
840}
841
842/* gen5's sampler has slots for u, v, r, array index, then optional
843 * parameters like shadow comparitor or LOD bias.  If optional
844 * parameters aren't present, those base slots are optional and don't
845 * need to be included in the message.
846 *
847 * We don't fill in the unnecessary slots regardless, which may look
848 * surprising in the disassembly.
849 */
850fs_inst *
851fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate,
852			      int sampler)
853{
854   int mlen = 0;
855   int base_mrf = 2;
856   int reg_width = c->dispatch_width / 8;
857   bool header_present = false;
858   const int vector_elements =
859      ir->coordinate ? ir->coordinate->type->vector_elements : 0;
860
861   if (ir->offset) {
862      /* The offsets set up by the ir_texture visitor are in the
863       * m1 header, so we can't go headerless.
864       */
865      header_present = true;
866      mlen++;
867      base_mrf--;
868   }
869
870   for (int i = 0; i < vector_elements; i++) {
871      emit(BRW_OPCODE_MOV,
872	   fs_reg(MRF, base_mrf + mlen + i * reg_width, coordinate.type),
873	   coordinate);
874      coordinate.reg_offset++;
875   }
876   mlen += vector_elements * reg_width;
877
878   if (ir->shadow_comparitor && ir->op != ir_txd) {
879      mlen = MAX2(mlen, header_present + 4 * reg_width);
880
881      ir->shadow_comparitor->accept(this);
882      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
883      mlen += reg_width;
884   }
885
886   fs_inst *inst = NULL;
887   switch (ir->op) {
888   case ir_tex:
889      inst = emit(SHADER_OPCODE_TEX, dst);
890      break;
891   case ir_txb:
892      ir->lod_info.bias->accept(this);
893      mlen = MAX2(mlen, header_present + 4 * reg_width);
894      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
895      mlen += reg_width;
896
897      inst = emit(FS_OPCODE_TXB, dst);
898
899      break;
900   case ir_txl:
901      ir->lod_info.lod->accept(this);
902      mlen = MAX2(mlen, header_present + 4 * reg_width);
903      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
904      mlen += reg_width;
905
906      inst = emit(SHADER_OPCODE_TXL, dst);
907      break;
908   case ir_txd: {
909      ir->lod_info.grad.dPdx->accept(this);
910      fs_reg dPdx = this->result;
911
912      ir->lod_info.grad.dPdy->accept(this);
913      fs_reg dPdy = this->result;
914
915      mlen = MAX2(mlen, header_present + 4 * reg_width); /* skip over 'ai' */
916
917      /**
918       *  P   =  u,    v,    r
919       * dPdx = dudx, dvdx, drdx
920       * dPdy = dudy, dvdy, drdy
921       *
922       * Load up these values:
923       * - dudx   dudy   dvdx   dvdy   drdx   drdy
924       * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
925       */
926      for (int i = 0; i < ir->lod_info.grad.dPdx->type->vector_elements; i++) {
927	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
928	 dPdx.reg_offset++;
929	 mlen += reg_width;
930
931	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
932	 dPdy.reg_offset++;
933	 mlen += reg_width;
934      }
935
936      inst = emit(SHADER_OPCODE_TXD, dst);
937      break;
938   }
939   case ir_txs:
940      ir->lod_info.lod->accept(this);
941      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
942      mlen += reg_width;
943      inst = emit(SHADER_OPCODE_TXS, dst);
944      break;
945   case ir_txf:
946      mlen = header_present + 4 * reg_width;
947
948      ir->lod_info.lod->accept(this);
949      emit(BRW_OPCODE_MOV,
950	   fs_reg(MRF, base_mrf + mlen - reg_width, BRW_REGISTER_TYPE_UD),
951	   this->result);
952      inst = emit(SHADER_OPCODE_TXF, dst);
953      break;
954   }
955   inst->base_mrf = base_mrf;
956   inst->mlen = mlen;
957   inst->header_present = header_present;
958
959   if (mlen > 11) {
960      fail("Message length >11 disallowed by hardware\n");
961   }
962
963   return inst;
964}
965
966fs_inst *
967fs_visitor::emit_texture_gen7(ir_texture *ir, fs_reg dst, fs_reg coordinate,
968			      int sampler)
969{
970   int mlen = 0;
971   int base_mrf = 2;
972   int reg_width = c->dispatch_width / 8;
973   bool header_present = false;
974
975   if (ir->offset) {
976      /* The offsets set up by the ir_texture visitor are in the
977       * m1 header, so we can't go headerless.
978       */
979      header_present = true;
980      mlen++;
981      base_mrf--;
982   }
983
984   if (ir->shadow_comparitor && ir->op != ir_txd) {
985      ir->shadow_comparitor->accept(this);
986      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
987      mlen += reg_width;
988   }
989
990   /* Set up the LOD info */
991   switch (ir->op) {
992   case ir_tex:
993      break;
994   case ir_txb:
995      ir->lod_info.bias->accept(this);
996      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
997      mlen += reg_width;
998      break;
999   case ir_txl:
1000      ir->lod_info.lod->accept(this);
1001      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result);
1002      mlen += reg_width;
1003      break;
1004   case ir_txd: {
1005      if (c->dispatch_width == 16)
1006	 fail("Gen7 does not support sample_d/sample_d_c in SIMD16 mode.");
1007
1008      ir->lod_info.grad.dPdx->accept(this);
1009      fs_reg dPdx = this->result;
1010
1011      ir->lod_info.grad.dPdy->accept(this);
1012      fs_reg dPdy = this->result;
1013
1014      /* Load dPdx and the coordinate together:
1015       * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
1016       */
1017      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1018	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1019	 coordinate.reg_offset++;
1020	 mlen += reg_width;
1021
1022	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdx);
1023	 dPdx.reg_offset++;
1024	 mlen += reg_width;
1025
1026	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), dPdy);
1027	 dPdy.reg_offset++;
1028	 mlen += reg_width;
1029      }
1030      break;
1031   }
1032   case ir_txs:
1033      ir->lod_info.lod->accept(this);
1034      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), this->result);
1035      mlen += reg_width;
1036      break;
1037   case ir_txf:
1038      /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. */
1039      emit(BRW_OPCODE_MOV,
1040	   fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1041      coordinate.reg_offset++;
1042      mlen += reg_width;
1043
1044      ir->lod_info.lod->accept(this);
1045      emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), this->result);
1046      mlen += reg_width;
1047
1048      for (int i = 1; i < ir->coordinate->type->vector_elements; i++) {
1049	 emit(BRW_OPCODE_MOV,
1050	      fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_D), coordinate);
1051	 coordinate.reg_offset++;
1052	 mlen += reg_width;
1053      }
1054      break;
1055   }
1056
1057   /* Set up the coordinate (except for cases where it was done above) */
1058   if (ir->op != ir_txd && ir->op != ir_txs && ir->op != ir_txf) {
1059      for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1060	 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate);
1061	 coordinate.reg_offset++;
1062	 mlen += reg_width;
1063      }
1064   }
1065
1066   /* Generate the SEND */
1067   fs_inst *inst = NULL;
1068   switch (ir->op) {
1069   case ir_tex: inst = emit(SHADER_OPCODE_TEX, dst); break;
1070   case ir_txb: inst = emit(FS_OPCODE_TXB, dst); break;
1071   case ir_txl: inst = emit(SHADER_OPCODE_TXL, dst); break;
1072   case ir_txd: inst = emit(SHADER_OPCODE_TXD, dst); break;
1073   case ir_txf: inst = emit(SHADER_OPCODE_TXF, dst); break;
1074   case ir_txs: inst = emit(SHADER_OPCODE_TXS, dst); break;
1075   }
1076   inst->base_mrf = base_mrf;
1077   inst->mlen = mlen;
1078   inst->header_present = header_present;
1079
1080   if (mlen > 11) {
1081      fail("Message length >11 disallowed by hardware\n");
1082   }
1083
1084   return inst;
1085}
1086
1087void
1088fs_visitor::visit(ir_texture *ir)
1089{
1090   fs_inst *inst = NULL;
1091
1092   int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &fp->Base);
1093   sampler = fp->Base.SamplerUnits[sampler];
1094
1095   /* Our hardware doesn't have a sample_d_c message, so shadow compares
1096    * for textureGrad/TXD need to be emulated with instructions.
1097    */
1098   bool hw_compare_supported = ir->op != ir_txd;
1099   if (ir->shadow_comparitor && !hw_compare_supported) {
1100      assert(c->key.tex.compare_funcs[sampler] != GL_NONE);
1101      /* No need to even sample for GL_ALWAYS or GL_NEVER...bail early */
1102      if (c->key.tex.compare_funcs[sampler] == GL_ALWAYS)
1103	 return swizzle_result(ir, fs_reg(1.0f), sampler);
1104      else if (c->key.tex.compare_funcs[sampler] == GL_NEVER)
1105	 return swizzle_result(ir, fs_reg(0.0f), sampler);
1106   }
1107
1108   if (ir->coordinate)
1109      ir->coordinate->accept(this);
1110   fs_reg coordinate = this->result;
1111
1112   if (ir->offset != NULL) {
1113      uint32_t offset_bits = brw_texture_offset(ir->offset->as_constant());
1114
1115      /* Explicitly set up the message header by copying g0 to msg reg m1. */
1116      emit(BRW_OPCODE_MOV, fs_reg(MRF, 1, BRW_REGISTER_TYPE_UD),
1117	   fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)));
1118
1119      /* Then set the offset bits in DWord 2 of the message header. */
1120      emit(BRW_OPCODE_MOV,
1121	   fs_reg(retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 1, 2),
1122			 BRW_REGISTER_TYPE_UD)),
1123	   fs_reg(brw_imm_uw(offset_bits)));
1124   }
1125
1126   /* Should be lowered by do_lower_texture_projection */
1127   assert(!ir->projector);
1128
1129   bool needs_gl_clamp = true;
1130
1131   fs_reg scale_x, scale_y;
1132
1133   /* The 965 requires the EU to do the normalization of GL rectangle
1134    * texture coordinates.  We use the program parameter state
1135    * tracking to get the scaling factor.
1136    */
1137   if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT &&
1138       (intel->gen < 6 ||
1139	(intel->gen >= 6 && (c->key.tex.gl_clamp_mask[0] & (1 << sampler) ||
1140			     c->key.tex.gl_clamp_mask[1] & (1 << sampler))))) {
1141      struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1142      int tokens[STATE_LENGTH] = {
1143	 STATE_INTERNAL,
1144	 STATE_TEXRECT_SCALE,
1145	 sampler,
1146	 0,
1147	 0
1148      };
1149
1150      if (c->dispatch_width == 16) {
1151	 fail("rectangle scale uniform setup not supported on 16-wide\n");
1152	 this->result = fs_reg(this, ir->type);
1153	 return;
1154      }
1155
1156      c->prog_data.param_convert[c->prog_data.nr_params] =
1157	 PARAM_NO_CONVERT;
1158      c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1159	 PARAM_NO_CONVERT;
1160
1161      scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1162      scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1163
1164      GLuint index = _mesa_add_state_reference(params,
1165					       (gl_state_index *)tokens);
1166
1167      this->param_index[c->prog_data.nr_params] = index;
1168      this->param_offset[c->prog_data.nr_params] = 0;
1169      c->prog_data.nr_params++;
1170      this->param_index[c->prog_data.nr_params] = index;
1171      this->param_offset[c->prog_data.nr_params] = 1;
1172      c->prog_data.nr_params++;
1173   }
1174
1175   /* The 965 requires the EU to do the normalization of GL rectangle
1176    * texture coordinates.  We use the program parameter state
1177    * tracking to get the scaling factor.
1178    */
1179   if (intel->gen < 6 &&
1180       ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1181      fs_reg dst = fs_reg(this, ir->coordinate->type);
1182      fs_reg src = coordinate;
1183      coordinate = dst;
1184
1185      emit(BRW_OPCODE_MUL, dst, src, scale_x);
1186      dst.reg_offset++;
1187      src.reg_offset++;
1188      emit(BRW_OPCODE_MUL, dst, src, scale_y);
1189   } else if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1190      /* On gen6+, the sampler handles the rectangle coordinates
1191       * natively, without needing rescaling.  But that means we have
1192       * to do GL_CLAMP clamping at the [0, width], [0, height] scale,
1193       * not [0, 1] like the default case below.
1194       */
1195      needs_gl_clamp = false;
1196
1197      for (int i = 0; i < 2; i++) {
1198	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1199	    fs_reg chan = coordinate;
1200	    chan.reg_offset += i;
1201
1202	    inst = emit(BRW_OPCODE_SEL, chan, chan, brw_imm_f(0.0));
1203	    inst->conditional_mod = BRW_CONDITIONAL_G;
1204
1205	    /* Our parameter comes in as 1.0/width or 1.0/height,
1206	     * because that's what people normally want for doing
1207	     * texture rectangle handling.  We need width or height
1208	     * for clamping, but we don't care enough to make a new
1209	     * parameter type, so just invert back.
1210	     */
1211	    fs_reg limit = fs_reg(this, glsl_type::float_type);
1212	    emit(BRW_OPCODE_MOV, limit, i == 0 ? scale_x : scale_y);
1213	    emit(SHADER_OPCODE_RCP, limit, limit);
1214
1215	    inst = emit(BRW_OPCODE_SEL, chan, chan, limit);
1216	    inst->conditional_mod = BRW_CONDITIONAL_L;
1217	 }
1218      }
1219   }
1220
1221   if (ir->coordinate && needs_gl_clamp) {
1222      for (int i = 0; i < MIN2(ir->coordinate->type->vector_elements, 3); i++) {
1223	 if (c->key.tex.gl_clamp_mask[i] & (1 << sampler)) {
1224	    fs_reg chan = coordinate;
1225	    chan.reg_offset += i;
1226
1227	    fs_inst *inst = emit(BRW_OPCODE_MOV, chan, chan);
1228	    inst->saturate = true;
1229	 }
1230      }
1231   }
1232
1233   /* Writemasking doesn't eliminate channels on SIMD8 texture
1234    * samples, so don't worry about them.
1235    */
1236   fs_reg dst = fs_reg(this, glsl_type::get_instance(ir->type->base_type, 4, 1));
1237
1238   if (intel->gen >= 7) {
1239      inst = emit_texture_gen7(ir, dst, coordinate, sampler);
1240   } else if (intel->gen >= 5) {
1241      inst = emit_texture_gen5(ir, dst, coordinate, sampler);
1242   } else {
1243      inst = emit_texture_gen4(ir, dst, coordinate, sampler);
1244   }
1245
1246   /* If there's an offset, we already set up m1.  To avoid the implied move,
1247    * use the null register.  Otherwise, we want an implied move from g0.
1248    */
1249   if (ir->offset != NULL || !inst->header_present)
1250      inst->src[0] = reg_undef;
1251   else
1252      inst->src[0] = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW));
1253
1254   inst->sampler = sampler;
1255
1256   if (ir->shadow_comparitor) {
1257      if (hw_compare_supported) {
1258	 inst->shadow_compare = true;
1259      } else {
1260	 ir->shadow_comparitor->accept(this);
1261	 fs_reg ref = this->result;
1262
1263	 fs_reg value = dst;
1264	 dst = fs_reg(this, glsl_type::vec4_type);
1265
1266	 /* FINISHME: This needs to be done pre-filtering. */
1267
1268	 uint32_t conditional = 0;
1269	 switch (c->key.tex.compare_funcs[sampler]) {
1270	 /* GL_ALWAYS and GL_NEVER were handled at the top of the function */
1271	 case GL_LESS:     conditional = BRW_CONDITIONAL_L;   break;
1272	 case GL_GREATER:  conditional = BRW_CONDITIONAL_G;   break;
1273	 case GL_LEQUAL:   conditional = BRW_CONDITIONAL_LE;  break;
1274	 case GL_GEQUAL:   conditional = BRW_CONDITIONAL_GE;  break;
1275	 case GL_EQUAL:    conditional = BRW_CONDITIONAL_EQ;  break;
1276	 case GL_NOTEQUAL: conditional = BRW_CONDITIONAL_NEQ; break;
1277	 default: assert(!"Should not get here: bad shadow compare function");
1278	 }
1279
1280	 /* Use conditional moves to load 0 or 1 as the result */
1281	 this->current_annotation = "manual shadow comparison";
1282	 for (int i = 0; i < 4; i++) {
1283	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(0.0f));
1284
1285	    inst = emit(BRW_OPCODE_CMP, reg_null_f, ref, value);
1286	    inst->conditional_mod = conditional;
1287
1288	    inst = emit(BRW_OPCODE_MOV, dst, fs_reg(1.0f));
1289	    inst->predicated = true;
1290
1291	    dst.reg_offset++;
1292	    value.reg_offset++;
1293	 }
1294	 dst.reg_offset = 0;
1295      }
1296   }
1297
1298   swizzle_result(ir, dst, sampler);
1299}
1300
1301/**
1302 * Swizzle the result of a texture result.  This is necessary for
1303 * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons.
1304 */
1305void
1306fs_visitor::swizzle_result(ir_texture *ir, fs_reg orig_val, int sampler)
1307{
1308   this->result = orig_val;
1309
1310   if (ir->op == ir_txs)
1311      return;
1312
1313   if (ir->type == glsl_type::float_type) {
1314      /* Ignore DEPTH_TEXTURE_MODE swizzling. */
1315      assert(ir->sampler->type->sampler_shadow);
1316   } else if (c->key.tex.swizzles[sampler] != SWIZZLE_NOOP) {
1317      fs_reg swizzled_result = fs_reg(this, glsl_type::vec4_type);
1318
1319      for (int i = 0; i < 4; i++) {
1320	 int swiz = GET_SWZ(c->key.tex.swizzles[sampler], i);
1321	 fs_reg l = swizzled_result;
1322	 l.reg_offset += i;
1323
1324	 if (swiz == SWIZZLE_ZERO) {
1325	    emit(BRW_OPCODE_MOV, l, fs_reg(0.0f));
1326	 } else if (swiz == SWIZZLE_ONE) {
1327	    emit(BRW_OPCODE_MOV, l, fs_reg(1.0f));
1328	 } else {
1329	    fs_reg r = orig_val;
1330	    r.reg_offset += GET_SWZ(c->key.tex.swizzles[sampler], i);
1331	    emit(BRW_OPCODE_MOV, l, r);
1332	 }
1333      }
1334      this->result = swizzled_result;
1335   }
1336}
1337
1338void
1339fs_visitor::visit(ir_swizzle *ir)
1340{
1341   ir->val->accept(this);
1342   fs_reg val = this->result;
1343
1344   if (ir->type->vector_elements == 1) {
1345      this->result.reg_offset += ir->mask.x;
1346      return;
1347   }
1348
1349   fs_reg result = fs_reg(this, ir->type);
1350   this->result = result;
1351
1352   for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1353      fs_reg channel = val;
1354      int swiz = 0;
1355
1356      switch (i) {
1357      case 0:
1358	 swiz = ir->mask.x;
1359	 break;
1360      case 1:
1361	 swiz = ir->mask.y;
1362	 break;
1363      case 2:
1364	 swiz = ir->mask.z;
1365	 break;
1366      case 3:
1367	 swiz = ir->mask.w;
1368	 break;
1369      }
1370
1371      channel.reg_offset += swiz;
1372      emit(BRW_OPCODE_MOV, result, channel);
1373      result.reg_offset++;
1374   }
1375}
1376
1377void
1378fs_visitor::visit(ir_discard *ir)
1379{
1380   assert(ir->condition == NULL); /* FINISHME */
1381
1382   emit(FS_OPCODE_DISCARD);
1383   kill_emitted = true;
1384}
1385
1386void
1387fs_visitor::visit(ir_constant *ir)
1388{
1389   /* Set this->result to reg at the bottom of the function because some code
1390    * paths will cause this visitor to be applied to other fields.  This will
1391    * cause the value stored in this->result to be modified.
1392    *
1393    * Make reg constant so that it doesn't get accidentally modified along the
1394    * way.  Yes, I actually had this problem. :(
1395    */
1396   const fs_reg reg(this, ir->type);
1397   fs_reg dst_reg = reg;
1398
1399   if (ir->type->is_array()) {
1400      const unsigned size = type_size(ir->type->fields.array);
1401
1402      for (unsigned i = 0; i < ir->type->length; i++) {
1403	 ir->array_elements[i]->accept(this);
1404	 fs_reg src_reg = this->result;
1405
1406	 dst_reg.type = src_reg.type;
1407	 for (unsigned j = 0; j < size; j++) {
1408	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1409	    src_reg.reg_offset++;
1410	    dst_reg.reg_offset++;
1411	 }
1412      }
1413   } else if (ir->type->is_record()) {
1414      foreach_list(node, &ir->components) {
1415	 ir_instruction *const field = (ir_instruction *) node;
1416	 const unsigned size = type_size(field->type);
1417
1418	 field->accept(this);
1419	 fs_reg src_reg = this->result;
1420
1421	 dst_reg.type = src_reg.type;
1422	 for (unsigned j = 0; j < size; j++) {
1423	    emit(BRW_OPCODE_MOV, dst_reg, src_reg);
1424	    src_reg.reg_offset++;
1425	    dst_reg.reg_offset++;
1426	 }
1427      }
1428   } else {
1429      const unsigned size = type_size(ir->type);
1430
1431      for (unsigned i = 0; i < size; i++) {
1432	 switch (ir->type->base_type) {
1433	 case GLSL_TYPE_FLOAT:
1434	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i]));
1435	    break;
1436	 case GLSL_TYPE_UINT:
1437	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i]));
1438	    break;
1439	 case GLSL_TYPE_INT:
1440	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i]));
1441	    break;
1442	 case GLSL_TYPE_BOOL:
1443	    emit(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i]));
1444	    break;
1445	 default:
1446	    assert(!"Non-float/uint/int/bool constant");
1447	 }
1448	 dst_reg.reg_offset++;
1449      }
1450   }
1451
1452   this->result = reg;
1453}
1454
1455void
1456fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1457{
1458   ir_expression *expr = ir->as_expression();
1459
1460   if (expr) {
1461      fs_reg op[2];
1462      fs_inst *inst;
1463
1464      assert(expr->get_num_operands() <= 2);
1465      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1466	 assert(expr->operands[i]->type->is_scalar());
1467
1468	 expr->operands[i]->accept(this);
1469	 op[i] = this->result;
1470
1471	 resolve_ud_negate(&op[i]);
1472      }
1473
1474      switch (expr->operation) {
1475      case ir_unop_logic_not:
1476	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1));
1477	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1478	 break;
1479
1480      case ir_binop_logic_xor:
1481	 inst = emit(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]);
1482	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1483	 break;
1484
1485      case ir_binop_logic_or:
1486	 inst = emit(BRW_OPCODE_OR, reg_null_d, op[0], op[1]);
1487	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1488	 break;
1489
1490      case ir_binop_logic_and:
1491	 inst = emit(BRW_OPCODE_AND, reg_null_d, op[0], op[1]);
1492	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1493	 break;
1494
1495      case ir_unop_f2b:
1496	 if (intel->gen >= 6) {
1497	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f));
1498	 } else {
1499	    inst = emit(BRW_OPCODE_MOV, reg_null_f, op[0]);
1500	 }
1501	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1502	 break;
1503
1504      case ir_unop_i2b:
1505	 if (intel->gen >= 6) {
1506	    inst = emit(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0));
1507	 } else {
1508	    inst = emit(BRW_OPCODE_MOV, reg_null_d, op[0]);
1509	 }
1510	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1511	 break;
1512
1513      case ir_binop_greater:
1514      case ir_binop_gequal:
1515      case ir_binop_less:
1516      case ir_binop_lequal:
1517      case ir_binop_equal:
1518      case ir_binop_all_equal:
1519      case ir_binop_nequal:
1520      case ir_binop_any_nequal:
1521	 inst = emit(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]);
1522	 inst->conditional_mod =
1523	    brw_conditional_for_comparison(expr->operation);
1524	 break;
1525
1526      default:
1527	 assert(!"not reached");
1528	 fail("bad cond code\n");
1529	 break;
1530      }
1531      return;
1532   }
1533
1534   ir->accept(this);
1535
1536   if (intel->gen >= 6) {
1537      fs_inst *inst = emit(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1));
1538      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1539   } else {
1540      fs_inst *inst = emit(BRW_OPCODE_MOV, reg_null_d, this->result);
1541      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1542   }
1543}
1544
1545/**
1546 * Emit a gen6 IF statement with the comparison folded into the IF
1547 * instruction.
1548 */
1549void
1550fs_visitor::emit_if_gen6(ir_if *ir)
1551{
1552   ir_expression *expr = ir->condition->as_expression();
1553
1554   if (expr) {
1555      fs_reg op[2];
1556      fs_inst *inst;
1557      fs_reg temp;
1558
1559      assert(expr->get_num_operands() <= 2);
1560      for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1561	 assert(expr->operands[i]->type->is_scalar());
1562
1563	 expr->operands[i]->accept(this);
1564	 op[i] = this->result;
1565      }
1566
1567      switch (expr->operation) {
1568      case ir_unop_logic_not:
1569	 inst = emit(BRW_OPCODE_IF, temp, op[0], fs_reg(0));
1570	 inst->conditional_mod = BRW_CONDITIONAL_Z;
1571	 return;
1572
1573      case ir_binop_logic_xor:
1574	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1575	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1576	 return;
1577
1578      case ir_binop_logic_or:
1579	 temp = fs_reg(this, glsl_type::bool_type);
1580	 emit(BRW_OPCODE_OR, temp, op[0], op[1]);
1581	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1582	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1583	 return;
1584
1585      case ir_binop_logic_and:
1586	 temp = fs_reg(this, glsl_type::bool_type);
1587	 emit(BRW_OPCODE_AND, temp, op[0], op[1]);
1588	 inst = emit(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0));
1589	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1590	 return;
1591
1592      case ir_unop_f2b:
1593	 inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0));
1594	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1595	 return;
1596
1597      case ir_unop_i2b:
1598	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1599	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1600	 return;
1601
1602      case ir_binop_greater:
1603      case ir_binop_gequal:
1604      case ir_binop_less:
1605      case ir_binop_lequal:
1606      case ir_binop_equal:
1607      case ir_binop_all_equal:
1608      case ir_binop_nequal:
1609      case ir_binop_any_nequal:
1610	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], op[1]);
1611	 inst->conditional_mod =
1612	    brw_conditional_for_comparison(expr->operation);
1613	 return;
1614      default:
1615	 assert(!"not reached");
1616	 inst = emit(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0));
1617	 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1618	 fail("bad condition\n");
1619	 return;
1620      }
1621      return;
1622   }
1623
1624   ir->condition->accept(this);
1625
1626   fs_inst *inst = emit(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0));
1627   inst->conditional_mod = BRW_CONDITIONAL_NZ;
1628}
1629
1630void
1631fs_visitor::visit(ir_if *ir)
1632{
1633   fs_inst *inst;
1634
1635   if (intel->gen < 6 && c->dispatch_width == 16) {
1636      fail("Can't support (non-uniform) control flow on 16-wide\n");
1637   }
1638
1639   /* Don't point the annotation at the if statement, because then it plus
1640    * the then and else blocks get printed.
1641    */
1642   this->base_ir = ir->condition;
1643
1644   if (intel->gen == 6) {
1645      emit_if_gen6(ir);
1646   } else {
1647      emit_bool_to_cond_code(ir->condition);
1648
1649      inst = emit(BRW_OPCODE_IF);
1650      inst->predicated = true;
1651   }
1652
1653   foreach_list(node, &ir->then_instructions) {
1654      ir_instruction *ir = (ir_instruction *)node;
1655      this->base_ir = ir;
1656
1657      ir->accept(this);
1658   }
1659
1660   if (!ir->else_instructions.is_empty()) {
1661      emit(BRW_OPCODE_ELSE);
1662
1663      foreach_list(node, &ir->else_instructions) {
1664	 ir_instruction *ir = (ir_instruction *)node;
1665	 this->base_ir = ir;
1666
1667	 ir->accept(this);
1668      }
1669   }
1670
1671   emit(BRW_OPCODE_ENDIF);
1672}
1673
1674void
1675fs_visitor::visit(ir_loop *ir)
1676{
1677   fs_reg counter = reg_undef;
1678
1679   if (intel->gen < 6 && c->dispatch_width == 16) {
1680      fail("Can't support (non-uniform) control flow on 16-wide\n");
1681   }
1682
1683   if (ir->counter) {
1684      this->base_ir = ir->counter;
1685      ir->counter->accept(this);
1686      counter = *(variable_storage(ir->counter));
1687
1688      if (ir->from) {
1689	 this->base_ir = ir->from;
1690	 ir->from->accept(this);
1691
1692	 emit(BRW_OPCODE_MOV, counter, this->result);
1693      }
1694   }
1695
1696   emit(BRW_OPCODE_DO);
1697
1698   if (ir->to) {
1699      this->base_ir = ir->to;
1700      ir->to->accept(this);
1701
1702      fs_inst *inst = emit(BRW_OPCODE_CMP, reg_null_cmp, counter, this->result);
1703      inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1704
1705      inst = emit(BRW_OPCODE_BREAK);
1706      inst->predicated = true;
1707   }
1708
1709   foreach_list(node, &ir->body_instructions) {
1710      ir_instruction *ir = (ir_instruction *)node;
1711
1712      this->base_ir = ir;
1713      ir->accept(this);
1714   }
1715
1716   if (ir->increment) {
1717      this->base_ir = ir->increment;
1718      ir->increment->accept(this);
1719      emit(BRW_OPCODE_ADD, counter, counter, this->result);
1720   }
1721
1722   emit(BRW_OPCODE_WHILE);
1723}
1724
1725void
1726fs_visitor::visit(ir_loop_jump *ir)
1727{
1728   switch (ir->mode) {
1729   case ir_loop_jump::jump_break:
1730      emit(BRW_OPCODE_BREAK);
1731      break;
1732   case ir_loop_jump::jump_continue:
1733      emit(BRW_OPCODE_CONTINUE);
1734      break;
1735   }
1736}
1737
1738void
1739fs_visitor::visit(ir_call *ir)
1740{
1741   assert(!"FINISHME");
1742}
1743
1744void
1745fs_visitor::visit(ir_return *ir)
1746{
1747   assert(!"FINISHME");
1748}
1749
1750void
1751fs_visitor::visit(ir_function *ir)
1752{
1753   /* Ignore function bodies other than main() -- we shouldn't see calls to
1754    * them since they should all be inlined before we get to ir_to_mesa.
1755    */
1756   if (strcmp(ir->name, "main") == 0) {
1757      const ir_function_signature *sig;
1758      exec_list empty;
1759
1760      sig = ir->matching_signature(&empty);
1761
1762      assert(sig);
1763
1764      foreach_list(node, &sig->body) {
1765	 ir_instruction *ir = (ir_instruction *)node;
1766	 this->base_ir = ir;
1767
1768	 ir->accept(this);
1769      }
1770   }
1771}
1772
1773void
1774fs_visitor::visit(ir_function_signature *ir)
1775{
1776   assert(!"not reached");
1777   (void)ir;
1778}
1779
1780fs_inst *
1781fs_visitor::emit(fs_inst inst)
1782{
1783   fs_inst *list_inst = new(mem_ctx) fs_inst;
1784   *list_inst = inst;
1785
1786   if (force_uncompressed_stack > 0)
1787      list_inst->force_uncompressed = true;
1788   else if (force_sechalf_stack > 0)
1789      list_inst->force_sechalf = true;
1790
1791   list_inst->annotation = this->current_annotation;
1792   list_inst->ir = this->base_ir;
1793
1794   this->instructions.push_tail(list_inst);
1795
1796   return list_inst;
1797}
1798
1799/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1800void
1801fs_visitor::emit_dummy_fs()
1802{
1803   int reg_width = c->dispatch_width / 8;
1804
1805   /* Everyone's favorite color. */
1806   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 0 * reg_width), fs_reg(1.0f));
1807   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 1 * reg_width), fs_reg(0.0f));
1808   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 2 * reg_width), fs_reg(1.0f));
1809   emit(BRW_OPCODE_MOV, fs_reg(MRF, 2 + 3 * reg_width), fs_reg(0.0f));
1810
1811   fs_inst *write;
1812   write = emit(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0));
1813   write->base_mrf = 2;
1814   write->mlen = 4 * reg_width;
1815   write->eot = true;
1816}
1817
1818/* The register location here is relative to the start of the URB
1819 * data.  It will get adjusted to be a real location before
1820 * generate_code() time.
1821 */
1822struct brw_reg
1823fs_visitor::interp_reg(int location, int channel)
1824{
1825   int regnr = urb_setup[location] * 2 + channel / 2;
1826   int stride = (channel & 1) * 4;
1827
1828   assert(urb_setup[location] != -1);
1829
1830   return brw_vec1_grf(regnr, stride);
1831}
1832
1833/** Emits the interpolation for the varying inputs. */
1834void
1835fs_visitor::emit_interpolation_setup_gen4()
1836{
1837   this->current_annotation = "compute pixel centers";
1838   this->pixel_x = fs_reg(this, glsl_type::uint_type);
1839   this->pixel_y = fs_reg(this, glsl_type::uint_type);
1840   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1841   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1842
1843   emit(FS_OPCODE_PIXEL_X, this->pixel_x);
1844   emit(FS_OPCODE_PIXEL_Y, this->pixel_y);
1845
1846   this->current_annotation = "compute pixel deltas from v0";
1847   if (brw->has_pln) {
1848      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1849         fs_reg(this, glsl_type::vec2_type);
1850      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1851         this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
1852      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg_offset++;
1853   } else {
1854      this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1855         fs_reg(this, glsl_type::float_type);
1856      this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
1857         fs_reg(this, glsl_type::float_type);
1858   }
1859   emit(BRW_OPCODE_ADD, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1860	this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))));
1861   emit(BRW_OPCODE_ADD, this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1862	this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))));
1863
1864   this->current_annotation = "compute pos.w and 1/pos.w";
1865   /* Compute wpos.w.  It's always in our setup, since it's needed to
1866    * interpolate the other attributes.
1867    */
1868   this->wpos_w = fs_reg(this, glsl_type::float_type);
1869   emit(FS_OPCODE_LINTERP, wpos_w,
1870        this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1871        this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1872	interp_reg(FRAG_ATTRIB_WPOS, 3));
1873   /* Compute the pixel 1/W value from wpos.w. */
1874   this->pixel_w = fs_reg(this, glsl_type::float_type);
1875   emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
1876   this->current_annotation = NULL;
1877}
1878
1879/** Emits the interpolation for the varying inputs. */
1880void
1881fs_visitor::emit_interpolation_setup_gen6()
1882{
1883   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1884
1885   /* If the pixel centers end up used, the setup is the same as for gen4. */
1886   this->current_annotation = "compute pixel centers";
1887   fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1888   fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1889   int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1890   int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1891   emit(BRW_OPCODE_ADD,
1892	int_pixel_x,
1893	fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1894	fs_reg(brw_imm_v(0x10101010)));
1895   emit(BRW_OPCODE_ADD,
1896	int_pixel_y,
1897	fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1898	fs_reg(brw_imm_v(0x11001100)));
1899
1900   /* As of gen6, we can no longer mix float and int sources.  We have
1901    * to turn the integer pixel centers into floats for their actual
1902    * use.
1903    */
1904   this->pixel_x = fs_reg(this, glsl_type::float_type);
1905   this->pixel_y = fs_reg(this, glsl_type::float_type);
1906   emit(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x);
1907   emit(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y);
1908
1909   this->current_annotation = "compute pos.w";
1910   this->pixel_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1911   this->wpos_w = fs_reg(this, glsl_type::float_type);
1912   emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
1913
1914   for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
1915      uint8_t reg = c->barycentric_coord_reg[i];
1916      this->delta_x[i] = fs_reg(brw_vec8_grf(reg, 0));
1917      this->delta_y[i] = fs_reg(brw_vec8_grf(reg + 1, 0));
1918   }
1919
1920   this->current_annotation = NULL;
1921}
1922
1923void
1924fs_visitor::emit_color_write(int target, int index, int first_color_mrf)
1925{
1926   int reg_width = c->dispatch_width / 8;
1927   fs_inst *inst;
1928   fs_reg color = outputs[target];
1929   fs_reg mrf;
1930
1931   /* If there's no color data to be written, skip it. */
1932   if (color.file == BAD_FILE)
1933      return;
1934
1935   color.reg_offset += index;
1936
1937   if (c->dispatch_width == 8 || intel->gen >= 6) {
1938      /* SIMD8 write looks like:
1939       * m + 0: r0
1940       * m + 1: r1
1941       * m + 2: g0
1942       * m + 3: g1
1943       *
1944       * gen6 SIMD16 DP write looks like:
1945       * m + 0: r0
1946       * m + 1: r1
1947       * m + 2: g0
1948       * m + 3: g1
1949       * m + 4: b0
1950       * m + 5: b1
1951       * m + 6: a0
1952       * m + 7: a1
1953       */
1954      inst = emit(BRW_OPCODE_MOV,
1955		  fs_reg(MRF, first_color_mrf + index * reg_width, color.type),
1956		  color);
1957      inst->saturate = c->key.clamp_fragment_color;
1958   } else {
1959      /* pre-gen6 SIMD16 single source DP write looks like:
1960       * m + 0: r0
1961       * m + 1: g0
1962       * m + 2: b0
1963       * m + 3: a0
1964       * m + 4: r1
1965       * m + 5: g1
1966       * m + 6: b1
1967       * m + 7: a1
1968       */
1969      if (brw->has_compr4) {
1970	 /* By setting the high bit of the MRF register number, we
1971	  * indicate that we want COMPR4 mode - instead of doing the
1972	  * usual destination + 1 for the second half we get
1973	  * destination + 4.
1974	  */
1975	 inst = emit(BRW_OPCODE_MOV,
1976		     fs_reg(MRF, BRW_MRF_COMPR4 + first_color_mrf + index,
1977			    color.type),
1978		     color);
1979	 inst->saturate = c->key.clamp_fragment_color;
1980      } else {
1981	 push_force_uncompressed();
1982	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index,
1983					    color.type),
1984		     color);
1985	 inst->saturate = c->key.clamp_fragment_color;
1986	 pop_force_uncompressed();
1987
1988	 push_force_sechalf();
1989	 color.sechalf = true;
1990	 inst = emit(BRW_OPCODE_MOV, fs_reg(MRF, first_color_mrf + index + 4,
1991					    color.type),
1992		     color);
1993	 inst->saturate = c->key.clamp_fragment_color;
1994	 pop_force_sechalf();
1995	 color.sechalf = false;
1996      }
1997   }
1998}
1999
2000void
2001fs_visitor::emit_fb_writes()
2002{
2003   this->current_annotation = "FB write header";
2004   bool header_present = true;
2005   int base_mrf = 2;
2006   int nr = base_mrf;
2007   int reg_width = c->dispatch_width / 8;
2008
2009   if (intel->gen >= 6 &&
2010       !this->kill_emitted &&
2011       c->key.nr_color_regions == 1) {
2012      header_present = false;
2013   }
2014
2015   if (header_present) {
2016      /* m2, m3 header */
2017      nr += 2;
2018   }
2019
2020   if (c->aa_dest_stencil_reg) {
2021      push_force_uncompressed();
2022      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2023	   fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0)));
2024      pop_force_uncompressed();
2025   }
2026
2027   /* Reserve space for color. It'll be filled in per MRT below. */
2028   int color_mrf = nr;
2029   nr += 4 * reg_width;
2030
2031   if (c->source_depth_to_render_target) {
2032      if (intel->gen == 6 && c->dispatch_width == 16) {
2033	 /* For outputting oDepth on gen6, SIMD8 writes have to be
2034	  * used.  This would require 8-wide moves of each half to
2035	  * message regs, kind of like pre-gen5 SIMD16 FB writes.
2036	  * Just bail on doing so for now.
2037	  */
2038	 fail("Missing support for simd16 depth writes on gen6\n");
2039      }
2040
2041      if (c->computes_depth) {
2042	 /* Hand over gl_FragDepth. */
2043	 assert(this->frag_depth);
2044	 fs_reg depth = *(variable_storage(this->frag_depth));
2045
2046	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr), depth);
2047      } else {
2048	 /* Pass through the payload depth. */
2049	 emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2050	      fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
2051      }
2052      nr += reg_width;
2053   }
2054
2055   if (c->dest_depth_reg) {
2056      emit(BRW_OPCODE_MOV, fs_reg(MRF, nr),
2057	   fs_reg(brw_vec8_grf(c->dest_depth_reg, 0)));
2058      nr += reg_width;
2059   }
2060
2061   for (int target = 0; target < c->key.nr_color_regions; target++) {
2062      this->current_annotation = ralloc_asprintf(this->mem_ctx,
2063						 "FB write target %d",
2064						 target);
2065      for (int i = 0; i < 4; i++)
2066	 emit_color_write(target, i, color_mrf);
2067
2068      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2069      inst->target = target;
2070      inst->base_mrf = base_mrf;
2071      inst->mlen = nr - base_mrf;
2072      if (target == c->key.nr_color_regions - 1)
2073	 inst->eot = true;
2074      inst->header_present = header_present;
2075   }
2076
2077   if (c->key.nr_color_regions == 0) {
2078      if (c->key.alpha_test) {
2079	 /* If the alpha test is enabled but there's no color buffer,
2080	  * we still need to send alpha out the pipeline to our null
2081	  * renderbuffer.
2082	  */
2083	 emit_color_write(0, 3, color_mrf);
2084      }
2085
2086      fs_inst *inst = emit(FS_OPCODE_FB_WRITE);
2087      inst->base_mrf = base_mrf;
2088      inst->mlen = nr - base_mrf;
2089      inst->eot = true;
2090      inst->header_present = header_present;
2091   }
2092
2093   this->current_annotation = NULL;
2094}
2095
2096void
2097fs_visitor::resolve_ud_negate(fs_reg *reg)
2098{
2099   if (reg->type != BRW_REGISTER_TYPE_UD ||
2100       !reg->negate)
2101      return;
2102
2103   fs_reg temp = fs_reg(this, glsl_type::uint_type);
2104   emit(BRW_OPCODE_MOV, temp, *reg);
2105   *reg = temp;
2106}
2107